

(12) United States Patent

Bolognesi et al.

(10) Patent No.: US 6,440,656 B1 (45) Date of Patent: Aug. 27, 2002

(54) METHODS FOR THE INHIBITION OF RESPIRATORY SYNCYTIAL VIRUS TRANSMISSION

- (75) Inventors: Dani Paul Bolognesi; Thomas James Matthews; Carl T. Wild, all of Durham; Shawn O'Lin Barney, Cary; Dennis Michael Lambert, Cary; Stephen Robert Petteway, Jr., Cary, all of NC (US)
- (73) Assignce: Trimeris, Inc., Durham, NC (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 08/255,208
- (22) Filed: Jun. 7, 1994

Related U.S. Application Data

- (63) Continuation-in-part of application No. 08/073,028, filed on Jun. 7, 1993, now Pat. No. 5,464,933.
- (51) Int. Cl.⁷ Cl2Q 1/70
- (52) **U.S. Cl.** **435/5**; 435/7.1; 530/300; 530/324; 530/325; 530/326; 424/211.1
- (58) Field of Search 435/5; 424/211.1

(56) References Cited

PUBLICATIONS

Wild et al., "A synthetic peptide inhibitor of human immunodeficiency virus replication: Correlation between solution structure and viral inhibition," Proc. Natl. Acad. Sci. USA 89:10537–10541 1992.*

Bousse et al., "A single amino acid change enhances the fusion promotion activity of human parainfluenza virus type 1 hemagglutinin–neuraminidase glycoprotein," Virol. 209:654–657, 1995.*

Geysen et al., "Cognitive features of continuous antigenic determinants," J. Molec. Recog. 1:33-41, 1988.*

Wildner et al., "Database screening for molecular mimicry," Immunol. Today18(5):251–252, 1997.*

Roudier, J., "Response to Wildner et al. and Burns et al.," Immunol. Today 18(5):252, 1997.*

Hall, C., "Prospects for a respiratory syncytial virus vaccine," Science 265:1393–1394, 1994.*

Toms, G., "Respiratory syncytial virus- how soon will we have a vaccine?" Arch. Dis. Child. 72:1-3, 1995.*

Benet et al., "Pharmacokinetics: the dynamics of drug absorption, distribution, and elimination," in The Pharamcological Basis of Therapeutics, Goodman et al., eds., Pergammon Press, New York, pp. 3–32, 1990.*

Flexner, C. and C. Hendrix, 1997, "Pharmacology of antiretroviral agents", in *AIDS: Biology, Diagnosis, Treatment and Prevention,* fourth edition, DeVita, V.T., et al., eds., Lippincott–Raven Publishers, pp. 479–493.*

Yarchoan, R. and S. Broder, 1992 "Correlations between the in vitro and in vivo activity of anti–HIV agents: implications for future drug development", J. Enzyme Inhib. 6:99–111.*

Gait, M.J. and J. Karn, 1995, "Progress in anti–HIV structure–based design", TIBTECH 13:430–438.*

Suzuki et al., 1995, "Viral Interleukin 10 (IL–10), the human Herpes Virus 4 Cellular IL–10 Homologue, Induces Local Anergy to Allogenic and Syngeneic Tumors", J of Experimental Medicine 182:477–486.

Wild et al., 1994, "Propensity for a Leucine Zipper–Like Domain of Human Immunodeficiency Virus Type 1 gp41 to Form Oligomers Correlates With a Role in Virus–Induced Fusion Rather Than Assembly of the Glycoprotein Complex", Proc. Natl. Acad. Sci. USA 91:12676–80.

Bousse et al., 1994, "Regions on the Hemagglutinin–Neuraminidase Proteins of Human Parain-fluenza Virus Type–1 and Sendai Virus Important for Membrane Fusion", Virology 204:506–514.

Wang et al., "Ion Channel Activity of Influenza A Virus M2 Protein: Characteriztion of the Amantidine Block", J of Virology 67:5585–94.

Lazinski et al., 1983, "Relating Structure to Function in the Hepatitis Delta Virus Antigen", J of Virology 67:2672–80. White, J.M., 1992, "Membrane Fusion", Science 258:917–924.

Daar et al., 1990, "High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates", Proc. Natl. Acad. Sci. USA 87:6574–6579.

Erickson et al., 1990, "Design, Activity, and 2.8 Å Crystal Structure of a C_2 Symmetric Inhibitor Complexed to HIV–1 Protease", Science 249:527–533.

Smith et al., 1987, "Blocking of HIV-1 Infectivity by a Soluble, Secreted Form of the CD4 Antigen", Science 238:1704–1707.

(List continued on next page.)

Primary Examiner—Laurie Scheiner

Assistant Examiner—Jeffrey S. Parkin

(74) Attorney, Agent, or Firm—Pennie & Edmonds LLP; M. Bud Nelson

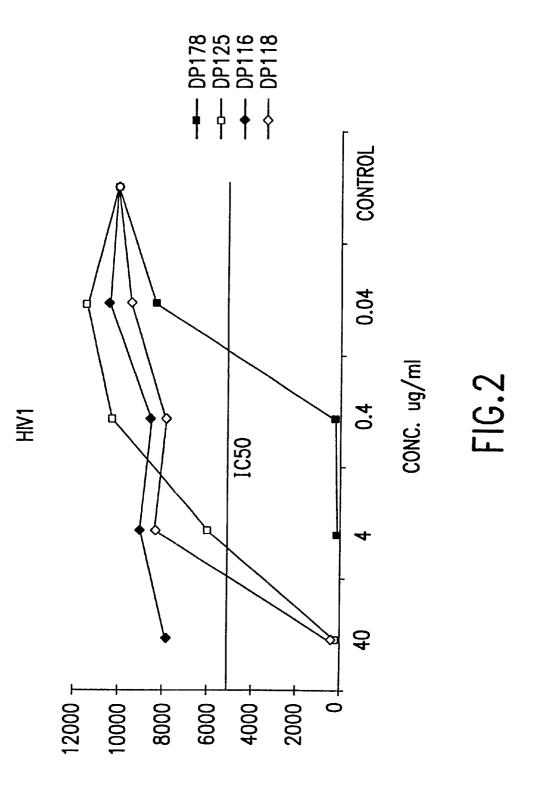
(57) **ABSTRACT**

Fusion of the viral envelope, or infected cell membranes with uninfected cell membranes, is an essential step in the viral life cycle. Recent studies involving the human immunodeficiency virus type 1 (HIV-1) demonstrated that synthetic peptides (designated DP-107 and DP-178) derived from potential helical regions of the transmembrane (TM) protein, gp41, were potent inhibitors of viral fusion and infection. A computerized antiviral searching technology (C.A.S.T.) that detects related structural motifs (e.g., ALLMOTI5, 107×178×4, and PLZIP) in other viral proteins was employed to identify similar regions in the respiratory syncytial virus (RSV). Several conserved heptad repeat domains that are predicted to form coiled-coil structures with antiviral activity were identified in the RSV genome. Synthetic peptides of 16 to 39 amino acids derived from these regions were prepared and their antiviral activities assessed in a suitable in vitro screening assay. These peptides proved to be potent inhibitors of RSV fusion. Based upon their structural and functional equivalence to the known HIV-1 inhibitors DP-107 and DP-178, these peptides should provide a novel approach to the development of targeted therapies for the treatment of RSV infections.

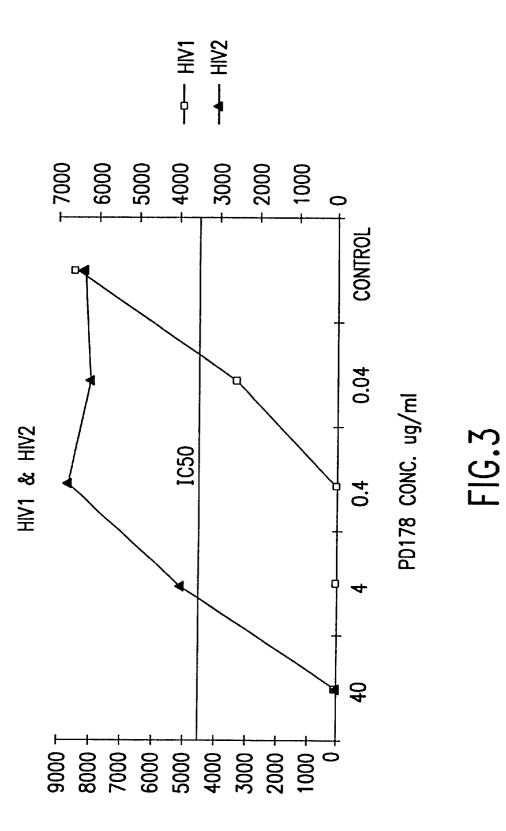
13 Claims, 31 Drawing Sheets

OTHER PUBLICATIONS

Collins et al., 1984, "Nucleotide Sequence of the Gene Encoding the Fusion (F) Glycoprotein of Human Respiratory Syncytial Virus", Proc. Natl. Acad. Sci. USA 81:7683–87.


Staden, 1994, "Searching for Motifs in Protein Sequences", Chapter 12 in: *Methods in Molecular Biology*, vol. 25, Griffin et al., eds., Humana Press, Inc., Totowa, NJ, p. 131–139.

Staden, 1994, "Using Patterns to Analyze Protein Sequences", Chapter 13 in: *Methods in Molecular Biology,* vol. 25, Griffin et al., eds., Humana Press, Inc., Totowa, NJ, p. 141–154.

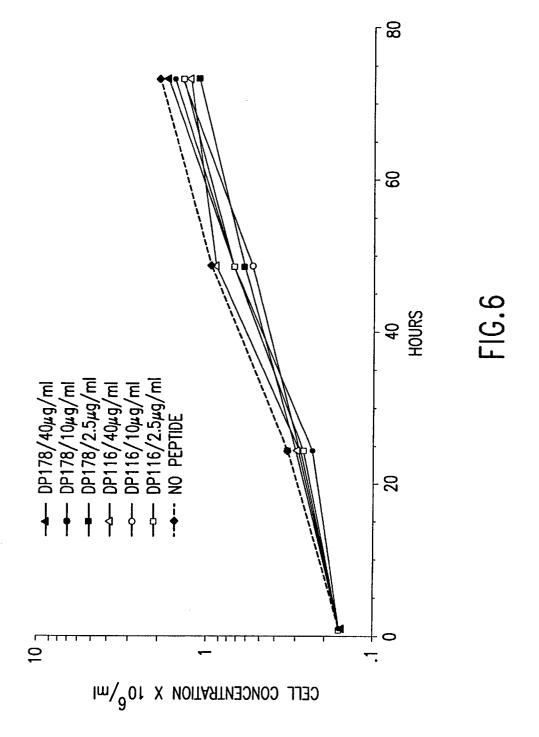

Staden, 1990, "Searching for Patterns in Protein and Nucleic Acid Sequences", Meth. Enzymol. 183:193–211.

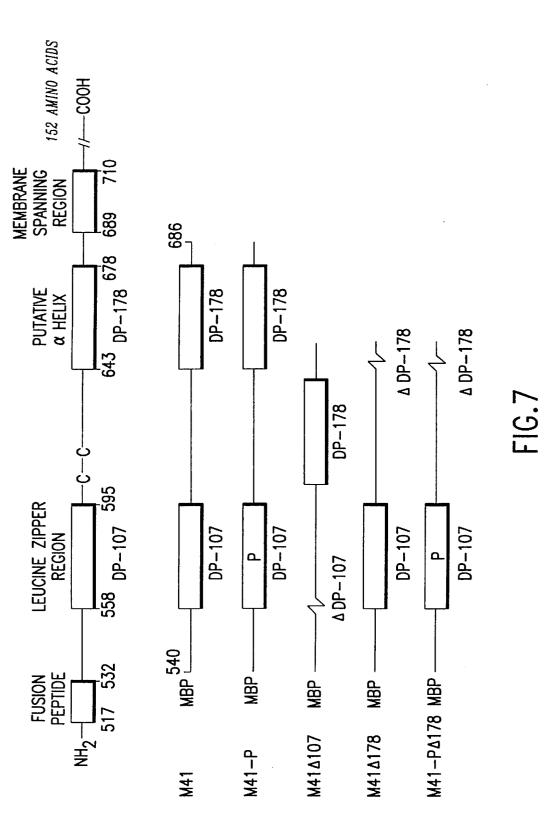
* cited by examiner

LQARILAVERYLKDQQQ	(SEQ ID:9)	DP116
CGGNNLLRAIE AQQHLLQLTVWGIKQLQARILAVERYLKDQ	(SEQ ID:8)	DP125
QQLLDVVKRQQEMLRLTVWGTKNLQARVTAIEKYLKDQ	(SEQ ID:10)	DP118
SSESFTLLEQWNNWKLQLAEQWLEQINEKHYLEDIS	(SEQ ID:2)	DP180
LEAN I SQSLEQAQ I QQEKNMYELQKLNSWDVF TNWL	HIV2NIHZ (SEQ ID:7)	HIV2NIH
LEAN I SKSLEQAQ I QQE KNMYELQKLNSWD I FGNWF	HIV2ROD (SEQ ID:6)	HIV2ROD
YTSLIYSLLEKSQIQQEKNEQELLELDKWASLWNWF	(SEQ ID:5)	HIV1MN
YTG I I YNLLEE SQNQQEKNEQELLELDKWANLWNWF	(SEQ ID:4)	HIV1RF
YTNTIYTLLEESQNQQEKNEQELLELDKWASLWNWF	2 (DP-185; SEQ ID:3)	HIV1SF2
(DP-178; SEQ ID:1) YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF		HIV1LAI

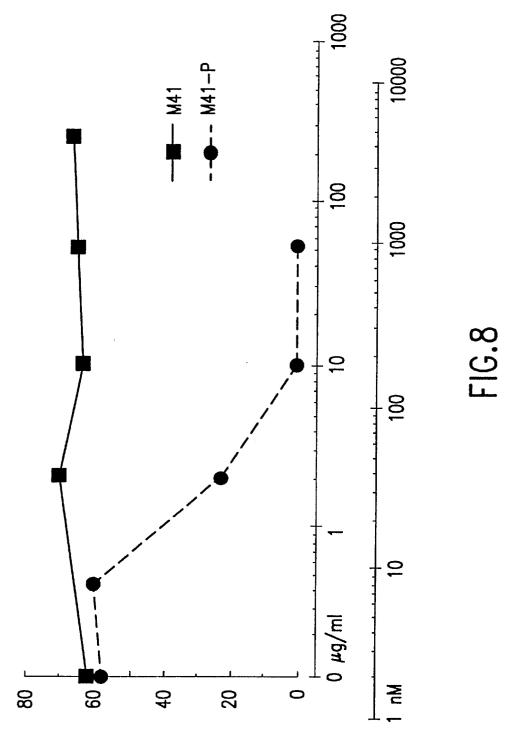
REVERSE TRANSCRIPTASE UNITS

Number	of Syn	<u>cy</u> tio	/well	: conce	ntratio	n in µg∕l	ml (micro	groms/ml)	
DP178	10	5	1	0.2	0.1	0.05	0.025	0.0125	Control
<i>Syncylia</i> HIV1LAI	0	0	0	0	0	0	0	0	67
HIV1MN	õ	Õ	Õ	Õ	Õ	ŇD	ŇD	ŇD	34
HIV1RF	0	0	0	0	0	ND	ND	ND	65
HIV1SF2	0	0	0	0	0	ND	ND	ND	58
		_			• •				
DP125	10	5	1	0.2	0.1	0.05	0.025	0.0125	Control
Syncytia	0	0	F 4	60	90	75	70	00	67
HIVILAI	0	0	54	69 76	80	75	79 ND	82	67
	0 0	0	30	36	ND	ND	ND	ND	34 CF
HIV1RF HIV1SF2	0	0 0	67 9	63 66	ND ND	ND ND	ND ND	ND	65 58
	U	U	9	00	NU	ND	NU	ND	20
DP116	10	5	1	0.2	0.1	0.05	0.025	0.0125	Control
Syncytia									
HIV1LAI	75	ND	ND	ND	ND	ND	ND	ND	67
HIV1MN	35	ND	ND	ND	ND	ND	ND	ND	34
HIV1RF	81	ND	ND	ND	ND	ND	ND	ND	65
HIV1SF2	81	ND	ND	ND	ND	ND	ND	ND	58

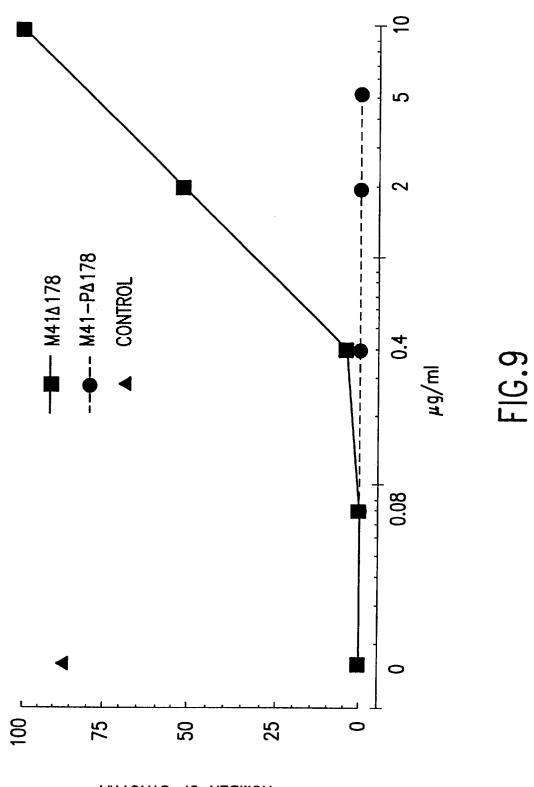

FIG.4A

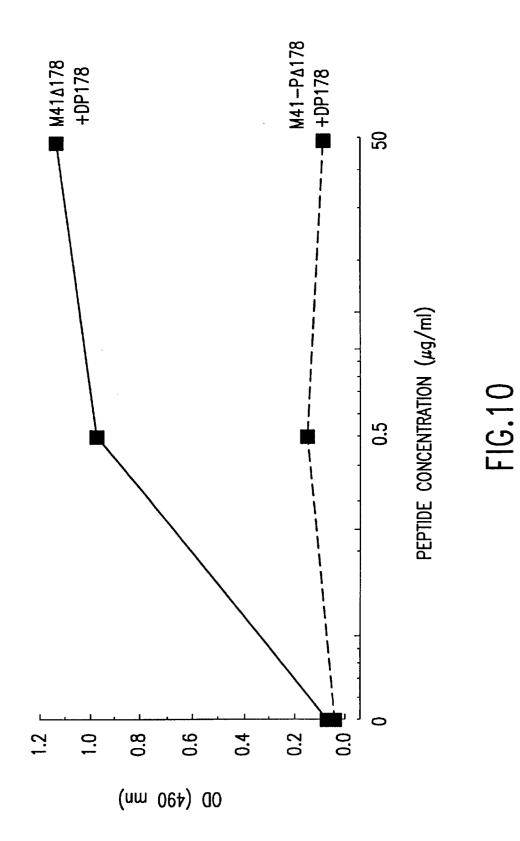


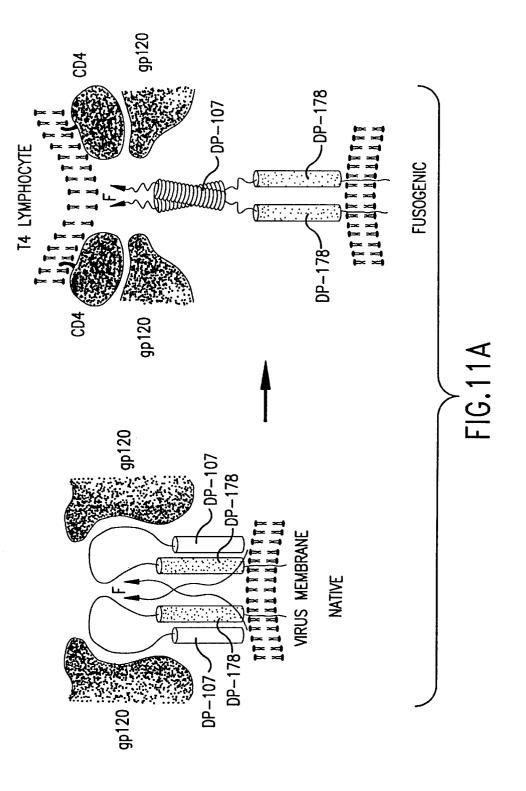
DP180	40	20	10	5	2.5	1.25	0.625	0.3125	Control
<i>Syncytia</i> HIV1LAI	50	>45	>45	>45	>45	>45	>45	>45	58
DP185	40	20	10	5	2.5	1.25	0.625	0.3125	Control
<i>Syncytia</i> HIV1LAI	0	0	0	0	0	0	0	ND	60

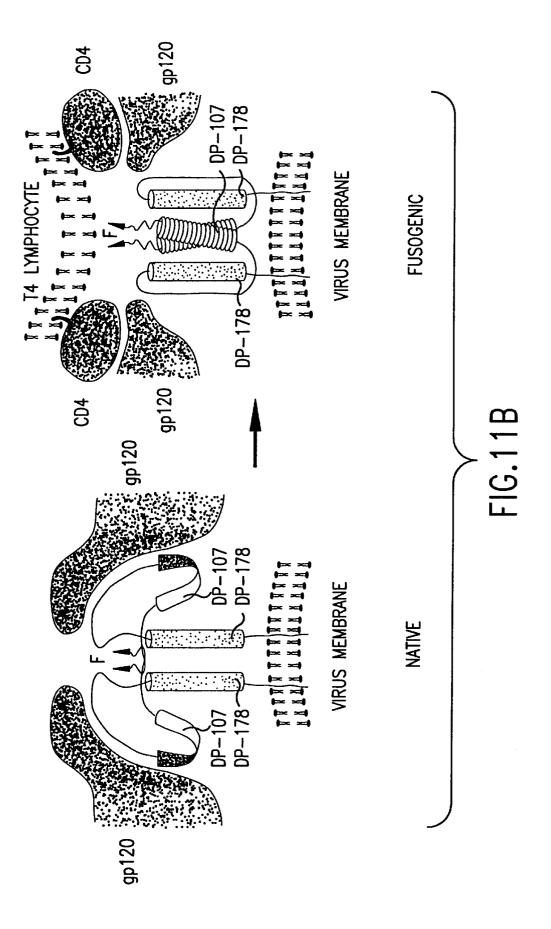

FIG.4B

				HIV1				
	Number	of	Syncyt	io/well:	conce	entration	in ng/ml	(nanograms/ml)
DP178	20	10	5	2.5	1.25	0.625	0.3125	Control
Syncytia HIV1	0	0	0	0	0	14	20	48
DP116	20	10	5	2.5	1.25	0.625	0.3125	Control
Syncytia HIV1	ND	48	ND	ND	ND	ND	ND	ND
				HIV2				
	Numb <u>er</u>	of	Syncyti	o/well:	conce	ntration	in µg/ml	(microgroms/ml)
DP178	20	10	5	2.5	1.25	0.625	0.3125	Control
Syncytia HIV2	50	54	55	57	63	77	78	76
DP116	20	10	5	2.5	1.25	0.625	0.3125	Control
<i>Syncytia</i> HIV2	ND	58	ND	ND	ND	ND	ND	ND


FIG.5



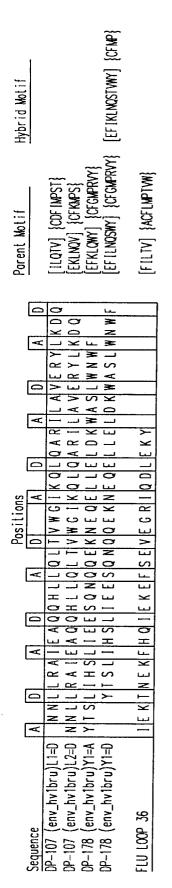



NUMBER OF SYNCYTIA

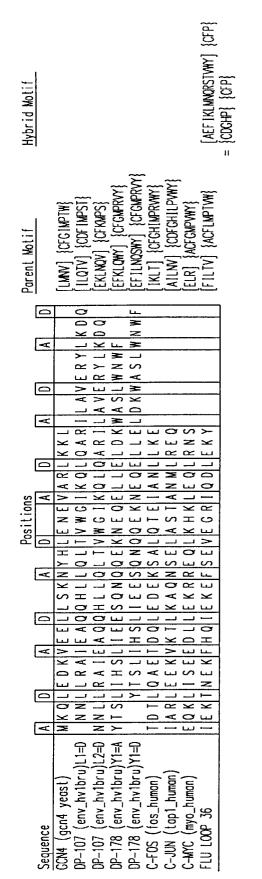
NUMBER OF SYNCYTIA

Motifs		[LMNV] {CFGIMPTW}	[IKLT] {CFGHIMPRYWY}	[AILNV] \$CDFGHILPVWY	[ELR] {ACFGMPVWY}	FILTV] {ACFLMPTVW}	-
	0]
	A						
	0						
	A	1 >	ш	0	N S	۲	
	Ω				L R	<u>بعد</u> س	
Positions	D	LENEVARLKK	D Q L E D E K S A L Q T E I A N L L K E	LASTAN	LKHKLEQ	VECRIQD	
	A	S K N Y H	DEKSA	AQNSE	K R R E Q	KEFSE	
Į	D	EELL		X TLK		H Q I E	
[A		A E T [ы К	SEE	EKF	
[A D		TDTLQAET	IARLE	EQKLISEE	I E K T N	
	Sequence	GCN4 (gcn4 yeast)	C-FOS (fos_human)			FLU LOOP 36	

