US 20170034268A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0034268 A1

Govind

43) Pub. Date: Feb. 2, 2017

(54)

(71)
(72)

@

(22)

(1)

(52)

SYSTEMS, METHODS AND DEVICES FOR
RDMA READ/WRITE OPERATIONS
Applicant: NetApp, Inc., Sunnyvale, CA (US)

Inventor: Subin Govind, Sunnyvale, CA (US)

Appl. No.: 14/815,662

Filed: Jul. 31, 2015

Publication Classification

Int. CL.

HO4L 29/08 (2006.01)

GO6F 15/173 (2006.01)

U.S. CL

CPC HO4L 67/1097 (2013.01); GO6F 15/17331

(2013.01); HO4L 67/1008 (2013.01)

(57) ABSTRACT

Presented herein are Remote Direct Memory Access
(RDMA) networks, RDMA protocols, and methods for
performing upper layer protocol (ULP) for RDMA network
configurations. Methods for performing ULP RDMA
include: a client central processing unit (CPU) allocating a
buffer in a memory region of a client computing device; a
client network interface card (NIC) creating a steering tag
for the buffer; the client CPU transmitting to a local server
CPU of a local server node an initiate RDMA request, the
RDMA request including source and destination (SRC-
DEST) information and a requested RDMA operation, the
SRC-DEST information including the steering tag and a file
path for a data file; a remote server NIC of a remote server
node locating the data file with the file path; the remote
server NIC performing the requested RDMA operation
without utilizing the server’s CPU; and the client and remote
server NIC’s completing the requested RDMA operation.

212A— Local
200 \ Server
21 212B !
8 252 216B 214/4
([[:
Client A \
—~ 256 220
1258 238N
_ Carg reads from memory
B1 Card writes to memdry ithout CPU involvement]
Without CPU involvgment 286 v
288 554 234B 7
(287 (
= (g e
and Pull
CPU > CPU
7 / “(7
\ (\
250 289 289 226B

Patent Application Publication Feb. 2, 2017 Sheet 1 of 7 US 2017/0034268 A1

‘IO\

Client e & 0 Client

12— Storage Server

16—~ Buffer
Cache

14—

FIG. 1

Patent Application Publication Feb. 2, 2017 Sheet 2 of 7 US 2017/0034268 A1

|
|
) 26 Memary /J\|28
! [Buffer Cache || ! 16
I |Processor(s) 1
[|__Operating System |1 ~36
! I
t
| 30
! |
! I
! !
: Network [~ 32 Storage Adapter : 34
! Adapter (RDMA controller)]
|
O
To/From 18
Client(s)
Storage Storage
Server Server
12 12
NVSSM
40—
NV
Flash DRAM
((
42 44

FIG. 2

Feb. 2,2017 Sheet 3 of 7 US 2017/0034268 Al

Patent Application Publication

] | ~——

9o

NNK

vell

VoLl

Vil

voel

€ 'Old

juswis|g
NIIWETY

|020301d
ouqge4

Juswa|g
ejeq

=

Juswalg
YlomiaN

EET =]
omisN

|0203}0.1d
olged

Juswa|g
eleq

[900j014
bliqe 4

Wawis|g
eleq

:.mm

Patent Application Publication Feb. 2, 2017

Sheet 4 of 7 US 2017/0034268 Al

212B—— Remote

200\‘ Server
218 212A ?
(252 216A 04—

[[:

Client A A
254 234A
((280
NIC NIC <
CPU "l cpu
— T
V 281
25 FIG. 4A 8 226A
212B— Remote
200\‘ Server
218 212A i
(252 216A 014~
[[:
Client A A
—~ 256
H— 258
B1 Register success
Return Stag(B1)
< 283 954 234A
o (
Register B1 NIC NIC
CPU CPU
: T
250 FIG. 4B 284 226A

Patent Application Publication Feb. 2, 2017 Sheet 5 of 7 US 2017/0034268 A1
212A— Local
200 Server
\« 218 212B 5
252 216B 14—
([(| :
Client A I\
256 220
1— 258 238—
) Carg reads from memory
B1 Card writes o memdry witkout CPU involvement|
Without CPU involvpment A
286
288 754 234B 7
(287 (
NIC 4L NIC Locgtgs
and Pull
CPU > CPU
; / <—(7
\ (\
250 289 289 226B
FIG. 4C 2198—Remoe
200 Server
\\ 218 212A ‘
252 216A 14—
(([(!
Client A A
——~270
254 234A
290
NIC NIC (
CPU "l cru
7 ~ [7
\ 2\91 \
250 FIG. 5A 226A

Patent Application Publication Feb. 2, 2017 Sheet 6 of 7 US 2017/0034268 A1

212B— Remote

200\ Server
218 212A !
252 216A 214/_\2
([[(!
Client A A
——~ 270
Register success
Return Stag(B2)
293 254 234A
292
Register B2 NIC NIC
CPU CPU
7 /4 .
K 2\94 K
250 FIG. 5B 226A

212A— Local

200 Server
\\ 218 212B i
252 216B 014
([[:
Client A A
220
—~ 270 272
Crd writes to memary
Bl Card reads from menyory wirdout CPU involvement
Without CPU involvEment 297
295 954 2348 Ve
(296 (
NIC _l NIC /
CPU CPU
0 ((
250 298 226B

FIG. 5C

Patent Application Publication Feb. 2, 2017 Sheet 7 of 7 US 2017/0034268 A1

client transmits request to open connection to server

303~ I

server transmits connection open success indicator to client

305~ ,L

client allocates buffer with buffer address

307~ ,L

client RDMA card creates steering tag for requested data file

309~ {,

client transmits to server RDMA read request
with source and destination information

311~ ‘,

server RDMA card uses steering tag and file path
information to read data file from memory without server CPU

313~ {

server RDMA card transmits data to client RDMA card

315~ v

client RDMA card writes requested data to memory without
client CPU

FIG. 6

US 2017/0034268 Al

SYSTEMS, METHODS AND DEVICES FOR
RDMA READ/WRITE OPERATIONS

TECHNICAL FIELD

[0001] The present disclosure relates generally to com-
puter networks and mass data storage systems. More par-
ticularly, aspects of this disclosure relate to computer net-
work configurations, Remote Direct Memory Access
(RDMA) protocols, and methods for RDMA read-write
operations for scale-out storage clusters.

BACKGROUND

[0002] Mass data storage systems are used for many
purposes, including storing user and system data for data
processing, backup and transmission applications. A typical
mass storage system includes numerous computer disk
drives that cooperatively store data, for example, as a single
logically contiguous storage space, often referred to as a
volume or a logical unit. One or more such volumes/logical
units may be configured in a storage system. The storage
system therefore performs much like that of a single com-
puter disk drive when viewed by a host computer system.
For example, the host computer system can access data of
the storage system much like it would access data of a single
internal disk drive, in essence, without regard to the sub-
stantially transparent underlying control of the storage sys-
tem.

