
US 20190034663A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0034663 A1

Katikala (43) Pub . Date : Jan . 31 , 2019

(54) SYSTEM AND METHOD OF A
PRIVACY - PRESERVING
SEMI - DISTRIBUTED LEDGER

Publication Classification
(51) Int . Ci .

G06F 21 / 64 (2006 . 01)
H04L 9 / 06 (2006 . 01)

(52) U . S . CI .
CPC GO6F 21 / 64 (2013 . 01) ; H04L 9 / 0643

(2013 . 01)

(71) Applicant : RenterPeace LLC , Washington , DC
(US)

(57) ABSTRACT

(72) Inventor : Chaitanya Katikala , Washington , DC
(US)

(21) Appl . No . : 16 / 044 , 173
(22) Filed : Jul . 24 , 2018

Related U . S . Application Data
(60) Provisional application No . 62 / 536 , 789 , filed on Jul .

25 , 2017 .

A system and method of preserving the integrity and privacy
of user data in a semi - distributed ledger by saving validation
files to user computers and comparing the validation files to
the ledger data .

100
Creating a centralized ledger

102
Receiving a visit from user

104
Receiving information

106
Transforming information into

string

108
Generating a salt

110
Combining string and salt

112
Hashing second string

114
Creating block hash by

Combining hash and preceding hash

116
Saving block hash and
Block ID to centralized

ledger

Patent Application Publication Jan . 31 , 2019 Sheet 1 of 10 US 2019 / 0034663 A1

100
Creating a centralized ledger

102
Receiving a visit from user

IL : - / - - : -

104
Receiving information

106
Transforming information into

string

108
Generating a salt

110
Combining string and salt

L -

112
Hashing second string

114
Creating block hash by

Combining hash and preceding hash

-

- - - - - - - - - - - - - -

116
Saving block hash and
Block ID to centralized

ledger

Fig . 1

Patent Application Publication Jan . 31 , 2019 Sheet 2 of 10 US 2019 / 0034663 A1

200
Creating a cookie

202
Setting block hash as cookie
value and block ID as name

204
Saving cookie to

computer of validating user

206
Receiving an additional visit

from validating user

208
Receiving cookie from

Validating user - -

- -

- - - - - - - - - -

- -

-

210
Block hash in cookie does
not match centralized

ledger ?

- - - - -

212
Producing error message

Fig . 2

Patent Application Publication Jan . 31 , 2019 Sheet 3 of 10 US 2019 / 0034663 A1

300
Generating cookies

302
Setting block ID and hash
as cookie title and value

304
Saving cookies to multiple

computers

306
Recieving vitis from users

With cookies

308
Cookies match but do not
match centralized ledger ?

310
Producing error message

Fig . 3

Patent Application Publication Jan . 31 , 2019 Sheet 4 of 10 US 2019 / 0034663 A1

400
Receiving request to see

Validation check

402
Determine whether user

Is permitted to view
: : : : : : : : : : : : : : : :

404
Permitted ? permited ? >

404
Display information in

Encrypted form Display information in : : : - : - : - : - : - : - : - : - : - :

Fig . 4

.

* * * * *

. . . : :
* * * : : : : : : : : : * YANYYYYYYSX9X 3XX

.

n

.

'

W 6
UYUR

* *

US 2019 / 0034663 A1 Jan . 31 , 2019 Sheet 5 of 10 Patent Application Publication

Patent Application Publication Jan . 31 , 2019 Sheet 6 of 10 US 2019 / 0034663 A1

Hash Generation

.

? ? ?

? - . - . . ' . .
. * . - ? . ? - , ' - . . ? | ?

Patent Application Publication Jan . 31 , 2019 Sheet 7 of 10 US 2019 / 0034663 A1

DAL 2 . Ako

* +

.
W 18 . X2

: :

US 2019 / 0034663 A1 Jan . 31 , 2019 Sheet 8 of 10 Patent Application Publication

Patent Application Publication Jan . 31 , 2019 Sheet 9 of 10 US 2019 / 0034663 A1

* * YYYYYYYYYY

isoli o
W

osa 6 PE3 MESE vitae
to a hossa e mos e Condigim ugeot on

Fig . 9

Patent Application Publication Jan . 31 , 2019 Sheet 10 of 10 US 2019 / 0034663 A1

User opens browser ' s cookie
.