<u>Motifs</u>	[1LQT] {CF IMPSTY} [1LQTV] {CDF IMPST} [1LQTV] {CDF IMPST}	[eklnqv] {cdfkmpsvy} [eklnqv] {cfkmps} [eklnqv] {cfkmps}	[eklqy] {acfgmprvmy} [eklqmy] {cfgmprvy} [efklqmy] {cfgmprvy}	[EILNOSY] {ACFGMPRVWY} [EILNOSWY] {CFGMPRVY} [EFILNOSWY] {CFGMPRVY}
	o o			L.
	L A V E R Y L L A V E R Y L L A V E R Y L K D Q	0		L L E L D K A S L W N W L L E L D K W A S L W N W
		[L A V E R Y L Ι L A V E R Y L K Ι L A V E R Y L K D		~~~~~~
	~~~	<b>≻ ≻</b>	L D K W A S L W N W L D K W A S L W N W	L L E L D K L L E L D K W A S L L L E L D K W A S L
_		~ ~ ~	33	<u> </u>
		<u> </u>		<u> </u>
			<b>√ √</b>	X X X 0 0 0
<		<u> </u>	33	
· ·	L Q L T V W G I K Q L Q A R I L Q L T V W G I K Q L Q A R I L Q L T V W G I K Q L Q A R I L Q L T V W G I K Q L Q A R I		$\times \times \times$	LU LU LU
	AAA	L Q L T V W G I K Q L Q A R I L Q L T V W G I K Q L Q A R I L Q L T V W G I K Q L Q A R I L Q L T V W G I K Q L Q A R I	$\Box \Box \Box$	
	000	<u> </u>	<u> </u>	<u> </u>
		<u> </u>	لیا لیا لیا ـــ ــ ـــ ـــ ـــ ـــ ـــ	I E E S Q N Q Q E K N E Q E I E E S Q N Q Q E K N E Q E E E S Q N Q Q E K N E Q E I E E S Q N Q Q E K N E Q E
S <		<u> </u>		zzz
티	000		000	$\times \times \times$
	333	ပပပ	ليا ليا ليا	പപപ
Positions	>>>	* * *	ZZZ	000
م [2	$\neg \vdash \vdash \vdash$	>>>	XXX	000
		▶ <b>}</b>		ZZZ
	000		I E E S Q N Q Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E Q E K N E K N E Q E K N E K N E Q E K N E Q E K N E Q E K N E Q E K N E K N E K N E K N E Q E K N E K N E K N E K N E K N E K N E K N E K N E K N E K N	000
			<u>zzz</u>	
			000	
	000	$\pm \pm \pm$	ົ້ິດເຈັ້	
	E A 0 0 H L L	A 0 0 H L I A 0 0 H L I A 0 0 H L I		
	AAA	000		H S H S H S
·	<u> </u>	AAA		H H S H H
		ניו ניו ניו	L L L S S S	
	L L L L L L L L L L L L L L L L L L L	~~~~		
C		<u> </u>	ليت التر التر	X T S Y T S Y T S
•	z z z z z z		SSS	
	ZZZ	ZZZ	<u> </u>	
		N N L L R A N N L L R A N N L L R A L R A	λ T S L I H 9 γ T S	
				프프프
		ルルル	がいて	주주전
		טרט טרט	ירע	
	<b>jt</b> <u>jt</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 7 7 7	분분분
	أغرغ	<u>نہ</u> تے ہے	ک کے گ	اع م م
a	e e e	e (e	e (e	e e
		2020	78 78 78	82 82
Sequence	읽는 는 는			DP-178 (env_hv1bru)Y1=D DP-178 (env_hv1bru)Y1=D DP-178 (env_hv1bru)Y1=D
ů	DP-107 (env_hv1bru)L1=D DP-107 (env_hv1bru)L1=D DP-107 (env_hv1bru)L1=D	DP-107 (env_hv1bru)L2=D DP-107 (env_hv1bru)L2=D DP-107 (env_hv1bru)L2=D	DP-178 (env_hv1bru)Y1=A DP-178 (env_hv1bru)Y1=A DP-178 (env_hv1bru)Y1=A	666


U.S. Patent

	Hybrid Molif		[ILMNQTV] {CFIMPT}		[ILMNQTV] {CFIMPT}	<pre>{ EKLMNOV] {CFMP}</pre>	[EKLMNOV] {CFMP}	[EKLMNQV] [CFMP]
	Parent Motif	[LMNV] {CFGIMPTW}	[ILQT] {CF IMPSTY}	[ILQTV] {CDFIMPST}	[1LQTV] {CDF1MPST}	[eklnov] {cofkmpsvy	[EKLNQV] {CFKMPS}	[EKLNQV] {CFKMPS}
	0				<u>o</u>			
					<u>×</u>			0
	A			7	I K Q L Q A R I L A V E R Y L K I			<u> </u>
				~	<u>~</u>		7	
					>		ц ш	
				LΑ	ΓV		ΑV	ΑV
	Y			I K Q L Q A R I			_	<u> </u>
			AR	AR	AR	R	8	~
	5	×.	H L L Q L T V W G I K Q L Q A R	0	<u>a</u>	K Q L Q A R	KQLQARI	KQLQARI
		ENEVARL	3	0	0		3	믝
ŝ	4	N N	×	×	<u>×</u>	<u>S</u>	3	읛
ositions		ω.	ى ن	3	сı S			-
sit		Σ ω	× ×	2	¥ >	IVWG		S ¥
ď	0		F	-	-	>	λ	$\geq$
		S K N Y H L	0	LQLTVWG	QQHLLQLTVWC			
	P	Z	<u> </u>	<u> </u>	<u></u>	Ò	0	<u>o</u>
		S K	Ц Н	Ξ	ш ж	ي. 	بــــ بــــ	
		<u> </u>	0	2	2	H	H	프
	e		A	A		0	00	8
		ш >	<u>ш</u>	lΕA	IEA	<u>×</u>	×	<u>&lt;</u>
	<u> </u>	MKQLEDKVEE	A	N N L L R A I E /	A	_		=
		<u>о</u> ш	2	2		RA	RA	R
	0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	
	A D	× 0	N	N	z	N L	N	
	Y	×				z	Z	Z
	Sequence	GCN4 (gcn4 yeast)	DP-107 (env_hvibru)L1=D	DP-107 (env_hv1bru)L1=0	DP-107 (env_hv1bru)L1=D	DP-107 (env_hv1bru)L2=D NNL LRAI EAO	DP-107 (env_hv1bru)L2=D	DP-107 (env_hv1bru)L2=D


FIG.14

Hvbrid Nofif			[Eklanovy] {cfgapy} [Eklanovay] {cfgap} [Efklanovay] {cfgap}	eilnosy] {acfomprvmy} [eilmnosvy] {cfompw} eilnoswy] {cfomprvy} [eilmnosvmy} {cfomp} cfilnoswy] {cfomprvy} [efilmnosvmy] {cfomp}
Purent Whif		[LMNV] {CFGIMPTW}	[ekloy] {acfowprvwy} [eklowy] {cfowprvy} [efklowy] {cfowprvy}	[EILNQSY] {ACFGMPRVMY} [EILMNQSVY] [EILNQSWY] {CFGMPRVY} [EILMNQSVMY} [EFILNQSWY] {CFGMPRVY} [EFILMNQSVMY]
	0			 
		ļ		E S Q N Q Q E K N E Q E L L E L D K E S Q N Q Q E K N E Q E L L E L D K W A S L W N W E S Q N Q Q E K N E Q E L L E L D K W A S L W N W F
	A		≥≥	<u> </u>
	0		S Q N Q Q E K N E Q E L L E L D K S Q N Q Q E K N E Q E L L E L D K W A S L W N W S Q N Q Q E K N E Q E L L E L D K W A S L W N W	A S A S
	0			≈ ≈
			A S A	E S O N O O E K N E O E L L E L D K E S O N O O E K N E O E L L E L D K E S O N O O E K N E O E L L E L D K W
	A	I		
		1	$\times$ $\times$ $\times$	
		<u> </u>		
	0	L S K N Y H L E N E V A R L K K L	S Q N Q Q E K N E Q E L L E L D K S Q N Q Q E K N E Q E L L E L D K S Q N Q Q E K N E Q E L L E L D K	I E E S O N O O E K N E O E L I E E S O N O O E K N E O E L I E E S O N O O E K N E O E L
		A		
S	A	٧		ZZZ
Posilions				- X X X W W W
osi		ш.	<u> </u>	000
ď	0	<u> </u>	<u>×××</u>	4 0 4 0 4 0
		7	000	000
	A	Z	000	sss
		S K	2 2 2 2 2 2 2 2	шшш
			S S S	
	e			S L S L
				Y T S L I H S L Y T S L I H S L Y T S L I H S L
	A	>		
		0	Y T S L I H S L I Y T S L I H S L I Y T S L I H S L I Y T S L I H S L I	S L S L
	A D	<u> </u>		
		٥L		<u> </u>
	·	×	• + +	
	A	×	<u>~~~</u>	
		GCN4 (gcn4 yeast)	DP-178 (env_hv1bru)Y1=A DP-178 (env_hv1bru)Y1=A DP-178 (env_hv1bru)Y1=A	DP-178 (env_hv1bru)Y1=D DP-178 (env_hv1bru)Y1=D DP-178 (env_hv1bru)Y1=D

ഹ
<b>~</b>
•
G



сп	Aug	. 27, 2002	Sheet	10 01 31
Hybrid Motif	[efiklmnQtvny] {cfmp}	[EFILMKQRSTVWY] {CFMP}	[efklandywy] {cfmp}	[efiklanvosvny] {cfmp}
Parent Motif	[LMAVV] {CFCIMPTH} [ILQTV] {CDF1MPST} [EFKLCMY] {CFCMPRVY}	[LMNV] {CFCIMPTW} [ILQTV] {CDFIMPST} [EFILNQSWY] {CFGMPRVY}	[LMNV] {CFCIMPTW} [EKLNQV] {CFKNPS} [EFKLQMY] {CFCMPRVY}	[LMNV] {CFGIMPTW} [EKLNQV] {CFKMPS} [EFILNQSWY] {CFGMPRVY}
		S K N Y H L E N E V A R L K K L 2 H L L Q L T V W G I K Q L Q A R I L A V E R Y L K D Q I E E S Q N Q Q E K N E Q E L L E L D K W A S L W N W F		LL_
	K D Q		S K N Y H L E N E V A R L K K L H L L Q L T V W G I K Q L Q A R I L A V E R Y L K D Q S Q N Q Q E K N E Q E L L E L D K W A S L W N W F	S K N Y H L E N E V A R L K K L I L L Q L T V W G I K Q L Q A R I L A V E R Y L K D Q E E S Q N Q Q E K N E Q E L L E L D K W A S L W N W F
A	S K N Y H L E N E V A R L K K L H L L O L T V W G I K Q L Q A R I L A V E R Y L Q N Q Q E K N E Q E L L E L D K W A S L W N W F	æ	<u> </u>	<u>×                                    </u>
	N N	S R	N K	S L
			<u>~~≥</u>	A R
	N N	K A	S II	<u> </u>
			A A	<u> </u>
		<u> </u>		
	XAU	L A K	X X O	X X L
				<u> </u>
	A R K Q L	A X M	~~~~ ~~~	A LO
Suc		> - z	<u>&gt; × ⊔</u>	<u>&gt; × z</u>
<u>10</u>		u o ⊻ N ¥ u	N Co Lu	
Positions D	$\omega > z$			<u> </u>
40	Y H L E N E V A R 0 L T V W C I K 0 0 E K N E 0 E L L		<u> </u>	
_	200	×00	~	5
	SKNYHLENE HLLQLTVWG QNQQEKNEQ		<u>vos</u>	N N N
	S H O	Sнп	0 L N	s Г
0				
	ш <del>с</del> ш	ы ч х Т		I S I S
		<u>&gt;==</u>		<u>&gt; u</u>
	N N N N N N N N N N N N N N N N N N N	S A A N A N	H S	N I N
	<u> </u>		$\square \simeq \neg$	шœн
	N N O		- L C L	
ৰি	M K Q L E D K V E E L L S N N L L R A I E A Q Q H Y T S L I M S L I E E S Q	M K Q L E D K V E E L L S N N L L R A I E A Q Q H Y T S L I H S L I E	W K Q L E D K V E E L L S N N L L R A I E A Q Q H L Y T S L I H S L I E E S Q	M K Q L E D K V E E L L S N N L L L R A I E A Q Q H L Y T S L I H S L I E
Sequence	GCN4 (gcn4 yeast) DP-107 (env_hv1bru)L1=D DP-178 (env_hv1bru)Y1=A	GCN4 (gcn4 yeast) DP-107 (env_hv1bru)L1=D DP-178 (env_hv1bru)Y1=D	GCN4 (gcn4 yeast) DP-107 (env_hv1bru)L2=D DP-178 (env_hv1bru)Y1=A	CCN4 (gcn4 yeast) DP-107 (env_hv1bru)L2=D DP-178 (env_hv1bru)Y1=D



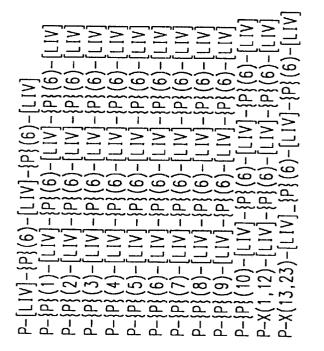



FIG.19

#### Fusion ¥ALLMOTI5¥ Peptide **▲107x178x4▲** ♥......FLGFLG A AGSTMGARSM TLTVQARQ ▲LL SGIVQQQ DP107-NNL

### LRAIEAOOHL LOLTVWGIKO LOARILAVER YLKDO-DP107 QLLGAV I WGC

<u>▲107x178x4</u>▲ ♥ALLMOTI5♥ *LVS Coiled-Coil* SGKLICT TAVP ♥WNASWS NKSLEQIWNN MTWM *E ♠WDREINN DP178-

<u>YTSLIHSL IEESONOOEK NEOELLELDK* WASLWNWF-DP178</u> NI

### ♦ Transmembrane Region ♦ TNWLWYIK + IF IMIVGGLVGL RIVFAVLSIV NRVRQGYS + PL

+P23LZIPC+ SFQTHLPTPR GPDR *PEGIEE EGGERDRDRS IRLVNGSLAL IWDDLRSL* CL

<u> ▲107x178x4</u> ▲

♥ALLMOTI5♥

F ♥SYHRLRDLL LIVTRIVELL GRRGW ♠EALKY WWNLLQYWSQ

ELKNSAVSLLNAT A AIAVAEG TDRVIEVVQG AV CRAIRHIPR

RIRQGLERIL L

Fusion ♥ALLMOTI5♥ Peptide ♥......FLGFL LGVGSAIAS GVA ▲<u>VSKVLHL EGEVNKIKSA</u>

+P1&12LZIPC+

## LLSTNKAVVS LSNGVSVLTS KVLDLKNYID KQ ** LL +PIVNKQ

### **▲107x178x4▲**

SC **SISNIETV I** EFQQKNNRLLEITREFSVNAG VTTPVSTMLTNSELLSL

## **♣**P1&12LZIPC**♣**

♥ALLMOTI5♥

INDM ♣PI ♥TNDQ KKLMSNNVQI V♣ RQQSYSI♣ MS IIKEEVLAYV

VQ♥ LPLYGVID TPCWKLHTSP LCTTNTKEGS NICLTRTDRG WYCDNAGSVS

FFPQAETCKV QSNRVFCDTM NSLTLPSEIN LCNVDIFNPK

YDCKIMTSKT DVSSSVITSL GAIVSCYGKT KCTASNKNRG

IIKTFSNGCDYVSNKGMDTV SVGNTLYYVN KQEGKSLYVK G

### +P7, 12, & 23LZIPC+

♥ALLMOTI5♥ **▲107x178x4▲** EPIINFYDPLVF *PSDE *FDASISQVNEKINQSLAF *I* RKSDELL*

◆ Transmembrane Region ◆ HNVNA GK STTN + IMITTI IIVIIVILLS LIAVGLLLY C+

KARSTPVTLS KDQLSGINNI AFSN

Fusion Peptide ♦ALLMOTI5 ♥ ......FLGFLG VAAGTA MGAAA ATALTVOSQHLLAGILQQQKNLLAAV

**▲107x178x4▲** EAQA QQM ALKLTIWGVKNLNARVTALEKYLEDQARLNA AWGY CA

*LVS Coiled-Coil* ♥ALLMOTI5♥ <u>**107x178x4</u>**▲</u> WKQVCHTTVP WQWNNRTPDW VNNMT *WLE &WERQISYLEGNIT

<u> ▲ 107x178x4</u> ▲ TQLEEARAQEEKNLD ▲ AYQKLSS* WSDFWSW ▼ FDF ▲SKWLN ↓ILK

◆Transmembrane Region ◆ **IGFLDVLGIIGLRLLYTV** ◆ <u>YS</u> ▲ CIARVRQGYS PLSPQIHIHP WKGQPDNAEG

PGEGGDKRKN SSEPWQKESG TAEWKSNWCK RLTNWCSISS IWLYNS

**♥**ALLMOTI5**♥**  $\blacklozenge CLTL LVHLRSAFQY IQYGLGELKA AAQEAVVALA RLAQNAGYQIWL \checkmark$ 

ACRSAYRA IINSPRRVRQ GLEGILN

Fusion Peptide VALLMOTI5V *LVS Coiled-Coil* **▼<u>VVL</u>** AGVALGVATA AQITAGIALHQ **▲***<u>SNLNAQAIQ</u> .....<u>FAG</u>

### SLRTSLEQSNKAIEEIREATQETVIA* VOGVODY VNNEL VP

♥ALLMOTI5♥ *P6 & 12LZIPC* AMQHMSCELVGQRLGLRLLRYYTELLSIFGPSLRD *PISA *YEISIQALIYAL

<u>GGEIHKILEKLGYSGSD</u>▲ MIAILESRGIKTKI♥ THVDLPGKF IILSISY

*P1 & 12LZIPC* *****PTLSEVKGVIVHRLEAV***** SYNIGSQEWYTTVPRYIATNGYLISNFDESSCVFVS

ESAICSQNSL YPMSPLLQQC IRGDTSSCAR TLVSGTMGNK FILSKGNIVA

NCASILCKCY STSTIINQSP DKLLTFIASD TCPLVEIDGA TIQVGGRQYP

### *LVS Coiled-Coil* ♥ALLMOTI5♥ +P12 & 23LZIPC+ DMVYEGKVAL G ♣PAISLD ♥RL*<u>DVGTNLGNALKKLDDAKVLI</u>♣

◆<u>Transmembrane Region</u>◆ 

K RRYQQTLKQH TKVDPAFKPD LTGTSKSYVR SL

*N LDISTELGNV NNSISNALDK LEESNSKLDK VNVKLTSTSA + LIT* YIA

LTAISLVCGILSLV * LACYLMY + KQKAQQKTLLWLGNNTLGQMRATTKM

NYGEAVSLID RHSCN AVVLSLD GITLRLSGEF DATYQKNISI LDSQVIVTG *LVS Coiled-Coil* ◆<u>Trans-</u>

LSVST TKGFASALVP KVVTQVGSVI EELDTSYCIE TDLDLYCTRI VTFPMSPGIY

SCLNGNTSAC MYSKTEGALT TPYMTLKGSV IANCKMTTCR CADPPGIISQ

♥ALLMOTI5♥ **▲<u>107x178x4</u>**▲

*P1 & 12LZIPC*

NNQLSSLIGSGLIT GN♥ ♣PILYDSQT QLLGIQVTLP SVGNLNNMRATYLET

♥ALLMOTI5♥ GVELNLYLTELTTV FGPQITSPAL VTQLTIQALYNAGGNMDYLLTKLGVG

TIEAVHEVTDGLSQLAVA VG KMV QQFVNDQFNNTAQELDCIKITQQV

Fusion **VALLMOTI5V** Peptide ▲<u>107x178x4</u> ♥......FIGAI IGSVALGVA TAAQITAASA LIQANQNAAN ♠ILRLKESITA

membrane Region +

IQKRNRVDQN DKPYVLTNK

◆<u>Transmembrane Region</u>◆ DSIGNWHOSSTT ◆HIV▲ LIM HILFHINVT II◆ HAVKYY♥ R

**▲107x178x4▲** +P6 & 23LZIPC+ NDITLNNSVALD +PIDI +SIELN +KAKSDLEESKEWI+ RRSNOKL+

### ♥ALLMOTI5♥

TCTCNGIGNRINQPPDQGVKIITHKECNTIGINGMLFNTNKEGTLAFYTP

PSDPGFVLNHEMESCLSGNISQCPRTVVKSDIVPRYAFVNGGVVANCITT

♣P5 & 12LZIPC♣

IFTTSTVDKYDIYDLLFTESIKVRVIDVDLNDYSITLQVRL +PLLTRLLNTQIYR

VDSISYNI + QNREWYI + PLPSHIMTKGAFLGGADVKECIEAFSSYIC

**▲107x178x4▲** LQLGIALTQH AVYSELTNIFGDNIGSLQEKGIKLQGIASLYRTNITEVA

♥ALLMOTI5♥

Fusion ¥ALLMOTI5¥ Peptide **▲107x178x4 ▲ ***LVS Coiled-Coil* ......FFGGY AIG VTIALG *VATSAQITAAVALVEAKOARSDIEKLKE

AIRDTNKAVQSVQSSIGNLIVAIKSVQ* DYVNKEVA IVPSIARLGCEAAG

Fusion Peptide ......GLFGAI AGFIENGWEGMIDGWYGFRHQNSEGTG

♥ALLMOTI5♥ *LVS Coiled-Coil* *Q ★AADLKST ★QAAIDQINGKLNRVIEKTNEKFHQIEKEFSEVEGRIQ

DLEKYVEDTKIDL* WSYNAELLVALENOHTIA DLTV DSEMNKLFEKTR

RQLRENAEEMGNGCFKIYHKCDNACIESIRNGTYDHDVYRDEALNNRFQIKG

VELKSGYKDWILWISFAISCFLLCVVLLGFIMWACQRGNIRCNICI

YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST	YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYK	TSVITIELSNIKENKCNGTDAKVKLIKQELDKYKN	SVITIELSNIKENKCNGTDAKVKLIKQELDKYKNA	V I T I ELSN I KENKCNG TDAKVKL I KQELDKYKNAV	I TI ELSNIKENKCNGTDAKVKLIKQELDKYKNAVT	T I ELSNIKENKCNGTDAKVKLIKQELDKYKNAVTE	I EL SNI KENKCNG TDAKVKL I KQEL DKYKNAV TEL	ELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQ	LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQL	SNIKENKCNGTDAKVKL I KQELDKYKNAVTEL QLL	N I KENKCNG TDAKVKL I KQELDKYKNAV TEL QLLM	I KENKCNG TDAKVKL I KQELDKYKNAV TEL QLLMQ	KENKCNG TDAKVKL I KOELDKYKNAV TEL OLLMOS	ENKCNG TDAKVKL I KQELDKYKNAV TELQLLMQST
RSV F2	T-142	T-143	T-144	T-145	T-146	T-147	T-148	T-149	T-150	T-151	T-152	T-153	T-154	T-155
8	++/+	++++/+	++/+	+/+	-/+		I	-/+	I	+/+	++/+	+/+	++/+	+/+
AV	+-	‡	+-	i	ł	ł	I	I	1	L	ł	I	I	ł

DEFDASISQVNEKINQSLAFIRKSDELL GEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTT IINFYDPLVFPSDFFDASISQVNEKINDSLAFIRK	INF YDPL VFPSDEF DAS I SQVNEK I NQSLAF I RKS NF YDPL VFPSDEF DAS I SQVNEK I NDSI AF I RKSD	F Y DPL VF PSDEF DAS I SQVNEK I NQSLAF I RKSDE Y DPL VF PSDEF DAS I SQVNEK I NOSLAF I RKSDFI	DPL VF PSDEF DAS I SQVNEK I NQSLAF I RKSDELL	PLVFPSDEFDASISQVNEKINQSLAFIRKSDELLH	L VFPSDEFDAS I SQVNEK I NQSLAF I RKSDELLHN	VFPSDEFDASISQVNEKINQSLAFIRKSDELLHNV	F PSDEF DAS I SQVNEK I NQSLAF I RKSDELLHNVN	PSDEFDAS I SQVNEK I NQSLAF I RKSDELLHNVNA	SDEFDAS I SQVNEK I NQSLAF I RKSDELLHNVNAC	(T-67 LIKE) DEFDASISQVNEKINQSLAF IRKSDELLHNVNAGK	EFDAS I SQVNEK I NQSLAF I RKSDEL LHNVNAGKS	F DAS I SQVNEK I NQSLAF I RKSDELL HNVNAGKST	DAS I SQVNEK I NQSLAF I RKSDELLHNVNAGKSTT
RSV T-67 F1-178 T-104	T-105 T-106	T-107 T-108	T-109	T-110	T-111	T-112	T-113	T-114	T-115	T-116	T-117	T-118	T-119
CD +/-						-/+	-/+	-/+	-/+	-/+	-/+	-/+	-/+
₩ +	 + +	·+ ‡	Ŧ	÷	‡	Ŧ	‡	ŧ	ŧ	‡	‡	‡	‡

YTPNDITLNNSVALDPIDISIELNKAKSDLEESKEWIRRSNQKLDSIGNMHQSSTT YTPNDITLNNSVALDPIDISIELNKAKSDLEESKE TPNDITLNNSVALDPIDISIELNKAKSDIFFSKFW	PNDITLNNSVALDPIDISIELNKAKSDLEESKEWI	NDI TLNNSVALDP IDI SI ELNKAKSDLEESKEWIR	DI I LNNSVAL DP IDI SI EL NKAKSDLEE SKEWIRR	I I LNNSVAL DP IDI SI ELNKAKSDLEESKEWIRRS	TLNNSVALDPIDISIELNKAKSDLEESKEWIRRSN	LNNSVALDPIDISIELNKAKSDLEESKEWIRRSNQ	NNSVALDP I D I S I ELNKAKSDLEESKEWI RRSNQK	NSVAL DP I D I S I E L NKAKSDLEE SKEWI RRSNQKL	SVAL DP I D I S I E L NKAKSDLEE SKEWI RRSNQKLD	VAL DP I D I S I EL NKAKSDLEESKEW I RRSNQKLDS	ALDP I D I S I ELNKAKSDLEESKEWI RRSNQKLDS I	L DP I D I S I E L NKAKSDLEE SKEWI RRSNQKLDS I G	DPIDISIELNKAKSDLEESKEWIRRSNQKLDSIGN	PIDISIELNKAKSDLEESKEWIRRSNQKLDSIGNW	IDISIELNKAKSDLEESKEWIRRSNQKLDSIGNMH	DISIELNKAKSDLEESKEWIRRSNOKLDSIGNMHQ	I SI EL NKAKSDLEESKEWI RRSNQKLDSI GNMHQS	SIELNKAKSDLEESKEWIRRSNQKLDSIGNMHQSS	I E L NKAKSDLEESKEWI RRSNORLDSI GNMHQSST	ELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSSTT
HPF 3 178 189 190	191	192	193	194	. 195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210

 $\begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ 

CD	HPF3 107	GTIALGVATSAQITAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEIVP
+/+	157	ALGVATSAQITAAVALVEAKQARSDIEKLKEAIRD
+/+	158	LGVATSAQITAAVALVEAKQARSDIEKLKEAIRDT
+/-	159	GVATSAQITAAVALVEAKQARSDIEKLKEAIRDTN
+/+	160	VATSAQITAAVALVEAKQARSDIEKLKEAIRDTNK
+/+	161	ATSAQITAAVALVEAKQARSDIEKLKEAIRDTNKA
+/-	162	TSAQITAAVALVEAKQARSDIEKLKEAIRDTNKAV
+/+	163	SAQITAAVALVEAKQARSDIEKLKEAIRDTNKAVQ
+/+++	164	AQITAAVALVEAKQARSDIEKLKEAIRDTNKAVQS
+/+	165	Q]TAAVALVEAKQARSD[EKLKEA]RDTNKAVQSV
+/-	166	I TAAVAL VEAKQARSD I EKLKEA I RDTNKAVQSVQ
+/- +/-	167	TAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQS
+/-	168	AAVAL VEAKQARSD1EKL KEA I RDTNKAVQSVQSS
+/-	169	AVAL VEAKQARSD1EKLKEA1RDTNKAVQSVQSS1
+/-	170	VALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSIG
+/- +/- +/- +/- +/-	171	AL VEAKQARSDIEKLKEA I RDTNKAVQSVQSSIGN
+/-	172	L VEAKQARSD I EKLKEA I RD TNKAVQSVQSS I GNL
	173	VEAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLI
+/++	174	EAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIV
	T-40	AKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVA
+/++	175	KQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAI
+/+++	176	QARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIK
+/-	177	ARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKS
+/-	178	RSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSV
-	179	SDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQ
-	180	DIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQD
-	181	IEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDY
, -	182	EKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYV
+/++	183	KLKEATRDTNKAVQSVQSSTGNLTVATKSVQDYVN
+/+++	184	LKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNK
-	185	KEA IRDTNKAVQSVQSSIGNLIVA I KSVQDYVNKE
-	186	EAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEI
-	187	AIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEIV
-	188	IRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEIVP

25

30

35

### **METHODS FOR THE INHIBITION OF RESPIRATORY SYNCYTIAL VIRUS** TRANSMISSION

This is a Continuation-In-Part of U.S. patent application 5 Ser. No. 08/073,028, filed Jun. 7, 1993, now U.S. Pat. No. 5,464,933, the entire contents of which are incorporated herein in its entirety.

This invention was made with Government support under Grant No. AI-30411-02 awarded by the National 10 Institutes of Health. The Government may have certain rights in the invention.

### 1. INTRODUCTION

The present invention relates to DP-178 (SEQ ID:1), a peptide corresponding to amino acids 638 to 673 of the HIV-1_{LAI} transmembrane protein (TM) gp41, and portions, analogs, and homologs of DP-178 (SEQ ID:1), all of which exhibit anti-viral activity. Such anti-viral activity includes, but is not limited to, the inhibition of HIV transmission to uninfected CD-4⁺ cells. Further, the invention relates to the use of DP-178 (SEQ ID:1) and DP-178 fragments and/or analogs or homologs as inhibitors of human and non-human retroviral, especially HIV, transmission to uninfected cells. Still further, the invention relates to the use of DP-178 as a HIV subtype-specific diagnostic. The present invention also relates to antiviral peptides analogous to DP-107, a peptide corresponding to amino acids 558 to 595 of the HIV-1_{LAI} transmembrane protein (TM) gp41, that are present in other enveloped viruses. The present invention further relates to methods for identifying antiviral compounds that disrupt the interaction between DP-178 and DP-107, and/or between DP-107-like and DP-178-like peptides. The invention is demonstrated by way of a working example wherein DP-178 (SEQ ID:1), and a peptide whose sequence is homologous to DP-178 are each shown to be potent, non-cytotoxic inhibitors of HIV-1 transfer to uninfected CD-4+ cells. The invention is further demonstrated by working examples wherein peptides having antiviral and/or structural similarity to DP-107 and DP-178 are identified.

### 2. BACKGROUND OF THE INVENTION

#### 2.1. The Human Immenodeficiency Virus

The human immunodeficiency virus (HIV) has been implicated as the primary cause of the slowly degenerative immune system disease termed acquired immune deficiency syndrome (AIDS) (Barre-Sinoussi, F. et al., 1983, Science 220:868-870; Gallo, R. et al., 1984, Science 224:500-503). 50 there are at least two distinct types of HIV: HIV-1 (Barre-Sinoussi, F. et al., 1983, Science 220:868-870; Gallo R. et al., 1984, Science 224:500-503) and HIV-2 (Clavel, F. et al., 1986, Science 233:343-346; Guyader, M. et al., 1987, Nature 326:662-669). Further, a large amount of genetic 55 heterogeneity exists within populations of each of these types. Infection of human CD-4⁺ T-lymphocytes with an HIV virus leads to depletion of the cell type and eventually to opportunistic infections, neurological dysfunctions, neoplastic growth, and ultimately death. 60

HIV is a member of the lentivirus family of retroviruses (Teich, N. et al., 1984, RNA Tumor Viruses, Weiss, R. et al., eds., CSH-Press, pp. 949-956). Retroviruses are small enveloped viruses that contain a diploid, single-stranded RNA genome, and replicate via a DNA intermediate pro- 65 duced by a virally-encoded reverse transcriptase, an RNAdependent DNA polymerase. (Varmus, H., 1988, Science

240:1427-1439). Other retroviruses include, for example, oncogenic viruses such as human T-cell leukemia viruses (HTLV-I,-II,-III), and feline leukemia virus.

The HIV viral particle consists of a viral core, composed of capsid proteins, that contains the viral RNA genome and those enzymes required for early replicative events. Myristylated Gag protein forms an outer viral shell around the viral core, which is, in turn, surrounded by a lipid membrane envelope derived from the infected cell membrane. The HIV envelope surface glycoproteins are synthesized as a single 160 Kd precursor protein which is cleaved by a cellular S protease during viral budding into two glycoproteins, gp41 and gp120. gp41 is a transmembrane protein and gp120 is an extracellular protein which remains non-covalently associated with gp41, possibly in a trimeric or multimeric form (Hammarskjold, M. and Rekosh, D., 1989, Biochem. Biophys. Acta 989:269-280).

HIV is targeted to CD-4⁺ cells because the CD-4 cell surface protein acts as the cellular receptor for the HIV-1 20 virus (Dalgleish, A. et al., 1984, Nature 312:763-767; Klatzmann et al., 1984, Nature 312:767-768; Maddon et al., 1986, Cell 47:333-348). Viral entry into cells is dependent upon gp120 binding the cellular CD-4⁺ receptor molecules (McDougal, J. S. et al., 1986, Science 231:382-385; Maddon, P. J. et al., 1986, Cell 47:333-348) and thus explains HIV's tropism for CD-4⁺ cells, while gp41 anchors the envelope glycoprotein complex in the viral membrane.

### 2.2. HIV Treatment

HIV infection is pandemic and HIV associated diseases represent a major world health problem. Although considerable effort is being put into the successful design of effective therapeutics, currently no curative anti-retroviral drugs against AIDS exist. In attempts to develop such drugs, several stages of the HIV life cycle have been considered as targets for therapeutic intervention (Mitsuya, H. et al., 1991, FASEB J. 5:2369–2381). For example, virally encoded reverse transcriptase has been one focus of drug development. A number of reverse-transcriptase-targeted drugs, 40 including 2',3'-dideoxynucleoside analogs such as AZT, ddI, ddC, and d4T have been developed which have been shown to been active against HIV (Mitsuya, H. et al., 1991, Science 249:1533–1544). While beneficial, these nucleoside analogs are not curative, probably due to the rapid appearance of 45 drug resistant HIV mutants (Lander, B. et al., 1989, Science 243:1731-1734). In addition, the drugs often exhibit toxic side effects such as bone marrow suppression, vomiting, and liver function abnormalities.

Attempts are also being made to develop drugs which can inhibit viral entry into the cell, the earliest stage of HIV infection. Here, the focus has thus far been on CD4, the cell surface receptor for HIV. Recombinant soluble CD4, for example, has been shown to inhibit infection of CD-4⁺ T-cells by some HIV-1 strains (Smith, D. H. et al., 1987, Science 238:1704-1707). Certain primary HIV-1 isolates, however, are relatively less sensitive to inhibition by recombinant CD-4 (Daar, E. et al., 1990, Proc. Natl. Acad. Sci. USA 87:6574-6579). In addition, recombinant soluble CD-4 clinical trials have produced inconclusive results (Schooley, R. et al., 1990, Ann. Int. Med. 112:247-253; Kahn, J. O. et al., 1990, Ann. Int. Med. 112:254-261; Yarchoan, R. et al., 1989, Proc. Vth Int. Conf. on AIDS, p. 564, MCP 137).