[0003] A mass storage system may include one or more
storage modules with each individual storage module com-
prising multiple disk drives coupled to one or more storage
controllers. In one common configuration, a storage module
may be coupled through its storage controller(s) directly to
a host system as a standalone storage module. Typical
storage controllers include significant cache memory capac-
ity to improve performance of the I/O operation. Write
requests may be completed when the supplied data is written
to the higher speed cache memory. At some later point, the
data in cache memory may be flushed or posted to the
persistent storage of the storage modules. Also, read requests
may often be satisfied by accessing data already resident in
the higher speed cache memory of the storage controller.
[0004] In a standalone configuration, it is common to
enhance reliability and performance by providing a redun-
dant pair of storage controllers. The redundant pair of
controllers enhances reliability in that an inactive storage
controller may assume control when an active controller is
sensed to have failed in some manner. Redundant pairs of
storage controllers may also enhance performance of the
standalone storage system in that both storage controllers
may be active each acting as backup for the other while both
simultaneously processing different I/O requests or different
portions of an I/O request. In such a configuration with
redundant storage controllers, the storage controllers typi-
cally exchange information to maintain coherency of data
between the cache memories resident in each controller.
Some storage systems use the communication path between
the controllers and the storage modules for the additional
cache coherency information exchanges.

[0005] In another standard system configuration, a storage
module may be part of a larger storage network or “cluster.”
For a cluster-type architecture, multiple storage modules and
corresponding storage controllers are typically coupled
through a switched network communication medium,

Feb. 2, 2017

known as a “fabric,” to one or more host systems. This form
of storage module system is often referred to as a Storage
Area Network (SAN) architecture and the switching fabric
is, concomitantly, referred to as a SAN switching fabric. In
such a clustered configuration, it is common that all of the
storage controllers exchange coherency information and
other information for load balancing of /O request process-
ing and other control information. Such control information
may be exchanged over the same network fabric that couples
the storage controllers to the host systems (e.g., a “front end”
connection) or over another fabric that couples the storage
controllers to the storage modules (e.g., a “back-end” con-
nection).

[0006] RDMA technology, also referred to as “RDMA
protocol,” provides a useful method for reducing processor
workload in the transmission of data in network-related
processing. In general, RDMA technology reduces central
processing unit (CPU) workload in the transmission and
reception of data across a network between two computer
nodes by transterring data directly from memory of a local
computer node to memory of a remote computer node
without continuously involving the CPU of the remote node.
RDMA technology is typically used by, for example, com-
mercial data centers and mass data storage systems that
support high performance computing services. It is often
required that specialized hardware be provided on both the
client (remote computer node) and the server (local com-
puter node) to implement the RDMA protocol. Network
interface card (NIC) hardware fabricated to implement
RDMA technology, for example, can process operations that
were previously performed by a CPU.

[0007] An RDMA write operation transfers data from the
memory of a local computer node to the memory of a remote
computer node. An RDMA read operation, in contrast,
requests transfer of data from the memory of a remote
computer node to the memory of a local computer node.
Each RDMA connection typically uses a pair of memory
data structures, a send queue, and a receive queue, that allow
the computer node to post work requests to the RDMA
capable hardware. There is also a completion queue that
stores completion notifications for the submitted work
requests. A send queue, a receive queue, and a completion
queue are oftentimes collectively referred to as a queue
structure (QS). Once the RDMA connection is established,
a computer node can post a request in one of the queues the
send or receive queue. Each queue stores a request from the
time it is posted by the node until the time it is processed.
An interconnect adapter on the node is then notified by an
interconnect driver on the same node that the request is
posted; it reads the request in the queue and does the actual
data transfer over a network. After receipt of the requested
data is completed, the interconnect adapter at the computer
node that receives the data writes data directly to destination
memory at the second computer node. Then a completion
result is sent back to the first computer node. The intercon-
nect adapter at the first computer node posts the result to its
completion queue.

[0008] RDMA upper layer protocol (ULP), such as server
message block direct (SMBD) protocols and like applica-
tion-layer network protocols, typically uses a model in
which the initiator (client) requests an RDMA operation
after registering memory. The host server is then expected to
complete the operation using RDMA. Clients connecting to
a scale-out file server may oftentimes choose to connect to

US 2017/0034268 Al

any node in a cluster depending on the load balancing
model. While this option aids “scale out” of the system e.g.,
the ability to incrementally increase storage capacity (stor-
age modules) of the system there is a performance penalty
associated with having to go over the cluster interconnect.
Typically, requests that go to a remote node can result in
higher client-perceived latency. There is therefore a need for
RDMA protocol that reduces latency while minimizing
utilization of the cluster interconnect.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a schematic diagram illustrating a repre-
sentative networked mass data storage system in accordance
with aspects of the present disclosure.

[0010] FIG. 2 is a schematic diagram illustrating a repre-
sentative architecture of a storage server communicatively
coupled to a client computing device and a data storage
module according to aspects of the present disclosure.
[0011] FIG. 3 is a schematic diagram illustrating a repre-
sentative cluster-type storage module architecture in accor-
dance with aspects of the present disclosure.

[0012] FIGS. 4A through 4C illustrate a representative
Server Message Block Direct (SMBD) Remote Direct
Memory Access (RDMA) read operation in accordance with
aspects of the present disclosure.

[0013] FIGS. 5A through 5C illustrate a representative
SMBD RDMA write operation in accordance with aspects of
the present disclosure.

[0014] FIG. 6 is a flow chart illustrating a representative
method or work flow process of an upper layer protocol
(ULP) for Remote Direct Memory Access (RDMA) in
accordance with aspects of the present disclosure.

[0015] The present disclosure is susceptible to various
modifications and alternative forms, and some representa-
tive embodiments have been shown by way of example in
the drawings and will be described in detail herein. It should
be understood, however, that the aspects and features of this
disclosure are not limited to the particular forms illustrated
in the drawings. Rather, the disclosure is to cover all
modifications equivalents and alternatives falling within the
scope of the disclosure as defined by the appended claims.

DETAILED DESCRIPTION OF ILLUSTRATED
EXAMPLES

[0016] This disclosure is susceptible of embodiment in
many different forms. There are shown in the drawings, and
will herein be described in detail, representative embodi-
ments with the understanding that the present disclosure is
to be considered as an exemplification of the principles of
the present disclosure and is not intended to limit the broad
aspects of the disclosure to the embodiments illustrated. To
that extent, elements and limitations that are disclosed, for
example, in the Abstract, Summary, and Detailed Descrip-
tion sections, but not explicitly set forth in the claims, should
not be incorporated into the claims, singly or collectively, by
implication, inference or otherwise. For purposes of the
present detailed description, unless specifically disclaimed
or logically prohibited: the singular includes the plural and
vice versa; and the words “including” or “comprising” or
“having” means “including without limitation.” Moreover,
words of approximation, such as “about,” “almost,” “sub-
stantially,” “approximately,” and the like, can be used herein
in the sense of “at, near, or nearly at,” or “within 3-5% of,”

2 <

Feb. 2, 2017

or “within acceptable manufacturing tolerances,” or any
logical combination thereof, for example.