YYYYYYYYYYYYYY

Fig . 10

US 2019 / 0034663 A1 Jan . 31 , 2019

SYSTEM AND METHOD OF A
PRIVACY - PRESERVING

SEMI - DISTRIBUTED LEDGER

PRIORITY
[0001] This application claims priority to U . S . Provisional
Application Ser . No . 62 / 536 , 789 , filed Jul . 25 , 2017 . The
above referenced application is incorporated herein by ref
erence as if restated in full .

BACKGROUND

system operator modifies the database . The functionality
underlying these errors can be independently verified by
technically savvy users . In other words , if the operator fails
to show the user an error when a record has been tampered
with , it is detectable by users .
[0006] This system achieves nearly the same privacy
protections as a traditional database . It allows permissioned
access : users only have the ability to view their own records
and transactions . Users will also not be able to see metadata
about the distributed ledger , such as the total number of
records , the total number of user ids , or how many transac
tions each user id is associated with .
[0007] This system is fast and lightweight . Only a few
records ' signatures are required to be stored on a user ' s
computer at a time . These signatures are small enough to be
stored as browser cookies and contain protections against
client - side tampering of other people ' s records . To test the
database operator , users are permitted to tamper with their
own signatures , which will show the user an error .
[0008] The system creates incentives for software opera
tors to disclose any database changes accurately . Validation
of the client - side signatures occur when the user visits the
application or website . Because the software operator does
not know which user or signature will need validation next
or when the validation will occur , there ' s a high risk that any
modification of a record , even temporarily , will be exposed
to users .

[0002] Transaction ledgers are currently implemented in a
distributed (e . g . , the BitCoin blockchain) or centralized
manner (e . g . , traditional SQL databases) . These ledgers are
used to store financial records , data , and media .
10003] In certain applications , users want guarantees that
database records haven ' t been modified , deleted , or tam
pered with . While a centralized ledger requires faith in the
operator to affirm that a ledger has not been tampered with ,
a distributed ledger offers independently verifiable guaran
tees about the immutability of the ledgers . This is guaranteed
because many parties have a copy of the entire blockchain .
The downside is that a fully distributed ledger reveals a lot
of data about the overall ledger and other peoples ' transac
tions , such as how many transactions have taken place and
the number of transactions per user . A fully distributed
ledger also has high computational and storage requirements
for its participants , making it unsuitable for many real - time
web or app - based applications . Storage of more than a few
rows of a ledger in browser cookies , for example , would
cause a severe slowdown in the operation of a website .
Finally , without central management , pushing patches and
maintaining the distributed ledger requires votes from the
participants , which can sometimes be slow - moving , politi
cal , and is vulnerable to manipulation by a 51 % attack .
[0004] When documenting legally important transactions
between parties through software , users may seek the assur
ances of distributed database without those downsides . More
specifically , parties in a dispute or their mediator (a judge ,
arbitrator , etc .) may find centralized databases to offer an
insufficiently validated record as evidence . In traditional
centralized ledgers , a missing or deleted record from most
centralized databases would be undetectable by users . A
fully distributed database may not be possible as an alter
native for certain applications , such as browser - based appli
cations , due to the data transfer and storage overhead and
certain privacy issues . The challenge is providing light
weight independent database verification without sacrificing
control , transparency , or user privacy . For this reason , a third
option is required : an efficient semi - distributed ledger that
offers users proof that a centrally - held database has not been
tampered with . This provides the benefits of a traditional
database without the above - mentioned downsides of a dis
tributed database .