The late stages of HIV replication, which involve crucial virus-specific secondary processing of certain viral proteins, have also been suggested as possible anti-HIV drug targets. Late stage processing is dependent on the activity of a viral

20

protease, and drugs are being developed which inhibit this protease (Erickson, J., 1990, Science 249:527-533). The clinical outcome of these candidate drugs is still in question.

Attention is also being given to the development of vaccines for the treatment of HIV infection. The HIV-1 5 envelope proteins (gp160, gp120, gp41) have been shown to be the major antigens for anti-HIV antibodies present in AIDS patients (Barin, et al., 1985, Science 228:1094–1096). Thus far, therefore, these proteins seem to be the most promising candidates to act as antigens for anti-HIV vaccine 10 development. To this end, several groups have begun to use various portions of gp160, gp120, and/or gp41 as immunogenic targets for the host immune system. See for example, Ivanoff, L. et al., U.S. Pat. No. 5,141,867; Saith, G. et al., WO 92/22,654; Shafferman, A., WO 91/09,872; Formoso, 15 C. et al., WO 90/07,119. Clinical results concerning these candidate vaccines, however, still remain far in the future.

Thus, although a great deal of effort is being directed to the design and testing of anti-retroviral drugs, a truly effective, non-toxic treatment is still needed.

### 3. SUMMARY OF THE INVENTION

The present invention relates to DP-178 (SEQ ID:1), a 36-amino acid synthetic peptide corresponding to amino acids 638 to 673 of the transmembrane protein (TM) gp41 from the HIV-1 isolate LAI, which exhibits potent anti-HIV-1 activity. As evidenced by the example presented below, in Section 6, the DP-178 (SEQ ID:1) anti-viral activity is so high that, on a weight basis, no other known anti-HIV agent is effective at concentrations as low as those 30 at which DP-178 (SEQ ID:1) exhibits its inhibitory effects. The invention further relates to those portions, analogs, and homologs of DP-178 which also show such antiviral activity. The antiviral activity of such DP-178 portions, analogs, and homologs, includes, but is not limited to the inhibition of 35 HIV transmission to uninfected CD-4⁺ cells. The invention relates to the use of DP-178 (SEQ ID:1) and DP-178 fragments and/or analogs or homologs. Such uses may include, but are not limited to, the use of the peptides as inhibitors of human and non-human retroviral, especially  $_{40}$ HIV, transmission to uninfected cells, and as type and/or subtype-specific diagnostic tools.

An embodiment of the invention is demonstrated below wherein an extremely low concentration of DP-178 (SEQ ID:1), and very low concentrations of a DP-178 homolog  $_{45}$ (SEQ ID:3) are shown to be potent inhibitors of HIV-1 mediated CD-4⁺ cell-cell fusion (i.e., syncytial formation) and infection of CD-4⁺ cells by cell-free virus. Further, it is shown that DP-178 (SEQ ID:1) is not toxic to cells, even at concentrations 3 logs higher than the inhibitory DP-178 50 (SEQ ID:1) concentration.

The invention also relates to analogous DP178 peptides in other enveloped viruses that demonstrate similar antiviral properties.

The invention further relates to peptides analogous to 55 DP-107 (SEQ ID NO:25), a peptide corresponding to amino acids 558–595 of the HIV-1_{LAI} transmembrane protein (TM) of gp41, that are present in other enveloped viruses, and demonstrate antiviral properties. The present invention is based, in part, on the surprising discovery that the DP-107 60 and DP-108 domains of the gp41 protein non-covalently complex with each other, and that their interaction is necessary for the normal activity of the virus. The invention, therefore, further relates to methods for identifying antiviral compounds that disrupt the interaction between DP-107 and 65 level of virus as treated cultures. DP-178, and/or between DP-107-like and DP-178-like peptides.

Embodiments of the invention are demonstrated, below, wherein peptides having structural and/or similarity to DP-107 and DP-178 are identified.

#### 3.1. Definitions

Peptides are defined herein as organic compounds comprising two or more amino acids covalently joined by peptide bonds. Peptides may be referred to with respect to the number of constituent amino acids, i.e., a dipeptide contains two amino acid residues, a tripeptide contains three, etc. Peptides containing ten or fewer amino acids may be referred to as oligopeptides, while those with more than ten amino acid residues are polypeptides.

Peptide sequences defined herein are represented by oneletter symbols for amino acid residues as follows:

A (alanine) R (arginine) N (asparagine) D (aspartic acid) C (cysteine) Q (glutamine) E (glutamic acid) G (glycine) H (histidine) I (isoleucine) L (leucine) K (lysine) M (methionine) F (phenylalanine) P (proline)

- S (serine)
- T (threonine)
- W (tryptophan)
- Y (tyrosine)
- V (valine)

### 4. BRIEF DESCRIPTION OF THE FIGURES

FIG. 1. Amino acid sequence of DP-178 (SEQ ID:1) derived from HIV_{LAI}; DP-178 homologs derived from HIV- $1_{SF2}$  (DP-185; SEQ ID:3), HIV- $1_{RF}$  (SEQ ID:4), and HIV-1_{MN} (SEQ ID:5); DP-178 homologs derived from amino acid sequences of two prototypic HIV-2 isolates, namely, HIV-2_{rod} (SEQ ID:6) and HIV-2_{NIHZ} (SEQ ID:7); control peptides: DP-180 (SEQ ID:2), a peptide incorporating the amino acid residues of DP-178 in a scrambled sequence; DP-118 (SEQ ID:10) unrelated to DP-178, which inhibits HIV-1 cell free virus infection; DP-125 (SEQ ID:8), unrelated to DP-178, was also previously shown to-inhibit HIV-1 cell free virus infection (Wild et al., 1992, Proc. Natl. Acad. Sci USA 89:10,537-10,541); DP-116 (SEQ ID:9), unrelated to DP-178 had previously been shown to be negative for inhibition of HIV-1 infection using the cell-free virus infection assay (Wild, et al., 1992, Proc. Natl. Acad. Sci USA 89:10,537-10,541). Throughout the figures, the one letter amino acid code is used.

FIG. 2. Inhibition of HIV-1 cell-free virus infection by synthetic peptides. IC50 refers to the concentration of peptide that inhibits RT production from infected cells by 50% compared to the untreated control. Control: the level of RT produced by untreated cell cultures infected with the same

FIG. 3. Inhibition of HIV-1 and HIV-2 cell-free virus infection by the synthetic peptide DP-178 (SEQ ID:1). IC50:

10

35

65

concentration of peptide that inhibits RT production by 50% compared to the untreated control. Control: Level of RT produced by untreated cell cultures infected with the same level of virus as treated cultures.

FIG. **4**A. Fusion Inhibition Assay. DP-178 (SEQ ID:1) ⁵ inhibition of HIV-1 prototypic isolate-mediated syncytia formation. Data represents the number of virus-induced syncytia per cell.

FIG. 4B. Fusion Inhibition Assay. DP-180 (SEQ ID:2): scrambled control peptide. DP-185 (SEQ ID:3): DP-178 homolog derived from HIV-1_{*SF*2} isolate. Control: number of syncytia produced in the absence of peptide.

FIG. **5**. Fusion inhibition assay: HIV-1 vs. HIV-2. Data represents the number of virus-induced syncytia per well. ND: not done.

FIG. 6. Cytotoxicity study of DP-178 (SEQ ID:1) and DP-116 (SEQ ID:9) on CEM cells. Cell proliferation data is shown.

FIG. 7. Schematic representation of HIV-gp41 and mal- 20 tose binding protein (MBP)-gp41 fusion proteins. DP107 and DP178 are synthetic peptides based on the two putative helices of gp41. The letter P in the DP107 boxes denotes an Ile to Pro mutation at amino acid number 578. Amino acid residues are numbered according to Meyers et al., Human 25 Retroviruses and AIDS, 1991, Theoret. Biol. and Biophys. Group, Los Alamos Natl. Lab., Los Alamos, N.Mex.

FIG. 8. A point mutation alters the conformation and anti-HIV activity of M41.

FIG. 9. Abrogation of DP178 anti-HIV activity. Cell ³⁰ FIG. 20. FIG. 21 fusion assays were carried out in the presence of 10 nM DP178 and various concentrations of M41 $\Delta$ 178 or M41P $\Delta$ 178.

FIG. **10**. Binding of DP178 to leucine zipper of gp41 analyzed by ELISA.

FIGS. 11A-B. Models for a structural transition in the HIV-1 TM protein. Two models are proposed which indicate a structural transition from a native oligomer to a fusogenic state following a trigger event (possibly gp120 binding to 40 CD4). Common features of both models include (1) the native state is held together by noncovalent protein-protein interactions to form the heterodimer of gp120/41 and other interactions, principally though gp41 interactive sites, to form homo-oligomers on the virus surface of the gp120/41 45 complexes; (2) shielding of the hydrophobic fusogenic peptide at the N-terminus (F) in the native state; and (3) the leucine zipper domain (DP107) exists as a homo-oligomer coiled coil only in the fusogenic state. The major differences in the two models include the structural state (native or 50 fusogenic) in which the DP107 and DP178 domains are complexed to each other. In the first model (A; FIG. 11A) this interaction occurs in the native state and in B during the fusogenic state. When triggered, the fusion complex in the model depicted in (A) is generated through formation of coiled-coil interactions in homologous DP107 domains resulting in an extended  $\alpha$ -helix. This conformational change positions the fusion peptide for interaction with the cell membrane. In the second model (B; FIG. 11B), the fusogenic complex is stabilized by the association of the 60 DP178 domain with the DP107 coiled-coil.

FIG. 12. Motif design using heptad repeat positioning of amino acids of known coiled-coils.

FIG. **13**. Motif design using proposed heptad repeat positioning of amino acids of DP-107 and DP-178.

FIG. 14. Hybrid motif design crossing GCN4 and DP-107.

6

FIG. **15**. Hybrid motif design crossing GCN4 and DP-178.

FIG. 16. Hybrid motif design  $107 \times 178 \times 4$ , crossing DP-107 and DP-178. This motif was found to be the most consistent at identifying relevant DP-107-like and DP-178-like peptide regions.

FIG. 17. Hybrid motif design ALLMOTI5, crossing GCN4, DP-107, and DP-178.

FIG. 18. Hybrid motif design crossing GCN4, DP-107, DP-178, c-Fos c-Jun, c-Myc, and Flu Loop 36.

FIG. **19**. Motifs designed to identify N-terminal prolineleucine zipper motifs.

FIG. 20. Search results (SEQ ID NO:26) for HIV-1 (BRU
isolate) envelope protein gp41. Sequence search motif designations: Spades (♠): 107×178×4; Hearts (♥) ALLMOTI5; Clubs (♣): PLZIP; Diamonds (♠): transmembrane region (the putative transmembrane domains were identified using a PC/Gene program designed to search for such peptide regions). Asterisk (*): Lupas method. The amino acid sequences identified by each motif are bracketed by the respective characters. Representative sequences chosen based on all searches are underlined and in bold. DP-107 and DP-178 sequences are marked, and additionally double-underlined and italicized.

FIG. **21**. Search results (SEQ ID NO:27) for human respiratory syncytial virus (RSV) strain A2 fusion glycoprotein F1. Sequence search motif designations are as in FIG. **20**.

FIG. 22. Search results (SEQ ID NO:28) for simian immunodeficiency virus (SIV) envelope protein gp41 (AGM3 isolate). Sequence search motif designations are as in FIG. 20.

FIG. **23**. Search results (SEQ ID NO:29) for canine distemper virus (strain Onderstepoort) fusion glycoprotein 1. Sequence search motif designations are as in FIG. **20**.

FIG. 24. Search results (SEQ ID NO:30) for newcastle disease virus (strain Australia-Victoria/32) fusion glycoprotein F1. Sequence search motif designations are as in FIG. 20.

FIG. **25**. Search results (SEQ ID NO:31) for human parainfluenza 3 virus (strain NIH 47885) fusion glycoprotein F1. Sequence search motif designations are as in FIG. **20**.

FIG. 26. Search results (SEQ ID NO:32) for influenza A virus (strain A/AICHI/2/68) hemagglutinin precursor HA2. Sequence search designations are as in FIG. 20.

FIG. 27. Coiled-coil structural similarity and anti-RSV
antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 48-amino acid RSV F2 peptide (SEQ ID NO:33) which spans sequences identified utilizing the computer-assisted searches described herein. For the exact location and motifs utilized, see FIG. 21. "+" symbols are
relative indicators of either structural similarity or antiviral activity, with a greater number of "+" symbols indicating a higher relative similarity or antiviral activity.

FIG. 28. Coiled-coil structural similarity and anti-RSV antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 53-amino acid RSV F1 peptide (SEQ ID NO:34) which spans sequences identified utilizing the computer-assisted searches described herein. See FIG. 21 for the exact location and motifs used. "+" symbols are as described for FIG. 27.

FIG. **29**. Coiled-coil structural similarity and anti-human parainfluenza 3 virus (HPF3) antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 56-amino

5

20

25

30

35

acid HPF3 peptide (SEQ ID NO:35) which spans sequences identified utilizing computer-assisted searches described herein. For the exact location and motifs utilized, see FIG. 25. "+" symbols are as described in FIG. 27.

FIG. 30. Coiled-coil structural similarity and anti-HPF3 antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 70-amino acid HPF3 peptide (SEQ ID NO:36) which spans sequences identified utilizing the computerassisted searches described herein. For the exact location and motifs utilized, see FIG. 25. "+" symbols are as 10 coils, and (2) association of the DP178 and DP107 sites as described in FIG. 27.

#### 5. DETAILED DESCRIPTION OF THE **INVENTION**

Described herein are peptides that exhibit potent antiviral activity. These peptides include DP-178 (SEQ ID:1), a gp41-derived 36 amino acid peptide, fragments and/or analogs of DP-178, and peptides which are homologous to DP-178. In addition, these peptides may include peptides exhibiting anti-viral activity which are analogous to DP-107, a 38 amino acid peptide corresponding to residues 558 to 595 of the HIV-1_{LAI} transmembrane (TM) gp41 protein, and which are present in other enveloped viral proteins. Also described here are assays for testing the antiviral activities of such peptides. The present invention is based, in part, of the surprising discovery that the DP-107 and DP-178 domains of the gp41 protein complex with each other via noncovalent protein-protein interactions which are necessary for normal activity of the virus. As such, methods are described for the identification of antiviral compounds that disrupt the interaction between DP-107 and DP-178 peptides, and between DP-107-like and DP-178-like peptides. Finally, the use of the peptides of the invention as inhibitors of nonhuman and human viral and retroviral, especially HIV, transmission are detailed, as is the use of the peptides as diagnostic indicators of the presence of specific, viruses, especially retroviruses.

While not limited to any theory of operation, the following model is proposed to explain the potent anti-HIV activity 40 of DP178, based, in part, on the experiments described in the working examples, infra. In the viral protein, gp41, DP178 corresponds to a putative  $\alpha$ -helix region located in the C-terminal end of the gp41 ectodomain, and appears to associate with a distal site on gp41 whose interactive struc-45 ture is influenced by the leucine zipper motif, a coiled-coil structure, referred to as DP107. The association of these two domains may reflect a molecular linkage or "molecular clasp" intimately involved in the fusion process. It is of interest that mutations in the C-terminal  $\alpha$ -helix motif of 50 gp41 (i.e., the D178 domain) tend to enhance the fusion ability of gp41, whereas mutations in the leucine zipper region (i.e., the DP107 domain) decrease or abolish the fusion ability of the viral protein. It may be that the leucine zipper motif is involved in membrane fusion while the 55 C-terminal  $\alpha$ -helix motif serves as a molecular safety to regulate the availability of the leucine zipper during virusinduced membrane fusion.

On the basis of the foregoing, two models are proposed of gp41-mediated membrane fusion which are schematically 60 shown in FIG. 11A-B. The reason for proposing two models is that the temporal nature of the interaction between the regions defined by DP 107 and DP178 cannot, as yet, be pinpointed. Each model envisions two conformations for gp41-one in a "native" state as it might be found on a resting 65 virion. The other in a "fusogenic" state to reflect conformational changes triggered following binding of gp120 to CD4

and just prior to fusion with the target cell membrane. The strong binding affinity between gp120 and CD4 may actually represent the trigger for the fusion process obviating the need for a pH change such as occurs for viruses that fuse within intracellular vesicles. The two major features of both models are: (1) the leucine zipper sequences (DP107) in each chain of oligomeric envelope are held apart in the native state and are only allowed access to one another in the fusogenic state so as to form the extremely stable coiledthey exist in gp41 occur either in the native or fusogenic state. FIG. 11A depicts DP178/DP107 interaction in the native state as a molecular class. On the other hand, if one assumes that the most stable form of the envelope occurs in the fusogenic state, the model in FIG. 11B can be considered.

When synthesized as peptides, both DP107 and DP178 are potent inhibitors of HIV infection and fusion, probably by virtue of their ability to form complexes with viral gp41 and interfere with its fusogenic process; e.g., during the structural transition of the viral protein from the native structure to the fusogenic state, the DP178 and DP107 peptides may gain access to their respective binding sites on the viral gp41, and exert a disruptive influence. DP107 peptides which demonstrate anti-HIV activity are described in-Applicants' co-pending application Ser. No. 07/927,532, filed Aug. 7, 1992, which is incorporated by reference herein in its entirety.

As shown in the working examples, infra, a truncated recombinant gp41 protein corresponding the ectodomain of gp41 containing both DP107 and DP178 domains (excluding the fusion peptide, transmembrane region and cytoplasmic domain of gp41) did not inhibit HIV-1 induced fusion. However, when a single mutation was introduced to disrupt the coiled-coil structure of the DP107 domain-a mutation which results in a total loss of biological activity of DP107 peptides-the inactive recombinant protein was transformed to an active inhibitor of HIV-1 induced fusion. This transformation may result from liberation of the potent DP178 domain from a molecular clasp with the leucine zipper, DP107 domain.

For clarity of discussion, the invention will be described for DP178 peptide inhibitors of HIV. However, the principles may be analogously applied to other fusogenic enveloped viruses, including but not limited to those viruses containing the peptides listed in Tables V through X, below.

#### 5.1. DP-178 and DP-178-like Peptides

The peptide DP-178 (SEQ ID:1) of the invention corresponds to amino acid residues 638 to 673 of the transmembrane protein gp41 from the HIV-1_{LAI} isolate, and has the 36 amino acid sequence (reading from amino to carboxy terminus):

### NH₂-

#### YTSLIHSLIEESQNQQEKNEQELLELDKWASLWN-WF-COOH (SEQ ID: 1)

In addition to the full-length DP-178 (SEQ ID:1) 36-mer, the peptides of the invention may include truncations of the DP-178 (SEQ ID:1) peptide which exhibit antiviral activity. Such truncated DP-178 (SEQ ID:1) peptides may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36-mer polypeptide), and may include but are not limited to those listed in Tables I and II, below. Peptide sequences in these tables-are listed from amino (left) to carboxy (right) terminus. "X" may represent an amino group (-NH2) and "Z"

may represent a carboxyl (—COOH) group. Alternatively, as described below, "X" and/or "Z" may represent a hydrophobic group, an acetyl group, a FMOC group, an amido group, or a covalently attached macromolecule.

TABLE I

X-YTS-Z X-YTSLI-Z X-YTSLIH-Z X-YTSLIHS-Z X-YTSLIHSL-Z X-YTSLIHSLI-Z X-YTSLIHSLIE-Z X-YTSLIHSLIEE-Z X-YTSLIHSLIEES-Z X-YTSLIHSLIEES-Z X-YTSLIHSLIEESQ-Z
X-YTSLI-Z X-YTSLIH-Z X-YTSLIHS-Z X-YTSLIHSL-Z X-YTSLIHSLI-Z X-YTSLIHSLIE-Z X-YTSLIHSLIEE-Z X-YTSLIHSLIEES-Z
X-YTSLIH-Z X-YTSLIHS-Z X-YTSLIHSL-Z X-YTSLIHSLI-Z X-YTSLIHSLIEE-Z X-YTSLIHSLIEE-Z X-YTSLIHSLIEES-Z
X-YTSLIHS-Z X-YTSLIHSL-Z X-YTSLIHSLI-Z X-YTSLIHSLIE-Z X-YTSLIHSLIEE-Z X-YTSLIHSLIEES-Z
X-YTSLIHSL-Z X-YTSLIHSLI-Z X-YTSLIHSLIE-Z X-YTSLIHSLIEE-Z X-YTSLIHSLIEES-Z
X-YTSLIHSLI-Z X-YTSLIHSLIE-Z X-YTSLIHSLIEE-Z X-YTSLIHSLIEES-Z
X-YTSLIHSLIE-Z X-YTSLIHSLIEE-Z X-YTSLIHSLIEES-Z
X-YTSLIHSLIEE-Z X-YTSLIHSLIEES-Z
X-YTSLIHSLIEES-Z
X_VTSLTHSLTFFSO_Z
x-110110011010Q-2
X-YTSLIHSLIEESQN-Z
X-YTSLIHSLIEESQNQ-Z
X-YTSLIHSLIEESQNQQ-Z
X-YTSLIHSLIEESQNQQE-Z
X-YTSLIHSLIEESQNQQEK-Z
X-YTSLIHSLIEESQNQQEKN-Z
X-YTSLIHSLIEESQNQQEKNE-Z
X-YTSLIHSLIEESQNQQEKNEQ-Z
X-YTSLIHSLIEESQNQQEKNEQE-Z
X-YTSLIHSLIEESQNQQEKNEQEL-Z
X-YTSLIHSLIEESQNQQEKNEQELL-Z
X-YTSLIHSLIEESQNQQEKNEQELLE-Z
X-YTSLIHSLIEESQNQQEKNEQELLEL-Z
X-YTSLIHSLIEESQNQQEKNEQELLELD-Z
X-YTSLIHSLIEESQNQQEKNEQELLELDK-Z
X-YTSLIHSLIEESQNQQEKNEQELLELDKW-Z
X-YTSLIHSLIEESQNQQEKNEQELLELDKWA-Z
X-YTSLIHSLIEESQNQQEKNEQELLELDKWAS-Z
X-YTSLIHSLIEESQNQQEKNEQELLELDKWASL-Z
X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLW-Z
X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWN-Z
X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNW-Z
X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z

The one letter amino acid code is used. Additionally,

"X" may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates. "Z" may represent a carboxyl group; an aride served

"Z" may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

TABLE II

DP-178	(SEQ	ID:1)	AMINO	TRUNCATIONS	
				X-NWF-2	3
				X-WNWF-2	3
				X-LWNWF-2	3
				X-SLWNWF-Z	3
				X-ASLWNWF-2	3
				X-WASLWNWF-2	4
				X-KWASLWNWF-2	3
			Х	-DKWASLWNWF-2	3
			Х-	LDKWASLWNWF-2	4
			X-E	LDKWASLWNWF-2	4
			X-LE	LDKWASLWNWF-2	4
			X-LLE	LDKWASLWNWF-2	4
			X-ELLE	LDKWASLWNWF-2	2
		2	K-QELLE	LDKWASLWNWF-2	5
		X-	-EQELLE	LDKWASLWNWF-2	4
		X-1	NEQELLE	LDKWASLWNWF-2	3
		X-KI	NEQELLE	LDKWASLWNWF-2	3

TABLE II-continued

	DP-178 (SEQ ID:1) AMINO TRUNCATIONS
5	 X-EKNEQELLELDKWASLWNWF-Z
	X-QEKNEQELLELDKWASLWNWF-Z
	X-QQEKNEQELLELDKWASLWNWF-Z
	X-NQQEKNEQELLELDKWASLWNWF-Z
	X-QNQQEKNEQELLELDKWASLWNWF-Z
	X-SQNQQEKNEQELLELDKWASLWNWF-Z
10	X-ESQNQQEKNEQELLELDKWASLWNWF-Z
	X-EESQNQQEKNEQELLELDKWASLWNWF-Z
	X-IEESQNQQEKNEQELLELDKWASLWNWF-Z
	X-LIEESQNQQEKNEQELLELDKWASLWNWF-Z
	X-SLIEESQNQQEKNEQELLELDKWASLWNWF-Z X-HSLIEESONOOEKNEOELLELDKWASLWNWF-Z
	X-IISLIEESQNQQEKNEQELLELDKWASLWNWF-Z X-IISLIEESQNQQEKNEQELLELDKWASLWNWF-Z
15	X-LIHSLIEESONOOEKNEOELLELDKWASLWNWF-Z X-LIHSLIEESONOOEKNEOELLELDKWASLWNWF-Z
	X-SLIHSLIEESONOOEKNEOELLELDKWASLWNWF-Z
	X-TSLIHSLIEESONOOEKNEOELLELDKWASLWNWF-Z
	X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z

²⁰ The one letter amino acid code is used. Additionally,

"X" may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl group; a macromolecular carrier group including but not limited to lipid-

25 fatty acid conjugates, polyethylene glycol, or carbohydrates.