[0017] Aspects of this disclosure are directed to upper
layer protocol (ULP) for Remote Direct Memory Access
(RDMA), such as Server Message Block Direct (SMBD)
protocol, Internet Small Computer System Interface (iSCSI)
protocol, Network File System (NFS) protocol, or any other
protocol utilizing RDMA, where clients initiate RDMA
operations, for example, after registering memory, and serv-
ers execute the operation using RDMA. In the case of a scale
out server, the server can terminate the operation on the
client directly from the node that stores the data. This will
prevent an extra hop over the cluster interconnect with the
actual data, which helps to reduce latency and the utilization
of the cluster interconnect. By way of example, a read/write
request from a client can be completed without “hopping”
over a network, thereby eliminating inter-cluster network
latency and reducing processing workload. In so doing,
requests run significantly faster and CPU usage is concomi-
tantly reduced over conventional methods.

[0018] Also presented herein are RDMA verbs that define
an application programming interface (API) that can be used
by consumers of RDMA and provide for the concept of a
“protection domain.” A protection domain (PD) is a mecha-
nism that is used by the verbs layer to associate a memory
region to one or more Queue Pairs (QP). Each protection
domain has corresponding identification information (ID).
An RDMA network interface card (RNIC) allows an RDMA
request on a QP to write to a memory region (MR) if the QP
and the MR both have the same PD ID. A PD is a logical
grouping of QPs such that a memory location registered in
that PD is accessible by all the connections in the PD. So, if
a client registers a location of memory and informs a remote
node about the memory over a QP, every connection QP in
that PD can access that memory location. The client can then
connect to all nodes on the same cluster so that it has a QP
per node. The server can therefore write directly to the
client’s memory from the node that stores the selected data.
[0019] When a client connects to a scale-out server, it may
choose to setup a queue pair to every node on the cluster
using the same RNIC with the same PD ID. A read request
that is sent by the client will result in an RDMA write of the
data from the correct server node directly to the client. This
will avoid sending the data over the cluster interconnect
which, in turn, will save interconnect bandwidth and reduce
client perceived latency. The client request to perform
RDMA is typically small in size and contains minimal data,
such as a set of steering tags. The response is typically much
larger in size and contains the data that is being read or
written. So, although the request still goes over the cluster
interconnect, it is small in size and results in lesser overhead
than sending the actual data. A steering tag is a cookie that
represents a piece of memory. The client processor asks the
client network interface card to register a piece of memory
and returns a steering tag that can be passed over the
network to the host. The host can then direct the host
network interface card to use the steering tag to read/write
to the memory in question remotely.

[0020] Referring now to the drawings, wherein like ref-
erence numerals refer to like features throughout the several
views, there is shown in FIG. 1 a representative mass data
storage system, designated generally at 10, for performing
Remote Direct Memory Access (RDMA) operations in
accordance with aspects of the present disclosure. The

US 2017/0034268 Al

system 10 includes, but is certainly not limited to, one or
more host storage servers 12 communicatively coupled to
one or more data storage modules 14, each of which
includes, for example, multiple non-volatile mass storage
devices 20. Also communicatively coupled to the host
storage server(s) 12 through a network interconnect 22 are
one or more clients 18. The network interconnect 22 may be,
for example, a local area network (LAN), a wireless local
area network (WLAN), a wide area network (WAN), a
metropolitan area network (MAN), a global area network, a
distributed computer system, such as the Internet, a Fibre
Channel fabric, or any combination of such interconnects.
Each of the clients 18 may take on various forms including,
as some non-limiting examples, a server-class computer, a
networked workstation, a personal computer (PC), a hand-
held computing device, and the like. It should be readily
understood that the system 10 illustrated in FIG. 1 is merely
provided as an exemplary application by which the various
aspects and features of this disclosure can be applied.
Moreover, only selected components of the system 10 have
been shown and will be described in additional detail
hereinbelow. Nevertheless, the systems and devices dis-
cussed herein can include numerous additional and alterna-
tive features, and other well-known peripheral components,
for example, for carrying out the various methods and
functions disclosed herein.

[0021] Each storage server 12 is operable, in whole or in
part, to manage storage of data in at least one of the one or
more storage modules 14. A storage server 12 receives and
responds to various RDMA read requests and/or RDMA
write requests from one or more of the clients 18 directed to
data stored in, or to be stored in, the storage module(s) 14.
A storage server 12 communicates with a storage module 14
over a network interconnect 24. Each server can be imple-
mented on one or more server class computers, which can be
subcomponents of a computer hardware server system, with
sufficient memory, data storage, and processing power and,
in some embodiments, the capabilities to run a server class
operating system (e.g., GNU/Linux, SUN Solaris, Microsoft
Windows OS, etc.). The servers can each be part of a logical
group of one or more servers, such as a server farm or server
network.

[0022] As is typical in large-scale systems, the application
software can be implemented in components, with different
components running on different server computers, on the
same server, or any logical combination thereof. Intercon-
nect 24 may support any of various types of communication
protocols, such as Ethernet, iWarp, Fibre Channel Virtual
Interface (FCVI), InfiniBand. Peripheral Component Inter-
connect express (PCle), and the like. Like interconnect 22,
interconnect 24 may comprise a LAN, a WLAN, a WAN; a
MAN, a global area network, a distributed computer system,
a Fibre Channel fabric, or any combination thereof. Inter-
connects 22 and 24 can each be a wired or a wireless
network, or a combination of wired and wireless technology.
Communication can take place through any now-known or
hereinafter developed media, such as telephone lines (e.g.,
Dial-Up), local area network (LAN) or wide area network
(WAN) links (e.g., Ethernet, T(X) lines, X.25, etc.), broad-
band connections (e.g., Integrated Service Data Network
(ISDN), Frame Relay, etc.), wireless links (e.g., infrared,
Bluetooth®, WiFi or WLAN), cellular networks, and so on.