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG . 1 is a flowchart showing an exemplary
method of creating a block hash .
[0010] FIG . 2 is a flowchart showing an exemplary
method of validating the centralized ledger .
[0011] FIG . 3 is a flowchart showing an exemplary
method of validating the centralized ledger .
[0012] FIG . 4 is a flowchart showing an exemplary
method of permitting independent validation of the central
ized ledger .
[0013] FIG . 5 shows an exemplary diagram of a semi
distributed ledger system .
[0014] FIG . 6 shows an exemplary diagram of mandatory
properties of the centralized database .
[0015 . FIG . 7 shows an exemplary diagram of mandatory
properties of the user ' s locally stored records , as cookies .
[00161 FIG . 8 shows an exemplary user interface display
ing to the user how the ledger record was generated .
[0017] FIG . 9 shows an exemplary user interface display
ing an error to a user that their records may have been
modified .
[0018] FIG . 10 shows an exemplary flowchart of how a
user can check for false positives .

DETAILED DESCRIPTION

SUMMARY
[0005] The system uses a privacy - friend semi - distributed
ledger to provide accountability of the immutability of a
centralized database , designed for minimal overhead . Sig
natures for certain user records from the centralized database
are stored locally on the user ' s device or browser ' s local
storage , typically in a cookie . These signatures are verified
by database operator and the system produces errors if a

[0019] The system requires the database operator to imple
ment two key components — 1) a server - side centralized
linked ledger with certain properties , and 2) a client - side
system to store and validate portions a user ' s own blocks of
the ledger .
[0020] The first part of the system implements a linked
ledger , like that found in blockchains . The ledger stores a
one - way cryptographic hash of a user ' s records , which may
include any variation of binary data . In most implementa

US 2019 / 0034663 A1 Jan . 31 , 2019

tions , the binary data is or will be converted to a string prior
to hashing . The centralized data must have the following
properties :
[0021] It ' s crucial that the system does not create separate
ledgers for each users , but instead creates a single linked
ledger for all users .
[0022] The software interface must allow users to view the
specific data that was used generated to hash , (i . e . , their
“ blocks ”) such that the user would be able to generate the
hash themselves .
10023] The hash of each record must include the hash of
the previous record in the chain as well to create the " linked ”
effect of the ledger .
[0024] Each record also requires storage of its own ran
domly generated salt , which must remain immutable and is
not part of the data included to generate the hash . The user
must be able to view the salt for their own records . Typically ,
this might appear on the page where the user sees how the
hash was generated .
[0025] The second part of the system stores portions of the
user ' s own blocks locally on their computers or devices ,
typically using browser cookies or similar types of local
storage . This allows users to view and validate records , and
to independently verify that records haven ' t been changed
with extremely low overhead .
[0026] The hash signature must be stored locally on the
user ' s computer or device . For security , the software should
store the block id and a new hash of a string generated by
concatenating the block ' s salt along with the block ' s hash
(the “ user - side code ”) . To prevent reverse engineering a salt
used across the website or application , the operator should
disable site - wide or application - wide encryption when stor
ing of the locally stored records , and instead rely exclusively
on the record - specific salt stored within the validated data .
[0027] If storing a signature containing data that the user
is not permitted to view , then an additional step is required :
signing and encrypting the signature using a user - specific
salt . This prevents the user from tampering with the signa
ture to show a false error to the users who have permission
to view the data .
[0028] When the user visits the software (a website or app)
implementing this ledger system , it validates the records and
display an error in the user interface to the user if the records
stored on their computer don ' t match the database records .
Validation occurs by looking up the record by the id stored
locally on the user ' s computer . Then , the system generates
a new hash based on the block ' s salt along with the block ' s
hash to generate a new user - side code . If the new user - side
code matches the one stored on the user ' s computer or
browser , then the validation passes and no error is thrown .
Otherwise , the system displays an error to the user .
[0029] Instead of storing the complete collection of the
blocks associated with the user , the system may simply store
a few records at a time on the user ' s local storage provided
the operator doesn ' t store information about which records
were stored . Certain implementations will randomly (or
otherwise) select a small number of records for each user to
store locally on their computer . Certain implementations
will replace records chosen for a user to store locally after
the software verifies the records .
[0030] The software operator will not know when users
will visit next and thus , the when validations will occur .
Where only a few records are stored locally on the user ' s
computer , the software operator will not know which