```
"Z" may represent a carboxyl group; an amido group;
a T-butyloxycarbonyl group; a macromolecular car-
rier group including but not limited to lipid-fatty
acid conjugates, polyethylene glycol, or carbohy-
30 drates.
```

The antiviral peptides of the invention also include analogs of DP-178 and/or DP-178 truncations which may include, but are not limited to, peptides comprising the DP-178 (SEQ ID:1) sequence, or DP-178 truncated

³⁵ sequence, containing one or more amino acid substitutions, insertions and/or deletions. Analogs of DP-178 homologs, described below, are also within the scope of the invention. The DP-178 analogs of the invention exhibit antiviral activity, and may, further, possess additional advantageous
40 features, such as, for example, increased bioavailability, and/or stability, or reduced host immune recognition.

HIV-1 and HIV-2 envelope proteins are structurally distinct, but there exists a striking amino acid conservation within the DP-178-corresponding regions of HIV-1 and
45 HIV-2. The amino acid conservation is of a periodic nature, suggesting some conservation of structure and/or function. Therefore, one possible class of amino acid substitutions would include those amino acid changes which are predicted to stabilize the structure of the DP-178 peptides of the 50 invention.

Amino acid substitutions may be of a conserved or non-conserved nature. Conserved amino acid substitutions consist of replacing one or more amino acids of the DP-178 (SEQ ID:1) peptide sequence with amino acids of similar 55 charge, size, and/or hydrophobicity characteristics, such as, for example, a glutamic acid (E) to aspartic acid (D) amino acid substitution. When only conserved substitutions are made, the resulting peptide is functionally equivalent to DP-178 (SEQ ID:1) or the DP-178 peptide from which it is

60 derived. Non-conserved substitutions consist of replacing one or more amino acids of the DP-178 (SEQ ID:1) peptide sequence with amino acids possessing dissimilar charge, size, and/or hydrophobicity characteristics, such as, for example, a glutamic acid (E) to valine (V) substitution.

65 Amino acid insertions may consist of single amino acid residues or stretches of residues ranging from 2 to 15 amino acids in length. One or more insertions may be introduced into DP-178 (SEQ ID:1), DP-178 fragments, analogs and/or DP-178 homologs (described below).

Deletions of DP-178 (SEQ ID:1), DP-178 fragments, analogs, and/or DP-178 homologs (described below) are also within the scope of the invention. Such deletions consist of the removal of one or more amino acids from the DP-178 or DP-178-like peptide sequence, with the lower limit length of the resulting peptide sequence being 4 to 6 amino acids. Such deletions may involve a single contiguous or greater 10 than one discrete portion of the peptide sequences.

The peptides of the invention may further include homologs of DP-178 (SEQ ID:1) and/or DP-178 truncations which exhibit antiviral activity. Such DP-178 homologs are peptides whose amino acid sequences are comprised of the 15 amino acid sequences of peptide regions of other (i.e., other than HIV- $1_{LAI}$ ) viruses that correspond to the gp41 peptide region from which DP-178 (SEQ ID:1) was derived. Such viruses may include, but are not limited to, other HIV-1 20 isolates and HIV-2 isolates. DP-178 homologs derived from the corresponding gp41 peptide region of other (i.e., non  $HIV-1_{IAI}$ ) HIV-1 isolates may include, for example, peptide sequences as shown below. 25

NH₂-YTNTIYTL

LEESQNQQEKNEQELLELDKWASLWNWF-COOH (DP-185; SEQ ID:3);

NH2-YTGIIYNL

LEESQNQQEKNEQELLELDKWANLWNWF-COOH (SEQ ID:4);

NH₂-YTSLIYSLLE KSQIQQEKNEQELLELDKWASLWNWF-COOH (SEQ ID:5).

SEQ ID:3 (DP-185), SEQ ID:4, and SEQ ID:5 are derived  $^{\ 35}$ from-HIV-1_{SF2}, HIV-1_{RF}, and HIV-1_{MN} isolates, respectively. Underlined amino acid residues refer to those residues that differ from the corresponding position in the DP-178 (SEQ ID:1) peptide. One such DP-178 homolog, DP-185 (SEQ ID:3), is described in the Working Example presented in Section 6, below, where it is demonstrated that DP-185 (SEQ ID:3) exhibits antiviral activity. The DP-178 homologs of the invention may also include truncations, amino acid substitutions, insertions, and/or deletions, as 45 described above.

In addition, striking similarities, as shown in FIG. 1, exist within the regions of HIV-1 and HIV-2 isolates which correspond to the DP-178 sequence. A DP-178 homolog 50 derived from the HIV- $2_{NIHZ}$ . isolate has the 36 amino acid sequence (reading from amino to carboxy terminus): NH -, -

### LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTN-WL-COOH (SEQ ID:7)

55

Table III and Table IV show some possible truncations of the HIV-2_{NIHZ} DP-178 homolog, which may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36-mer polypeptide). 60 Peptide sequences in these tables are listed from amino (left) to carboxy (right) terminus. "X" may represent an amino group (-NH₂) and "Z" may represent a carboxyl (-COOH) group. Alternatively, as described below, "X" and/or "Z" may represent a hydrophobic group, an acetyl 65 group, a FMOC group, an amido group, or a covalently attached macromolecule, as described below.

12

HIV- $2_{NIHZ}$ DP-178 homolog carboxy truncations.
X-LEA-Z
X-LEAN-Z
X-LEANI-Z
X-LEANIS-Z
X-LEANISQ-Z
X-LEANISQS-Z
X-LEANISQSL-Z
X-LEANISQSLE-Z
X-LEANISQSLEQ-Z
X-LEANISQSLEQA-Z
X-LEANISQSLEQAQ-Z
X-LEANISQSLEQAQI-Z
X-LEANISQSLEQAQIQ-Z
X-LEANISQSLEQAQIQQ-Z
X-LEANISQSLEQAQIQQE-Z
X-LEANISQSLEQAQIQQEK-Z
X-LEANISQSLEQAQIQQEKN-Z
X-LEANISQSLEQAQIQQEKNM-Z
X-LEANISQSLEQAQIQQEKNMY-Z
X-LEANISQSLEQAQIQQEKNMYE-Z
X-LEANISQSLEQAQIQQEKNMYEL-Z
X-LEANISQSLEQAQIQQEKNMYELQ-Z
X-LEANISQSLEQAQIQQEKNMYELQK-Z
X-LEANISQSLEQAQIQQEKNMYELQKL-Z
X-LEANISQSLEQAQIQQEKNMYELQKLN-Z
X-LEANISQSLEQAQIQQEKNMYELQKLNS-Z
X-LEANISQSLEQAQIQQEKNMYELQKLNSW-Z
X-LEANISQSLEQAQIQQEKNMYELQKLNSWD-Z
X-LEANISQSLEQAQIQQEKNMYELQKLNSWDV-Z
X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVF-Z
X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFT-Z
X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTN-Z
X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNW-Z
X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z

The one letter amino acid code is used. Additionally,

- "X" may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates. "Z" may represent a carboxyl group; an amido group; 40
- a T-butyloxycarbonyl group; a macromolecular car-rier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

TABLE IV

	$HIV-2_{NIHZ}$ DP-178 homolog amino truncations.
-	X-NWL-Z
)	X-TNWL-Z
	X-FTNWL-Z
	X-VFTNWL-Z
	X-DVFTNWL-Z
	X-WDVFTNWL-Z
	X-SWDVFTNWL-Z
5	X-NSWDVFTNWL-Z
	X-LNSWDVFTNWL-Z
	X-KLNSWDVFTNWL-Z
	X-QKLNSWDVFTNWL-Z
	X-LQKLNSWDVFTNWL-Z
	X-ELQKLNSWDVFTNWL-Z
)	X-YELQKLNSWDVFTNWL-Z
<i>,</i>	X-MYELQKLNSWDVFTNWL-Z
	X-NMYELQKLNSWDVFTNWL-Z
	X-KNMYELQKLNSWDVFTNWL-Z
	X-EKNMYELQKLNSWDVFTNWL-Z
	X-QEKNMYELQKLNSWDVFTNWL-Z
	X-QQEKNMYELQKLNSWDVFTNWL-Z
,	X - IQQEKNMYELQKLNSWDVFTNWL - Z
	X-QIQQEKNMYELQKLNSWDVFTNWL-Z

10

15

20

25

30

50

60

TABLE IV-continued

${\tt HIV-2_{NIHZ}}$ DP-178 homolog amino truncations.	
X-AQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-QAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-EQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-LEQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-SLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-QSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-SQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-ISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-NISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-ANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-EANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z	
	-

The one letter amino acid code is used. Additionally,

"X" may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

### 5.2. DP-107 and DP-178 Analogous Antiviral Peptides

Peptide sequences functionally corresponding, and thus analogous to, the DP-178 sequences of the invention, described, above, in Section 5.1 may be found in other, non-HIV-1 envelope viruses. Further, peptide sequences functionally corresponding, and thus analogous to, DP-107, 35 object of this invention. an HIV-1-derived antiviral peptide, may also be found in other, non-HIV-1 envelope viruses. DP-107 is a 38 amino acid peptide corresponding to residues 558 to 595 of HIV-1_{LAI} transmembrane (TM) gp41 protein, which exhibits potent anti-viral activity. DP-107 is more fully described in Applicant's co-pending U.S. patent application Ser. No. 07/927,532. These DP-107-like and DP-178-like analogous peptides and present in TM proteins of envelope viruses and preferably exhibit antiviral activity, most preferably antiviral activity which is specific to the virus in which their native sequences are found.

DP-107-like and DP-178-like peptides may be identified, for example, by utilizing a computer-assisted search strategy such as that described and demonstrated, below, in the Examples presented in Sections 9 through 16. The search strategy identifies regions in other viruses that are similar in predicted secondary structure to DP-107 and DP-178.

Example presented in Section 9. While this search strategy is based, in part, on a primary amino acid motif deduced from DP-107 and DP-178, it is not based solely on searching for primary amino acid sequence homologies, as such protein sequence homologies exist within, but not between major groups of viruses. For example, primary amino acid sequence homology is high within the TM protein of different strains of HIV-1 or within the TM protein of different isolates of simian immunodeficiency virus (SIV). Primary 65 amino acid sequence homology between HIV-1 and SIV, however, is low enough so as not to be useful. It is not

possible, therefore, to find DP-107 or DP-178-like peptides within other viruses, whether structurally, or otherwise, based on primary sequence homology, alone.

Further, while it would be potentially useful to identify primary sequence arrangements of amino acids based on the physical chemical characteristics of different classes of amino acids rather than based on the specific amino acids themselves, for instance, a by concentrating on the coiledcoil nature of the peptide sequence, a computer algorithm designed by Lupas et al. to identify such coiled-coil propensities of regions within proteins (Lupas, A., et al., 1991 Science 252:1162–1164) is inadequate for identifying pro-

tein regions analogous to DP-107 or DP-178. Specifically, analysis of HIV-1 gp160(containing both gp120 and gp41) using the Lupas algorithm does not identify the coiled-coil region within DP-107. It does, however, identify a region within DP-178 beginning eight amino acids N-terminal to the start of DP-178 and ending eight amino acids from the C-terminus. The DP-107 peptide has been shown experimentally to form a stable coiled coil. A search based on the Lupas search algorithm, therefore, would not have identified the DP-107 coiled-coil region. Conversely, the Lupas algorithm identified the DP-178 region a a potential coiled-coil motif. However, the peptide DP-178 derived from this region failed to form a coiled coil in solution. A possible explanation for the inability of the Lupas search algorithm to accurately identify coiled-coil sequences within the HIV-1 TM, is that the Lupas algorithm is based on the structure of coiled coils from proteins that are not structurally or functionally similar to the TM proteins of viruses, antiviral peptides (e.g. DP-107 and DP-178) of which are an

The computer search strategy of the invention, as demonstrated in the Examples presented below, in Sections 9 through 16, successfully identifies regions of viral TM proteins similar to DP-107 or DP-178. This search strategy was designed to be used with a commercially-available sequence database packages, preferably PC/Gene. A series of motifs were designed and engineered to range in stringency from very strict to very broad, as discussed in Section 45 9.

Among the protein sequence search motifs which may be utilized in such a computer-assisted DP-107-like and DP-178-like antiviral peptide search are the 107×178×4 motif, the ALLMOTI5 motif, and the PLZIP series of motifs, each of which is described in the Example presented in Section 9, below, with 107×178×4 being preferred.

Coiled-coiled sequences are thought to consist of heptad amino acid repeats. For ease of description, the amino acid This search strategy is described fully, below, in the 55 positions within the heptad repeats are sometimes referred to as A through G, with the first position being A, the second B, etc. The motifs used to identify DP-107-like and DP-178like sequences herein are designed to specifically search for and identify such heptad repeats. In the descriptions of each of the motifs described, below, amino acids enclosed by brackets, i.e., [], designate the only amino acid residues that are acceptable at the given position, while amino acids enclosed by braces, i.e., { }, designate the only amino acids which are unacceptable at the given heptad position. When a set of bracketed or braced amino acids is followed by a number in parentheses i.e., ( ), it refers to the number of subsequent amino acid positions for which the designated set of amino acids hold, e.g., a (2) means "for the next two heptad amino acid positions".

The ALLMOTI5 is written as follows:

{CDGHP]-{CFP} (2)-{CDGHP}-{CFP} (3)-

{CDGHP]-{CFP} (2)-{CDGHP}-{CFP} (3)-

{CDGHP]-{CFP}(2)-{CDGHP} -{CFP}(3)-

{CDGHP]-{CFP} (2)-{CDGHP}-{CFP} (3)-

{CDGHP]-{CFP} (2)-{CDGHP}-{CFP} (3)-

Translating this motif, it would read: "at the first (A) position of the heptad, any amino acid residue except C, D, G, H, or P is acceptable, at the next two (B,C) amino acid positions, any amino acid residue except C, F, or P is acceptable, at the fourth heptad position (D), any amino acid residue except C, D, G, H, or P is acceptable, at the next three (E, F, G) amino acid positions, any amino acid residue except C, F, or P is acceptable". This motif is designed to 20 search for five consecutive heptad repeats (thus the repeat of the first line five times), meaning that it searches for 35-mer sized peptides. It may also be designed to search for 28-mers, by only repeating the initial motif four times. With respect to the ALLMOTI5 motif, a 35-mer search is pre-  $^{\rm 25}$ ferred. Those viral sequences identified via such an ALL-MOTI5 motif are listed in Table V, below, at the end of this Section. The viral sequences listed in Table V potentially exhibit antiviral activity, may be useful in the identification 30 of antiviral compounds, and are intended to be within the scope of the invention.

The 107×178×4 motif is written as follows:

- [EFIKLNQSTVWY]-{CFMP} (2)-[EFIKLNQSTVWY]-{CFMP} (3)-
- [EFIKLNQSTVWY]-{CFMP} (2)-[EFIKLNQSTVWY]-{CFMP} (3)-
- [EFIKLNQSTVWY]-{CFMP} (2)-[EFIKLNQSTVWY]-{CFMP} (3)-
- [EFIKLNQSTVWY]-{CFMP} (2)-[EFIKLNQSTVWY]-{CFMP} (3)-

Translating this mofif, it would read: "at the first (A) position of the heptad, any amino acid residue except E, F, 45 may further include DP-107-like or DP-178-like peptides, I, K, L, N, Q, S, T, V, W, or Y is acceptable, at the next two (B,C) amino acid positions, any amino acid residue except C, F, M or P is accepatble, at the fourth position (D), any amino acid residue except E, F, I, K, L, N, Q, S, T, V, W, or 50 Y is acceptable, at the next three (E, F, G) amino acid positions, any amino acid residue except C, F, M or P is acceptable". This motif is designed to search for four consecutive heptad repeats (thus the repeat of the first line four times), meaning that it searches for 28-mer sized 55 peptides. It may also be designed to search for 35-mers, by repeating the initial motif five times. With respect to the 107×178×4 motif, a 28-mer search is preferred. Those viral

16

sequences identified via such a 107×178×4 motif are listed in Table V, below, at the end of this is Section. The viral sequences listed in Table V potentially exhibit antiviral activity, may be useful in the the identification of antiviral compounds, and are intended to be within the scope of the invention.

The PLZIP series of motifs are as listed in FIG. 19. These motifs are designed to identify leucine zipper coiled-coil like ¹⁰ heptads wherein at least one proline residue is present at some predefined distance N-terminal to the repeat. These PLZIP motifs find regions of proteins with similarities to HIV-1 DP-178 generally located just N-terminal to the transmembrane anchor. These motifs may be translated 15 according to the same convention described above. Each line depicted in FIG. 19 represents a single, complete search motif. "X" in these motifs refers to any amino acid residue. In instances wherein a motif contains two numbers within parentheses, this refers to a variable number of amino acid residues. For example, X (1,12)is translated to "the next one to twelve amino acid residues, inclusive, may be any amino acid".

Tables VI through X, below, at the end of this Section, list hits from such PLZIP motifs. The viral sequences listed in Table VI through X potentially exhibit antiviral activity, may be useful in the the identification of antiviral compounds, and are intended to be within the scope of the invention.

The Examples presented in Sections 17 and 18, below, demonstrate that respiratory syncytial virus and parainfluenza virus sequences identified via such a computer search exhibit antiviral and/or structural characteristics similar to 35 those of DP-107 or DP-178.

The DP-107-like and DP-178-like analogous peptides may, further, contain any of the additional groups described for DP-178, above, in Section 5.1. For example, these peptides may include any of the additional amino-terminal groups which "X" of Tables I through IV may represent, and may also include any of the carboxy-terminal groups which "Z" of Tables I through IV may represent.

Additionally, such DP-107-like and DP-178-like peptides such as those listed in Tables V through X, above, containing one or more amino acid substitutions, insertions, and/or deletions. Also, analogs of such DP-107-like and DP-178like peptides are intended to be within the scope of the invention. Such analogs of the invention may exhibit increased antiviral activity, and may, further, posses increased bioavailability, and/or stability, or reduced immune recognition.

The DP-107-like and DP-178-like amino acid substitutions, insertions and deletions, are as described for DP-178, above, in Section 5.1. Analog modifications are as described, below, in Section 5.3.

										847-895	845893																									
										751-785	749–783	668-716	658-692	650 -602	658-716	658-716	658-716	658-716							866-903									766-845	767-843	762-838
				635-695	664-724					615-720	613-718	559-593	559-593	596-966 560 504	559-593	559-593	559-593	559-593	567-604	713-756	714-755	661-595	542-576	539-573	563-693		562-596	542-576	6/0-040	587-621				612-711	610-712	605-707
07 × 178 × 4 and tifs		341–375 341–378 420–472	426–478 390–456	530-610	559-639 204 270	304-379 304-379	304-379	304-379	304-379	157-196	154-193	436-525	436-525	430-525	43/-320	436-525	436-525	436-525	503-555	610-690 601-688	609-689	497–549	478-530	475-577	321-355	318-354	498-550	476-530	401-524	523-575	321–383	316-383	321-383 317_377	497-593	509-594	500–589
Search Results Summary for 107 × 178 × 4 and ALLMOTIS Motifs	ALLMOTI5 LIBRARY FILE	PENV1_FRSFV FENV2_FRSPV PENV_AVIRE	PENV_AVISN PFNV_BAFVM	PENV_BIV06	PENV_BIV27	PENV BLVAU	PENV_BLVAV	PENV_BLVB2	FENV_BLVD3	PENV_CAEVC	PENV_CAEVG	PENV_EIAV1	PENV_EIAV2	PENV_EIAV3	PENV_EIAV3	PENV_EIAVC	PENV_ELAVW	PENV_EIAVY	PENV_FENV1	PENV_FIVPE PENV_FIV8D	PENV FIVT2	PENV_FLVC6	PENV_FLVGL	PENV_FLVLD	PENV_FOAMV	PENV_FRSFB	PENV_FSVGA	PENV_FSVGB	PFNV FSVSM	PENV_GALV	PENV_HTLIA	PENV_HTLIC	PENV_HTTV?	PENV HV1A2	PENV_HV1B1	PENV_HV1B8
																														790-825	791–818	786-813 707-015	/8/-812 208-823	190-022 803-835		791–818
			631–695 660–724														722–749.	720-747	721–748				866893							630-682	631-683	626-678	676-688	030-000 643-695	628-680	631–683
		420-468 426-474 395-452	544-603 573-632	304-377	304-377	311-377	304-377	304-377	102-192	668-695	668-712	669-699	668-712	668-/12 220 717	000-/12 668-712	517-544	650-680	639-668	640-679	509538 490519	510-539	487–516	318-355	490-519	493-522	523-564	342-376	342-376	342-370 336-370	544-592	545594	540-589 500-500	066-286 550-500	557-608	543-591	545594
	107 × 178 × 4 LIBRARY FILE	PENV_AVIRE PENV_AVISN PENV_BAEVM	PENV_BIV06 PFNV_BIV27	PENV_BLVAF	PENV_BLVAU	PENV_BLVB2	PENV_BLVB5	PENV_BLVJ	PENV_CAEVG	PENV_ELAV2	PENV_EIAV3	PENV_EIAV5	PENV_EIAV9	PENV_ELAVC	PENV_ELAVW	PENV_FENV1	PENV_FIVPE	PENV_FIVSD	PENV_FIVT2	PENV_FLVC6 PENV_FLVC6	PENV_FLVLB	PENV_FLVSA	PENV_FOAMV	PENV_F3VGA	PENV_FSVSM	PENV_GALV	PENV_HTL1A	PENV_HTLIC	PENV_HTTV7	PENV_HV1A2	PENV_HV1B1	PENV_HV1B8	PENV_HVIBN	PENV HV1C4	PENV_HV1EL	PENV_HV1H2

TABLE V

17

International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International Internatio International International International Internatio					Sear	Search Results Summary for 107 × 178 × 4 and ALLMOTI5 Motifs	r 107 × 178 × 4 and Motifs			
IFULI         54-54         61-68         70-81         FEVL	107 × 178 × 4 LIBRARY FILE					ALLMOTI5 LIBRARY FILE				
INUL         STO-00         CC-305         Statul         FINULINIA         STO-00         CC-305         Statul         FINULINIA         STO-00         CC-301         Statul         FINULINIA         STO-00         CC-301         Statul         FINULINIA         Statul		145594 56 - 605	631–683 642–683	791-818		PENV_HV1BN	501-590	609–708 615–713	772 841	
INVER         555-50         675-67         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831         76-831 </td <td>-</td> <td>cn0-00</td> <td>042-094</td> <td>002-029 783_811</td> <td></td> <td>PENV_HV1CA</td> <td>510-399 510-806</td> <td>/1/-019</td> <td>140-711</td> <td></td>	-	cn0-00	042-094	002-029 783_811		PENV_HV1CA	510-399 510-806	/1/-019	140-711	
HYMK         57-56         G3-707         794-80         FENV HYHE         505-90         607-712         77-80           HYMK         555-56         G1-667         79-810         FENV HYHE         505-90         607-712         77-843           HYMK         555-56         G1-677         78-810         FENV HYHE         515-50         61-712         77-843           HYUK         555-56         G1-677         78-810         FENV HYHE         515-50         61-717         77-843           HYUK         555-56         G1-677         78-810         FENV HYHE         5153         57-512         77-843           HYUK         555-56         G1-677         77-841         77-713         77-843         77-843           HYUE         555-56         G1-673         77-840         77-713         77-843         77-843           HYUE         555-56         G1-667         77-713         77-840         77-713         77-843           HYUE         555-56         G1-663         77-713         77-843         77-843         77-843           HYUE         555-56         G1-663         77-713         77-843         77-843         77-843           HYUE         555-565	HV1KB	55-596	637-677	776-824		PENV_HV1EL	502-591	602-209	768-829	
HUME         543-50         C0-641         78-510         PENV         HUH         517-60         C0-712         77-643           HUMN         55-553         C1-673         78-313         PENV         HUH         517-60         617-713         77-643           HUNN         55-554         C1-673         78-313         PENV         HUH         91-646         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916         77-916	HV1MA	47-595	633-707	794-826		PENV_HV1H2	505-594	610-712	767-836	
HYUM         S67-568         632-664         701-919         PENV_HYUR         57-566         622-703         75-843           HYUM         S67-595         612-673         73-841         77-846         612-713         77-843           HYUR         S54-600         660-673         78-840         78-843         77-846         77-745         77-843           HYUR         S54-600         640-673         78-840         78-841         77-946         612-713         77-843           HYUR         S54-600         640-673         78-340         77-841         77-843         77-843           HYUR         S54-601         78-741         77-943         77-943         77-943         77-843           HYUR         S64-603         640-673         78-340         77-743         77-843         77-843           HYUR         S64-693         61-663         77-943         77-943         77-843         77-843           HYUR         S64-693         61-663         77-843         77-843         77-843         77-843           HYUR         S64-693         61-660         77-943         77-943         77-843         77-843           HYUR         S64-693         61-660         77-943<		143-592	629-681	789-816		PENV_HV1H3	505-594	610-712	767-843	
HVNU         SSS-563         GL-0/3         SSS-514         FSV-L         FVIN         SSS-569         GL-0/3         SSS-591         SSS-591 <thsss-591< th=""> <thsss-591< t<="" td=""><td></td><td>67-595</td><td>632-684</td><td>791-819</td><td></td><td>PENV_HV1J3</td><td>517-605</td><td>622-723</td><td>778-843</td><td></td></thsss-591<></thsss-591<>		67-595	632-684	791-819		PENV_HV1J3	517-605	622-723	778-843	
INVINU         SSS94         G1 468         91-818         FIVU-INV         SGS94         G1 468         91-818           INVIRI         S55-95         G1 468         90-82         PDV-INVIR         SG7-95         G1 711         70-825           INVIRI         S55-85         G1 468         90-818         PDV-INVIR         SG7-95         G1 711         70-825           INVIRI         S55-83         G1 - 66         72-61         72-93         G1 - 711         70-855           INVIRI         S55-83         G1 - 68         70-81         PDV-INVIR         96-595         G1 - 711         76-843           INVIRI         S55-83         G1 - 68         70-81         PDV-INVIR         96-595         G1 - 711         76-843           INVIRI         S55-83         G1 - 66         70-82         PDV-INVIR         96-595         G1 - 711         76-843           INVIRI         S55-80         G1 - 66         71-82         PDV-INVIR         96-595         G0 - 711         76-843           INVIRI         S55-80         G1 - 60         77-82         PDV-INVIR         96-594         01 - 712         76-843           INVIR         S55-81         G1 - 60         77-81         PDV-INVIR		36-583 44-503	621-673 630-704	783-813 780-820		PENV_HV1JR penv_hv1kr	497-586 511-545	603-704 585-500	759-835 618-718	
HVIRI         554-600         600-832         DENV_HYIM         500-832         00-711         76-841           HVIRI         556-505         67-670         75/240         75/240         75/240         75/240           HVIRI         545-505         61-665         75/240         75/240         75/240         75/245           HVIRI         545-505         61-665         75/240         75/240         75/245         75/245           HVIRI         545-505         61-665         79/240         75/245         75/245         75/245           HVIRI         545-501         631-667         75/246         79/242         79/246         77/24           HVIZI         545-501         631-667         79/242         79/242         76/243         76/243           HVIZI         545-501         634-667         79/242         79/242         76/243         76/243           HVIZI         545-501         67/240         79/242         79/242         76/243         76/243           HVIZI         545-501         67/240         79/242         76/243         76/243         76/243           HVIZI         52/243         76/243         76/243         76/243         76/243         76/		45-594	631-683	791-818		PENV HVIMA	507-596	617-714	770-825	
HV181         556-561         67-614         73-401         FBVV, HV1ND         506-56         617-11         77-421           HV182         545-593         617-633         737-411         774-441         774-441           HV182         545-593         617-633         773-431         774-441         766-432           HV1V22         545-593         617-633         774-441         766-432         774-441           HV122         558-543         610-633         774-541         766-432         774-543           HV122         558-543         621-663         792-622         781VV, HV181         507-630         610-711         766-433           HV128         515-601         624-673         797-823         781VV, HV181         507-630         610-711         766-433           HV128         515-601         614-613         774-810         774-810         774-810         774-810           HV128         515-601         614-613         779-823         781VV, HV181         507-501         767-830           HV218         515-511         614-616         625-830         614-610         665-830         774-210         774-831           HV218         515-511         614-610         625-830		54-602	640-692	800-832		PENV_HV1MF	503-592	622-710	765-841	