[0023] Mass storage devices 20 of each storage module 14
can take on various non-known or hereinafter developed

Feb. 2, 2017

forms, including non-volatile solid-state memory, such as
flash memory or other read-only memory (ROM); alterna-
tively, a storage module may contain conventional elec-
tronic, magnetic or optical disks or tape drives. These mass
storage devices 20 can be organized as one or more Redun-
dant Array of Inexpensive/Independent Disk/Device (RAID)
groups, in which case the storage server(s) 12 accesses the
storage module(s) 14 using one or more RAID algorithms.
The illustrated storage server 12 also includes an optional
internal buffer cache 16, which can be implemented as
DRAM, for example, or, the buffer cache 16 can be imple-
mented as non-volatile solid-state memory, including flash
memory.

[0024] The storage server(s) 12 may provide file-level data
access service to clients 18, such as commonly done by a
storage server in a network attached storage (NAS) envi-
ronment (i.e., a “filer”), or block-level data access service
such as commonly done by a storage server in a storage area
network (SAN) environment. A storage server 12 may be
operable to provide both file-level data access service and
block-level data access service, for some network configu-
rations. Further, although the storage server 12 is illustrated
as a single unit in FIG. 1, the storage server 12 can have a
distributed architecture. For example, the storage server 12
can include a physically separate network element and data
element that communicate over an interconnect, as will be
described in further detail hereinbelow.

[0025] FIG. 2 is a high-level block diagram showing an
example architecture of the storage server 12 and an
example architecture of an optional storage device configu-
ration 40. The storage server 12 includes one or more
processors 26 (e.g., CPU, distributed processors, master
processors, slave processors, parallel processors, etc.) and
one or more memory devices 28, which can comprise a
volatile memory (e.g., a random-access memory (RAM) or
multiple RAM) and a non-volatile memory (e.g., an
EEPROM), coupled via interconnect 30. As shown in FIG.
2, the interconnect 30 is an abstraction that represents any
one or more separate physical buses, point-to-point connec-
tions, or both, connected by appropriate bridges, adapters, or
controllers, for example. The interconnect 30, therefore,
may include, for example, a system bus, a Peripheral Com-
ponent Interconnect (PCI) bus, a HyperTransport or industry
standard architecture (ISA) bus, a small computer system
interface (SCSI) bus, a universal serial bus (USB), IIC (12C)
bus, an Institute of Electrical and FElectronics Engineers
(IEEE) standard 1394 bus (sometimes referred to as
“Firewire”), or any combination of such interconnects.

[0026] Storage server processor(s) 26 include one or more
central processing units (CPUs) operable to control the
overall operation of the storage server 12. In at least some
embodiments, the processor(s) 26 accomplishes this by
executing software or firmware stored in memory 28. The
processor(s) 26 may be, or may include, one or more
programmable general-purpose or special-purpose micro-
processors, digital signal processors (DSPs), programmable
controllers, application specific integrated circuits (ASICs),
programmable logic devices (PLDs), or the like, or a com-
bination of such devices. Memory 28 is, or includes, the
main memory of the storage server 12. Memory 28 repre-
sents any form of random access memory (RAM), read-only
memory (ROM), flash memory, or the like, or a combination
of'such devices. In use, the memory 28 may contain, among
other things, at least a portion of the storage operating

US 2017/0034268 Al

system 36 of the storage server 12. The memory 28 can also
include the buffer cache 16 of the storage server 12, as
shown.

[0027] Also connected to the processor(s) 26 through
storage server interconnect 30 are a network adapter 32 and
a storage adapter 34. The network adapter 32 provides the
storage server 12 with the ability to communicate with
remote devices, such as clients 18, over network 22 and may
be, for example, an Ethernet. Fibre Channel, ATM, or
Infiniband adapter. By comparison, the storage adapter 34
allows the storage server 12 to access one or more storage
modules 14, which may be implemented as a non-volatile
solid-state memory (NVSSM) subsystem 40. For network
configurations wherein a storage module(s) 14 is imple-
mented using more traditional mass storage, such as mag-
netic disks, the storage adapter 34 may be, for example, a
Fibre Channel adapter or a SCSI adapter. In certain embodi-
ments, the network adapter 32 and the storage adapter 34
may be the same physical device. For some implementa-
tions, storage adapter 34 is or includes an RDMA controller
and, thus, may henceforth be referred to as “host RDMA
controller” 34.

[0028] The RDMA techniques described herein can be
used to transfer data between memory 28 within the storage
server 12 (e.g., buffer cache 16) and the data storage
modules 14, such as NVSSM subsystem 40. Host RDMA
controller 34 includes a memory map of all of the memory
in each storage module 14. In certain embodiments, the
memory in the NVSSM subsystem 40 includes flash
memory 42 as well as some form of non-volatile DRAM 44
(e.g., battery backed DRAM). Non-volatile DRAM 44 is
used for storing file-system metadata associated with data
stored in the flash memory 42, to avoid the need to erase
flash blocks due to updates of such frequently updated
metadata. File system metadata can include, for example, a
tree structure of objects, such as files and directories,
wherein the metadata of each of these objects recursively
has the metadata of the file system as if it were rooted at that
object. In addition, file system metadata can include the
names, sizes, ownership, access privileges, etc. for those
objects.

[0029] FIG. 3 presents a representative cluster-type stor-
age module architecture, designated generally as 100, with
a plurality of nodes 110A, 110B . . . 110Z configured to
provide storage services relating to the organization of
information on storage devices. Each node 110A, 110B . . .
1107 comprises various functional components that coop-
erate to provide a distributed storage system architecture of
the cluster 100. By way of non-limiting example, each node
can be generally organized as a respective network element
112A, 112B . . . 1127, and a respective data element 114A.
114B ... 1147Z. A network element enables a node to connect
to clients 12 over a computer network 22, while a data
element connects a node to one or more storage devices,
such as disks of a disk array 120A, 120B . . . 120Z, which
may be similar in form and function to mass storage devices
20 of FIG. 1 or storage device configuration 40 of FIG. 2.
The nodes 110A, 110B . . . 110Z are interconnected by a
cluster switching fabric 118 which, in the illustrative
embodiment, may be embodied as a Gigabit Ethernet switch.
While there is shown an equal number of network elements
and data elements in the illustrative cluster 100, there may
be differing numbers of network elements and/or data ele-
ments in accordance with various embodiments of the

Feb. 2, 2017

present disclosure. For example, there may be a plurality of
network elements and/or data elements interconnected in a
cluster configuration 100 that does not reflect a one-to-one
correspondence between network element and data ele-
ments. An example of a distributed file system architecture
is described in U.S. Pat. No. 6,671,773, to Michael L. Kazar
et al., which is incorporated herein by reference in its
entirety and for all purposes.

[0030] Communication between a network element and a
data element of a node in FIG. 3 is illustratively effected
through the use of message passing between the blades. In
the case of remote communication between network ele-
ments and data elements of different nodes, such message
passing occurs over the cluster switching fabric 118. A
message-passing mechanism provided by the storage oper-
ating system to transfer information between blades (pro-
cesses) is the Inter Process Communication (IPC) mecha-
nism, for example. The protocol used with the IPC
mechanism is illustratively a generic file and/or block-based
“agnostic” cluster fabric (CF) protocol that comprises a
collection of methods/functions constituting a CF applica-
tion programming interface (API), such as a spin-agnostic
protocol 116A, 116B . . . 116Z.