records are stored and therefore , the operator will not know
which records will be validated next . By modifying the
values of their locally stored identifiers , diligent users can
test that the operator is not producing false positives or false
negatives . If the operator fails to throw an error when a user
intentionally tampers with the signature , then it ' s apparent
the operator is not correctly displaying errors to the end
users .
(0031) Because the records are linked , modifying one
record will cause at least two records to fail to validate ,
sometimes held by different users . Because of the nature of
the linked ledger , any user that publicly demonstrates that
their ledger has been tampered will , by implication , dem
onstrate that any following records may also be invalid ,
providing accountability over the centralized ledger holder
in their claims that they did not tamper or delete any records .
[0032] The system platform may be accessible to user
computers over a network . The platform may include one or
more websites which users can access via their browsers .
During website visits , users may communicate to the plat
form one or more articles of information , including account
or transactional information . Examples of account informa
tion include credit card or bank data , user identity entries , as
well as user names and passwords . Examples of transac
tional information include purchase , sales , or other monetary
conveyance data . Examples of transactional information
may also include non - financial information , such as docu
ments , media , or other data . Records of this account and
transactional information , or any other kind of information
that is preferably secure and as well as private , may be stored
in a ledger associated with the system platform .
[0033] The ledger is ideally centralized , being stored on
and updated and accessed from a database preferably saved
on a server that may or may not be accessed by the primary
operator (s) of some instantiation of the system platform . To
prevent an operator from corrupting the centralized ledger ,
the blockchain that constitutes the ledger may , in whole or
in part , be distributed componentially across user computers .
Particularly , individual blocks or aspects thereof may be
transmitted to the user computers via the browser mediums
or related software in the form of code files such as cookies .
A cookie may be created or loaded with block chain infor
mation by entering a block ID in a cookie name field and a
block hash in a cookie value field . These cookies , after being
saved to local computers , may be transmitted back to the
server or system platform upon a return visit or access
attempt , whereupon they may be compared with the blocks
on the centralized ledger and / or with the cookies of other
visiting users . Unmatching cookies may result in error
messages , which may be discoverable on the platform ' s
websites themselves or transmitted to one or more users of
the platform , including , in one variation , the users whose
information was used to create the blocks connected with the
unmatching cookies , in another variation , users unconnected
with that information , and in another variation , the user (s)
whose cookies were used in the comparison that led to the
error .
[0034] In the event of a matching error , the system plat
form may determine whether the corruption of the block
data is attributable to the operator or the user of the system
platform , principally by testing other cookies responsible for
validating the same block but saved to other user computers .
10035] In one embodiment , in response to a matching error
in which blame is attributed to an operator of the system

US 2019 / 0034663 A1 Jan . 31 , 2019

ing in an encrypted form the transactional or account infor
mation , the salt , the block hash , and the preceding block
hash 406 .

1 . A method of preserving the integrity and privacy of user
data including the steps of :

creating a centralized ledger , storing data saved to the
centralized ledger data to a database , receiving updates
to the centralized ledger from a user interface platform
accessible over a network ;

receiving a first visit from a first user using a first
computer , a first visit from a second user using a second
computer , and a first visit from a third user using a third
computer ;

receiving transactional or account information from the
first user , creating a set of user data using the transac
tional or account information received from the first
user , transforming the set of user data into a first string ,
determining a preliminary ID for the set of user data ,
and storing the preliminary ID in the database ;

generating a securely randomized string , creating a sec
ond string by combining the securely randomized string
with the first string , linking the second string to the
preliminary ID , saving the second string and the pre
liminary ID in the database as related cells , creating a
initial hash by hashing the second string , providing a
preceding block hash creating a block hash by com
bining the preceding block hash and the initial hash ,
determining a block ID for the block hash , and adding
the block ID and the block hash to the centralized
ledger .