HVIRS         545-503         611-683         791-813         FENV. HVIN1         495-593         611-63         791-813           HVIW1         545-503         611-683         791-813         FENV. HVIN1         495-593         611-683         791-712         75-343           HVIW2         545-503         611-683         791-813         FENV. HVIN1         597-501         611-683         791-712         75-343           HVIZE         545-503         611-683         791-823         FENV. HVIN1         597-501         610-712         76-343           HVIZE         545-504         621-693         791-823         FENV. HVIN1         496-583         602-703         758-830           HVZIE         545-501         621-693         751-700         67-343         761-712         76-343           HVZIE         575-601         631-693         761-712         76-343         761-712         76-343           HVZIE         532-501         631-693         761-712         761-843         761-712         76-343           HVZIE         532-561         613-640         655-693         761-712         761-363         761-717         761-363           HVZIE         532-564         613-640         622-712 <td></td> <td>136–585 </td> <td>622-674</td> <td>782-809</td> <td></td> <td>PENV_HV1MN</td> <td>506-595</td> <td>617-713</td> <td>774-841</td> <td></td>		136–585 	622-674	782-809		PENV_HV1MN	506-595	617-713	774-841	
HVINC         545-935         611-663         791-818         PENV. HVIN         691-939         601-711         766-842           HVINZ         545-936         611-663         791-818         PENV. HVIN         691-693         601-712         766-843           HVINZ         545-931         631-663         791-818         PENV. HVIN         601-603         758-843           HVIZE         545-931         631-663         797-823         PENV. HVINS         601-603         758-843           HVIZE         545-591         631-663         797-823         PENV. HVINS         605-693         602-710         76-843           HVZDI         555-581         610-603         752-663         77-712         767-843           HVZDI         535-581         613-603         615-693         613-712         767-843           HVZDI         535-581         613-603         613-613         77-839         77-839           HVZDI         535-583         613-603         615-693         613-613         763-843           HVZDI         535-583         613-603         613-712         777-839           HVZDI         535-583         613-603         613-613         763-843           HVZDI		41-589	627-679	787-815		PENV_HV1ND	495-584	801-702	757-825	
HVINT         359-363         501-605         791-301         FENV_HVITY         500-034         010-712         700-635           HVIZZ         534-361         620-603         790-203         610-712         70-535           HVIZS         534-361         621-663         791-203         610-703         654-33           HVIZB         545-901         654-678         791-203         610-712         767-336           HVIZB         545-901         621-663         791-203         610-712         767-336           HVIZB         545-901         621-663         791-203         678-336         611-712         767-336           HVZD1         523-561         615-663         FENV_HYTZ         498-594         011-712         767-336           HVZD1         524-551         555-583         013-660         655-693         618-673         767-336           HVZD1         524-551         555-583         013-660         662-693         FENV_HYTZ         510-593         67-433           HVZD1         524-551         555-583         013-660         662-693         FENV_HYTZ         510-703         76-363           HVZD1         524-551         555-583         013-660         662-693	HV18C	145593 145 - 503	631-683 231 202	010 102		PENV_HV10Y	497-593	610-711	766-842	
HVIZE         542-501         630-682         790-800         FEW_HYISI         406-585         602-703         753-830           HVIZE         542-501         630-682         792-623         792-623         792-635         792-635         792-635         792-635         792-635         792-635         792-635         792-635         792-635         792-635         792-635         792-635         792-635         753-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-835         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-834         763-83		38-584	021-005 677-674	019-16/		PENV_HV1RH	507-603	619-771	776-852	
HV1Zb         545-59.3         630-682         79-223         PENV_HY1S1         67-393         60-708         763-831           HV1Zb         573-601         634-678         797-623         PENV_HY1S1         67-394         611-712         76-334           HV2Zh         535-561         653-697         797-623         PENV_HY1S1         498-594         611-712         76-334           HV2Zh         535-551         653-697         PENV_HY1Z1         502-591         607-703         758-827           HV2Zh         535-553         613-640         655-693         PENV_HY1Z1         502-591         607-710         76-334           HV2Di         535-553         613-640         655-693         PENV_HY1Z1         502-591         607-703         76-336           HV2Di         535-553         613-640         655-693         PENV_HY1Z1         502-591         607-710         77-339           HV2Di         535-554         613-640         655-693         PENV_HY1Z1         502-591         607-710         77-339           HV2Di         532-544         614-712         602-693         PENV_HY1Z1         502-691         612-712         777-839           HV2Bi         532-544         614-602         613-		42-591	628-680	790-820		PENV HV1S1	496-585	602-703	758-830	
HVIZ8         575-601         634-678         797-823         PENV_HVIX0         498-594         611-712         767-836           HVZ11         535-591         621-666         791-823         PENV_HVIX1         498-594         611-712         767-836           HVZ01         535-593         621-660         791-823         PENV_HVIX2         502-591         607-703         768-831           HVZ01         535-583         614-683         FENV_HVIX2         502-591         607-703         768-831           HVZ01         535-583         613-640         645-693         PENV_HVIX2         501-593         602-710         76-831           HVZ12         535-583         613-640         645-693         PENV_HVIX2         502-593         607-710         76-831           HVZ12         535-583         613-640         652-693         PENV_HVIX1         498-51         77-839         76-831           HVZ2         535-54         513-540         652-693         PENV_HVIX2         502-593         612-712         77-839           HVZ3         535-544         614-673         BENV_HVZ1         512-591         612-712         77-839           HVZ3         535-544         517-511         512-591         612-712		:45-593	630-682	792-622		PENV_HV1S3	494-590	607-708	763-837	
HVIZH         545-504         627-466         791-823         PENV_HVIW1         489-544         611-712         767-836           HVZBE         532-591         621-646         655-697         958-VL         11712         568-301         768-836           HVZD1         523-551         555-582         644-668         655-697         969-711         768-830           HVZD1         523-551         555-582         613-640         655-603         961-7103         758-831           HVZD1         523-551         555-582         613-640         655-603         961-710         768-840           HVZD1         523-551         555-583         613-640         665-603         PENV_HY1Z         512-611         766-840           HVZD1         523-553         613-640         662-863         PENV_HY1Z         512-501         607-703         777-839           HVZR1         527-554         559-586         648-692         PENV_HY2D1         501-563         612-712         777-839           HVZR1         577-54         559-586         648-692         PENV_HY2D1         501-563         612-712         777-839           MUXP1         577-54         559-586         648-692         PENV_HY2D1         501-563 <td></td> <td>173-601</td> <td>634-678</td> <td>797–828</td> <td></td> <td>PENV_HV1SC</td> <td>498–594</td> <td>611-712</td> <td>767-834</td> <td></td>		173-601	634-678	797–828		PENV_HV1SC	498–594	611-712	767-834	
HV2BE         532-501         621-648         655-609         PENV_HYUW2         485-54         602-703         758-821           HV2DI         534-503         655-609         645-603         PENV_HYUZ         502-501         617-615         563-709           HV2DI         534-551         555-583         613-640         645-603         PENV_HYUZ         502-501         614-613           HV2NI         534-551         555-583         613-640         663-603         PENV_HYUZ         502-501         612-712         777-839           HV2NI         534-561         555-583         613-640         662-603         PENV_HYUZ         502-501         612-712         777-839           HV2SI         557-584         559-586         648-692         PENV_HYZI         510-505         613-700         674-813           HV2SI         557-554         559-586         648-692         PENV_HYZI         510-505         617-605         695-709           MUCF3         557-554         559-586         648-692         PENV_HYZI         510-505         617-605         695-702           MUCF3         575-545         579-546         511-500         612-702         612-702         612-702         612-702         613-670 <t< td=""><td></td><td>:45594</td><td>627–666</td><td>791-823</td><td></td><td>PENV_HV1W1</td><td>498–594</td><td>611-712</td><td>767–836</td><td></td></t<>		:45594	627–666	791-823		PENV_HV1W1	498–594	611-712	767–836	
HY2LI         533-50         553-583         613-640         645-693         PENV_HY1Z         503-591         603-701         706-801           HY2RI         523-553         513-640         645-693         PENV_HY1Z         512-591         617-67         682-719           HY2RI         523-551         555-583         613-640         645-693         PENV_HY1Z         512-594         617-67         682-719           HY2RI         535-583         613-640         645-693         PENV_HY1ZH         512-594         617-67         682-719           HY2SI         557-584         614-673         648-692         PENV_HY2CH         511-595         617-600         617-680           HY2SI         557-584         614-673         882-712         777-839         619-700           HY2SI         557-584         614-673         882-712         777-839         610-702           MCFF3         488-515         77-543         505-580         610-702         612-702           MUXH         517-544         77-543         506-590         612-702         612-702           MUXH         517-543         517-543         717-826         537-571         777-839           MUXH         523-553         61		(32-591 74 507	621-648	653-697 255 200		PENV_HV1W2	489-584	602-703 607-700	758-827	
HV2GI         524-561         555-583         613-640         645-693         PENV_HV1ZR         512-601         617-675         682-719           HV2KI         524-551         555-583         613-640         645-693         PENV_HV1ZR         512-601         617-675         682-719           HV2KI         535-551         555-583         613-640         662-889         PENV_HV2BI         512-601         617-675         682-719           HV2KI         535-554         559-586         648-692         PENV_HV2DI         501-587         609-699           HV2KI         575-554         559-586         648-692         PENV_HV2DI         501-587         609-699           MCFF         473-612         717-810         501-587         609-699         617-702           MUXVI         517-541         519-516         612-712         777-819         501-587           MUXVI         517-542         519-610         617-675         682-710         671-610           MUXVI         517-543         519-546         612-712         777-819         501-569         612-702           MUXVI         510-543         510-541         771-225         511-540         612-702         612-702           MUXVI		73-550	022-020 555-587	660-000 644-688		PENVPENV	504-593	607711 609711	766-840	
HV2NZ         524-531         515-543         613-640         662-889         PENV_HV1ZH         522-594         612-712         7           HV2BZ         533-592         622-608         648-682         PENV_HV2CA         510-595         617-680           HV2BZ         557-554         559-586         648-692         PENV_HV2C1         512-597         612-702           MCF         473-612         577-554         559-586         648-692         PENV_HV2C1         512-597         619-709           MCF         473-612         579-586         648-692         PENV_HV2C1         512-597         610-708           MCF         473-612         579-586         648-692         PENV_HV2C1         501-586         609-699           MCF         473-612         517-543         559-586         648-692         PENV_HV2C1         501-586         612-702           MCF         473-513         PENV_HV2C1         517-561         501-586         612-702           MLVF         517-543         517-561         FENV_HV2C1         512-593         612-702           MLVF         517-543         517-561         FENV_HV2C2         517-665         546-527           MLVF         523-553         710-722		24-551	555-583	613-640	645-693	PENV_HV1Z8	512-601	617-675	682-719	774–831
HV2R0         533-592         622-698         FENV_HY2BE         510-595           HY2SB         557-584         614-673         FENV_HY2D1         510-595           HY2SB         557-584         614-673         FENV_HY2D1         510-595           HY2SB         557-584         614-673         FENV_HY2D1         510-595           MCFF         473-612         559-586         648-692         FENV_HY2D1         501-586           MCFF         473-612         559-586         648-692         FENV_HY2D1         501-595           MCFF         473-612         FENV_HY2D1         501-596         501-596           MUXN         510-539         FENV_HY2D1         501-596         505-590           MUXN         510-539         FENV_HY2D1         501-588         505-590           MUXN         510-549         FENV_HY2D1         501-588         505-590           MUXR         523-553         FENV_HY2D1         505-590         <		:24-551	556-583	613 - 640	662-889	PENV_HV1ZH	522-594	612-712	777–839	
HV2S2         527-554         559-586         648-682         PENV_HV2CA         512-597           HV2SB         557-584         614-673         EENV_HV2CA         512-597           MCF         57-584         614-673         EENV_HV2C1         501-586           MCF         473-612         648-692         EENV_HV2C1         501-586           MCF         473-612         509-586         648-692         EENV_HV2C1         501-596           MLNAV         517-544         505-590         EENV_HV2C3         505-590         511-596           MLVF         510-539         EENV_HV2C3         505-590         511-596         506-590           MLVF         510-539         FENV_HV2C3         510-539         505-590         511-596           MLVF         523-553         MLVF         523-553         EENV_HV2C3         505-590           MLVF         523-553         FENV_HV2C3         505-590         505-590         505-490           MLVF         523-553         MLVF         523-555         EENV_MIVC3         505-490           MLVF         523-553         MLVF         523-555         EENV_MIVC4         473-526           MLVR         40-81         MLVR         497-538		133-592	622-698			PENV_HV2BE	510-595	617-680		
HV2SB         557-584         614-673         PENV_HV2D1         501-586           MCFF         473-612         599-586         648-692         PENV_HV2G1         502-587           MCF7         473-612         599-586         648-692         PENV_HV2D1         502-587           MCF73         488-512         599-586         648-692         PENV_HV2NZ         488-513           MCF73         488-513         PENV_HV2NZ         488-513         502-587         502-587           MLVN         511-544         PENV_HV2NZ         488-513         505-590         511-966           MLVF5         523-553         PENV_HV2SZ         505-590         505-590         505-590           MLVF         523-553         PENV_HV2SZ         505-590         505-590         506-590           MLVF         523-553         PENV_HV2SZ         505-580         PENV_HV2SZ         505-560           MLVHO         510-540         PENV_MCF7         403-455         506-560           MLVRD         407-538         FENV_MCF7         413-526           MLVRD         505-548         PENV_MU7F8         500-564           MLVRD         407-538         PENV_MU7F8         500-564           MLVRD		27-554	559-586	648–682		PENV_HV2CA	512-597	619-709		
HVZSI         527-554         559-586         648-692         PENV_HYZGI         502-587           MCFF         473-612         88-515         PENV_HYZNZ         488-587           MCF7         473-612         86-590         811-596         88-587           MCF3         517-544         510-539         811-596         88-587           MLVEB         510-539         PENV_HYZNZ         488-587         505-590           MLVF         523-553         PENV_HYZSB         505-590         86-590           MLVF         523-553         PENV_HYZSB         505-590         86-590           MLVF         523-553         PENV_HYZSB         505-590         86-422           MLVF         523-553         PENV_HYZSB         505-590         86-422           MLVF         523-553         PENV_HYZSB         505-430         86-422           MLVR         510-540         PENV_MIXA         403-455         86-425           MLVR         40-81         PENV_MIXA         403-555         86-425           MLVR         40-7-538         PENV_MIXA         403-555         86-425           MLVR         40-7-538         PENV_MIXA         403-555         86-45           MLVR		57-584	614-673			PENV_HV2D1	501-586	608698		
MCFT         4:3-01         MCFT         5:1-54         MCFT         5:1-54         MCFT         5:1-53         MCFT         5:1-53         S:1-55         S:0-530         S:0-540         S:0-422		27-554 72 617	559-586	648-692		PENV_HV2G1	502-587	609-609 600 600		
MIXUS         517-54         Denv		88-515				PENV HV2RO	511-506	616099		
MIVCB         510-539         PENV_HYZSB         526-588           MIVFF         523-553         PENV_HYZSB         526-590           MIVFF         523-553         PENV_HYZST         506-590           MIVFF         523-553         PENV_HYZST         506-590           MIVFF         523-553         PENV_LIPMAE         505-590           MIVFP         523-553         PENV_LIPMAE         505-590           MIVFID         510-540         PENV_LIPMAE         367-422           MIVFID         510-540         PENV_MIXA         403-455           MIVKI         40-81         PENV_MIXA         403-455           MIVKID         40-81         PENV_MIXA         413-526           MIVKID         40-81         PENV_MIXA         413-556           MIVKID         497-538         PENV_MIXA         414-526           MIVKID         497-538         PENV_MIXA         414-526           MIVKID         497-538         PENV_MIXA         414-526           MIVKID         458-465         562-589         PENV_MIXPF         520-564           MIVIVG         458-465         562-589         PENV_MIXPF         520-564           MIVIVG         458-465         562-5		17-544				PENV_HV2S2	505-590	612-702		
MIVFF         523-553         PENV_HV2ST         505-590           MIVFF         523-553         PENV_LN2ST         505-590           MIVFF         523-553         PENV_LN2ST         505-590           MIVFF         523-553         PENV_LN2ST         505-590           MIVFI         523-553         PENV_LN2ST         505-590           MIVFI         503-553         PENV_LINA         403-455           MIVRI         40-81         PENV_MIVA         403-455           MIVRID         502-543         PENV_MIVA         403-555           MIVRID         40-81         PENV_MIVA         403-555           MIVRID         40-81         PENV_MIVA         403-555           MIVRID         497-538         PENV_MIVA         503-556           MIVRID         458-465         562-589         PENV_MIVFF         520-564           MIVVG         458-465         562-589         PENV_MIVFF         520-564 <t< td=""><td></td><td>10-539</td><td></td><td></td><td></td><td>PENV_HV2SB</td><td>526-588</td><td>614-700</td><td></td><td></td></t<>		10-539				PENV_HV2SB	526-588	614-700		
MIUFF         523-553         PENV_IPMAE         367-422           MIUPP         523-553         PENV_JERV         403-455           MIUHO         510-540         PENV_MCF         473-525           MIUNIO         502-543         PENV_MCF         473-525           MIUNIO         502-543         PENV_MCF         473-525           MIUNIO         502-543         PENV_MIUAV         503-555           MIUNIO         502-543         PENV_MIUAV         503-555           MIUNIO         502-543         PENV_MIUAV         503-555           MIUNIO         478-758         PENV_MIUAV         503-555           MIUNIO         502-589         PENV_MIUPF         503-555           MIUNIVG         458-465         562-589         PENV_MIUPF         520-564           MINIVG         458-465         562-589         PENV_MIUPF         520-564           MINIV         42-470         PENV_MIVPF         520-564		123-553				PENV_HV2ST	505-590	612-702		
MIJVEP         523-553         PENV_JSRV         403-455           MIJVH0         510-540         510-540         403-455           MIJVK1         40.81         713-525         713-525           MIJVK0         502-543         713-525         713-525           MIJVRD         40-81         713-525         713-525           MIJVRD         40-81         713-525         713-526           MIJVRD         40-81         70-538         703-555           MIJVRD         497-538         780-564         473-526           MMIVR         497-538         780-864         798-550           MMIVR         497-538         780-864         798-556           MMIVG         458-465         562-589         PENV_MIVFF         520-564           MMIV         422-470         782-469         PENV_MIVFF         520-564           MFWV         422-470         782-890         PENV_MIVFF         520-564           MSVFB         57-64         PENV_MIVFF         520-564           MNIV         422-470         792-580         PENV_MIVFR         40-92           MSVFB         57-64         PENV_MIVFR         40-92         70-551           OWVX         <		123-553				PENV_IPMAE	367-422	465-527		
MILVHO         510-540         FENV_MCFF         475-25           MILVKI         40-81         74-525         745-525           MILVKI         40-81         74-525         745-525           MILVKI         40-81         74-526         745-525           MILVKI         497-538         745-526         745-526           MILVKI         497-538         PENV_MILVF         503-555           MILVKI         497-538         PENV_MILVF         503-556           MILVKI         497-538         PENV_MILVF         520-564           MMILVG         458-465         562-589         PENV_MILVF         520-564           MMIV         422-470         PENV_MILVF         520-564         PENV_MILVF         520-564           MMIV         423-465         562-589         PENV_MILVF         520-564         PENV_MIVHO         50-564           MFW         423-470         PENV_MIVHO         502-589         PENV_MIVHO         50-564           MFW         42-40         PENV_MIVHO         50-564         PENV_MIVHO         50-564           MFW         423-40         PENV_MIVHO         50-564         PENV_MIVHO         50-564           MFW         423-40         PENV_MIVHO <td></td> <td>(23-553 12 -553</td> <td></td> <td></td> <td></td> <td>PENV_JSRV</td> <td>403-455</td> <td>571-605</td> <td></td> <td></td>		(23-553 12 -553				PENV_JSRV	403-455	571-605		
MIJVKI 40-81 MIJVKO 502-543 MIJVKO 502-543 MIJVRO 502-543 MIJVRK 497-538 MIJVRK 497-538 PENV_MIJVFS 502-589 MMITVG 458-465 562-589 PENV_MIJVFP 520-564 PENV_MIJVFP 520	MLVHO	410-540				PENV_MCFF	473-525	537-571		
497-538     PENV_MILYEV     498-550       497-538     PENV_MILYE     498-550       497-538     PENV_MILYE     50-564       497-538     PENV_MILYE     50-564       498-455     562-589     PENV_MILYE     520-564       422-470     PENV_MILYE     50-551       422-470     PENV_MILYE     50-554	MLVKI	40-81				PENV_MCFF3	474-526	538-572 567 601		
497–538         PENV_MLVF5         520–564           487–538         562–589         PENV_MLVF7         520–564           458–465         562–589         PENV_MLVF7         520–564           422–470         PENV_MLVF0         50–564         50–564           70         422–470         PENV_MLVF0         50–564           422–470         PENV_MLVF0         50–564         50–564           422–470         PENV_MLVF0         50–564         50–564           422–470         PENV_MLVF0         50–564         50–554           42–60         PENV_MLVF0         50–564         50–554		97-538				PENV MIXCB	498-550	562-596		
458–485         562–589         PENV_MLYFF         520–564           458–465         562–589         PENV_MLYFP         520–564           422–470         562–589         PENV_MLYFP         520–564           57–470         562–589         PENV_MLYFP         50–564           422–470         562–589         PENV_MLYFP         50–564           422–470         70         70         50–564           422–470         70         70–564         40–92           427–60         PENV_MLWI         40–92         40–92		97-538				PENV MLVF5	520-564	576-610		
458-465         562-589         PENV_MINFP         520-564         5           422-470         562-589         PENV_MINFO         520-564         5           422-470         562-589         PENV_MINFO         504-551         5           422-470         57-40         PENV_MINFO         504-551         5           422-470         57-40         PENV_MINFO         504-551         5           427-60         196-273         780-807         PENV MINMO         507-554         4		158-485	562-589			PENV_MLVFF	520-564	576-610		
422-470 57-94 FENV_MLVHO 504-551 5 57-84 196-273 780-807 PENV_MLVKI 40-92 1 42-69 196-273 780-807 PENV_MLVMO 507-554 6		158-465	562-589			PENV_MLVFP	520-564	576-610		
57-34 60 196-223 780-807 780-807 780-807 780-807 780-807 780-807 780-807 780-807 780-807 780-807 780-807 780-80		122-470 52-64				PENV_MLVHO	504-551	563-597		
		5/-84	106 372	200 002		PENV_MLVKI	40-02	104-138 566 600		

				Search	Search Results Summary for 107 × 178 × 4 and ALLMOTTS Motifs	× 178 × 4 and s						
107 × 178 × 4 LIBRARY FILE					ALLMOTI5 LIBRARY FILE							
PENV_RMCFV	487-517				PENV_MLVRD	497–549	551-595					
PENV_SFV1	14-41	866-901			PENV_MLVRK	497–549	561-598					
PENV_SFV3L	18-45	319-357	673-700	863898	PENV_MMTVB	477–539	556-612					
PENV_SIVA1	661–588	592-619	652-679	697-724	PENV_MMTVG	477–539	556-612					
PENV_SIVAG	566-593	597-624	658-685	703-730	PENV_MPMV	408-474						
PENV_SIVAI	548-603	634-708			PENV_MSVFB	43–95	107 - 141					
PENV_SIVAT	590-617	651-678			PENV_OMVVS	22–64	185-223	664-746	780-816			
PENV_SIVCZ	526-584	627-654			PENV_RMCFV	484–528	540-574					
PENV_SIVGB	589-650	784-816			PENV_RSFFV	342–376						
PENV_SIVM1	550-609	671-715			PENV_SFV1	1-41	101 - 140	154-205	321-355	563-651	658-693	866-904
PENV_SIVM2	156-215	277–289			PENV_SFV3L	5-46	158-209	319-357	560-706	863-901		
PENV_SIVMK	553-608 212 608				PENV_SIVA1	269-310	551-823	643693				
PENV_SIVML	549-608		010		PENV_SIVAG	558-628	651-899	808-852 202 202		0100		
FENV_SIV54	710-000	00-7+0 717 702	QT/-T60		FEINV_SIVAL	167-/07	0/0-000 540-013	100-000	10/ 004	040-761		
FENV_SIVSF	001-001	040-122			PENV_SIVAI	204-298	249-071	044-092 510 501	/90-833	200 COO		
FENV_SMKVH DENN/ EDN1	400-402				PENV_SIVCE	167-507	205-066	49C-7TC	cu/-600	100-000		
FENV_SKVI	409-4/I				PENV_SIVUB	4C0-02C	C7/-//0	0.00		100 000		
PENV_VILV	7//3-800				PENV_SIVMI	114-151 21 117	465-506	528-613	635-7/25	809-864		
FENV_VILVI	702 000				FEINV_SIVINZ	0TT-T/	212-401 240-012	105-042				
FENV_VILV2	182-809				PENV_SIVINK	503 171	210-012	028-724				
	208-242				PENV_SIVML	404-505	210-042	038-724	010 010			
PHEMA_CVBM BITEMA CVBM	208-242				PENV_SIVS4	400-004	010-/10 003 103	038-728 647 727	812-853 911 949			
	200-242 208-242				PENV_SURVH	400-466	070-170	701-740	0+0-110			
	387-453				PENV SRV1	409-475						
	371-437				PENV VIIV	21-62	184-222	637-740	773-809			
	381-451				PENV VIIVI	21-62	184-222	643-746	780-816			
	381-451				PENV VILV2	21-62	184-222	645-748	782-818			
PHEMA_IACKG	382-441	494–528			PHEMA_CVBLY	208-242						
	396-426				PHEMA_CVBM	208–242						
	396-426					208–242						
PHEMA_IACKV	384-443 281 451				PHEMA_CVHOC	208-242 280 458						
DHEMA TADA?	102 152	100 513			DHEMA TARAN	364 440						
	387-453					378-454						
PHEMA IADA4	418-478					378-454						
PHEMA_IADCZ	381-451					108 - 142	375-475	494-528				
	402-453	506-533			PHEMA_IACKP	360-452	487-532					
PHEMA_IADH1	371-437				PHEMA_IACKQ	360-452	487–532					
	371-437				PHEMA_IACKS	377–469	504-549					
PHEMA_IADH3	371-437				PHEMA_IACKV	112-146	377-469					
PHEMA IADH4	371-437				PHEMA IADA1	377-454						
PHEMA_IADH5	371-437				PHEMA_IADA2	377-476	495-547					
	371-437					380-453						
PHEMA_IADH7	371-437				PHEMA_IADA4	379-478	506-548					
FHEMA_IADIK	044-014				THEMA_IAUCZ	5/8-454						

21

			-		
	Search Rc	Search Results Summary for 107 × 178 × 4 and ALLMOTIS Motifs	[78 × 4 and		
107 × 178 × 4 LIBRARY FILE		ALLMOTI5 LIBRARY FILE			
PHEMA_IADM2	387-453	PHEMA_IADE1	21-55	377-472	
PHEMA_IADNZ BITEMA_IADNZ	381-451 207 452	PHEMA_IADHI DITEMA_IADH7	364-440 364 440		
PHEMA IAFN7		PHEMA_IADH3	364-440		
1 1			364-440		
PHEMA_IAGRE	381-451	PHEMA_IADH5	364-440		
PHEMA_IAGU2		PHEMA_IADH6	364-440		
			364-440		
PHEMA_IAHAL	580-452 200-457	PHEMA_IADIK Ditema_iadna	3/9-4/1	506-551	
			21-22 380-456		
PHEMA_IAHCD		PHEMA_IADNY	21-55		
			378-454		
			21-55		
PHEMA_IAHK6		PHEMA_IADU3	380-456		
			380-456		
			377-477		
			378-454		
PHEMA_IAHMI BHEMA_IAHMM	380-452 206-457	PHEMA_IAGUZ DHEMA_IAGUA	3/8-4/3 377 176		
		PHFMA_IAUUA	379-455		
		PHEMA_IAHC6	112-146	360-484	503-537
PHEMA_IAHRO	386-452	PHEMA_IAHC7	112 - 146	360-484	503-537
		PHEMA_IAHCD	360-484	503-537	