[0031] In accordance with aspects of the disclosed con-
cepts, clients 18 interact with one or more of nodes 110A,
110B . . . 110Z of cluster 100 in accordance with a client/
server model of information delivery. As a first example,
which is represented in FIG. 3 by dual-headed arrow R1, a
client may request the services of a local node, e.g., to
perform an RDMA read/write operation for data stored/to be
stored on a local disk array. In this example, a connection is
opened by the client 18 with a local node 110B; an RDMA
operation request (e.g., a read request) is transmitted by the
client 18 to the local network element 112B over network
22; the requested data file is read by the local data element
114B from the corresponding disk or disks of disk array
120B; the data file is transmitted from the local server RNIC
to the client RNIC; and, the client RNIC writes the data file
to client memory.

[0032] In a second example, which is represented in FIG.
3 by dual-headed arrow R2, a client may request the services
of a remote node to perform an RDMA read/write operation
for data stored/to be stored on a remote disk array. In this
example, a connection is opened by the client 18 with a local
node 110B: an RDMA operation request (e.g., a read
request) is transmitted by the client 18 over network 22,
through local node 110B and over cluster switching fabric
118 to remote network element 1127; the requested data file
is read by the remote data element 1147 from the corre-
sponding disk or disks of disk array 120Z; the data file is
transmitted from the local server RNIC to the client RNIC;
and, the client RNIC writes the data file to client memory.
[0033] According to a third example, which is represented
in FIG. 3 by arrows R3', R3" and a client may request the
services of a remote node to perform an RDMA read/write
operation for data stored/to be stored on a remote disk array
without an extra hop over the cluster interconnect with the
actual data, as required in the example R2. In the third
example, a connection is opened by the client 18 with the
local node 110B and the remote node 1107 (and potentially
any or all other nodes in the cluster); as indicated by arrow
R3', an RDMA operation request (e.g., a read request) is
transmitted by the client 18 over network 22 to local network
element 112B and contemporaneously routed through clus-

US 2017/0034268 Al

ter switching fabric 118 to remote network element 1127; as
indicated by arrow R3", remote network element 1127
communicates with remote data element 1147 through fab-
ric protocol 1167 to read the requested data file from the
corresponding disk or disks of disk array 120Z; as indicated
by arrow R3", the data file is subsequently transmitted from
the remote server NIC to the client NIC; and, the client NIC
writes the data file to memory. This same protocol may be
implemented for an RDMA write operation to a remote
server, wherein the initial RDMA operation request is routed
through a local node, but the actual RDMA operation is
carried out directly between the RDMA network interface
cards of the client and remote node (as suggested by arrows
R3' through R3™).

[0034] FIGS. 4A through 4C sequentially illustrate a rep-
resentative Server Message Block Direct (SMBD) Remote
Direct Memory Access (RDMA) read operation in accor-
dance with aspects of the present disclosure. Likewise,
FIGS. 5A through 5C sequentially illustrate a representative
SMBD RDMA write operation in accordance with aspects of
the present disclosure. FIGS. 4A-4C and FIGS. 5A-5C can
each be representative of an algorithm or work-flow process
wherein each enumerated operation or step can correspond
to instructions that can be stored, for example, in one or
more memory devices (e.g., local main memory 216A
remote main memory 216B, client main memory 252, etc.),
and executed, for example, by one or more processors (e.g.,
local server CPU 226A, remote server CPU 2268, client
CPU 250, etc.) or other resident hardware (e.g., local server
NIC 234A, remote server NIC 234B, client NIC 254, etc.) to
perform any or all of the above or below described functions
associated with the disclosed concepts. In this regard, FIGS.
4A-4C and FIGS. 5A-5C are more specific implementations
of the third example of FIG. 3.

[0035] As indicated above, the client 218 of FIG. 4A is
initiating an RDMA read operation to transfer a data file 238,
with a corresponding file name File F1, file type MP4 and
file path STAG_RKEY, from memory 220 of a remote server
node 212B (e.g., read from disk of data storage module to
main memory) to a memory region 256 (FIG. 4B) of local
computer node 218. To initiate the RDMA read operation,
the client CPU 250 of client computing device 218 trans-
mits, and a local server CPU 226 A of local server node 212A
receives, an OPEN CONNECTION request 280. The OPEN
CONNECTION request 280 is contemporaneously trans-
mitted to any or all other nodes in the cluster, including at
least remote server node 212B. Responsive to the received
OPEN CONNECTION request 280 and a successful con-
nection, each server node transmits (e.g., via the CPU of
each node), and the client CPU 250 of client computing
device 218 receives, a connection OPEN SUCCESS indi-
cator 281 to notify that the connection is complete. A
connection between a client computing device and a host
server system can be created, for example, with an RDMA
verbs layer. Creating a connection can involve creating a
queue pair (QP) and a protection domain (PD). The RDMA
verbs layer uses the protection domain (PD) to associate the
memory region for the buffer of the client computing device
to one or more queue pairs (QP). A PD is generally created
for every set of QP’s that needs to share memory STAGs.
The QP is a means of allowing an RDMA consumer (SMBD
in this case) to assign work to the local network interface
card for completion.

Feb. 2, 2017

[0036] Once the nodes are connected, the client CPU 250
allocates an empty buffer 258 with a buffer address within a
memory region 256 of the client computing device 218, as
seen in FIG. 4B. The client allocates said buffer to hold data
to be read from the host, and then posts a job on the QP to
register the buffer. By way of example, client CPU 250
submits to the client NIC 254 a REGISTER B1 282 regis-
tration request to register the buffer address and return a
corresponding cookie. Client network interface card 254
responds in FIG. 4B by creating a steering tag for the
allocated buffer and returning a REGISTRATION SUC-
CESS 283 with the requested steering tag STAG(B1). A
steering tag is a type of cookie (e.g., a 32 bit number) that
represents a section of memory; the client NIC registers the
memory section and returns a steering tag that can be passed
over the network to a node CPU. The steering tag created by
the client NIC 254 contains information relating to the
location of the buffer in memory of the client’s device. The
node CPU can then direct the node NIC to use the steering
tag to read/write data from/to the memory in question. A
steering tag can be in the form of an LKEY STAG and an
RKEY STAG, for example. When a request is received by
an RNIC from a remote machine to access local memory, the
request refers to the local memory using a steering tag (e.g.,
RKEY). When a node CPU talks to a local NIC about a local
buffer for some operation, it also refers to the buffer using a
steering tag (e.g., LKEY).