2 . The method of claim 1 , including the additional steps

platform or in an interrum before error attribution can be
determined , the system platform may shut down in whole or
in part the functionality of the website (s) or access by those
responsible for maintaining or otherwise accessing the cen
tralized ledger . In another embodiment , a message is com
municated to a third party capable of addressing the corrup
tion of the blockchain through legal or administrative
measures .
[0036] In one embodiment , hashed signatures are signed
and encrypted prior to being saved as cookie data . Each user
is given a different salt that is used to encrypt or can be used
to decrypt their own information or derivatives thereof . In
another embodiment , users only receive cookies that loaded
or created with block data relating to their own account or
transactional information .
0037] The block data loaded onto a cookie for a given

user can be randomly selected , not previously loaded onto a
cookie , not yet loaded onto a cookie a given number of
times , not yet validated , or not yet validated a given number
of times . The block data may be selected for a given user
because it is built on the given user ' s account or transac
tional information or because it is not built on the given
user ' s data .
10038] Account or transactional information may be com
bined with one or more strings and / or encrypted one or more
times . Strings set for combination may be randomly gener
ated , the result of previous hashes , blank , contain descrip
tions of prior strings , such as ownership , origin , or the fact
of encryption , and / or derived from other sets of account or
transactional information .
[0039] FIG . 1 is a flowchart showing an exemplary
method of creating a block hash . Steps include creating a
centralized ledger 100 , receiving a visit from a user 102 ,
receiving transactional or account information from the user
104 , transforming the information into a string 106 , gener
ating a salt 108 , creating a second string by combining the
first string and the salt 110 , hashing the second string 112 ,
creating a block hash by combining a preceding block hash
and the initial hash 114 , saving the block hash and a block
ID to the centralized ledger 116 .
[0040] FIG . 2 is a flowchart showing an exemplary
method of validating the centralized ledger . Steps include
creating a cookie 200 , setting the block hash as the cookie
value and the block ID as the cookie name 202 , saving the
cookie to a computer of a validating user 204 , receiving an
additional visit from the validating user 206 , receiving the
cookie from the validating user ' s computer 208 , and if the
block hash in the cookie does not match the block hash in the
centralized ledger 210 , producing an error message 212 .
[0041] FIG . 3 is a flowchart showing an exemplary
method of validating the centralized ledger . Steps include
generating cookies 300 , setting a block ID and a correspond
ing block hash as the cookie title and value , respectively
302 , saving the cookies to multiple user computers 304 ,
receiving later visits from the users with the cookies 306 ,
and if the cookies on the user computers match but the block
hash from the cookies does not match the block hash from
the centralized ledger 308 , producing an error message 310 .
[0042] FIG . 4 is a flowchart showing an exemplary
method of permitting independent validation of block
hashes . Steps include receiving a request from a user to see
a validation check or check information 400 , determining
whether the user is permitted to view the account or trans
actional information 402 , and if not permitted 404 , display

of :
creating a first code file with a first code file name and a

first code file value , setting the first code file name as
the block ID and the first code file value as the block
hash , and saving the first code file to the first computer ;

creating a second code file with a second code file name
and a second code file value , setting the second code
file name as the block ID and the second code file value
as the block hash , and saving the second code file to the
second computer ;

creating a third code file with a third code file name and
a third code file value , setting the third code file name
as the block ID and the third code file value as the block
hash , and saving the third code file to the third com
puter .

3 . The method of claim 2 , including the additional steps
of , upon receiving a second visit from the first user , receiv
ing the first code file name and the first code file value ,
locating the block ID in the centralized ledger using the first
code file name , determining whether the first code file value
matches the block hash , and if the first code file value and
the block hash do not match , producing an error message .

4 . The method of claim 2 , including the additional steps
of :

upon receiving a second visit from the first user , receiving
the first code file name and the first code file value ,

upon receiving a second visit from the second user ,
receiving the second code file name and the second
code file value ;

upon receiving a second visit from the third user , receiv
ing the third code file name and the third code file
value ;

US 2019 / 0034663 A1 Jan . 31 , 2019

determining matching between the first code file value ,
the second code file value , the third code file value , and
the block hash ;

if the first code file value , the second code file value , and
the third code file value match with each other but not
the block hash , producing an error message .