			360-484	503-537	
			379-455		
PHEMA_IAHTE	386-452 206-455	PHEMA_IAHK6 Dhema_iahk7	379-455 370 455		
			279-400 117-146	360-484	503_537
			112-146	360-484	503-537
PHEMA_IALEN		PHEMA IAHMI	379-455		
			379-455		
PHEMA_IAMAB		PHEMA_IAHNN	112-146	360-484	503-537
PHEMA_IAMAO PHEMA_IAME1	38/-453	PHEMA_IAHPK PHFMA_IAHRO	112-146 379-455	360-484	۲.5c50 د ۲.5c50 د
PHEMA IAME2		PHEMA IAHSA	379-455		
			112-146	360-484	503-537
PHEMA_IAMIN		PHEMA_IAHSW	112-146	360-484	503-537
			379-455		
			379-455		
		PHEMA_IAHUR	379-455 275 457		
PHEMA_IAKUD PHEMA_IASE2	381-451	PHEMA_LAJAP PHEMA_LAKIE	376-478	506-541 506-541	
PHEMA_IASH2		PHEMA_IALEN	376-478	506-548	
PHEMA IASTA		PHEMA IAMAA	377-453		
PHEMA_IATKI	415-445	PHEMA_IAMAB	382-458		

23

			TADLE V-COULINED	1	
		Search R	Search Results Summary for 107 × 178 × 4 and ALLMOTIS Motifs	178 × 4 and	
107 × 178 × 4 LIBRARY FILE			ALLMOTI5 LIBRARY FILE		
PHEMA_IATKM 381-451 PHEMA_IATKO 507-534			PHEMA_IAMAO PHEMA_IAME1	380–456 380–456	
PHEMA_IATKP 424-454 PHFMA_IATKR 381-477	454 493-539 477	39	PHEMA_IAME2 PHFMA_IAME6	380-456 384-440	
	449 600–538	38	PHEMA_IAMIN	108-142	375-475
PHEMA_IAUDO 387-453	453 178		PHEMA_IANT6	380-456 278 477	107 234
PHEMA_IAUSS 425-478 DHFMA_IAVI7 200 454	4/8 154		PHEMA_IAPIL DUFMA_IADITE	3/8-4// 276 170	490-534 506 549
	177		PHEMA_IARUD	378-454 378-454	0+0-000
IAZCO	453		PHEMA_IASE2	378-454	
PHEMA_IAZH2 371-437 DHEMA_IAZH2 371-437	437		PHEMA_IASH2	379-474 112 140	506-552 277 460
	+2/ 478 506-547	47	PHEMA LATKI	379-471	51/1-409 508-551
		.47	PHEMA_IATKM	378-454	
IAZUK		ţ	PHEMA_IATKO	392-470	504-548
PHEMA_INBBE 400-451 DHEMA_INBBO 300-421	431 459-403 421 420-473	-03 73	PHEMA_IALKP	5/8-454 30-81	49.5540 374 - 474
		81	PHEMA_LATKW	373-472	487-539
INBHK		:73	PHEMA_IATRA	21-55	
INBLE		.82	PHEMA_IAUDO	387-458	
INBMD		172	PHEMA_IAUSS	376-478	608548
PHEMA_INBME 395-424 DHEMA_INBOD 308-470	424 432-470 420 437-481	81	PHEMA_IAVI/ DHEMA_IAW/I	381-457 275 477	243 209
INBSI		.81		380-456	
INBUS		:74	PHEMA_IAZH2	364-440	
INBVI		176		364-440	
PHEMA_INBVK 400-431 DHEMA_INCCA 405-571	431 439-483 571	83	PHEMA_IAZIN PHEMA_IAZIN	379-478 370-478	506-548 506-548
INCEN	559			380-456	
INCGL	559		PHEMA_INBBE	388-473	
INCHY	558			378-463	
PHEMA_INCJH 490-572 PHEMA_INCKV 482-558	572		PHEMA_INBEN	380-4/1 381-463	
7	558		1.1	387-472	
INCNA	559			377–462	
PHEMA_INCP1 483-559 DITEMA_INCP2 403 550	559 350		PHEMA_INBME	381–468 206 471	
	550 550		1	386-471	
INCTA	559			379-464	
INCYA 4	559		PHEMA_INBVI	381-466	
	91		PHEMA_INBVK	388-473 407 571	
FHEMA_NDVD 64-91 PHEMA_NDVD 64-91	16		PHEMA_INCEN	403-071 471-559	
HAUN	16		PHEMA_INCGL	471-559	
IVUN	16			470-558	
PHEMA_NDVM 64-91	16		PHEMA_INCJH	484-572	

25

				IABLE V-continued	ed		
			Search	Search Results Summary for 107 × 178 × 4 and ALLMOTIS Motifs	× 178 × 4 and		
107 × 178 × 4 LIBRARY FILE				ALLMOTI5 LIBRARY FILE			
PHEMA_NDVQ 64-91 PHEMA_NDVTG 64-91 PHEMA_NDVU 64-91				PHEMA_INCKY PHEMA_INCMI PHEMA_INCNA	470–558 470–558 470–558		
~					471-559		
PHEMA_PIJHW /9-110 PHEMA_PI3B 66-93	10 300-393 3	_		PHEMA_INCP2 PHEMA_INCP3	4/1-559 471-559		
4					471-559		
PHEMA_PI3HA 27-61 PHEMA_PI3HT 27-76	9			PHEMA_INCYA PHEMA_MEASE	471-559 46-90		
	0			PHEMA_MEASH	46-90		
	1			PHEMA_MEASI	46-87		
					46-87 24 00		
PHEMA_PI3HX 27-61	14 752 703			PHEMA_MUMPM DITEMA_MUMPD	34-99 34 00		
		_		PHEMA_MUMPS	34-99		
	06			PHEMA_NDVA	8–52	477-529	
H	06				1-49		
PHEMA_SENDJ 79-106 BHEMA_SEND7 70-106	06 06			PHEMA_NDVD	1-49 1-40		
2	2 <u>394–</u> 421			PHEMA_NDVM	1-49 1-49		
2 Q		216-243	43	PHEMA_NDVTG	1-49		
			43	PHEMA_NDVU	1–49		
VACCT			43		39–73		
>	46 175-202	215-242	42		66-110		
PVENV_DHVI1 318-366 PVENV FAV 120-147	66 47			PHEMA_PI2H phfma_pi2ht	247–281 247–281		
THOGV	47				38-93		
					13-110	394-428	
	10 185–212				20-110	394-428	
VACCP	0				13-110	394-428	
PVF05_VACCV 33-60 BVE11_VACCC 374_321	0 6			PHEMA_PI3HU PUFMA_DI2HV	13-110 12-110	394-428 204-428	
	17				13-110	394-428	
		554-581	81	PHEMA_PI3HX	13 - 110	394-428	
			81		54-88		
		_		PHEMA_RACVI	166-214	256–290	
	2 152-179	_		PHEMA_RINDK	46-87		
-	73			PHEMA_RINDL	46-87	191–225	
PVFUS_UKFNZ 59-80 PVFUS VACCC 37-64	0 1			PHEMA_SENDS	57-110 57-110		
	1				57-110		
				PHEMA_SENDJ	57-110		
PVG01_VACCV 164-191 PVG01_VARV 2252	91 240-274 52 301-335			PHEMA_SENDZ PHFMA_SV41	57-110 18-52	387-421	
` `		_		PHEMA_SV5	27-82		
PVG02_VARV 96–123	23			PHEMA_SV5LN	27–82		

27

					TABLE V-continued	tinued					
					Search Results Summary for 107 × 178 × 4 and ALLMOTIS Motifs	107 × 178 × 4 and otifs					
107 × 178 × 4 LIBRARY FILE					ALLMOTI5 LIBRARY FILE						
PVG03_HSVEB PVG03_HSVEK	146–176 146–176				PVENV_BEV PVENV_DHVII	195–229 318–366					
PVG05_VACCC	48-75 40 75	131-161	225-289	355-389 255-389	PVENV_MCV1	252-286					
PVG07 HSVI1	c/-s+ 86-12	101-471	697-007	685-000	PVENV_THOGV	252-280 313-354					
PVG09_VACCC	308-338				PVENV_VACCC	257-295					
PVG09_VACCV	271–301 308–338				PVENV_VACCI	257-295 257-295					
PVG12_SFV1R	11-45				PVENV_VACCV	257-295					
PVG17_HSVI1	177-204				PVF01_VACCC	46-80	124-158				
PVG18_HSVI1 PVG1_SPV1R	1/4-208 260-287				PVF01_VACCV PVF03_VACCC	46-80 71-110	124-158				
PVG1_SPV4	287-314	383-410			PVF03_VACCV	71-110					
PVG22_HSV11	373-400	581-622	668-705	766-824	PVF05_VACCC	81-129	282-320 262-320				
PVG28_HSVI1	253-290	497-528			PVF05_VACCV	81-129 81-129	282-520 293-321				
PVG2R_AMEPV	33-64	91-118				217-258	269-315				
PVG2_SPV1R	285-326					213-254	265-311				
PVG2_SPV4	146-173 05 111	175-205	262–310		PVF12_VACCC	1-67	102 - 143	199-236 100-236	350–388 350 300	544-581 544 501	
PVG37 HSVI1	442-469				PVF16 VACCC	155–194	C+T-70T	007-661	000-000	TOC-++C	
PVG39_HSVI1	651-678	1088-1115			PVF16_VACCP	155-194					
PVG3L_AMEPV	2-29				PVFP3_FOWPV	1-43					
FVG2_SFV1K PVG3_SPV4	18-57 18-57	87-148			PVFP7 FOWPV	03-57	C17-6C7				
PVG45_HSVSA	138-165	1			PVFPL_FOWP1	77-111					
PVG46_HSVI1	142-169	346–373	897–924	973–1007	PVFUS_VACCC	30-64 20-24					
FVG48_H5V5A PVG48_AMFPV					PVG01 BPP22	-20-04 94-135	400-468	475513	608-659		
PVG4_SPV1R	116-146					271-306	512-563	591-647	730-764		
PVG51_HSVI1	34-61	87–114				301-339					
PVG56 HSV1	4/-/4 582-600				PVG01_VACCV	240-270 301-330					
PVG5_SPV1R	65-92				PVG03_HSVEB	143-177					
PVG5_SPV4	56-83				PVG03_HSVEK	143-177					
PVG63_HSVI1	550-584 177 501				PVG03_VARV	64-98 117 168	766 780	766 790			
PVG65 HSVI1	4//				PVG05_VARV	117-158	255-289	355-389 355-389			
PVG66_HSVI1	362-406				PVG06_HSVI1	61-109	01	000			
PVG67_HSVI1	1342–1369				PVG07_HSVI1	69-103					
PVG68_HSVI1	261–288 447–461				PVG07_VACCC	114-175	324-358				
PVG75_HSVI1	388-422				PVG09_VACCC	304-338	000-+70				
PVG76_HSVI1	200-227				PVG09_VACCV	267-301					
PVG7_SPV4	14-44	1010 0010			PVG09_VARV	304–338 22 23					
FVUF1_IDVD	0071-0671	2400-2433				16-00					

29

						TABLE V-COULINEO	20						
					Search Res	Search Results Summary for 107 × 178 × 4 and ALLMOTTS Motifs	c 178 × 4 and						
107 × 178 × 4 LIBRARY FILE					AII	ALLMOTI5 LIBRARY FILE							
PVGL2_CVBF PVGL2_CVBL9	399-426 399-426	642–676	1022 - 1084 1022 - 1084	1278–1305 1278–1305	4	PVG12_SPV1R PVG16_HSVSA	11–45 58–95						
PVGL2_CVBLY	399-426	642-676	1022-1084	1278-1305	<u>с</u> , ,	PVG17_HSVI1	92-129	177-211					
PVGL2_CVBM PVGL2_CVBM	399-426 300-476	642-676 642-676	1022 - 1084 1077 - 1084	1278–1305 1278–1305	a, a	PVG18_HSVI1 PVG11_AMEPV	174-208 407-441	215-256					
	399-426	642-676	1022-1084	1278-1305		PVG1_SPV1R	136-170	256-297	320-357				
PVGL2_CVH22	797-077	809-875	1056-1112		Р	PVG1_SPV4	287–321						
PVGL2_CVM4	643-684	1030-1092			<u>е</u> 1	PVG22_HSVI1	117-158	437-629	660-892	899–1056			
PVGL2_CVMA6	36-63 786 749	591-632	978-1040		<u>а</u> (	PVG24_HSVI1	7-72	74-108					
PVGL2_CVMJH	646-206 69-110	889951 607733	1072-1145	1353-1380	<u>, c</u>	PVG27_HSVII	753-290						
	69-107	690-731	1067 - 1143	1351-1387	- 0-	PVG2R AMEPV	29-63	184-218					
PVGL2_CVPR8	468-509	845-921	1129-1165		Ч	PVG2_SPV1R	222-256	285-328					
	468–509	845–921	1129-1165		Ч	PVG2_SPV4	255-310						
PVGL2_EBV	68-102					PVG33_HSVI1	149 - 183						
PVGL2_FIPV	189–233	454-481	709–736	1072–1148	1356–1392 P	PVG34_HSVI1	345–379						
PVGL2_IBV6	809-836	876-903	1057-1091		<u>е</u> , і	PVG35_HSVI1	17–90						
PVGL2_IBVB	808-836	875-902	1056-1090		L 1	PVG37_HSVI1	435-472						
PVGL2_IBVD2	809-836 208-237	876-903 875 000	1057 - 1091			PVG38_HSVII	84-118 121 150	000 000					
FVGLZ_IBVK	808-830 808-820	206-018	1050-10501		<u>ч</u> г	rvus9_HSVII	124-158 0.40	200-200	110 000				
PVGLZ_IBVM	808-835 05-127	8/2-902 631-658	0601-0501		<u>, 0</u>	PVG3_SPVIK	8-49 72	162-196 87-131	203-244				
BVGID HCMAN	771 00 20	000 TCO	740 467	051 070			116 150	771 10	204 261	LL9 EV9			
PVGLB HCMVT	50-88 50-88	397-474	435-462	827-879	_ @	PVG45 HSVSA	121-162	067-707					
PVGLB HSVB1	427-454				. 6	PVG46_HSVI1	45-88	939-1078	1251-1321				
PVGLB_HSVB2	447-474				Р	PVG48_HSVI1	169 - 207						
PVGLB_HSVBC	426-453				Ч	PVG48_HSVSA	360-417	611-866	733–787				
PVGLB_HSVE1	443-470	934–961			4		68-102						
PVGLB_HSVE4	486–513	616-643			Ч	PVG4R_AMEPV	4–38						
PVGLB_HSVEA	443-470	934-961			<u>с</u> , г	PVG4_SPV4	89–130 24 75						
PVGLB_HSVEB	443-470	934-961 022 060			. 0	PVG51_H5VII	34-73 20-70	89-125 172 157	167 106				
DVGIR HSVMD	03-120	357_370			- 0	PVG53 HSVI1	67-127	101-071	0/1_701				
PVGLB MCMVS	381-408	441-475			- 6	PVG54 HSVI	355-396						
PVGLC HSV11	469-510				. Œ	PVG55 HSVI1	101-135						
PVGLC HSV1K	469-510				. 6.	PVG56 HSVSA	126-178						
PVGLC_HSVEB	124-151				Ч	PVG58_HSVI1	151-192	578-612	644-678	750-784	846-880	1111-1145	
PVGLC_HSVMB	63-97				Ч	PVG59_HSVI1	10-72	89-123					
PVGLC_HSVMG	62–96				Ч	PVG59_HSVSA	169 - 209						
PVGLC_HSVMM	63–97				Ч	PVG5_SPV1R	65-103						
PVGLC_VZVD	295-322				<u>а</u> с	PVG61_HSVI1	265-299						
PVGLE HSV2	111–148				<u> </u>	PVG85_HSVII	540-584 805-839	1213-1254					
PVGLF BRSVA	38-65	154-202	216-243	442-469	486–531 P	PVG66 HSVI1	154-188	328-410					
PVGLF_BRSVC	38-65	154-202	216-243	444-471		PVG67_HSVI1	379-413	501-546	1321-1369 1476-1541	1476–1541			
PVGLF_BRSVR	38-65	154-202	216-243	444-471	488–533 P	PVG68_HSVI1	245–288						

31

TABLE V-continued	Search Results Summary for 107 × 178 × 4 and ALLMOTI5 Motifs	ALLMOTIS LIBRARY FILE	PVG72_HSVI1         447–484         723–767         912–949           PVG75_HSVI1         271–305         388–422         912–949           PVG675_HSVI1         271–305         388–422         912–949           PVG68_SPV1R         5–51         338–422         938–324         3475–3513           PVG6H3_HCMVA         10–44         5–51         123–1267         2119–2156         3388–3424         3475–3513           PVGH2_CVBF         642–676         850–885         993–1109         1263–1305         9763–1305           PVG12_CVB1         642–676         850–885         993–1109         1263–1305         9763–1305           PVG12_CVB1         642–676         850–885         993–1109         1263–1305         970           PVG12_CVB1         642–676         850–885         993–1109	69-110       488-509         69-110       446-480         69-110       446-480         224-258       468-509         69-100       446-480         224-258       468-509         68-102       446-480         69-110       446-480         69-105       1057-1091         467-478       772-904         773-905       1057-1091         437-478       772-904         437-478       772-904         437-478       772-904         437-478       772-904         437-478       772-904         437-478       772-904         437-478       772-904         437-478       772-904         828-890       828-890         828-890       828-890         828-890       828-890         828-890       828-890         828-890       828-890         828-890       828-890         828-890       828-902         828-890       828-902         828-890       848-902         828-901       940-474         842-676       911-961         642-678       911-961         642
	for 107 × 178 × 4 and 5 Motifs			
ıtinued			271-24 271-44 271-44 271-44 271-4 272-5 582-58 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67 591-67	224–258 69–1101 69–1101 63–122 63–122 63–122 63–1205 63–1205 63–1205 63–1205 63–1205 63–1205 63–1205 83–12005 63–1205 83–12005 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–880 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 822–800 802–800 802–800 802–800 802–800 802–800 802–800 802–800 802–800 802–800 802–800 800 800 800 800 800 800 800 800 800
TABLE V-con	Results Summary for ALLMOTIS M	ALLMOTI5 LIBRARY FILE	PVG72_HSVI1 PVG75_HSVI1 PVG75_HSVI1 PVG8_SPV1R PVG8_SPV1R PVG12_UBVB PVG12_CVBF PVG12_CVB1 PVG12_CVB1 PVG12_CVB1 PVG12_CVB2 PVG12_CVM1 PVG12_CVM35 PVG12_CVM35 PVG12_CVM35	PVG12_CVPEN PVG12_CVPEN PVG12_CVPEN PVG12_CVPRN PVG12_EBV PVG12_EBV PVG12_EBV PVG12_BVD PVG12_BVD PVG12_BVD PVG12_BVD PVG12_BVD PVG1B_BSV1P PVG1B_BSV1P PVG1B_BSV1P PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_BSV2S PVG1B_SV2S
	Search		488-515 488-518	
			488-515 488-518 444-471 442-471	463-528 483-528 483-528
			442-471 213-243 216-243 213-243	309–336 238–266 238–266 457–497 457–497 480–507 480–507 480–507 480–507 480–507 480–507 480–507 480–507 480–507
			340-387 154-203 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-200 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-500 154-50	228-512 428-512 428-512 428-512 428-512 141-175 141-175 141-175 141-175 141-175 2211-265 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 211-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 2221-245 22222222222222222222222222222222222
			262-293 38-65 38-65 38-65 38-65 38-65 38-65 238-262 228-262 228-262 20-54 20-54 20-54 20-54 151-178 151-178 151-178	51-178 151-178 151-178 151-178 151-178 147-174 90-117 90-117 90-117 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 117-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 117-182 117-182 117-182 117-182 117-182 117-182 117-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 115-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182 125-182
		107 × 178 × 4 LIBRARY FILE		PVGLE_NUVY PVGLE_NUVT PVGLE_NUVT PVGLE_NUVU PVGLE_P11HC PVGLE_P12H PVGLE_P13H PVGLE_P13H PVGLE_P13H PVGLE_P13H PVGLE_P13H PVGLE_SEND6 PVGLE_SEND6 PVGLE_SEND5 PVGLE_SEND5 PVGLE_SEND5 PVGLE_SEND5 PVGLE_SEND5 PVGLE_B182V PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGLG_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC_B182VC PVGC

US 6,440,656 B1

UV × 1/0 × 4 LIBRARY FILE				ALLMOTI5 LIBRARY FILE				
PVGLH_HCMVA 107-136 PVG1H_HCMVT 106-135	270-297			PVGLB_MCMV6 PVGLB_MCMV6	208–260 847–881	427-476	693–778	860894
	360-403			PVGLB VZVD	92-133	596-630	809-867	
				PVGLC_HSV11	469 - 510			
				PVGLC_HSV1K	469-510			
~	914941	1128-1255		PVGLC_HSV2	442-476			
				PVGLC_HSV23	443-477			
FVULM_BUNTW 540-574 PVGTM_DUGRV 945_977	ccc-+0c	60/-700		PVGLC_HSVBC	235-209 187-218			
	693-720			PVGLC HSVMB	63-97			
				PVGLC_HSVMG	62-96			
				PVGLC_HSVMM	63-97			
PVGLM_HANTV 75–102				PVGLC_PRVIF	183-235			
96-69				PVGLC_VZVD	280-321			
PVGLM_PUUMH 72-110				PVGLC_VZVS	280-321			
PVGLM_PUUMS 72-110				PVGLD_HSVEA	89–123			
SEOUR 73-100	513-540	694-721		PVGLD_HSVEB	139–173			
S	513-540	894-721		PVGLD_HSVEK	139–173			
PVGLN_BEFV 523-584				PVGLE_HSV11	111-145			
	1145-1179	1184-1211	1505-1532	PVGLE_HSV2	111-159			
~	413-444			PVGLF_BRSVA	146 - 202	804-545		
PRVRI 427–481				PVGLF_BRSVC	146 - 202	267–302	506-547	
				PVGLF_BRSVR	146 - 202	267–302	505-554	
				PVGLF_CDVO	228–297	340–381	568-602	
_	316-346			PVGLF_HRSV1	118-203	267–302	506-549	
					116-202	267–302	506-549	
	315-350			PVGLF_HRSVL	116-202	267–302	506-547	
				PVGLF_HRSVR	116-202	267–302	506-549	
				PVGLF_MEASE	116-184	228-269	452-500	
				PVGLF_MEASI	119–187	231–272	455-503	
				PVGLF_MEASY	116-184	228-269	452–500	
				PVOLF_MUMPM	20-54	103-179	235-272	447-502
PVGNM_CPSMV 192–221				PVGLF_MUMPR	20-54	103-179	235–272	447-502
104-149				PVGLF_MUMPS	20-54	103-179	235-272	447-502
				PVGLF_NDVA	117-182	231-272	426-512	
-				PVGLF_NDVS	122-182	231-272	426-517	
D				PVGLF_NDVI	133–182	236-272	426-517	
PVM2_REOVJ 624-881				PVGLF_NDVM	117-182	231-272	426-512	
PVM3_REOVD 169–186	343–370	450-483	631-690	PVGLF_NDVT	117-182	231-272	426-517	
PVMA2_BRSVA 124–152				PVGLF_NDVTG	122-182	231-272	425-517	
				PVGLF_NDVU	122-182	231-272	426-512	
PVMAT_BRSVA 219–248				PVGLF_PHODV	29-63	197 - 266	309-350	533-581
PVMAT_HRSVA 219–248				PVGLF_PIIHC	123-174	207-267	459-503	
PVMAT_INCJJ 151–185				PVGLF_P12H	93-183	477-528		
PVMAT_NDVA 247–274				PVGLF_P12HG	93-183	805-220		
						070-1-1-		

				IABLE V-continued	inued			
				Search Results Summary for 107 × 178 × 4 and ALLMOTI5 Motifs	07 × 178 × 4 and tifs			
107 × 178 × 4 LJBRARY FILE				ALLMOTIS LIBRARY FILE				
PVMAT_PI3B	201-231			PVGLF_PI3B	117-182	207–241	456-518	
PVMAT_PI3H4	201-231			PVGLF_PI3H4	117-182	207-241	462-532	
	323-353				112-180	224-265	448-493	
	175 - 209				112 - 180	224-265	448-508	
PVME1_CV1KE	1/5-209			PVGLF_SEND5	12/-188	211-271	463-533	
PVME1_IBV6	21-48	184–218		PVGLF_SENDF	127–188	211-271	463-533	
PVME1_IBVB	21-48	184-218			127–188	218-271	463-533	
PVME1_IBVB2	21-48	184-218		PVGLF_SENDJ	127–188	211-271	463-533	
PVME1_IBVK		184–218		PVGLF_SENDZ	127-188	211-271	463-533	
PVMP_CAMVC		220-254	273–324	PVGLF_SV41	96–188	454–508		
PVMP_CAMVD	29-56	220-254	273–324	PVGLF_SV5	103-171	241-275	451-487	
PVMP_CAMVE		227–254	273–324	PVGLF_TRTV	105 - 161	190-224	457-498	
PVMP_CAMVN		220-254	273–324	PVGLG_BEFV	506-812			
PVMP_CAMVS		220-254	273-324	PVGLG_BRSVC	30-70	104 - 138		
PVMP_CAMVW		220-254	273-324	PVGLG_HRSV1	30-81			
PVMP_CERV	26-53	100-127		PVGLG_HRSV2	30-85			
PVMP_SOCMV	4–31	78-118		PVGLG_HRSV3	30-85			
PVMSA_HPBHE	294–328			PVGLG_HRSV4	30-107			
PVMT1_DHVI1	38-65	237–284		PVGLG_HRSV5	30-85			
PVMT8_MYXVL	163 - 190			PVGLG_HRSV6	30-85			
PVMT9_MYXVL	465-492			PVGLG_HRSV7	30-85			
				PVGLG HRSV8	30-81			
				PVGLG_HRSVA	30-67			
				PVGLG HRSVL	25-85			
				PVGLG HSVE4	271-306			
				PVGLG SIGMA	344–381	484-498		
				PVGLG SYNV	488-523			
				PVGLG VHSVO	363-397			
				PVGLG VSVIG	476-510			
				PVGLH EBV	53-87	160 - 201	336-380	653-694
				PVGLH_HCMVA	103-137	270-311	893-741	
				PVGLH HCMVT	102-136	692-740		
				PVGLH_HSV11	447-481			
				PVGLH_HSV1E	447-481			
				PVGLH_HSVBG	357-406			
				PVGLH HSVBC	364-416			
				PVGLH HSVE4	334-379	414-455		
				PVGI H HSVFB	307-370	407-448		
				DVGI H HOVE	37-88	374-453	664-712	
				PVGLH MCMVS	440-474		-	
				PVGI H PRVKA	226-260			
				PVGLH PRVN3	226-260			
				PVGLH PRVRI	226-260			
				PVGLH_VZVD	455-506			
				PVGLI HCMVA	47-111	323-359		
				PVGLM BUNGE	512-567	685-737	1228-1262	

	TABLE V-continued	pa			
Search	Search Results Summary for 107 × 178 × 4 and ALLMOTTS Motifs	: 178 × 4 and			
107 × 178 × 4 LIBRARY FILE	ALLMOTI5 LIBRARY FILE				
	PVGLM_BUNL7	643-677	916-950		
	PVGLM_BUNSH	643-677 240-274	504 562	005 020	
	PVGLM DITGRV	937-989	1739–1300	606-006	
	PVGLM HANTB	693-727	NNOT_COT		
	PVGLM_HANTH	72-106			
	PVGLM HANTL	72-106			
	PVGLM_HANTV	72-108			
	PVGLM_PHV	73-111			
	PVGLM_PTPV	149-251			
	PVGLM_SEOUR	694-728			
	PVGLM_SEOUS	693-730			
	PVGLN_BEFV	377-414	513-569		
	PVGLP_BEV	43-82	90–124	622-856	1128–1236
	PVGLX_HSVEB	177-262			
	PVGLX_PRVRI	420-461			
	PVGLY_JUNIN	301-349 247 240	000		
	PVGLY_LASSG	317–360 216 261	388-422 200 472		
			205 120		
	PVGLY_LYCVA	333-367	395-432 222-252	007 100	
	PVGLY_LYCVW	124-158	333-36/	395-432	
	PVGLY_MOPEI	510-559 221 275			
	PVGLY_PIAKV	575-755 715-755			
	rvuli_IACV	505-515	1 11 000		
	PVGLY_IACV5 PVGIV_TACV7	303-351 307-350	382-410 381-415		
		303-351	382-416		
	PVGNB CPMV	835-869			
	PVGNM_BPMV	143-177	403-437		
	PVGNM_CPMV	160 - 201			
	PVGNM_CPSMV	192-226	758-792	674-915	
	PVGNM_KCMV	07 170	0+6-716		
	PVM01 VACCC	5-56			
	PVM1_REOVL	287-321			
	PVM21_REOVD	416-450	619-663		
	PVM22_REOVD	416-450	618-662		
	PVM2_REOVJ	416-450	618-662		
	PVM2_REOVL	416-450	618-662		
	PVM3_REOVD	135-190	337–371	623-558	618–690
	PVMA2_BRSVA	42-90			
	PVMAT CDVO	42-90 193-234			
	PVMAT INCU	73-114	151-208		
	PVMAT_NDVA	310-359			
	PVMAT_NDVB	324–358			

US 6,440,656 B1

		r.	
Searc	Search Results Summary for 107 × 178 × 4 and ALLMOTIS Motifs	: 178 × 4 and	
107 × 178 × 4 LIBRARY FILE	ALLMOTI5 LIBRARY FILE		
	PVMAT_PI3B	99–133 00–133	204-252
	FVMAL_FI3H4 PVMAT_RABVA	69-103 69-103	707-707
	PVMAT_RABVC	69-103	
	PVMAT_RABVE	69-103	
	PVMAT_RABVN	69-103	
	PVMAT_RABVP	69-103	
	PVMAT_RASVS	69-103 146 700	
	PVMAT USVIG	240-200 198-237	
	PVME1_CVBM	175-209	
	PVME1_CVPFS	98–140	212–267
	PVME1_CVPPU	212-257	
	PVME1_CVPRM	212-257	
	PVME1_CVTKE	28-62 717-767	1/5-209
	PVME1 IBV6	21-55	177–218
	PVMEI IBVB	21-55	177-218
	PVME1_IBVB2	21-55	177–218
	PVME1_IBVK	36–94	
	PVMP_CAMVC	187–254	270-324
	PVMP_CAMVD	187-254	270–324
	PVMP_CAMVE	187-254	270–324
	PVMP_CAMVN	187–254	270-324
		187-254	270-324
	PVMP_CAMVW	187-254	2/0-324
	F VIME_CLAV	217-251	
	PVMP_SOCMV	76-118	
	PVMSA_HPBDB	272–313	324-361
	PVMSA_HPBOC	271-312	323–360
	PVMSA_HPBDU	234-275	289-323
	PVMSA_HPBOW	212-213	524-501
	PVMSA HPBHE	294-328	
	PVMSA WHV1	208-242	
	PVMSA_WHV59	213-247	
	PVMSA_WHV7	213-247	
	PVMSA_WHVBI	213-247	
	PVMT1_DHVI1 PVMT1_IAANN	201–235 00–126	
	PVMT1_IABAN	92-126	174-222
	PVMT1_IACAO	31-79	

41

		i	
Searc	Search Results Summary for 107 × 178 × 4 and ALLMOTIS Motifs	178 × 4 and	
107 × 178 × 4 LIBRARY FILE	ALLMOTI5 LIBRARY FILE		
	PVMT1_IAFOW	92-126	174–222
	PVMT1_LAFPR	92–126	174-222
	PVMT1_IAFPW	92-126	174–222
	PVMT1_IALE1	92-126	174-222
	PVMT1_IALE2	92-126	174-222
	PVMT1_IAMAN	92-126	174-222
	PVMT1_IAPOC	92-126	174-222
	PVMT1_LAPUE	92-126	174-222
	PVMT1_IAUDO	92-126	174–222
	PVMT1_LAWIL	92-126	174-222
	PVMT1_IAZI1	92-126	174-222
	PVMT1_INBAC	175 - 209	
	PVMT1_INBAD	175 - 209	
	<b>PVMT1_INBLE</b>	175 - 209	
	PVMT1_INBSI	175 - 209	
	PVMT2_INBAC	132–184	
	PVMT2_INBAD	132 - 184	
	PVMT2_INBLE	132–184	
	PVMT2_INBSI	132–184	
	PVMT8_MTXVL	46-80	145–197

		Search Results S	Summary for PC	Search Results Summary for PCTLZIP, P1CTLZIP, and P2CTLZIP Motifs			
PCTLZIP LIBRARY FILE		P1CTLZIP LIBRARY FILE			P2CTLZIP LIBRARY FILE		
PENV_FOAMV PENV_HV1MA	481–496 438–453	PENV_BIVO6 PENV_BIV27	434–450 463–479		PENV_BIVO6 PENV_BIV27	526–542 554–571	
PENV_HV1MP PENV_HV1RH	163 - 188 445 - 480	PENV_FOAMV PENV_HV1KB	481–496 762–788	864880	PENV_FENV1 PFNV_FIVPF	30–47 781–798	630-647
PEMV_HV18C	188-201	PENV_HV1MA	437-453		PENV_FIVSD	779-798	
PENV_HVIZ2	123-138	PENV_HV1MP	183–199		PENV_FIVT2	780–797	
PENV_HVIZH	438-453 750 705	PENV_HV1RH	444-460 720 754		PENV_FRVC6	38-55 006 011	824-841
PENV HV2D1	741-758	PENV HVISC	168-201		PENV FLVLB	825-842	
PENV_HV231	741-758	PENV_HV1Z2	123-138		PENV_FLVSA	802-619	
PENV_HV2NZ	742-757	PENV_HV1Z3	117-133		PENV_FOAMV	710-727	967–974
PENV_HV2S8	743-758	PENV_HV2BE	750-765		PENV_FSVGB	806-822	
PENV_HV2ST	745–780	PENV_HV2D1	741-758		PENV_FBVSM	608-625	
PENV_JSRV	104-119	PENV_HV2G1	741-758		PENV_HV10Y	123-140	
PENV_MMTVG	618-633 618-633	PENV_HV2NZ	/42-/0/ 751_788		PENV_HV1Z2	410-427 154-171	
PENV SIVMK	139–154	PENV HV2S8	743-758		PENV HV2CA	750-787	
PENV_SIVML	139–154	PENV_HV2ST	745-760		PENV_MCFF	600-617	
PHEMA_CVBLY	391-408	PENV_JSRV	104–119	541-567	PENV_MCFF3	601-618	
PHEMA_CVBM	391–408	PENV_MCFF	397-413		PENV_MLVAV	630-647	
PHEMA_CVSQ	391-408 301 408	PENV_MCFF3 DENV_MIVAV	397-413 427 443		PENV_MLVCB	620-642 630 656	
PHEMA_CVIIOC	402-417	PENV MIXCB	423-438		PENV MLVFF	639-656	
	403-418	PENV_MLVHO	424-440		PENV_MLVFP	639-656	
	295-310	PENV_MLVMO	426-442		PENV_MLVNO	626-643	
	303-318	PENV_MLVRD	424-440		PENV_MLVKI	167–164	
PHEMA_INBBO PHEMA_INBEN	293-309 301-318	PENV_MLVRK	424-440 816-833		PENV_MLVMO	629-646 624-641	
	288-301	PENV MMTVG	618-633		PENV MLVRK	624-641	
PHEMA_INBGL	286-311	PENV_SFV1	884-880		PENV_MSVFB	170-187	
	293-308	PENV_SFV3L	881-577		PENV_RMCFV	603-620	
PHEMA_INBIB	266-303	PENV_SIVGB	93-109 120 151	010 010	PENV_SPV1	/7/-01/	957-974
PHEMA_INBLE	299-514 302-317	PENV_SIVML	139-154 139-154	801–817 801–817	PENV_SIVMI	766-783	T/6-+06
	292-307	PENV_SIVS4	808-822		PENV_SIVMK	765-782	
	298-311	PENV_SIVBP	810-826		PENV_SWML	764–781	
	288–303	PHEMA_CDVO	38–62		PENV_SIVS4	769–786	
PHEMA_INBOR	301–318 201–318	PHEMA_CVBLY	391–408 201–408		PENV_SIVSP	773-790	
	201-210 200-313	PHFMA_CVBM	391-408		PFNV_SMSAV	47-69	
	294-309	PHEMA_CVHOC	391-408		PHEMA_CDVO	38-53	200-217
PHEMA_INBVI	296-311	PHEMA_CVMA6	402-417		PHEMA_CVBLV	391-408	
PHEMA_INBVK	303-318	PHEMA_CVMS	403 - 418		PHEMA_CVSM	391-408	
PHEMA_INBYB PHFMA_MIIMPM	286-301 133_148	PHEMA_IAAIC PHEMA_IABAN	23/-233 771-737		PHEMA_CVBQ PHFMA_CVHOC	391-408 301-408	
			107 177			00t 1/2	

TABLE VI

45

			Search Results :	Search Results Summary for PCTLZIP, P1CTLZIP, and P2CTLZIP Motifs	tifs	
PCTLZIP LIBRARY FILE			P1CTLZIP LIBRARY FILE		P2CTLZIP LIBRARY FILE	
PHEMA_MUMPR PHEMA_MUMPS PHEMA_PIHW	133–148 133–148 345–380		PHEMA_IABUD PHEMA_IACKA PHEMA_IACKG	234-250 234-250 231-247	PHEMA_IAAIC PHEMA_IABAN PHEMA_IABUD	322-339 320-323 320-333
PHEMA_PI2N PHEMA_PI2N	65-80 65-80			230-248 231-250		320-337 316-333
PHEMA_RINDK	00-00 366-383		PHEMA_IADA3	237-253		302-319
PHEMA_SV5	7–94		PHEMA_IADCZ	234-250		302-319
PHEMA_SV5CM PHFMA_SV5CP	7–94 7–94		PHEMA_IADH1 PHFMA_IADH2	221–237 221–237	PHEMA_IACKS	319–336 315–337
PHEMA_SV5LN	7–94		1 1	221–237	1 1	320-337
PVENV_DHVI1	42-57		PHEMA_IADH4	221–237		322-339
PVFUS VACC6	89-104 72-87		PHEMA_IADH5 PHEMA_IADH6	221-237	PHEMA_IADUCZ PHEMA_IADH1	320-337 306-323
PVGOI BPP22	242-257		PHEMA_IADH7	221–237		306-323
PVG01_HSVEB			PHEMA_IADM2	237-253	PHEMA_IAOH3	306-323
PVUQL_HSVII	184-100	700-1 TC	FHEMA_IADNZ DHFMA_IAFNK	234-23U 731-737	FHEMA_IADN4 DHEMA_IADH6	300-323 306-373
PVOD7 BPT4	885-900		PHEMA IAEN7	237-253		306-323
PVGOS_HSVI1	134–149		PHEMA_IAFPR	230–248	PHEMA_IADM2	322–339
PVGIO_BPPH2	183-196		PHEMA_IAHAL	236-252		320–337
PVG10_BPPZA	183-196 100-124		PHEMA_IANAR	235-251 230-246	PHEMA_IADU3	322-339 206-273
PVG16 BPP1	109-124 81-96		PHEMA IAHC7	230-246		300-223 32-339
PVG18_BPT4	463-483			230-246		315-332
PVG2S_BPT4	97–112		PHEMA_IAHDE	230–246		320–337
PVG29_HSVI1	20-35			236-252		320-337
PVG30_BPPH6 PVG30_BPPH6	11-94 77-37		PHEMA_IAHK6 PHFMA_IAHK7	250-252	PHEMA_IAGUA PHEMA_IAHAI	519-536 371-338
PVG36_NBVSA	108-123			230-246		315-332
PVG37_BPT2	1253-1268		PHEMA_IAHLO	230–246		315-332
PVG37_HBVI1	284-299 22-32	011 110	PHEMA_IAHMI	236-252		315-332 315-332
PVGS6 HSVI1	0	0/T	PHEMA IANRO	236-232	PHEMA LAHDE	321-338
PVGS8_HSVI1	102-117			236-252		321–338
PVG59_HSVI1	267-292		PHEMA_IAHSP	230–246		321–339
PVG65_HSVI1	518-533		PHEMA_IAHSW	230–246		315-332
PVG9_BPPH2	234-279		PHEMA_IAHTE	236-252	PHEMA_IAHLO	316-332
PVU9_BFFZA	234-219 57 77		PHEMA_IAHIU	236-252 236-252	PHEMA_IAHMI BIIBNA IAHNNA	321-338 221-338
PVGF_BPPHX	21-12 234-249		PHEMA_IARUK	235-251	PHEMA_IAHNN	321-338 315-332
PVGL2_CVBF	264-279		PHEMA IALEN	235-251		315-332
PVGL2_CVBL9	264-279		PHEMA_IAMAA	233-249	PHEMA_IAHRO	321-338
PVGL2_CVBLY	264-279 264-279		PHEMA_IAMAB	236-254	PHEMA_IANSA pnfema_tansp	321-338 215-232
PVGL2_CVB0	264-279 264-279		PHEMA IAMAU	237-253	PHEMA IANSK	315-332 315-332
PVGL2_CVBV	264-279		PHEMA IAME2	237-253	PHEMA_IANTE	321-339
PVGL2_CVPFS	442-467		PHEMA_IAMEG	221–237		321–339

nued
ontin
VI-c
BLE
TABI

			Search Results ?	Summary for H	Search Results Summary for PCTLZIP, P1CTLZIP, and P2CTLZIP Motifs	ß		
PCTLZIP LIBRARY FILE			P1CTLZIP LIBRARY FILE			P2CTLZIP LIBRARY FILE		
PVGL2_CVPRU PVGL2_CVPRB PVGL2_CVPRB PVGL2_BVB PVGL2_BVB PVGL2_BVB PVGL2_BVB PVGL2_BVVB PVGL2_BVVB PVGL2_BVVB PVGL2_BVVF PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL2_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE PVGL3_HSVE P	440-465 218-233 218-233 218-233 218-233 218-233 2055-1070 1055-1070 1055-1070 1055-1070 1055-1070 1055-1070 1055-1070 1055-1070 1055-1070 1055-1070 1055-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 279-291 279-292 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 265-280 2	504-519	PHEMA_IAMIN PHEMA_IANIN PHEMA_IANIN PHEMA_IANIN PHEMA_IARUD PHEMA_IASTA PHEMA_IASTA PHEMA_IASTA PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_IATKM PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_INBIN PHEMA_	85–101 237–253 237–256 234–250 234–250 234–250 233–256 233–249 233–249 233–249 233–249 233–249 233–249 233–249 233–249 233–249 233–249 233–249 233–249 233–246 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–249 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256 233–256	231-247 231-247 295-310 303-316 303-316 303-316 303-316 293-301 298-301 298-301 298-301 298-301 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-311 298-303 301-316 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 298-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-308-300 208-301 208-308-300 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-301 208-302 208-301 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-302 208-30			380-397
FVM12_LABAN PVM12_LAF0W PVM12_LAFPR PVM12_LAFPW PVM12_LALE1	25 - 40 25 - 40 25 - 40 25 - 40		PHEMA_MUMPS PHEMA_P11HW PHEMA_P12H PHEMA_P13B	133–148 345–380 65–81 65–81 324–340		PHEMA_P13HV PHEMA_P13HW PHEMA_P13HX PHEMA_P14HA PHEMA_SV41	111–128 111–128 111–128 50–87 85–102	

49

		Search Results	Search Results Summary for PCTLZIP, P1CTLZIP, and P2CTLZIP Motifs	TLZIP, P1CTLZI	P, and P2CTLZ	IP Motifs			
PCTLZIP LIBRARY FILE		P1CTLZIP LIBRARY FILE					P2CTLZIP LIBRARY FILE		
PVM12_LALE2	25-40 25-40	PHEMA_PI3H4	324-340 324 340				PHEMA_SV5	84-101 84 101	
DV/MTY IADITE	25 40	DHEMA_FI2HA	324-340 374 340				DHEMA_SVJCM	04-101-00	
DVMT7 IASIN	25-40	DHEMA DI3HII	324-340				DHEMA_SV51 N	84-101	
DVMT7 IAIDO	04 V0	DUFNA DI2UV	274 240				DIVEDS IN CON		
PVMT7 TAWIL	25-40	PHFMA PI3HW	324-340				PVVDR VACCP	280-297	
			224 240					161 208	
	T+7-077	DUFMA_FIJHA	260 202				DVFD0 VACCY	201-290 176 102	
		DHFMA RVS	7_04				PVFD9_VACCU	176-103	
		PHFMA SV5CM	7-07				PVG77 HSVSA	200-226	
		PHEMA SV5CP	7-94				PVG2S_H8VI1	173-190	
		PHEMA SV5LH	7-94				PVG39_HSVI1	648-686	
		PVENV_DHVI1	42-57				PVG43_H8VII	109-128	521-536
		PVENV_EAV	25-41				PVG87_HSVI1	171-188	
			88-104				PVG72_HSVI1	1252-1289	
		PVFP7_CAPVK	89–104				PVGF1_HBVB	3073-3090	
		PVFUS_VACC6	72–87				PVGLB_IBV6	1094 - 1111	
		PVG01_HSVEB	169 - 184				PVGLB_HSVE1	738–753	
		PVG01_HSV11	209-225	317–332			PVGLB_HSVE4	675-892	
		PVG08_HSVI1	134–149				PVGLB_HSVEA	738-753	