[0037] Client 218 uses the STAG received from the client
NIC 254, for example, as data in an untagged buffer message
to tell the servers 212A and 212B about the buffer 258. In at
least some embodiments. RDMA SMBD mandates that the
client initiate transfer for the tagged buffer case. For
instance, once the requested steering tag is generated by the
client NIC 254, client CPU 250 transmits an initiate RDMA
operation request, represented in FIG. 4B as READ
REQUEST 284, across network to local server CPU 226A of
the local server node 212A and across cluster switching
fabric 214 to remote server CPU 226B of the remote server
node 212B (FIG. 4C). In general, the RDMA operation
request includes source (SRC) and destination (DEST)
information and an RDMA operation a read request to be
performed by the remote server node. By way of example,
the SRC-DEST information includes the buffer steering tag
and a file path for the requested data file 238 stored in
memory 220 of remote node 212B (FIG. 4C). The SRC-
DEST information may optionally include other relevant
information, such as a file name and a file type for the
requested data file. In the illustrated example, the source
SRC is the buffer within system memory 220 that contains
the requested file 238, whereas the destination DEST in the
request message is the STAG that corresponds to the buffer
that the client allocated and registered with client NIC 254.
Generally speaking, a file transfer protocol such as, for
example, SMB3 (CIFS) protocol, can open the requested file
using a Send/Receive message on top of SMBD. Once the
file is open, SMB3 refers to it via its FID. The contents of
the file are read into memory by the server and referred to
by a local stag when talking to the card.

[0038] When the READ REQUEST 284 is received,
remote server CPU 226B pulls the buffer with the requested
data, which may require reading and loading a buffer from
disk, and registers this buffer with the remote server NIC
234B by placing a corresponding work request on its QP.
Server 212B places another work request on its QP with the

US 2017/0034268 Al

STAG for the buffer with the requested data and the STAG
from the client. The work request tells the server NIC to
write the local buffer to the remote buffer. With reference to
FIG. 4C, for example, remote server NIC 234B will
LOCATE AND PULL 285 the requested data file from
memory 220 and perform the requested RDMA operation
without utilizing the remote server CPU 226B. Per the latter,
server NIC 234B concomitantly READS FROM MEMORY
286 File F1.mp4 from memory 220 without utilizing server
CPU 226B. The RDMA operation is then completed by the
client NIC 254 and the server NIC 234B without utilizing
client or server processors. That is, remote server NIC 234B
transmits the requested data file 238 to the client NIC 254 at
287, and the client NIC 254 concomitantly WRITES TO
MEMORY 288 the data file to the allocated buffer 258
without utilizing client CPU 250.

[0039] Upon completing the requested RDMA operation,
the remote server NIC 234B transmits to the client CPU 250
a completion success message as an untagged buffer. By way
of example, once the transfer of data at 287 and memory
write 288 is complete, the NIC 254 communicates to the
server side SMBD on CPU 226B that the write is done at
289. Server SMBD creates a message indicating success,
e.g., as a reply to the client’s READ REQUEST 284 and
directs remote server NIC 234B to send this message as an
untagged buffer, as indicated at 289'. Client CPU 250
receives this completion success message as confirmation
that buffer 258 corresponding to STAG(B1) now contains
the valid data. Conventional RDMA does not mandate
which node should initiate RDMA ops and which node
should perform the RDMA op. SMBD RDMA, in contrast,
mandates that the client initiate the RDMA operation and the
server performs the RDMA operation. By way of non-
limiting example, the client always tells the server what
RDMA op to perform, and the client always registers
memory and directs the server to perform an operation with
that memory; the server never registers memory for write via
an STAG to the client.

[0040] In FIG. 5A, the client 218 is initiating an RDMA
write operation to transfer data/a data file 270, with a
corresponding file name, file type and file path, stored in
client’s local memory 256 to an empty file buffer 272 in
memory 220 of remote server node 212B (FIG. 5C). Similar
to the example presented in FIG. 4A, to initiate the RDMA
read operation, the client CPU 250 of client computing
device 218 in F1G. 5A transmits, and server CPU’s 226 A and
22B of local and remote server nodes 212A and 22B,
respectively, receive an OPEN CONNECTION request 290.
Responsive to the received OPEN CONNECTION request
290 and a successful connection, the local and remote server
CPU’s 226A, 22B transmit, and the client CPU 250 of client
computing device 218 receives, a connection OPEN SUC-
CESS indicator 291 to notify that the connection is com-
plete. The foregoing connection can be created, for example,
with an RDMA verbs layer as described above with respect
to FIG. 4A.

[0041] Similar to the previous example, the client CPU
250 allocates an empty buffer 270, with a corresponding
buffer address, within a memory region of the client com-
puting device 218. After the client allocates said buffer, it is
loaded with data, e.g., from a local storage disk. Similar to
FIG. 4B, client CPU 250 is shown in FIG. 5B submitting to
the client NIC 254 a REGISTER B2 292 registration request
to register the buffer address and return a corresponding

Feb. 2, 2017

cookie. Client network interface card 254 responds in FIG.
5B by creating a steering tag for the allocated buffer and
returning a REGISTRATION SUCCESS 293 with the
requested steering tag STAG(B2). The client CPU can then
direct the server NIC to use the steering tag to write data to
the memory in question.

[0042] Client 218 uses the STAG received from the client
NIC 254, for example, as data in an untagged buffer message
to tell the servers 212A and 212B about the buffer STAG. In
at least some embodiments, RDMA SMBD mandates that
the client initiate transfer for the tagged buffer case and
direct the host server to do a read to the buffer. For instance,
once the requested steering tag is generated by the client
NIC 254, client CPU 250 transmits an initiate RDMA
operation request, represented in FIG. 5B as WRITE
REQUEST 294, across network to local server CPU 226A of
the local server node 212A and across cluster switching
fabric 214 to remote server CPU 226B of the remote server
node 212B (FIG. 5C). RDMA operation request 294
includes source (SRC) and destination (DEST) information
and an RDMA operation a write request to be performed by
the remote server node. In the illustrated example, the
destination DEST is the buffer within system memory 220,
whereas the source SRC is the STAG that corresponds to the
buffer that the client allocated and registered with client NIC
254.