5 . The method of claim 4 , with the first code file being a
first cookie , the second code file being a second cookie , and
third code file being a third cookie .

6 . The method of claim 2 , including the additional step of ,
upon receiving a request from the first user to see a valida
tion check on the user interface platform , display the trans
actional or account information , the securely randomized
string , the block hash , and the preceding block hash .

7 . method of claim 2 , including the additional step of not
disclosing the transactional or account information to the
second user or the third user or encrypting the transactional
or account information or the block hash before disclosing
to the second user or the third user .

8 . The method of claim 2 , including the additional step of
not saving to any database accessible to an operator of the
user interface platform information identifying which client
browser or device has stored the block ID or the block hash .

9 . A method of preserving the integrity and privacy of user
data including the steps of :

providing a user interface platform accessible over a
network , receiving account or transaction information
from users using the user interface platform , and saving
the account and transactional information to a central
ized ledger store on a server database ;

receiving a visit from a user using a computer , receiving
account or transactional information from the user ,
transforming the account or transactional information
from the user into a first string , generating a securely
randomized string , creating a second string by combin
ing the securely randomized string with the first string ,
creating an initial hash by hashing the second string ,
providing a block hash , creating a block hash by
combining the preceding block hash and the initial
hash , setting a block ID for the block hash , adding the
block ID , the block hash , and the securely randomized
string to the centralized ledger ;

selecting a target block , from the centralized ledger ,
containing target account or transactional information
from the user ;

receiving a first visit from a validating user using a
validating user computer , creating a code file with a
code file name and a code file value , setting the code
file name as the block ID and the code file value as the
block hash , and saving the code file to the validating
user computer .

10 . The method of claim 9 , including the additional steps
of :

upon receiving a second visit from the validating user ,
receiving the code file name and the code file value ;

locating the block ID in the centralized ledger using the
code file name and determining whether the code file
value matches the block hash ;

if the code file value and the block hash do not match ,
producing an error message .

11 . The method of claim 10 , the user and the validating
user being distinct users and the code file value being
encrypted .

12 . The method of claim 10 , the user and the validating
user being the same user .

13 . The method of claim 10 , the code file value being
encrypted and capable of being unencrypted by a salt or code
accessible to the user .

14 . The method of claim 9 with the code file being a
cookie , the code file value being a cookie value , and the code
file name being the cookie name ;

15 . The method of claim 1 with the code file being a
cookie , the code file value being a cookie value , the code file
name being the cookie name ;

16 . The method of claim 14 , including the step of append
ing to the cookie name a string identifying whether the
cookie value is encrypted .

17 . The method of claim 10 , including the step of dis
playing the error message to the validating user only if the
validating user has permission to view the data .

18 . The method of claim 10 , including the step of storing
the error message on the server in a form accessible only to
users having permission to access the error message .

19 . The method of claim 10 including the additional step
of sending the error message to a set of one or more users
other than the validating user .

20 . The method of claim 9 where the target block is
selected randomly .

21 . The method of claim 9 where the target block is a
previously unverified block or the least verified block .

22 . The method of claim 9 where the target block is the
most recent block .

23 . A method of preserving the integrity and privacy of
user data including the steps of :

receiving a visit from a user , receiving account or trans
actional information from the user , creating a block
hash using the account or transactional information ,
setting a block ID for the block hash , adding the block
ID and the block hash to a centralized ledger ;

receiving a first visit from a validating user , creating a
code file , saving the block ID and the block hash to the
code file , and saving the code file to the computer ;

upon receiving a second visit from the validating user ,
receiving the code file ;

locating the block ID in the centralized ledger using the
code file , determining whether the block hash from the
code file matches the block hash in the centralized
ledger ;

if the block hash from the code file does not match the
block hash from the centralized ledger , producing an
error message .