		PVG10_HSVSA	109-124				PVGLB_HSVEB	738–753	
		PVG11_HSV11	103-119				PVGLB_HSVEL	738-753	
		PVG12_HSVI1	270–288				PVGLB_ILTV6	597-814	
		PVGI_SPV1R	76-92				PVGLB_ILTVS	807-824	
		PVG29_HSVI1	20-35				PVGLB_ILTVT	807-824	
		PVG3B_BPOX2	22–37				PVGLC_PRVIF	180-197	
		PVG3S_HSVSA	108-123				PVGLE_VZVD	489-498	
		PVG37_HSVI1	284–299				PVGL_SV5	401-418	
		PVG41_HSVI1	244-260				PVGLH_HCMVA	355-392	
		PVVG46_HSVI1	1244-1260				PVGLH_HCMVT	364-381	
		PVG55_HBVII	22-31	143-158			PVGLH_HSVII	245-282	603-820
		LIVCH_0CUVY	208-283 101-117				PVGLI HSVIE	742-782 13-80	003-020
		PVG58 HSVSA	130-148	330-348			PVGLM BUNL2	81–98	
		PVG59 HSVI1	267-282	2			PVGLM BUNSH	81-98	
		PVG65_HSVI1	362-378	518-533			PVGLM PUUMH	712-729	
		PVG71_HSVSA	89-105				PVGLM_PUUMS	712-729	
		PVG9_BPPN2	234–249				PVGLM_RVFV	344-381	
		PVG9_BPPZA	234–249				PVGLM_RVFVZ	344-381	
		PVG9_SPV1R	57-72				PVGLV_LASSG	12–94	
		PVGF1_IBVB	2210-2226				PVGLY_LASSJ	12-94	
		PVGL2_CVBF	123-139	174-190	264-279		PVGLV_LYCVA	12-94	
		PVGL2_CVBL9	123-139	174-190	264-279		PVGLY_LYCVW	12-94	
		PVGL2_CVBLY	123-139	1/4-190	264-279 264-279		PVGLY_MOPEL	12-94 280-207	
		PVGL2_CVBM	21 17	1/4-190 172 120	001-721	026 796	PVMI DEOVI	167-007	
		PV/GL7_CVBQ	51-4/ 172 120	174 100	061-4/1	617-407	PVML_KEUVL	140-007	
			10T 0TT	0/7 1/7				201 OLT	

	Search Results	Summary for PC	Search Results Summary for PCTLZIP, P1CTLZIP, and P2CTLZIP Motifs	P, and P2CTLZ	IP Motifs			
PCTLZIP LJBRARY FILE	P1CTLZIP LIBRARY FILE					P2CTLZIP LIBRARY FILE		
	PVGL2_CVM4 PVGL2_CVMA5 PVGL2_CVMIH	95-111 95-111 95-111	1267–1283 1215–1231 1126–1142			PVMAT_MEASI PVMP_CAMVC PVMP_CAMVD	187–104 147–164 147–164	
	PVGL2_CVPFS PVGL2_CVPFU	442-457 440-456	800–816 504–519	1274–1290 798–814	1272-1288	PVMP_CAMVE PVMP_CAMVN	147–164 147–164	
		218-233	576-592	1050-1066	1	PVMP_CAMVS	147-164	
	PVGL2_CVPRM	218–233 200 212	576-592	1050-1066		PVMP_CAMVW	147-164	
	PVGL2_FIPV	803-819	1277–1293			PVMSA_HPBVO	111 -94 105 200	
	PVGL2_BV8	1025-1070				PVMSA_HPBV4	185-202	
	PVGL2_IBVD2	1058-1071				PVMSAHPBVA	174–191	
	PVGL2_BVK PVGL2_BVK	1055 - 1070 1055 - 1070				PVMSA_HPBVD pvmsa_prv1	11–94 174–101	
	PVGLS_HSVSA	701-718				PVMSA_HPBVL	174-197	
	PVGLS_PRVIF	203-218				PVMSA_HPBVN	11-94	
	PVGLB_VZVD PVGLC_HSVBC	522-538 475-490				PVMSA_HPBVO PVMSA_HPBVP	1/4-191 185-200	
	PVGLC HSVE4	444-459				PVMSA_HPBVR	185-202	
	PVGLC_HSVEB	427-442				PVMSA_HPBVS	11–94	
	PVGLC_PRVIF	446-461				PVMSA_HPBVW	174-191	
	PVGLC_VZVD	01-001				FVMBA_HFBWT	174 101	
	PVGLD HSV11	70-04					1/4-191 25_47	
	PVGLD HSV2	79-94				PVMT2 LABAN	25-42	
	PVGLE_PRVRI	3-94				PVMT2_IAFOW	25-42	
		205-221	265-280				25-42	
	PVGLF_BRBVC	205-221	265-280			PVMT2_IAFPW	25-42	
	PVGLF_BKSVK	202-221 308-414	087-007			PVMT2_IALEI	25-42 25-42	
	PVGLF_HRSVI1	205-221	265-280				25-42	
	PVGLP HRSVA	205-221	265-280				25-42	
	PVGLF_HRBVL	205-221	265-280			PVMT2_IASIN	25-42	
	PVGLF_HRSVR	205-221	265-280			PVMT2_IAUDO	25-42 25 15	
	PVGLF_MEASE	280-306 200-306				FVM12_IAWIL	7.407	
	F VULF_MEASI	269-300 286-302						
	PVGLF_MUMPM	276-292						
	PVGLF_MUMPR	276-292						
	PVGLF_MUMPS	5-94	278–292					
	PVGLF_NDVA	273–289 273–289						
	PVGLP_NDVM	273-289						
	PVGLP_NDVTG PVGLF_NDVTG	273–289 273–289						
	PVGLF_NDVU	273–289						
	PVGLP_PHODV	269–285 269–285	387–383					
	L VULF_NUNDA	067-707						

	Search Results	Summary for PC	Search Results Summary for PCTLZIP, P1CTLZIP, and P2CTLZIP Motifs	
PCTLZIP LIBRARY FILE	PICTLZIP LIBRARY FILE			P2CTLZIP LIBRARY FILE
	PVGLF_RINDL PVGLF_TRTV	282–298 175–191		
	PVGLI_VZVD	276-293 255 223		
	PVGLM HANTE	1/5-005 115 001	516-006	
	F VULM HAINTH DVGI M HANTH	CIC-664		
	PVGLM HANTV	499-515		
	PVGI M PTPV	743-758		
	PVGLM PUUMH	509-525		
	PVGLM PUUMS	509-525		
	PVGLM_SEOUR	355-371	901-916	
	PVGLM SEOUS	355-371	900-915	
	PVGLM_UUK	826-842		
	PVGLP_BEV	669-886		
	PVGLY_LASSG	12-94	428-441	
	PVGLY_LASSJ	12 - 94	427-442	
	PVGLY_LYCVA	12–94		
	PVGLY_LVCVW	12–94		
	PVGLY_MOPEI	12–94	425-440	
	PVGLY_PIARV	12–94		
	PVGNM_CPMV	1021-1037		
	PVM3_REOVD	521-530		
	PVMAT_MUMPS	191-207		
		101-001		
	PVMAT_NDVB	135-151		
		169-200		
	LV MAL_SV41	189-200 08-114	011 001	
	F VINTAL 3 VU BV/VD CANVYC	90-114 110 134	0+1-701	
	FVMF_CAMVC	110-134 118-134		
	DVMP CAMVE	118-134		
	PVMP CAMVN	118-134		
	PVMP CAMVS	118-134		
	PVMP CAMVW	118-134		
	PVMP FMVD	115-131		
	SUNCA HDRGS	290 206		
	PVMSA_HFBUS	187_207		
		707-101		
	PVMSA_WHV1	378-393		
	PV MSA_WHV99	585-585		
	PVMSA_WHV7	383-398		
	PVMSA_WHV8	383-398		
	PVMSA_WHV8I	383–398		
	ATTENT ATTENT A PARTY OF ATTENT	010 100		

55

	Search Results	Search Results Summary for PCTLZIP, P1CTLZIP, and P2CTLZIP Motifs	
PCTLZIP LIBRARY FILE	P1CTLZIP LIBRARY FILE		P2CTLZIP LIBRARY FILE
	PVMT2_IAANN	25-40	
	PVMT2_IABAN	25-40	
	PVMT2_IAFOW	25-40	
	PVMT2_IAFPR	25-40	
	PVMT2_IAFPW	25-40	
	PVMT2_IALE1	25-40	
	PVMT2_IALE2	25-40	
	PVMT2_IAMAN	25-40	
	PVMT2_IAPUE	25-40	
	PVMT2_IASIN	25-40	
	PVMT2_IAUDO	25-40	
	PVMT2_IAWIL	25-40	
	PVMT9_MYXVL	226–241	

inued
VI-conti
щ
TABI

		564-575																																					
			630-651	605-606	625-646	602-623	957–978	625-646	079-070	670-000	519-540																			6/6-466									
		47–68 47–68	225-246	624-645 447-468	467-488	444-465	153-174	467-488	44 /-468	450-471 467-488	52-73	750-771	741–782	742–763	751-772	745-766	600-621	770-100	020-021 675-646	639-660	639-660	639-660	626-647	167-188	029-020 624-645	624-645	170-191	603-624	957-978	157-178	43/-458 447 463	421-442	435-456	42-63	402-423	796-796	225-246	225-246	213-234
	P6CTLZIP LIBRARY FILE	PENV_BIV06 PENV_BIV27	PENV_FENV1	PENV_FLVC6 PENV_FLVC6	PENV FLAUL	PENV_FLVSA	924-944 PENV_FOAMV	PENV_FSVGA	PENV_FSVGB	PENV_FSVSM PENV_FSVST	PENV_GALV	PENV_HV2BE	PENV_HV2G1	PENV_HV2NZ	PENV_HV2RO	PENV_HV2ST	PENV_MCFF	FEN V_MCFF5	FEN V_MLVAV PFNV_MLVCB	PENV MIVES	PENV_MLVFF	PENV_MLVFP	PENV_MLVHO	PENV_MLVKI	PENV_MLVMO	PENV_MLVRK	PENV_MSVFB	PENV_RMCFV	PENV_SFV1	PENV_SFV3L	PENV_SIVAL	PENV SIVAU	PENV_SIVAT	PENV_SMSAV	PHEMA_CVMA5	PHEMA_IADE1	PHEMA_MUMEM	PHEMA_MUMPS	148-168 PHEMA_PHODV
CTLZIP,		380–400 380–400	170-190	781-801	780-800	9-29	255-275	9-29	428-448	400-420	643-663	643-663	75-95	42–62	924-944	921–941	765 795	CQ/-CO/	769-789	773-793	493-513	391-411	391-411	391-411 261 411	407-422	81-101	81-101	397–417	397-417	397-417	493-513 277 247	722-342 13-33	13-33	497-517	322-342	322-342	322-342	322-342	27–47
Search Results Summary for P3CTLZIP, P4CTLZIP, P5CTLZIP, and P6CTLZIP Motifs	P5CTLZIP LIBRARY FILE	PENV1_FRSFV PENV2_FRSFV	PENV_BAEVM	PENV_FIVPE penv_fivsd	PENV FIVT2	PENV_FLVGL	PENV_FOAMV	PENV_FSVGA	PENV_HVIC4	PENV_HV2CA	PENV_MMTVB	PENV_MMTVG	PENV_OMVVS	PENV_RSVP	PENV_SFV1	PENV_SFV3L	PENV_SIVMI	FENV_SIVINIS	PENV_SIVML			PHEMA_CVBLY		PHEMA_CVBQ		PHEMA	PHEMA_IADMA	PHEMA_MUMPM	PHEMA_MUMPR	PHEMA_MUMPS	PHEMA_PHODV		PHEMA	PHEMA_RINDL	PHEMA_SEND5	PHEMA_SENDF	PHEMA_SENDI		34 PVENV_LELV
1 Results Sur P5CTLZI																				150-169	0.1				629-648	625-644						1072-1091							1115-1134
Search		380–399 98–117	147-166	123–142 0–20	718-797	541-560	533-552	173-192	1/3-192	173-192	62-81	61-80	61-80	29-48	169-188	376-395	315-334	565-0/5 283 EUS	02/040 3554	103-122	31-50	659-678	231-250	90-109 151 151	161-261	19-38	1038-1057	62–81	380-399	337-356	142-161	318-337	1587-1606	991-1010	991-1010	0101-166	0101-166	991-1010	768–787
	P4CTLZIP LIBRARY FILE			PENV_HV1ZH	<u> </u>		PENV_RSVP	PHEMA_VACCC	PHEMA_VAUL	PHEMA_VACU	PVENV_BEV	PVENV_MCV1					PVG01_VACCV	FVGUL_VAKV			PVG1	PVG1_	PVG20_BPT4	PVG32_VZVD	PVG37 BPT2	PVG37_BPT4		PVG41_HSVI1	PVG43_BPPF3	PVG46_BPPF1	PVG59_HSVII	PVG67 HSVI	PVGF1_IBVB			PVGL2_CVBLY			PVGL2_CVH22
																					3374-3392						689-707												177–195
		147–165 810–828	808-826	750-768	741-759	742-760	751–769	743-761	/45-/65	5/0-594 118-136	118-136	55–73	473-491	83-101	115-133	344-362	14-32	-04 -07	0221 84-107	165-173	2788-2806	1053-1071	1056-1074	1055-1073	1055-1073	1055-1073	560-578	692-710	584-602	710-758	89/-NC/	431-449	431-449	2–94	314-332	814-832 007 076	5-94	678-696	134–152
	P3CTLZIP LIBRARY FILE	PENV_BIV27 PENV_CAEVC	PENV_CAEVG	PENV_HV2BE	PENV HV2G1	PENV HV2NZ	PENV_HV2RO	PENV_HV2SB	PENV_HV2ST	PHEMA PI2H	PHEMA_PI2HT	PHEMA_6V41	PVENV_THOGV	PVG16_BPP22	PVG24_BPT4	PVG36_HSVSA	PVG40_HSVI1	FVU5U_H5V5A	PVG51_BF14	PVG65 HSVI1	PVGF1_IBVB	PVGL2_CVH22	PVGL2_IBV6	PVGL2_IBVB	PVGL2_LBVD2 PVGL2_IBVK	PVGL2_IBVM	PVGLB_HSVB1	PVGLB_HSVBC	PVGLB_HSVSA	PVGLB_ILIV6	PVGLB_ILLVS	PVGLC VZVD	PVGLC_VZVS	PVGLF_PI3H4	PVGLH_HSV6G	PVGLH_HSVE4	PVGLI HSV11	PVGNM BPMV	PVM01_VACCC

TABLE VII

59

		379-400 379-400 379-400
		$\begin{array}{c} 13-34\\ 15-34\\ 1-28\\ 7-28\\ 7-28\\ 7-28\\ 7-28\\ 7-28\\ 169-190\\ 589-610\\ 314-335\\ 65-86\\ 157-178\\ 157-178\\ 157-178\\ 157-178\\ 157-187\\ 157-187\\ 157-187\\ 157-187\\ 157-188\\ 1157-1280\\ 11259-1280\\ 11259-1280\\ 11259-1280\\ 11259-1280\\ 11259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\ 1259-1280\\$
	P6CTLZIP LIBRARY FILE	PHEMA_PI2H PHEMA_PI2H PHEMA_SV5 PHEMA_SV5 PHEMA_SV5 PHEMA_SV5 PHEMA_SV5 PHEMA_SV5 PHEMA_SV5 PHEMA_SV5 PVG01_HSVEB PVG01_HSVEB PVG01_HSVEB PVG01_HSVEB PVG01_HSVEB PVG01_HSVEB PVG01_HSVEB PVG01_HSVEB PVG63_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG55_HSV11 PVG52_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_CVB4 PVG12_PVG12_PVG1 PVG12_PVG12_PVG1 PVG12_PVG12_PVG1 PVG12_PVG12_PVG12_PVG1 PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12_PVG12
STLZIP,		$\begin{array}{c} 356-376\\ 356-376\\ 298-318\\ 237-257\\ 31-51\\ 31-51\\ 31-51\\ 31-51\\ 31-51\\ 31-51\\ 31-51\\ 31-51\\ 328-348\\ 29-49\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-348\\ 328-3$
Search Results Summary for P3CTLZIP, P4CTLZIP, P5CTLZIP, and P6CTLZIP Motifs	P5CTLZIP LIBRARY FILE	PVENV_THOGV PVG01_VACCC PVG01_VACCV PVG01_VACCV PVG00_VACCV PVG00_DRPF1 PVG00_DRPF1 PVG00_DRPF1 PVG03_BFV11 PVG12_BV11 PVG12_BV11 PVG13_BSV11 PVG13_BSV11 PVG13_BSV11 PVG13_BSV11 PVG13_BSV11 PVG13_BV13 PVG12_BV03 PVG12_BV03 PVG12_BV03 PVG12_BV03 PVG12_BV03 PVG12_BV03 PVG12_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG13_BV03 PVG14_BUNV3 PVG14_BUNV3 PVG14_BUNV3 PVG14_BUNV3 PVG14_BUNV3 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4 PVG14_BUNV4
Results Summ P5CTLZIP, 4		1038-1057 1036-1057 770-789 770-789 770-789 770-789 467-486
Search ]		999–1018 947–966 856–877 64–83 64–83 814–833 814–833 814–833 814–833 814–833 814–833 814–833 814–833 814–833 814–806 588–607 588–607 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 588–606 705–235 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 707–725 7
	P4CTLZIP LIBRARY FILE	126-144 PVGL2_CVM4 PVGL2_CVMA5 PVGL2_CVPRM PVGL2_CVPRM PVGL2_CVPRM PVGL2_CVPRM PVGL2_CVPRM PVGL2_EVPRM PVGL2_EVPRM PVGL2_BVV6 PVGL2_BVV6 PVGL2_BVV7 PVGL2_BVV7 PVGL2_BVV7 PVGL2_BVV7 PVGL2_BVV1 PVGL2_BVV7 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_BVV1 PVGL2_EVV1 PVGL2_EVV1 PVGL2_EVV1 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_PVV0 PVGLA_
		83-101 2277-245 14-62 190-208 183-201 183-201 183-201 183-201 183-201 183-201 183-201 183-201 183-201 183-201
	P3CTLZIP LIBRARY FILE	PVM01_VACCV PVM1_REOVD PVMAT_HRSVA PVMAT_NDVA PVMAT_NDVB PVMP_CAMVE PVMP_CAMVE PVMP_CAMVS PVMP_CAMVS PVMP_CAMVS

61

	Search Results Sumr P5CTLZIP	Search Results Summary for P3CTLZIP, P4CTLZIP, P5CTLZIP, P5CTLZIP, and P6CTLZIP Motifs	CTLZIP,			
P3CTLZIP LIBRARY FILE	P4CTLZIP LIBRARY FILE	P5CTLZIP LIBRARY FILE		P6CTLZIP LIBRARY FILE		
		PVGLM_SEOUR	1000-1020	PVGLF_PI3B	405-426	453-474
		PVGLM_SEOUS	999-1019 075-015	PVGLF_PI3H4 PVGLF_PI3H4	453-474 220-241	
		PVGLY LYCVA	12-32	PVGLF RINDL	220-241	
		PVGLY_LYCVW	12-32	PVGLF_SEND5	460-481	
		PVGLY_PIARV	12-32	PVGLF_SENDF	460-481	
		PVGNB_CPMV	141-161	PVGLF_SENDH	460 - 481	
		PVMAT_MUMPS	310-330	PVGLF_SENDJ	460-481	
		PVMAT_NDVA	309-329	PVGLF_SENDZ	460-481	
		PVMAL_NDVB	309-329 308-378	PVGLF_SV41 DVGLF_SV41	453-474	
		PVMAT PI4HA	312-332	PVGLH HCMVA	691-712	
		PVMAT PI4HB	312-332	PVGLH HCMVT	690-711	
		PVMAT_SV41	308-328	PVGLH_HSVE4	304-325	
		PVMAT_SV5	308–328	PVGLH_HSVEB	297–318	
			74–94	PVGLH_HSVSA	658-679	
		PVME1_IBVB	74-94	PVGL1_HSV2	2–23	
			74-94	PVGL1_HSV23	2–23	
		PVME1_IBVK	74-94	PVGLM_BUNGE	197–218	
		PVMSA_HPBDB	201-221	PVGLM_BUNL7	190-211	
		PVMSA_HPBGS	209-229	PVGLM_BUNSH	190–211	
		PVMSA_HPBHE	293-313	PVGLM_BUNYW	193-214	
		PVMSA_WHV1	20/-22/	PVGLY_LASSG	257-258	
		PVMSA_WHV59	212-232	PVGLY_LASS	258-259	
		PVMSA_WHV/	212-232	PVGP8_EBV	67-88 261-88	
		FVMSA_WHV8 DVMSA_WHVBI	212-252 212 222		201-202 230 251	
		PVMSA WHVW6	63-83	PVMAT HRSVA	139-160	
				PVMAT RINDK	200-221	239-260
				PVMAT_TRTV	122-143	
				PVME1_CVHOC	64-85	
				PVMSA_HPBDB	201-222	
				PVMSA_HPBVO	70-91	
				F VIMSA_HF D V 2 PVMSA_HP BV4	244-265	
				PVMSA HPBV9	244-265	
				PVMSA_HPBVA	233-254	
				PVMSA_HPBVD	70-91	
					233–254	
				PVMSA_HPBVJ	233-254	
				PVMSA_HPBVL	233–254 70.01	
				PVMSA HPBVO	233-254	
				PVMSA_HPBVP	244-265	
				PVMSA_HPBVR	244-265	
				PVMSA_HPBVS	16-07	

			233-254	223-254	233-254	25-46	25-46	25-46	25-46	25-46	25-46	25-46	25-46	25-46	25-46	25-46	25-46
		P6CTLZIP LIBRARY FILE	PVMSA_HPBVW	PVMSA_HPBVY	PVMSA_HPBVZ	PVMT2_IAANN	PVMT2_IABAN	PVMT2_IAFOW	PVMT2_IAFPR	PVMT2_IAFPW	PVMT2_IALE1	PVMT2_IALE2	PVMT2_IAMAN	PVMT2_IAPUE	PVMT2_IASIN	PVMT2_IAUDO	PVMT2_IAWIL
TABLE VII-continued	Search Results Summary for P3CTLZIP, P4CTLZIP, P5CTLZIP, and P6CTLZIP Motifs	P5CTLZIP LIBRARY FILE															
		P4CTLZIP LIBRARY FILE															
		P3CTLZIP LIBRARY FILE															

## TABLE VIII

			TA	BLE VIII				
				Summary for P7C nd P9CTLZIP M				
P7CTLZIP LIBRARY FILE			P8CTLZIP LIBRARY FILE			P9CTLZIP LIBRARY FILE		
PEN_BAEVM	202-224		PENV1_FRSFV	380-403		PENV_BLVAF	303-327	
PENV_HV1B1 PENV_HV1B8	498–520 493–516		PNEV2_FRSFV PENV_BIV06	380-403 178-201		PENV_BLVAU PENV_BLVAV	303–327 303–327	
PENV_HV1BN	494-516		PENv_BIV27	207-230		PENV_BLVB2	303-327	
PENV_HV1BR	503-526		PENV_FOAMV	664–887		PENV_BLVB6	303-327	
PENV_HV1EL	495-517		PENV_HV1Z3	175-198		PENV_BLVJ	303-327	
PENV_HV1H2 PENV_HV1H3	498–520 498–520		PENV_HV2BE PENV_HV2CA	3–26 750–773	781–804	PENV_FIVPE PENV_FIVSD	781–806 779–803	
PENV_HV1H3 PENV_HV1J3	498-520 510-532		PENV_HV2CA PENV_HV2D1	3–26	772-795	PENV_FIV5D PENV_FIVT2	780-804	
PENV_HV1JR	490-512		PENV_HV2G1	772-795		PHEMA_CVBLY	391-415	
PENV_HV1KB	504-529		PENV_HV2NZ	777-800		PHEMA_CVBM	391-415	
PENV_HV1MA PENV_HV1MF	500–522 496–518		PENV_JSRV PENV_SFV1	541–564 884–887		PHEMA_CVBQ PHEMA_CHVOC	391–415 391–415	
PENV_HV1NIF	488-510		PENV_SFV3L	861-804		PHEMA_INCCA	442-446	
PENV_HV1PV	496-520		PENV_SIVM1	803-826		PHEMA_INCEN	430-454	
PENV_HV1S1	489-511		PENV_SIVMK	802-825		PHEMA_INCGL	430-454	
PENV_HV1Z2 PENV_HV1Z6	123-145	495–517	PENV_SIVML	801-824		PHEMA_INCHY	429–453 443–467	
PENV_HV1Z8	497–519 505–527		PENV_SIVS4 PENV_SIVSP	806–829 810–833		PHEMA_INCJH PHEMA INCKY	429-453	
PENV_HV1ZH	498-520		PHEMA_CDVO	200-223		PHEMA_INCMI	429-453	
PENV_JSRV	376-398		PHEMA_PI2H	65–88		PHEMA_INCNA	429-453	
PENV_MPMV PENV_SRV1	213–235 213–235		PHEMA_PI2HT PVF11_VACCC	65–88 161–184		PHEMA_INCP1 PHEMA_INCP2	430–454 430–454	
PHEMA_IAAIC	37-59		PVF15 VACCC	25-48		PHEMA_INCP2 PHEMA_INCP3	430-454	
PHEMA_IABAN	21-43		PVF15_VACCP	3-26		PHEMA_INCTA	430-454	
PHEMA_IADA3	37–59		PVG1L_AMEPV	313-336		PHEMA_INCYA	430-454	
PHEMA_IADH2	21-43 21-43		PVG28_HSVI1	491–514 322–345		PHEMA_MUMPM	101–125 101–125	
PHEMA_IADH3 PHEMA_IADH4	21-43 21-43		PVG43_HSVI1 PVG52_HSVI1	229-252		PHEMA_MUMPR PHEMA_MUMPS	101-125 101-125	
PHEMA_IADH5	21-43		PVG67_HSVI1	722-745		PHEMA_PI1HW	29-53	
PHEMA_IADH6	21-43		PVGL2_CVBF	10-33		PVENV_BEV	62-88	
PHEMA_IADH7 PHEMA_IADM2	21–43 37–59		PVGL2_CVBL9 PVGL2_CVBLY	651-674 10-33		PVF05_BACCC PVF05_VACCP	280–304 380–304	
PHEMA_IADM2 PHEMA_IADMA	28-50		PVGL2_CVBL1 PVGL2_CVM4	1267–1280		PVF05_VACCV	281-305	
PHEMA_IADU3	37-59		PVGL2_CVMA5	1215-1238		PVF09_VACCC	176-200	
PHEMA_IAEN6	21-43		PVGL2_CVMJH	1126–1149		PVF09_VACCV	176-200	
PHEMA_IAEN7 PHEMA_IAMAO	37–59 37–59		PVGL2_CVPFS PVGL2_CVPPU	1274–1297 1272–1295		PVGO1_VZVD PVG10_HSVSA	58–82 355–379	
PHEMA_IAMAO	37-59		PVGL2_CVPR8	1050-1073		PVG10_HSVSA PVG12_HSVSA	68–92	
PHEMA_IAME2	37-59		PVGL2_CVPRM	1050-1073		PVG19_HSVI1	88-112	
PHEMA_IAME6	21-43		PVGL2_FIPV	1277-1300		PVG28_HSVI1	173–197	
PHEMA_IANT6 PHEMA_IAQU7	37–59 21–43		PVGL2_IBV6 PVGL2_IBVB	196–219 95–218		PVG43_HSVI1 PVG87_HSVI1	109–133 108–132	1005-1029
PHEMA_IATKM	33-55		PVGL2_IBVD2	196-219		PVG72_HSVI1	720-744	1005 1025
PHEMA_IAUDO	37–59		PVGL2_IBVD3	196-219		PVGF1_IBVB	3601-3826	
PHEMA_IAVI7	38-60		PVGL2_IBVK	195-218		PVGL8_HSVMD	589-613	
PHEMA_IAX31 PHEMA_IAZCO	37–59 37–59		PVGL2_IBVM PVGL2_IBVU1	195–218 178–201		PVGLB_ILTV8 PVGLB_ILTV3	597–621 607–631	
PHEMA_IAZH2	21-43		PVGL2_IBVU2	178-201		PVGLB_ILTVT	607-631	
PHEMA_IAZH3	21-43		PVGL2_IBVU3	178-201		PVGLE_HSVI1	413–437	
PHEMA_IAZUK PHEMA_PHODV	37–59 36–58		PVGLB_HCMVA PVGLB_HCMVT	525–558 536–559		PVGLE_VZVD PVGLF_SVS	489–493 401–425	
PHEMA_PI2H	65–87		PVGLS HSVSA	483-506		PVGLH HCMVA	401–423 574–599	
PHEMA_PI2HT	65-87		PVGLB_MCMV8	566-589		PVGLH_HCMVT	573-597	
PVFP7_CAFVK	89–111		PVGLC_HSVI1	467-490		PVGLH_HSV11	443-467	803-827
PVFUS_VACC6 PVGO1_HSVI1	72–94 317–339		PVGLC_HSV1K PVGLC_HSV2	467–490 435–458		PVGLH_HSV1E PVGLM BUNL7	443–467 31–55	803-827
PVGO3_VACCC	50-72		PVGLC_HSV23	436-459		PVGLM_BUNSH	31-55	
PVGO3_VARV	50-72		PVGLM_BUNL7	1387-1410		PVGLM_HANTH	694–718	
PVGO4_VACCC	11–33		PVGLM_BUNSH	1387–1410		PVGLM_RVFV	344–368	
PVGO4_VARV PVG19_HSVI1	11–33 88–110		PVGLM_UUK PVGLY_JUNIN	966–989 12–35		PVGLM_RVFVZ PVGLM_UUK	344–368 561–585	
PVG19_HSVI1 PVG28_HSVI1	88–110 173–195		PVGLY_JUNIN PVGLY_LASSG	12-35		PVGLM_UUK PVGNM_CPMV	301-385 311-335	
PVG29_HSVI1	20-42		PVGLY_LASSJ	12-35		PVGP2_EBV	657-681	
PVG46_HSVI1	134-156		PVGLY_LYCVA	12-35		PVGP3_EBV	854-878	
PVG48_HSVSA PVG58_HSVSA	71–93 266–288		PVGLY_LYCVW PVGLY_MOPEI	12–35 12–35		PVM1_REOVD PVM1_REOVL	380–304 280–304	
PVG59_HSVI1	267-289		PVGLY_TACV	12-35		PVM1_REOVL PVM21_REOVD	280-304 188-192	
PVG5_SPV4	42-64		PVGLY_TACV5	12-35		PVM22_REOVD	168-192	
PVG60_HSVI1	53-75		PVGLY_TACV7	12-35		PVM2_REOVJ	168-192	
PVG85_HSVI1 PVG6_SPV1R	1347–1369 60–82		PVGLY_TACVT PVGNM_CPMV	12–35 741–764		PVM2_REOVL PVMAT_MEAS1	168–192 87–111	
PVGL2_IBV6	1055-1078		PVM1_REOVD	324-347	454–477	PVMAT_SSPVB	314-338	
			_ · -					

				ummary for P7CTLZIP, d P9CTLZIP Motifs		
P7CTLZIP LIBRARY FILE			P8CTLZIP LIBRARY FILE		P9CTLZIP LIBRARY FILE	
PVGL2_IBVB PVGL2_IBVD2 PVGL2_IBVVD2 PVGL2_IBVVM PVGL2_IBVM PVGLB_HSV6U PVGLC_HSVMB PVGLC_HSVMB PVGLC_HSVMB PVGLC_HSVMM PVGLF_BRSVA PVGLF_BRSVA PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HRSV1 PVGLF_HSV1 PVGLF_HRSV1 PVGLF_LSS1 PVG1Y_LSS1 PVG1Y_LSS1 PVMAT_SENDF PVMAT_SS1 PVMAT_SS1 PVMAT_SS1 PVMAT_SS1 PVMAT_SS1	$\begin{array}{c} 1055-1077\\ 1056-1078\\ 1055-1077\\ 1055-1077\\ 1055-1077\\ 117-139\\ 745-767\\ 399-421\\ 398-420\\ 399-421\\ 265-287\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-506\\ 484-$	482–504	PVM1_REOVL PVMAT_MUMPS PVMSA_HPBDB PVMSA_HPBDC PVMSA_HPBDU PVSMA_HPBDW PVMSA_HPBHE	454-477 227-250 269-292 268-291 231-254 269-292 236-259	PVME1_CVBM PVME1_CVHOC PVME1_CVTKE PVME1_IBV6 PVME1_IBV8 PVME1_IBV8 PVMSA_IHPB68 PVMSA_WHV1 PVMSA_WHV59 PVMSA_WHV59 PVMSA_WHV59 PVMSA_WHV8 PVMSA_WHV8 PVMSA_WHV8 PVMSA_WHV8I	137-161 137-161 137-161 74-98 74-98 74-98 271-295 269-293 274-298 274-298 274-298 274-298 125-149
PVMP_CERV	293-315					

TABLE I	IX
---------	----

Search Results Summary for P12CTLZIP Motif									
P12LZIPC									
LIBRARY FILE									
PENV1_FRSFV	380-407								
PENV2_FRSPV	380-407								
PENV_AVISU	98–117								
PENV_BAEVM	202-224								
PENV_BIVO6	525-546								
PENV_BIV27	147–168	207-230	463-479	554–575					
PENV_BLVAF	303-327								
PENV_BLVAU	303-327								
PENV_BLVAV	303-327								
PENV_BLVB2	303-327								
PENV_BLVB6	303-327								
PENV_BLVJ	303-327								
PENV_FENV1	30-47	225-246	630-651						
PENV_FLVC6	38–55	624-645							
PENV_FLVGL	9–29	447–468	606-626						
PENV_FLVLB	467–488	613-646							
PENV_FLVSA	444-465	602-623							
PENV_FOAMV	153-174	255-275	300-325	481-496	710-727	864–887	924–951	957–978	
PENV_FSVGA	9–29	467-488	625-646						
PENV_FSVGB	447-468	605-626							
PENV_FSVSM	450-471	608–629							
PENV_FSVST	467-488								
PENV_GALV	52-73	519-540							

# US 6,440,656 B1

71

## TABLE IX-continued

			11	ADLE IA-C	ontinued			
			Search Resu	lts Summary f	or P12CTLZIP	Motif		
PENV_HV181	498-520							
PENV_HV188	493-515							
PENV_HV18N	494-516							
PENV_HV18R FENV_HV1C4	503–525 428–448							
PENV_HV1EL	495-517							
PENV_HV1H2	498-520							
PENV_HV1H3	498-520							
PENV_HV1J3	510-532							
PENV_HV1JR PENV_HV1KB	490–512 604–626	552-579	752–768					
PENV_HV1MA	438-453	500-522	102 100					
PENV_HV1MF	496-518							
PENV_HV1ND	488-510							
PENV_HV1OY PENV_HV1PV	123–140 498–520							
PENV_HV1RH	445-460							
PENV_HV1S1	489–511	7380–754						
PENV_HV1Z2	123-145	410-427	495–517					
PENV_HV1Z3 PENV_WV1Z6	117–133 497–519	175–198						
PENV_HV1Z8	505-527							
PENV_HV1ZH	123-142	438-453	498-520					
PENV_HV2BE	3-26	750–775	781-804					
PENV_HV2CA PENV_HV2D1	750–777 3–26	741–766	772–795					
PENV_HV2D2	3–20 9–28	/41=/00	112-195					
PENV_HV2G1	741–766	772–795						
PENV_HV2NZ	742-767	777-800						
PENV_HV2RO	751-776	770 001						
PENV_HV2SB PENV_HV2ST	743–768 745–770	778–804						
PENV_JSRV	104-119	299-325	376-398	541-564				
PENV_MCFF	600-621							
PENV_MCFF3	601-622							
PENV_MLVAV PENV_MLVCB	630–651 625–646							
PENV_MLVF5	639-660							
PENV_MLVFF	639–660							
PENV_MLVFP	639-660							
PENV_MLVHO PENV_MLVKI	626–647 187–188							
PENV_MLVMO	629-650							
PENV_MLVRD	624–645							
PENV_MLVRK	624-645							
PENV_MMTVB PENV_MMTVG	643–663 643–663							
PENV_MPMV	213-235							
PENV_MSVFB	170-191							
PENV_OMVVS	75-100	658–683						
PENV_RMCFV PENV_RSVP	603–624 42–69	533-552						
PENV_SFV1	300-325	710-727	864-887	924-951	957–978			
PENV_SFV3L	157–178	304-329	707–724	861-884	921–948	954–975		
PENV_SIVA1 PENV_SIVAG	437–458 442–463							
PENV_SIVAU	421-442							
PENV_SIVAT	435-456							
PENV_SIVGB	93-109							
PENV_SIVM1 PENV_SIVM2	766–793 139–154	803–826 765–792	802-825					
PENV_SIVMK	139–154	764-791	801-824					
PENV_SIVML	769–789	806-829						
PENV_SIVS4	773–793	810-833						
PENV_SMSAV PENV_SRV1	42–63 213–235							
PHEMA_CDVO	215-255 36-53	200-223						
PHEMA_CVBLY	391-415							
PHEMA_CVBM	391-415							
PHEMA_CVBQ PHEMA_CYNOC	391–415 391–415							
PHEMA_CVMA5	391-415 402-123							
PHEMA_CVMS	403-418							
PHEMA_IAAIC	37-59	322-339						
PHEMA_IABAN PHEMA_IABUD	21–43 320–337	306-323						
PHEMA_IACUA	320-337							

			Search Results Summary for P12CTLZIP Motif
PHEMA_IACKG	81-101	316-333	
PHEMA_IACKP	302-319	510 555	
PHEMA_IACKQ	302-319		
PHEMA_IACKS	319-336		
PHEMA_IACKV	230-246	315-332	
PHEMA_IADA1	320-337		
PHEMA_IADA2 PHEMA_IADA3	319–336 37–59	322-339	
PHEMA_IADCZ	320-337	522-559	
PHEMA_IADE1	266-287		
PHEMA_IADH1	306-323		
PHEMA_IADH2	21-43	306-323	
PHEMA_IADH3	21-43	306-323	
PHEMA_IADH4 PHEMA_IADH5	21–43 21–43	306–323	
PHEMA_IADH6	21-43	306-323	
PHEMA_IADH7	21-43	306-323	
PHEMA_IADM2	37–59	322-339	
PHEMA_IADMA	26-50	81-101	
PHEMA_IADNZ PHEMA_IADU3	320–337 37–59	322-339	
PHEMA_IAEN6	21-43	306-323	
PHEMA_IAEN7	37-59	322-339	
PHEMA_IAFPR	230-246	315-332	
PHEMA_IAGRE	320-337		
PHEMA_IAGU2	320-337		
PHEMA_IAGUA PHEMA_IAHAL	319–336 321–338		
PHEMA_IAHAR	230-246	315-332	
PHEMA_IAHC6	230-246	315-332	
PHEMA_IAHC7	230-246	315-332	
PHEMA_IAHCD	230-246	315-332	
PHEMA_IAHDE PHEMA_IAHFO	230–246 236–252	315–332 321–338	
PHEMA_IAHK6	321-338	001 000	
PHEMA_IAHK7	236-252	321-338	
PHEMA_IAHLE	230-246	315-332	
PHEMA_IAHLO PHEMA_IAHMI	230–246 236–252	315–332 321–338	
PHEMA_IAHNM	236-252	321-338	
PHEMA_IAHNN	315-332		
PHEMA_IAHPR	315-332		
PHEMA_IAHRO PHEMA_IAHSA	236–252 236–252	321–338 321–338	
PHEMA_IAHSP	230-246	321-338 315-332	
PHEMA_IAHSW	230-246	315-332	
PHEMA_IAHTE	236-252	321-338	
PHEMA_IAHTO	236-252	321-338	
PHEMA_IAHUR PHEMA_IAJAP	236–252 317–334	321-338	
PHEMA_IAMAA	197-223	319-336	
PHEMA_IAMAB	202-228	324-341	
PHEMA_IAMAO	37-59	322-339	
PHEMA_IAME1	37-59	322-339	
PHEMA_IAME2 PHEMA_IAME6	37–59 21–43	322–339	
PHEMA_IAME0	85–101	231-247	316–333
PHEMA_IANT6	37-59	322-339	510 555
PHEMA_IAPIL	320-337		
PHEMA_IAQU7	21-43	306-323	
PHEMA_IARUD PHEMA_IASE2	320–337 320–337		
PHEMA_IASH2	321-338		
PHEMA_IASTA	230-246	315-332	
PHEMA_IATAI	33–55	320-337	
PHEMA_IATKI PHEMA_IATKR	233-249		
PHEMA_IAIKK PHEMA_IATKW	230–246 229–245		
PHEMA_IAUDO	37–59	322-339	380-397
PHEMA_IAVI7	38-60	323-340	
PHEMA_IAX31 PHEMA_IAZCO	37–59 37–59	322-339	
PHEMA_IAZCO PHEMA_IAZH2	37-59 21-43	322-339 306-323	
PHEMA_IAZH3	21-43	306-323	
PHEMA_IAZUK	37-59	322-339	
PHEMA_INBAA PHEMA_INBBE	115–131 123–139	295–310 303–318	
THEMA_HODE	120-107	505-510	

# US 6,440,656 B1

## TABLE IX-continued

TABLE IX-continued									
			Search Resu	lts Summary f	for P12CTLZIP Motif				
PHEMA_INBBO	116–132	293–308							
PHEMA_INBEN PHEMA_INBFU	123–139 108–124	301–316 266–301							
PHEMA_INBGL	108-124 119-135	200–301 296–311							
PHEMA_INBHK	116-132	293–308							
PHEMA_INBIB	108-124	288-303							
PHEMA_INBID PHEMA_INBLE	120–136 123–139	299–314 302–317							
PHEMA_INBMD	113-129	292-307							
PHEMA_INBME	116-132	296-311							
PHEMA_INBNA PHEMA_INBOR	108–124 123–139	288–303 301–316							
PHEMA_INBSI	123–139	301-316							
PHEMA_INBSJ	119-135	298-313							
PHEMA_INBUS PHEMA_INBVI	116–132 116–132	294–309 296–311							
PHEMA_INBVK	123-139	303-318							
PHEMA_INBYB PHEMA_INCCA	108–124 442–466	288-301							
PHEMA_INCEN	430-454								
PHEMA_INCGL	430-454								
PHEMA_INCHY PHEMA_INCJH	429–453 443–467								
PHEMA_INCKY	429-153								
PHEMA_INCMI	429-153								
PHEMA_INCNA PHEMA_INCP1	429–453 430–454								
PHEMA_INCP2	430-454								
PHEMA_INCP3	430-454								
PHEMA_INCTA PHEMA_INCYA	430–454 430–454								
PHEMA_MUMPM	133-148	225-246	387–394	397-417					
PHEMA_MUMPR PHEMA_MUMPS	101–125 101–125	133–148 133–148	225–246 225–246	397–417 367–394	397-417				
PHEMA_NDVA	93–110	155-140	223-240	507-594	577-417				
PHEMA_NDVB	93-110								
PHEMA_NDVD PHEMA_NDVH	93–110 93–110								
PHEMA_NDVI	93-110								
PHEMA_NDVM	93-110 02 110								
PHEMA_NDVQ PHEMA_NDVTG	93–110 93–110								
PHEMA_NDVU	93–110								
PHEMA_PHODV PHEMA_PI1HW	36–56 29–53	213–234 322–342	493–513 345–360	486-503					
PHEMA_PI2H	13-40	65-88	118-136	100 000					
PHEMA_PI2HT	13-40	65-88	118-136						
PHEMA_PI3B PHEMA_PI3H4	111–128 111–128	272–299 272–299	324–340 324–340						
PHEMA_PI3HA	111-128	272–299	324-340						
PHEMA_PI3HT	111-128	272-299	324-340						
PHEMA_PI3HU PHEMA_PI3HV	111–128 111–128	272–299 272–299	324–340 324–340						
PHEMA_PI3HW	111 - 128	272–299	324-340						
PHEMA_PI3HX PHEMA_PI4HA	111–128 50–67	272–299	324-340						
PHEMA_RINDK	368-383								
PHEMA_RINDL	4-30								
PHEMA_SEND5 PHEMA_SENDF	322–342 322–342								
PHEMA_SENDH	322-342								
PHEMA_SENDJ PHEMA_SENDZ	322–342 322–342								
PHEMA_SENDZ PHEMA_SV41	322-342 55-73	85-102	107-132						
PHEMA_SV5	7–28	84-101	379-400						
PHEMA_SV5CM PHEMA_SV5CP	7–28 7–28	84–101 84–101	379–400 379–400						
PHEMA_SV5CP	7–28 7–28	84–101 84–101	379 <b>–</b> 400 379–400						
PHEMA_VACCC	173–192								
PHEMA_VACCI PHEMA_VACCT	173–192 173–192								
PHEMA_VACCV	173–192								
PVENV_BEV PVENV_DNVI1	62-86 42-57	87–114 484–511							
PVENV_DNVII PVENV_EAV	42–57 25–41								
PVENV_LELV	27–47	148–168							
PVENV_MCV1	61-80								

# US 6,440,656 B1

77

# TABLE IX-continued

			Search Result	ts Summary for	r P12CTLZIP	Motif		
PVENV_MCV2	61-80	306-333		-				
PVENV_THOGV	196-221	356-383	473-491					
PVFO5_VACCC	280-305							
PVFO5_VACCP	280-305							
PVFO5_VACCV	280-305							
PVF09_VACCC	176-200							
PVF09_VACCV PVF11_VACCC	176–200 161–184							
PVF15_VACCC	25-48							
PVF15_VACCP	3-26							
PVFP1_FOWPV	297-323							
PVFP2_FOWPV	68–104							
PVFP7_CAPVK	89–111							
PVFP7_FOWPV PVFP8_CAPVK	65–90 51–76							
PVFUS_ORFNZ	29-48							
PVFUS_VACC6	72–94							
PVGO1_HSVEB	169–195							
PVGO1_HSVI1	210-225	317-339	589-616					
PVGO1_VACCC	298-318	376-395						
PVGO1_VACCV PVGO1_VARV	237–257 298–318	315–334 376–395						
PVGO1_VARV PVGO1_VZVD	298-318 58-82	510-595						
PVGO3_VACCC	50-72							
PVGO3_VARV	50-72							
PVGO4_VACCC	11-33							
PVGO4_VARV	11-33							
PVGO6_VACCC PVGO6_VARV	31–51 31–51							
PVGO8_HSVI1	134-149	159–185						
PVG10_HSVI1	35-54							
PVG10_HSVSA	109-124	355-379						
PVG11_HSVI1	103-122	150-176						
PVG12_HSVI1	151-178	270–286						
PVG12_HSVSA PVG15_HSVEB	68–92 194–209							
PVG19_HSVI1	88-112							
PVG1L_AMEPV	313-336							
PVG1_SPV1R	76–92	359-676						
PVG22_HSVI1	300-327							
PVG23_HSVI1	314–335 158–184							
PVG27_HSVI1 PVG27_HSVSA	209-226							
PVG28_HSVI1	173-197	491-518						
PVG28_HSVSA	14-40							
PVG29_HSVI1	20-42							
PVG30_HSVI1	166-191							
PVG32_VZVD PVG36_HSVSA	90–109 108–123	344-362						
PVG37_HSVI1	284-299	511 502						
PVG39_HSVI1	646-675	970–990	1038-1065					
PVG40_HSVI1	14-32							
PVG41_HSVI1	11-38	62-81 157, 179	244-260	501 500				
PVG43_HSVI1 PVG46_HSVI1	109–133 134–156	157–178 580–607	322–345 937–963	521–538 1244–1270				
PVG48_HSVSA	71–93	300 007	201 200	1217-1210				
PVG50_HSVI1	5-30	58-83						
PVG50_HSVSA	63-81	95-117	206-233					
PVG51_HSVI1	29-49	84-102						
PVG52_HSVI1 PVG55_HSVI1	229-252 22-37	143-168	788 200					
PVG55_HSVII PVG55_HSVSA	22–37 85–106	243-109	288-309					
PVG56_HSVI1	1155-1176							
PVG58_HSVSA	130-146	266-288	293-319	330-346				
PVG59_HSVI1	142-161	267–289						
PVG5_SPV4	42-84	52 75						
PVG60_HSVI1 PVG61_HSVI1	30–51 76–102	53–75 117–136						
PVG61_HSVI1 PVG63_HSVI1	238-259	336-383						
PVG64_HSVI1	420-445	200 000						
PVG65_HSVI1	117–137	155–173	362-378	518-533	1147–1174	1347–1369		
PVG67_HSVI1	108-132	171–188	318-344	722–745	1005-1029	1072-1091	1315–1341	
PVG6_SPV1R	60-82							
PVG70_HSVI1 PVG71_HSVSA	184–209 69–105							
PVG72_HSVI1	445-471	535-561	720-744	1252-1269				
PVG74_HSVSA	124–151							

TABLE IX-continued

Search Results Summary for P12CTLZIP Motif									
PVG9_SPV1R PVGF1_IBVB	57–72 1587–1606	1856–1877	2108–2127	2210-2226	2788–2806	2973–2999	3073–3090	3374–3390	3601– 3625
PVGH3_HCMVA PVGL2_CVBF PVGL2_CVBL9 PVGL2_CVBL9 PVGL2_CVBM PVGL2_CVBQ	157–178 10–33 123–139 10–33 123–139 31–47	123–139 174–190 123–139 174–190 123–139	174–190 264–279 174–190 264–279 174–190	264–279 651–674 264–279 991–1017 991–1017	991–1017 991–1017 991–1017 1259–1280 1259–1280	1259–1280 1259–1280 1259–1280			