[0043] When the WRITE REQUEST 294 is received,
remote server CPUB 226 pulls the buffer for the data, which
may require reading and loading a buffer from disk, and
registers this buffer with the remote server NIC 234B by
placing a corresponding work request on its QP. Server 212B
of FIG. 5C places another work request on its QP with the
STAG for the buffer and the STAG from the client. The work
request tells the remote server NIC to read the remote buffer
to the local buffer. With reference to FIG. 5C, for example,
client NIC 254 READS FROM MEMORY 295 the data file
270 without utilizing client CPU 250, and transmits the data
file 238 from client NIC 254 to remote server NIC 234B, as
indicated at 296. Server NIC 234B will then WRITE TO
MEMORY 297 the data file to perform the requested RDMA
operation without utilizing the remote server CPU 226B.
Once the transfer is complete, the server NIC 234 tells the
server side SMBD on CPU 2268 that the requested RDMA
operation is complete. Server SMBD creates a message
indicating success, and directs network interface card 234B
to send a completion message as an untagged buffer, as
indicated at 298. Client receives this message indicating that
the buffer corresponding to its STAG is now written to the
server.

[0044] Presented in FIG. 6 is a novel method or work flow
process for performing upper layer protocol (ULP) for a
Remote Direct Memory Access (RDMA) computer network.
The method, which is generally designated as 300, begins at
block 301 with the client transmitting a request to one or
more or all server nodes in the cluster to open a connection.
Each server responds, at block 303, with transmitting an
indication that a connection has been successfully opened.
The method 300 continues to block 305 where the client
allocates a buffer with a corresponding buffer address, where
data is either written to or read from said buffer. At block
307, the client CPU registers the allocated buffer with the
client RNIC, which in turn responds by creating a steering
tag for the registered buffer. Client CPU then transmits to
local server CPU and, concomitantly, remote server CPU via

US 2017/0034268 Al

fabric interconnect an RDMA read (or write) request at
block 309, said request including requisite source and des-
tination information. Remote server RNIC uses steering tag
and file path information to read the requested data file from
memory, at 311. Alternatively, for an RDMA write opera-
tion, remote server RNIC uses steering tag and file path
information to write data to resident memory. At block 313,
the remote server RNIC transmits data directly to the client
RNIC over network interconnect, rather than hopping over
the local node via fabric interconnect. Then, at block 315,
the client RNIC writes the requested data to the allocated
buffer. Method 300 can include any of the operations dis-
cussed hereinabove with respect to FIG. 3 FIGS. 4A-4C
and/or FIGS. 5A-5C, singly, in any order, and in any
combination.

[0045] The following exemplary options, features and
configurations are not intended to represent each embodi-
ment or every aspect of the present disclosure. The above
features and advantages, and other features and advantages
of the present disclosure, will become more readily apparent
from the following examples. In this regard, each of the
disclosed systems, methods, devices, protocols, etc., includ-
ing those illustrated in the figures, may comprise any of the
features, options, and alternatives described hereinabove
and hereinbelow with respect to the other embodiments
unless explicitly disclaimed or logically prohibited.

[0046] Aspects of the present disclosure are directed to
methods for performing RDMA operations. As an example,
a method is disclosed for performing upper layer protocol
(ULP) for an RDMA computer network. The method
includes, in any order and in combination with any of the
optional features disclosed herein: allocating, by a client
CPU of a client computing device connected to the RDMA
computer network, a buffer with a buffer address in a
memory region of the client computing device; creating, by
a client NIC of the client computing device, a steering tag for
the allocated buffer; transmitting, by the client CPU to a
local server CPU of a local server node of the RDMA
computer network, an initiate RDMA operation request
regarding a data file on a remote server node, the RDMA
operation request including source and destination (SRC-
DEST) information and an RDMA operation to be per-
formed by the remote server node, the SRC-DEST informa-
tion including the steering tag and a file path for the data file;
locating, by a remote server NIC of the remote server node
without utilizing a remote server CPU, the data file based on
the file path; performing, by the remote server NIC without
utilizing the remote server CPU, the RDMA operation
requested by the client computing device; and, completing
the requested RDMA operation by the client NIC and remote
server NIC without utilizing the client CPU or the remote
server CPU.

[0047] The methods disclosed herein may further com-
prise: receiving, by the local server node from the client
computing device, an open connection request; and trans-
mitting, by the local server node to the client computing
device, a connection open success indicator. For any of the
disclosed methods, the open connection request can be
transmitted by the client CPU and received by the local
server CPU, while the open success indicator can be trans-
mitted by the local server CPU and received by the client
CPU. Any of the disclosed methods may further comprise,
singly or in any combination: creating a connection between
the client computing device and the remote server, wherein

Feb. 2, 2017

the connection is created with an RDMA verbs layer, the
RDMA verbs layer using a protection domain (PD) to
associate the memory region for the buffer of the client
computing device to one or more queue pairs (QP); trans-
mitting, by the client CPU to the client NIC prior to the
creating the steering tag, a register request for a cookie;
and/or storing, by the remote server node in a remote server
memory device, the data file associated with a correspond-
ing file name and the file path. Any of the disclosed methods
may further comprise transmitting, by the remote server NIC
to the client CPU in response to completing the requested
RDMA operation, a completion success message as an
untagged buffer.

[0048] The methods disclosed herein may further com-
prise: allocating, by the remote server CPU in a remote
server memory device, a holding buffer for the data file; and
registering, by the remote server CPU with the remote server
NIC, the holding buffer. For any of the disclosed methods,
the SRC-DEST information may also include a file name
and a file type for the data file of the remote server node. For
any of the disclosed methods, the steering tag created by the
client NIC and transmitted to the remote server NIC can
contain information relating to a location of the data file in
a data storage module of the remote server node. For any of
the disclosed methods, the RDMA operation to be per-
formed by the remote server node is an RDMA read opera-
tion, which may comprise: reading, by the remote server
NIC from a data storage module of the remote server node
without utilizing the remote server CPU, the data file;
transmitting, by the remote server NIC to the client NIC, the
data file; and writing, by the client NIC without utilizing the
client CPU of the client computing device, the data file to the
allocated buffer. For any of the disclosed methods, the
RDMA operation to be performed by the remote server node
is an RDMA write operation, which may comprise: reading,
by the client NIC from the allocated buffer in the memory
region of the client computing device without utilizing the
client CPU, data for the data file; transmitting, by the client
NIC to the remote server NIC, the data for the data file; and
writing, by the remote server NIC without utilizing the
remote server CPU, the data to the data file on a data storage
module of the remote server node.

[0049] Other aspects of the present disclosure are directed
to non-transitory machine-readable media having stored
thereon instructions for performing methods comprising
machine executable code. As an example, the machine
readable code, when executed by a client machine, a local
server machine and a remote server machine, causes the
machines to perform the following operations, in any order
and in combination with any of the optional features dis-
closed above: allocate, by a client CPU of the client
machine, a buffer with a buffer address in a memory region
of the client machine; create, by a client NIC of the client
machine, a steering tag for the allocated buffer; transmit, by
the client CPU to a local server CPU of the local server
machine, an initiate RDMA operation request regarding a
data file, the RDMA operation request including source and
destination (SRC-DEST) information and an RDMA opera-
tion to be performed by the remote server machine, the
SRC-DEST information including the steering tag and a file
path for the data file; locate, by a remote server NIC of the
remote server machine without utilizing a remote server
CPU, the data file based on the file path; perform, by the
remote server NIC without utilizing the remote server CPU,

US 2017/0034268 Al

the RDMA operation requested by the client computing
device; and complete the requested RDMA operation by the
client and remote server NW’s without utilizing the client or
remote server CPU’s.

[0050] According to other aspects of the presented disclo-
sure, mass data storage systems, networks and configura-
tions are disclosed. As an example, an RDMA computer
network is disclosed. The RDMA computer network
includes a local server node, which includes a local server
CPU, alocal server NIC, and a local data storage module, as
well as a remote server node, which includes a remote server
CPU, a remote server NIC, and a remote data storage
module. The RDMA computer network also includes a client
computing device that is communicatively coupled to the
server nodes and includes a client central processing unit
(CPU), a client network interface card (NIC), and a memory
device. The client CPU of the client computing device is
operable to allocate a buffer with a buffer address in a
memory region of the client computing device. The client
NIC of the client computing device is operable to create a
steering tag for the allocated buffer. The client CPU is
operable to transmit to the server CPU an initiate RDMA
operation request regarding a data file. The RDMA operation
request includes, for example, source and destination (SRC-
DEST) information and an RDMA operation to be per-
formed by the remote server node. The SRC-DEST infor-
mation includes, for example, the steering tag and a file path
for the data file. The remote server NIC is operable to locate
the data file based on the file path without utilizing the
remote server CPU. The remote server NIC is operable to
perform the RDMA operation requested by the client com-
puting device without utilizing the remote server CPU. The
client NIC and remote server NIC are operable to complete
the requested RDMA operation by without utilizing the
client, local server node or remote server node CPU’s.
[0051] The present disclosure is not limited to the precise
construction and compositions disclosed herein; any and all
modifications, changes, and variations apparent from the
foregoing descriptions are within the scope of the disclosure
as defined in the appended claims. Moreover, the present
concepts expressly include any and all combinations and
subcombinations of the preceding elements and aspects.

What is claimed:

1. A method for performing upper layer protocol (ULP)
for a Remote Direct Memory Access (RDMA) computer
network, the method comprising:

receiving, by a remote server network interface card
(NIC) of a remote server node, an RDMA operation
request regarding a data file on the remote server node
initiated by a client computing device, the RDMA
operation request including source and destination
(SRC-DEST) information and an RDMA operation to
be performed by the remote server node, the SRC-
DEST information including a steering tag created by
the client computing device and a file path for the data
file;

locating, by the remote server NIC of the remote server
node without utilizing a remote server CPU, the data
file based on the file path; and

performing, by the remote server NIC without utilizing
the remote server CPU, the RDMA operation requested
by the client computing device without routing the data
file through an interconnect with a local server CPU.

Feb. 2, 2017

2. The method of claim 1, further comprising:

receiving, by the local server node from the client com-

puting device, an open connection request; and
transmitting, by the local server node to the client com-
puting device, a connection open success indicator.

3. The method of claim 2, wherein the open connection
request is transmitted by the client CPU and received by the
local server CPU.

4. The method of claim 2, wherein the open success
indicator is transmitted by the server CPU and received by
the client CPU.

5. The method of claim 1, further comprising creating a
connection between the client computing device and the
remote server node, wherein the connection is created with
an RDMA verbs layer, the RDMA verbs layer using a
protection domain (PD) to associate the memory region for
the buffer of the client computing device to one or more
queue pairs (QP).

6. (canceled)

7. The method of claim 1, further comprising storing, by
the remote server node in a remote server memory device
prior to the allocating the buffer, the data file associated with
a corresponding file name and the file path.

8. The method of claim 1, further comprising:

allocating, by the remote server CPU in a remote server

memory device, a holding buffer for the data file; and
registering, by the remote server CPU with the remote
server NIC, the holding buffer.

9. The method of claim 1, wherein the SRC-DEST
information further includes a file name and a file type for
the data file of the remote server node.

10. The method of claim 1, wherein the steering tag
created by the client NIC and transmitted to the remote
server NIC contains information relating to a location of the
data file in a data storage module of the remote server node.

11. The method of claim 1, wherein the RDMA operation
to be performed by the remote server node is an RDMA read
operation, the method further comprising:

reading, by the remote server NIC from a data storage

module of the remote server node without utilizing the
remote server CPU, the data file;

transmitting, by the remote server NIC to the client NIC,

the data file.

12. The method of claim 1, wherein the RDMA operation
to be performed by the remote server node is an RDMA
write operation, the method further comprising:

receiving, by the remote server NIC, from the client NIC,

the data for the data file; and

writing, by the remote server NIC of the remote server

node without utilizing the remote server CPU, the data
to the data file on a data storage module of the remote
server node.

13. The method of claim 1, further comprising transmit-
ting, by the server NIC to the client CPU in response to the
completing the requested RDMA operation, a completion
success message as an untagged buffer.

14. A non-transitory machine readable medium having
stored thereon instructions for performing a method com-
prising machine executable code which, when executed by
a client machine, a local server machine and a remote server
machine, causes the machines to:

receive, by a remote server network interface card (NIC)

of a remote server node, an RDMA operation request
regarding a data file initiated by a client computing

US 2017/0034268 Al

device, the RDMA operation request including source
and destination (SRC-DEST) information and an
RDMA operation to be performed by the remote server
machine, the SRC-DEST information including a steer-
ing tag and a file path for the data file;

locate, by the remote server NIC of the remote server
machine without utilizing a remote server CPU, the
data file based on the file path;

perform, by the remote server NIC without utilizing the
remote server CPU, the RDMA operation requested by
the client computing device; and

complete the requested RDMA operation by the remote
server NIC without utilizing the remote server CPU.

15. The non-transitory machine readable medium of claim

14, wherein the stored instructions further cause the
machines to:

receive, from the client CPU by the remote server CPU of
the remote server machine, an open connection request
from the client computing device; and

transmit, by the remote server CPU to the client CPU, a
connection open success indicator.

Feb. 2, 2017

16. (canceled)

17. The non-transitory machine readable medium of claim
14, wherein the stored instructions further cause the remote
server machine to store the data file associated with a
corresponding file name and the file path.

18. The non-transitory machine readable medium of claim
14, wherein the stored instructions further cause the remote
server machine to:

allocate a holding buffer for the data file in a memory
device of the remote server machine; and

register the holding buffer with the remote server NIC by
the remote server CPU.

19. The non-transitory machine readable medium of claim
14, wherein the steering tag created by the client NIC and
transmitted to the remote server NIC contains information
relating to a location of the data file in a remote data storage
module.

20. (canceled)