PVGL2_CVBV PVGL2_CVH22 PVGL2_CVM4 PVGL2_CVMA5 PVGL2_CVMJH PVGL2_CVPFS	123–139 768–794 95–111 95–111 95–111 64–83	174–190 1053–1071 999–1025 947–973 858–884 442–457	264–279 1115–1134 1267–1290 1215–1238 1126–1149 800–816	991–1017 1317–1338 1265–1286 1178–1197 1038–1064	1259–1280 1274–1297				
PVGL2_CVPPU PVGL2_CVPR8 PVGL2_CVPRM PVGL2_FIPV PVGL2_IBV6	64–83 218–233 218–233 803–819 196–219	440–455 576–592 576–592 1041–1067 588–607	504–519 814–840 814–840 1277–1300 771–797	798–814 1050–1073 1050–1073 1056–1081	1036–1082 1094–1111	1272–1295			
PVGL2_IBVb PVGL2_IBVD2 PVGL2_IBVD3 PVGL2_IBVK	195–218 196–219 196–219 195–218	587–606 588–607 587–606	770–796 771–797 770–796	1055–1080 1056–1081 1065–1080					
PVGL2_IBVM PVGL2_IBVU1 PVGL2_IBVU2 PVGL2_IBVU3 PVGL8_EBV	195–218 178–201 178–201 178–201 732–752	378-398	587-606	770–795	1065–1080				
PVGLB_HCMVA PVGLB_HCMVT PVGLB_HSV11 PVGLB_HSV1F PVGLB_HSV1F PVGLB_HSV1P PVGLB_HSV23 PVGLB_HSV2H PVGLB_HSV28	535-558 536-559 83-104 82-103 82-103 83-104 79-99 79-99 65-85	706–732 707–733	750–777 751–778						
PVGLB_HSV6U PVGLB_HSVB1 PVGLB_HSVB2 PVGLB_ISVBC PVGLB_HSVE1 PVGLB_HSVE4 PVGLB_HSVE4 PVGLB_HSVEB PVGLB_HSVEL PVGLB_HSVEL	72–92 560–578 279–299 692–710 738–753 675–692 736–753 736–753 736–753 589–613	117–144 689–707 745–767							
PVGLB_HSVSA PVGLB_ILTV6 PVGLB_ILTVS PVGLB_ILTVT PVGLB_MCMVS PVGLB_PRVIF PVGLB_VXVD PVGLC_HSV11	483-506 256-275 266-285 266-285 135-156 203-218 522-538 467-493	584-602 597-621 607-631 607-631 566-589	701–716 740–758 750–768 750–768 738–765						
PVGLC_HSV1K PVGLC_HSV1K PVGLC_HSV2 PVGLC_HSVBC PVGLC_HSVEA PVGLC_HSVBB PVGLC_HSVMB PVGLC_HSVMG PVGLC_HSVMM	3-22 435-458 436-459 475-494 444-459 427-442 399-421 398-420 399-421	467–493							
PVGLC_ISVMM PVGLC_PRVIF PVGLC_VZVD PVGLC_VZVS PVGLD_HSV11 PVGLD_HSV2 PVGLE_HSV11	180–197 431–449 431–449 79–94 79–94 104–129	446-472 413-437							
PVGLE_VZVD PVGLF_BRSVA PVGLF_BRSVC PVGLF_BRSVR PVGLF_CDVO PVGLF_HRSV1	469–493 205–221 205–221 205–221 336–361 205–221	265–287 265–287 265–287 398–414 265–287	482–504 484–506 484–508 583–589 484–506						

# US 6,440,656 B1

82

## TABLE IX-continued

				ABLE IX-co	
			Search Resul	ts Summary fo	or P12CTLZIP Motif
PVGLF_HRSVA	205-221	265-287	484-506		
PVGLF_HRSVL PVGLF_HRSVR	205–221 205–221	265–287 265–287	484–506 484–506		
PVGLF_MEASE	203-221	286-302	451-477		
PVGLF_MEASI	277–248	289-305	454–480		
PVGLF_MEASY	224-245	286-302	451–477		
PVGLF_MUMPM PVGLF_MUMPR	276–292 276–292	446–467 446–467			
PVGLF_MUMPS	5-20	276-292	446-467		
PVGLF_NDVA	273-289				
PVGLF_NDVB PVGLF_NDVM	273–289 273–289				
PVGLF_NDVT	273-289				
PVGLF_NDVTG	273–289				
PVGLF_NDVU PVGLF_PHODV	273–289 269–285	305-326	367-383	531-558	
PVGLF_PI1HC	456-477	505-520	507-505	551-556	
PVGLF_PI2H	450-471				
PVGLF_PI2HG PVGLF_PI2HT	450–471 450–471				
PVGLF_PI3B	283-310	405-426	453-474		
PVGLF_PI3H4	2-20	283-310	453-474		
PVGLF_RINDK	220-241	282-298	447-473		
PVGLF_RINDL PVGLF_SEND5	220–241 460–481	282–298	447–473		
PVGLF_SENDF	460-481				
PVGLF_SENDH	460-481				
PVGLF_SENDJ PVGLF_SENDZ	460–481 460–481				
PVGLF_SV41	453-474				
PVGLF_SV5	401-425	446-467			
PVGLF_TRTV PVGLG_IHNV	175–191 77–99	452–474			
PVGLG_RABVE	454-474				
PVGLG_RABVH	372-391	454-474			
PVGLG_RABVP PVGLG_RABVS	454–474 454–474				
PVGLG_RABVT	454-474				
PVGLG_VHSV0	406-428				
PVGLH_HCMVA PVGLH_HCMVT	211–237 210–236	365–382 364–381	574–598 573–597	691–712 690–711	
PVGLH_HSV11	245–262	443-467	803-827	090-711	
PVGLH_HSV1E	245-262	443-467	803-827		
PVGLH_HSV6G PVGLH_HSVE4	314–332 304–325	814-836			
PVGLH_HSVE4	304-323 297-318	807-832			
PVGLH_HSVSA	454-479	656-679			
PVGLH_MCMVS PVGLI_HCMVA	670–890 168–160				
PVGLI_HSV11	43-60				
PVGLI_HSVEB	44-63				
PVGLI_VZVD	278-297	197–222			
PVGLM_BUNGE PVGLM_BUNL7	117–136 31–55	197–222 81–98	190-211	1325-1345	1387–1410
PVGLM_BUNSH	31–55	81–98	190-211	1325–1345	1387–1410
PVGLM_BUNYW PVGLM_HANTB	193–216 355–371	1379–1404 692–717	900–915	999–1019	
PVGLM_HANTH	355-371 499-515	692-717 694-718	900–915 1000–1020	<i>777</i> -1019	
PVGLM_HANTL	499–515	694–718	1001 - 1021		
PVGLM_HANTV PVGLM_PHV	499–515 152–171	694–718	1001-1021		
PVGLM_PHV PVGLM_PTPV	152–171 743–765	997-1016	1275-1302		
PVGLM_PUUMH	155–174	509-525	712-729		
PVGLM_PUUMS	155-174	509-525	712-729	1092–1117	
PVGLM_RVFV PVGLM_RVFVZ	53–80 53–80	344–368 344–366	830–858 830–858	1156-1176	
PVGLM_SEOUR	355-371	693–718	901-916	1000 - 1020	
PVGLM_SEOUS	355-371 581-585	692–717 855–874	900-915 826-842	999–1019 025–052	066.080
PVGLM_UUK PVGLP_BEV	581–585 430–452	855–874 889–885	826–842 1099–1124	925–952 1546–1588	966–989
PVGLX_PRVRI	149–176				
PVGLY_JUNIN	12-38	727 750	176 110		
PVGLY_LASSG PVGLY_LASSJ	12–38 12–38	237–258 238–259	426–448 427–449		
PVGLY_LYCVA	12-38				
PVGLY_LYCVW	12-38	69-108			
PVGLY_MOPEI	12-38	425–447			

# TABLE IX-continued

			Search Resul	ts Summary fo	r P12CTLZIP	Motif
PVGLY_PIARV	12-38	441-466				
PVGLY_TACV	12–38					
PVGLY_TACV5	12-38					
PVGLY_TACV7	12-38					
PVGLY_TACVT	12-38	540 504	757 702	1110 1125	11/5 1104	
PVGNB_CPMV PVGNM_BPMV	141–161 678–696	568–594	757–783	1110–1135	1165–1184	
PVGNM_CPMV	311-335	741–764	1021-1037			
PVGP2_EBV	657-681	/11 /01	1021 1027			
PVGP3_EBV	854-878					
PVGP8_EBV	67–88					
PVMO1_VACCC	134–159	177–195	281-302			
PVMO1_VACCV	83-108	126-144	230-251	224 247	414 426	454 477
PVM1_REOVD PVM1_REOVL	141–168 141–168	227–245 227–245	280–304 280–304	324–347 414–436	414–436 454–477	454–477
PVM21_REOVE	141-108 168-192	227-245	280-304	414-450	454-477	
PVM22_REOVD	168-192					
PVM2_REOVJ	168-192					
PVM2_REOVL	168 - 192					
PVM3_REOVD	304-326	521-540				
PVMAT_BRSVA	37-62	202 200				
PVMAT_CDVO	148–165 44–62	283–309 139–180				
PVMAT_HRSVA PVMAT_LPMV	44-02 311-338	100-100				
PVMAT_MEASE	283-309					
PVMAT_MEASH	283-309					
PVMAT_MEASI	87–111					
PVMAT_MEASU	283-309					
PVMAT_MUMPS	191-207	227-250	310-330			
PVMAT_NDVA PVMAT_NDVB	135–151 135–151	190–208 190–208	309–329 309–329			
PVMAT_PI1HC	195-217	190-208	309-329			
PVMAT_PI2HT	132–154	189-205	308-328			
PVMAT_PI4HA	312-332					
PVMAT_PI4HB	312-332					
PVMAT_RINDK	200-221	239–260	283-309			
PVMAT_SENDF	195-217					
PVMAT_SENDH PVMAT_SENDZ	195–217 195–217					
PVMAT_SEND2 PVMAT_SSPVB	283-309	314-336				
PVMAT_SV41	132-154	189-205	308-328			
PVMAT_SV5	98-114	132-148	308-335			
PVMAT_SVCV	141–167					
PVMAT_TRTV	122-143					
PVME1_CVBM	9-36	137–161	171–190			
PVME1_CVH22 PVME1_CVH0C	136–155 9–36	64-85	137-161			
PVME1_CVMA5	10-37	04-05	137-101			
PVME1_CVMJH	10-37					
PVME1_CVPFS	174–193					
PVME1_CVPPU	174–193					
PVME1_CVPRM	174–193	107 1/1	171 100			
PVME1_CVTKE PVME1_IBV6	9–36 74–98	137–161	171–190			
PVME1_IBVB	74-101					
PVME1_IBVB2	74-101					
PVME1_IBVK	74–98					
PVMEM_EBV	131–157	178–203				
PVMP_CAMVC	118-134	147-164	183-201			
PVMP_CAMVD	118–134 118–134	147–164 147–164	183-201 183-201			
PVMP_CAMVE PVMP_CAMVN	118–134 118–134	147–164 147–164	183–201 183–201			
PVMP_CAMVS	118-134	147-164	183-201			
PVMP_CAMVW	118-134	147–164	183-201			
PVMP_CERV	293–318					
PVMP_FMVD	115-131	180-198				
PVMP_SOCMV	122-147	273-299				
PVMSA_HPBDB PVMSA_HPBDC	201–228 194–221	269–295 268–294				
PVMSA_HPBDU	194–221 157–184	208-294 231-257				
PVMSA_HPBDW	194-221	269-295				
PVMSA_HPBGS	209-236	271-295	380-395			
PVMSA_HPSHE	236-262	293-320				
PVMSA_HPBV0	70-96	241 2=-				
PVMSA_HPBV2	185-202	244-270 244-270				
PVMSA_HPBV4 PVMSA_HPBV9	185–202 244–270	244-270				
THOUT IN DAY	277-270					

# US 6,440,656 B1

# TABLE IX-continued

			Search Results Summary for P12CTLZIP Motif
PVMSA_HPBVA	174–191	233-259	
PVMSA_HPBVD	11 - 28	70–96	
PVMSA_HPBVI	233-259		
PVMSA_HPBVJ	174 - 191	233-259	
PVMSA_HPBVL	174–191	233-259	
PVMSA_HPBVN	11 - 28	70–96	
PVMSA_HPBVO	174–191	233-259	
PVMSA_HPBVP	185-202	244-270	
PVMSA_HPBVR	185-202	244-270	
PVMSA_HPBVS	11 - 28	70–96	
PVMSA_HPBVW	174–191	233-259	
PVMSA_HPBVY	174–191	233–259	
PVMSA_HPBVZ	174–191	233-259	
PVMSA_WHV1	207-234	269–293	378–393
PVMSA_WHV59	212-239	274–298	383–398
PVMSA_WHV7	212-239	274–298	383–398
PVMSA_WHV8	212-239	274–298	383–398
PVMSA_WHV8I	212-239	274–298	383–398
PVMSA_WHVW6	125-149	234-249	
PVMT2_IAANN	25-46		
PVMT2_IABAN	25-46		
PVMT2_IAFOW	25-46		
PVMT2_IAFPR	25-46		
PVMT2_IAFPW	25-46		
PVMT2_IALE1	25-46		
PVMT2_IALE2	25-46		
PVMT2_IAMAN	25-46		
PVMT2_IAPUE	25-46		
PVMT2 IASIN	25-46		
PVMT2_IAUDO	25-46		
PVMT2_IAWIL	25-46		
PVMT9_MYXVL	226-241		

# TABLE X Search Results Summary for P23CTLZIP Motif

P23LZIPC LIBRARY FILE				
	00.404			
PENV_AVISU	98-136	EDC ECA		
PENV_BAEVM	202–240 434–472	526–564 526–553	628-659	
PENV_BIV06 PENV BIV27	434-472 554-582	520-555 657-688	028-039	
PENV_DIV27 PENV_CAEVG	554-582 44-78	057-088		
PENV_CAEVG	44-78 795-828			
PENV_EIAV1	795-828			
PENV_EIAV3	795-828			
PENV_EIAV6	796-829			
PENV EIAV9	795-828			
PENV ELAVC	795-828			
PENV ELAVW	795-828			
PENV ELAVY	798-828			
PENV_FIVPE	128-166			
PENV_FIVT2	46-74			
PENV_FLVGL	447-475			
PENV_FLVLB	487-495			
PENV_FLVBA	444-472			
PENV_FOAMV	44-78	481–519	552-584	
PENV_FRSFB	315-350			
PENV_FSVGA	467-495			
PENV_FSVGB	447–475			
PENV_FSVSM	450-478			
PENV_FSVST	467–495			
PENV_GALV	519-554			
PENV_HV1A2	729–762			
PENV_HV1B1	730-763			
PENV_HV1B8	725-758			
PENV_HV1BN	743-781			
PENV_HV1BR	735-768			
PENV_HV1C4	742-776	707 700		
PENV_HV1EL	254-286	727–780		
PENV_HV1H2	730-763			
PENV_HV1H3	730–763			

TABLE X-continued

	Search Resu	Its Summary for P23CTLZIP Motif	
P23LZIPC LIBRARY FILE			
PENV_HV1J3	741–774		
PENV_HV1JR	722-755		
PENV_HV1KB	552-586	762–790	
PENV_HV1MA	268-289	733–766	
PENV_HV1MF	728-761	731 764	
PENV_HV1MN PENV_HV1ND	392–430 248–279	731–764	
PENV_HV10Y	729-762		
PENV_HV1PV	730-763		
PENV_HV1RH	739–772		
PENV_HV1SC	730-763		
PENV_HV1W1 PENV_HV1W2	730–763 721–754		
PENV_HV1Z2	264-286	727–780	
PENV_HV1Z3	260-281		
PENV_HV1Z6	255-286	729–762	
PENV_HV2BE	781–811		
PENV_HV2D1	772-802		
PENV_HV2G1 PENV HV2NZ	772–802 777–814		
PENV_HV2SB	743-775		
PENV_JSRV	299–332	484–515	
PENV_MMTVB	435-472		
PENV_MMTVG	435-472		
PENV_RSVP	533-570	102 520	
PENV_SFV1 PENV_SFV3L	44–78 48–82	492–530 550–588	
PENV_SIVCZ	745-776	550 500	
PENV_SIVGB	247-277	353–386	
PENV_SIVM1	788-800		
PENV_SIVMK	765-799	7(4, 700	
PENV_SIVML PENV SIVS4	511–545 468–486	764–798	
PENV_SIVSP	462-490	810-840	
PHEMA_CDVO	200-234		
PHEMA_IABUD	23-55		
PHEMA_IACKA	23-56		
PHEMA_IACKV PHEMA_IADA1	517–547 23–56		
PHEMA_IADA1	23–30 23–55		
PHEMA_IADH6	293-323		
PHEMA_IADNZ	23-55		
PHEMA_IAFPR	15-51		
PHEMA_IAGRE	23-55		
PHEMA_IAMAA PHEMA_IAMAB	22–54 27–59		
PHEMA_IARUD	23-55		
PHEMA_IASE2	23-55		
PHEMA_IASTA	517-547		
PHEMA_MUMPM	19-52	101-132	
PHEMA_MUMPR	19-52 19-52	101–132 101–132	
PHEMA_MUMPS PHEMA_NDVA	19–52 60–88	101-132	
PHEMA_NDVB	60-88		
PHEMA_NDVD	60-88		
PHEMA_NDVH	60-88		
PHEMA_NDVI	60-88		
PHEMA_NDVM	60–88 60–88		
PHEMA_NDVQ PHEMA_NDVTG	60–88 60–88		
PHEMA_NDVU	60-88		
PHEMA_PI1HW	29-60	196–233	
PHEMA_PI2H	13-46	334–369	
PHEMA_PI2HT	13-46	334–369	
PHEMA_PI3B	194–231 194–231		
PHEMA_PI3H4 PHEMA_PI3HA	194–231 194–231		
PHEMA_PI3HT	194-231 194-231		
PHEMA_PI3HU	194-231		
PHEMA_PI3HV	194-231		
DITEMA DI2LIN	194-231		
PHEMA_PI3HW			
PHEMA_PI3HX PHEMA_PI4HA	194–231 245–280	338–376	

TABLE X-continued Search Results Summary for P23CTLZIP Motif

P23LZIPC LIBRARY FILE PHEMA_RINDL 282 - 313PHEMA_SEND5 16-54 196-233 16-54 PHEMA_SENDF 196-233 196-233 PHEMA_SENDH 16-54 16-54 PHEMA_SENDJ 196-233 PHEMA_SENDZ 23-54 196-233 PHEMA_SV41 55–84 330-365 PHEMA_SV5 7–36 PHEMA_SV5CM 7-41 PHEMA_SV5CP 7-41 PHEMA_SV5LN 7-35 PHEMA_VACCC 258-294 PHEMA_VACCI 259 - 294258 - 294PHEMA_VACCT PHEMA_VACCV PVENV_BEV PVENV_DHVI1 258 - 29416 - 5187-117 297-335 PVENV_MCV1 203-236 PVENV_MCV2 203-236 PVENV_VACCC 208-241 PVENV_VACCI 208-241 PVENV_VACCP 208-241 PVENV_VACCV 208-241 PVF03_VACCC 2-40 61-93 2–40 297–330 PVF03_VACCV 61–93 PVFP1_FOWPV 237-267 PVFP4_FOWPV PVFP7_CAPVK PVFU8_VACCC PVFU8_VACCV 89-118 28 - 6128 - 61PVG01_HSVI1 317-346 PVG02_HSVEB 163-196 PVG02_VACCV 92-120 PVG02_VARV 92-120 PVG03_HSVI1 108-136 PVG06_HSVI1 54-83 PVG06_VACCC 99-136 PVG06_VARV 99-136 PVG07_VACCC 113-145 PVG07_VARV 113–145 PVG09_VACCC 303-338 PVG09_VACCV PVG09_VARV 266-301 303-338 PVG11_HSVI1 150 - 183PVG12 HSV11 206-243 PVG12_HSVSA 68-106 PVG1_SPV1R 254–292 303-337 414-452 PVG22_HSVI1 300-337 647-678 PVG23_HSVI1 70-108 PVG26_HSVI1 94-125 PVG27_HSVSA 36-74 PVG28_HSVI1 491-521 PVG28_HSVSA 7-40 PVG2R_AMEPV 180-217 PVG2_SPV4 PVG35_HSVI1 209-244 15-46 190-226 PVG36_HSVSA 151 - 185PVG39 HSVI1 543-577 648-682 PVG40_HSVSA 187-216 PVG41_HSVI1 11-45 202-233 PVG42_HSVI1 91-125 PVG43_HSVI1 109-140 157-185 PVG46_HSVI1 888-925 PVG48_HSVSA 329-357 PVG50_HSVSA 113–141 PVG51_HSVI1 29-64 84-120 PVG52_HSVI1 96-134 PVG55_HSVI1 100 - 1291091-1126 PVG56_HSVI1 631-667 PVG58 HSVI1 342-375 480 - 50825-60 195-233 PVG58_HSVSA PVG59_HSVI1 PVG61_HSVI1 82-118 76-109 PVG64_HSVI1 55-89 363-401 420-452

TABLE X-continued

Search Results Summary for P23CTLZIP Motif

P23LZIPC

LIBRARY FILE				
PVG65_HSVI1	801-836	1190–1326		
PVG67_HSVI1	150-188	1150–1185		
PVG6_SPV1R PVG71_HSVSA	60–89 128–158			
PVG72_HSVI1	445-478	720-751	1158–1189	1252-1285
PVG75_HSVI1	263-291	387-422		
PVG78_H8VI1 PVG7_SPV1R	187–221 18–46			
PVGF1_IBVB	1719–1747	1856–1891	2108-2146	3601-3633
PVGH3_HCMVA	80-115	157–185		
PVGL2_CVBF PVGL2_CVBL9	1259–1294 651–681	1259–1294		
PVGL2_CVBLY	001 001	1259-1294		
PVGL2_CVBM		1259-1294		
PVGL2_CVBQ PVGL2_CVBV		1259–1294 1259–1294		
PVGL2_CVH22	1053-1088	1207 1274		
PVGL2_CVM4	1287-1304			
PVGL2_CVMA5 PVGL2_CVMJH	1215–1252 1128–1163			
PVGL2_CVPFS	632-665	736–764	1328-1383	
PVGL2_CVPPU	630–663	734–762	1326–1381	
PVGL2_CVPR8 PVGL2_CVPRM	512–540 408–441	1104–1139 1104–1139		
PVGL2_FIPV	635-668	739–767	1331-1366	
PVGL2_IBVB	153–188			
PVGLB_HCMVA PVGLB_HCMVT	116–147 116–147	708–743 707–744		
PVGLB_HSVGU	72–110	101 144		
PVGLB_HSVB1	254-288			
PVGLB_HSVB2 PVGLB_HSVBC	264–299 253–287	745–774		
PVGLB_ILTV6	442-472			
PVGLB_ILTV8	452-482			
PVGLB_IVTVT PVGLB_MCMV8	452–482 135–163	738–776		
PVGLC_HSV11	487-500			
PVGLC_HSV1K	487-500			
PVGLC_HSV2 PVGLC_HSV23	435–465 436–466			
PVGLC_HSVBC	475-507			
PVGLC_VZVD PVGLC_VZVS	351–388 351–388	513–548 513–548		
PVGLD_HSVEA	340–370	515-546		
PVGLD_HSVEB	41-70	390-420		
PVGLD_HSVEK PVGLE_HSVE4	41–70 95–125	390-420		
PVGLE_HSVEB	63-100	390-420		
PVGLE_HSVEL	63-100	392-422		
PVGLE_PRVRI PVGLF_BRSVA	332–369 265–301	482-511		
PVGLF_BRSVC	484-513	100 011		
PVGLF_BRSVR	484-513			
PVGLF_CDVO PVGLF_HRSV1	562–596 484–513			
PVGLF_HRSVA	484-513			
PVGLF_HRSVL PVGLF_HRSVR	484–513 484–513			
PVGLF_MEASE	224-256	451-484		
PVGLF_MEASI	227-259	454-487		
PVGLF_MEASY PVGLF_MUMPM	224–256 446–475	451–484		
PVGLF_MUMPR	446-474			
PVGLF_MUMPS	5-38	446-474		
PVGLF_NDVI PVGLF_PHODV	132–165 531–565			
PVGLF_PI1HC	456-484			
PVGLF_PI3B	453-481			
PVGLF_PI3H4 PVGLF_RINDK	453–481 220–252	447-480		
PVGLF_RINDL	220-252	447-480		
PVGLF_SEND5	460-488			
PVGLF_SENDF PVGLF_SENDH	460–488 460–488			

TABLE X-continued

Search Results Summary for P23CTLZIP Motif

P23LZIPC LIBRARY FILE					
PVGLF_SENDJ	460-488				
PVGLF_SENDZ	460-488				
PVGLF_SV5	446-474				
PVGLF_TRTV	452-481				
PVGLG_HSVEB PVGLG_SYNV	327–364 524–553				
PVGLG_VSVIG	450-488				
PVGLG_VSVJO	457-492				
PVGLG_VSVO	450–488				
PVGLG_VSVSJ	450-488				
PVGLH_HCMVA PVGLH_HCMVT	691–719 690–718				
PVGLH_HCV6G	640-677				
PVGLH_HSVE4	814-850				
PVGLH_HSVEB	807–843				
PVGLI_HCMVA	158-194	100 170		10.10 10.01	
PVGLM_BUNGE	197-227	438–468	982-1020	1049–1084	
PVGLM_BUNL7 PVGLM_BUNSH	190–220 190–220	344-381			
PVGLM_BUNYW	193-228	434-472	823-854		
PVGLM_DUGBV	244-273	637–672	888-915	935–965	1403–1441
PVGLM_HANTB	610-641	1081–1119			
PVGLM_HANTH	188-222	612-643	1082-1120		
PVGLM_HANTL PVGLM HANTV	188–222 188–222	612–643 612–643	1083–1121 1083–1121		
PVGLM_PHV	616-649	1012-043 1088-1121	1005-1121		
PVGLM_PTPV	949-982	1275-1309			
PVGLM_PUUMH	620-653	1092 - 1125			
PVGLM_PUUMS	620-653	1092-1125			
PVGLM_RVFV	620-653	830-883	1157 1105		
PVGLM_RVFVZ PVGLM_SEOUR	620–653 605–641	830–863 1082–1120	1156–1185		
PVGLM_SEOUS	610-641	1082-1120			
PVGLM_UUK	431-468	966-995			
PVGLF_BEV	1491–1526				
PVGLY_JUNIN	12-45				
PVGLY_LASSG PVGLY_LASSJ	237–265 238–288				
PVGLY_PIARV	12-50				
PVGLY_TACV	12-50				
PVGLY_TACV5	12-50	89-124			
PVGLY_TACV7	12-50	89-124			
PVGLY_TACVT PVGNB_CPMV	12–50 1527–1555	89–124			
PVGNM_BPMV	1327-1333	280-327	837-888		
PVGNM_CPMV	209-242	741-771	007 000		
PVGNM_CPSMV	60-88	479-515			
PVGNM_RCMV	766–799				
PVGP2_EBV	78-111				
PVGP3_EBV PVM1_REOVD	78–111 280–318	324-361			
PVM1_REOVL	280-318	521 501			
PVM21_REOVD	168–199				
PVM22_REOVD	168-199				
PVM2_REOVJ	168-199				
PVM2_REOVL PVM3_REOVD	168–199 333–364				
PVMAT_SV5	308-342				
PVMTA_TRTV	122-150				
PVME1_CVBM	64–102				
PVME1 CVHOC	64-102				
PVME1_CVMA5 PVME1_CVMJH	65-103 65-103				
PVME1_CVMJH PVME1_CVTKE	65–103 64–102				
PVMEM_EBV	178-213				
PVMP_CERV	93-126				
PVMP_SOCMV	66–98	273-303			
PVMSA_HPBDB	201-238	269-302			
PVMSA_HPBDC PVMSA_HPBDU	194–227 157–190	268–301 231–264			
PVMSA_HPBDW	194-227	269-302			
PVMSA_HPBGS	209-243	271-307			
PVMSA_HPBHE	159–195	236-269			
PVMSA_HPBV0	70–98				

TABLE X-continued

Search Results Summary for P23CTLZIP Motif

F	23LZIPC		
T	IBRARY	FII	F

244-272					
244-272					
244-272					
233-261					
70-98					
233-261					
233-261					
233-261					
70–98					
233-261					
244-272					
244-272					
70–98					
233-261					
233-261					
233-261					
207-241	269-305				
212-246	274-310				
212-246	274-310				
	274-310				
212-246	274-310				
125 - 161					
5-34	141 - 170				
246-282					
	$\begin{array}{c} 244-272\\ 244-272\\ 233-261\\ 70-98\\ 233-261\\ 233-261\\ 233-261\\ 233-261\\ 244-272\\ 244-272\\ 70-98\\ 233-261\\ 233-261\\ 233-261\\ 233-261\\ 233-261\\ 207-241\\ 212-246\\ 212-246\\ 212-246\\ 212-246\\ 125-161\\ 10-44\\ \end{array}$	244-272 244-272 233-261 70-98 233-261 233-261 233-261 233-261 233-261 244-272 244-272 244-272 244-272 244-272 233-261 233-261 233-261 233-261 233-261 233-261 233-261 233-261 232-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310 212-246 274-310	$\begin{array}{c} 244-272\\ 244-272\\ 233-261\\ 70-98\\ 233-261\\ 233-261\\ 233-261\\ 233-261\\ 233-261\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272$	$\begin{array}{c} 244-272\\ 244-272\\ 233-261\\ 70-98\\ 233-261\\ 233-261\\ 233-261\\ 233-261\\ 233-261\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272\\ 244-272$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

#### 5.3. Synthesis of Peptides

The peptides of the invention may be synthesized or prepared by techniques well known in the art. See, for example, Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman and Co., NY, which is incorporated herein by reference in its entirety. Short peptides, for ³⁵ example, can be synthesized on a solid support or in solution. Longer peptides amy be made using recombinant DNA techniques. Here, the nucleotide sequences encoding the peptides of the invention may be synthesized, and/or cloned, and expressed according to techniques well known ⁴⁰ to those of ordinary skill in the art. See, for example, Sambrook, et al., 1989, Molecular Cloning, A Laboratory Manual, Vols. 1–3, Cold Spring Harbor Press, N.Y.

The peptides of the invention may alternatively be synthesized such that one or more of the bonds which link the 45 amino acid residues of the peptides are non-peptide bonds. These alternative non-peptide bonds may be formed by utilizing reactions well known to those in the art, and may include, but are not limited to imino, ester, hydrazide, semicarbazide, and azo bonds, to name but a few. In yet 50 another embodiment of the invention, peptides comprising the sequences described above may be synthesized with additional chemical groups present at their amino and/or carboxy termini, such that, for example, the stability, bioavailability, and/or inhibitory activity of the peptides is 55 enhanced. For example, hydrophobic groups such as carbobenzoxyl, dansyl, or t-butyloxycarbonyl groups, may be added to the peptides' amino termini. Likewise, an acetyl group or a 9-fluorenylmethoxy-carbonyl group may be placed at the peptides' amino termini. (See "X" in Tables I 60 to IV, above.) Additionally, the hydrophobic group, t-butyloxycarbonyl, or an amido group may be added to the peptides' carboxy termini. (See "Z" in Tables I to IV, above.) Further, the peptides of the invention may be synthesized such that their steric configuration is altered. For example, 65 the D-isomer of one or more of the amino acid residues of the peptide may be used, rather than the usual L-isomer. Still

³⁰ further, at least one of the amino acid residues of the peptides of the invention may be substituted by one of the well known non-naturally occurring amino acid residues. Alterations such as these may serve to increase the stability, bioavailability and/or inhibitory action of the peptides of the ³⁵ invention.

Any of the peptides described above may, additionally, have a non-peptide macromolecular carrier group covalently attached to their amino and/or carboxy termini. Such macromolecular carrier groups may include, for example, lipidfatty acid conjugates, polyethylene glycol, or carbohydrates. "X", in Tables I to IV, above, may therefore additionally represent any of the above macromolecular carrier groups covalently attached to the amino terminus of a peptide. Likewise, "Z", in Tables I to IV, may additionally represent any of the macromolecular carrier groups described above.

#### 5.4. Assays for Antiviral Activity

The antiviral activity exhibited by the peptides of the invention may be measured, for example, by easily performed in vitro assays, such as those described below, which can test the peptides' ability to inhibit syncytia formation, or their ability to inhibit infection by cell-free virus. Using these assays, such parameters as the relative antiviral activity of the peptides, exhibit against a given strain of virus and/or the strain specific inhibitory activity of the peptide can be determined. A cell fusion assay may be utilized to test the peptides' ability to inhibit HIV-induced syncytia formation in vitro. Such an assay may comprise culturing uninfected CD-4⁺ cells (such as Molt or CEM cells, for example) in the presence of chronically HIV-infected cells and a peptide to be assayed. For each peptide, a range of peptide concentrations may be tested. This range should include a control culture wherein no peptide has been added. Standard conditions for culturing, well known to those of ordinary skill in the art, are used. After incubation for an appropriate period (24 hours at 37° C., for example) the culture is examined microscopically for the presence of multinucle-

25

ated giant cells, which are indicative of cell fusion and syncytia formation.

A reverse transcriptase (RT) assay may be utilized to test the peptides' ability to inhibit infection of CD-4⁺ cells by cell-free HIV. Such an assay may comprise culturing an appropriate concentration (i.e., TCID₅₀) of virus and CD-4⁺ cells in the presence of the peptide to be tested. Culture conditions well known to those in the art are used. As above, a range of peptide concentrations may be used, in addition to a control culture wherein no peptide has been added. After incubation for an appropriate period (e.g., 7 days) of culturing, a cell-free supernatant is prepared, using standard procedures, and tested for the present of RT activity as a measure of successful infection. The RT activity may be tested using standard techniques such as those described by, for example, Goff et al. (Goff, S. et al., 1981, J. Virol. 38:239-248) and/or Willey et al. (Willey, R. et al., 1988, J. Virol. 62:139-147). These references are incorporated herein by reference in their entirety.

Standard methods which are well-known to those of skill in the art may be utilized for assaying non-retroviral activity. See, for example, Pringle et al. (Pringle, C. R. et al., 1985, J. Medical Virology 17:377-386) for a discussion of respiratory syncytial virus and parainfluenza virus activity assay techniques. Further, see, for example, "Zinsser Microbiology", 1988, Joklik, W. K. et al., eds., Appleton & Lange, Norwalk, Conn., 19th ed., for a general review of such techniques. These references are incorporated by reference herein in its entirety.

#### 5.5. Uses of the Peptides of the Invention

The DP-178 (SEQ ID:1) peptides of the invention, and DP-178 fragments, analogs, and homologs, exhibit potent antiviral activity. The DP-107-like and DP-178-like peptides of the invention preferably exhibit antiviral activity. As such, the peptides may be used as inhibitors of human and non-human viral and retroviral, especially HIV, transmission to uninfected cells.

The human retroviruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to all strains of HIV-1 and HIV-2 and the human T-lymphocyte viruses (HTLV-I and II). The non-human retroviruses whose transmission may be inhibited by the 45 peptides of the invention include, but are not limited to bovine leukosis virus, feline sarcoma and leukemia viruses, simian immunodeficiency, sarcoma and leukemia viruses, and sheep progress pneumonia viruses.

Non retroviral viruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to human respiratory syncytial virus, canine distemper virus, newcastle disease virus, human parainfluenza virus, and influenza viruses. Further, any virus or retrovirus 55 containing peptides listed in Tables V through X above, may be inhibited by the peptides of the invention.

As discussed more fully, below, in Section 5.5.1 and in the Example presented, below, in Section 8, DP-107 and DP-178, and DP-107-like and DP-178-like peptides form 60 non-covalent protein-protein interactions which are required for normal activity of the virus. Thus, the peptides of the invention may also be utilized as components in assays for the identification of compounds that interfere with such protein-protein interactions and may, therefore, act as antiviral agents. These assays are discussed, below, in Section 5.5.1.

5.5.1. Antiviral Compound Screening Assays for Compounds that Interact with the PKD1 Gene Product

As demonstrated in the Example presented in Section 8, below, DP-107 and DP-178 portions of the TM protein gp41 form non-covalent protein-protein intereactions. As also demonstrated, the maintenance of such interactions is necessary for normal viral infectivity. Thus, compounds which bind DP-107, bind DP-178, and/or act to disrupt normal DP-107/DP-178 protein-protein interactions may act as patent antiviral agents. Described below are assays for the identification of such compounds. Note that, while, for case and clarity of discussion, DP-107 and DP-178 peptides will be used as components of the assays described, but it is to be understood that any of the DP-107-like or DP-178-like peptides described, above, in Sections 5.1 and 5.2 may also be utilized as part of these screens for antiviral compounds.

Compounds which may be tested for an ability to bind DP-107, DP-178, and/or disrupt DP-107/DP-178 interactions, and which therefore, potentially represent antiviral compounds, include, but are not limited to, peptides 20 made of D- and/or L-configuration amino acids (in, for example, the form of random peptide libraries; see Lam, K. S. et al., 1991, Nature 354:82-84), phosphopeptides (in, for example, the form of random or partially degenerate, directed phosphopeptide libraries; see, for example, Songyang, Z. et al., 1993, Cell 72:767–778), antibodies, and small organic or inorganic molecules. Synthetic compounds, natural products, and other sources of potentially effective materials may be screened in a variety of ways, as described 30 in this Section. The compounds, antibodies, or other molecules identified may be tested for an ability to inhibit viral activity, utilizing, for example, viral assays such as those described, above, in Section 5.4.

Among the peptides which may be tested are soluble 35 peptides comprising DP-107 and/or DP-178 domains, and peptides comprising DP-107 and/or DP-178 domains having one or more mutations within one or both of the domains, such as the M41-P peptide described, below, in the Example presented in Section 8, which contains a isoleucine to proline mutation within the DP-178 sequence.

In one embodiment of such screening methods is a method for identifying a compound to be tested for antiviral ability comprising:

- (a) exposing at least one compound to a peptide comprising a DP-107 peptide for a time sufficient to allow binding of the compound to the DP-107 peptide;
- (b) removing non-bound compounds; and
- (c) determining the presence of the compound bound to the DP-107 peptide, thereby identifying an agent to be tested for antiviral ability.

In a second embodiment of such screening methods is a method for identifying a compound to be tested for antiviral ability comprising:

- (a) exposing at least one compound to a peptide comprising a DP-178 peptide for a time sufficient to allow binding of the compound to the DP-178 peptide;
- (b) removing non-bound compounds; and
- (c) determining the presence of the compound bound to the DP-178 peptide, thereby identifying an agent to be tested for antiviral ability.

One method utilizing these types of approaches that may be pursued in the isolation of such DP-107-binding or DP-178-binding compounds is an assay which would 65 include the attachment of either the DP-107 or the DP-178 peptide to a solid matrix, such as, for example, agarose or plastic beads, microtiter plate wells, petri dishes, or mem-

branes composed of, for example, nylon or nitrocellulose. In such an assay system, either the DP-107 or DP-178 protein may be anchored onto a solid surface, and the compound, or test substance, which is not anchored, is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored component may be immobilized by non-covalent or covalent attachments. Noncovalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody, preferably a mono- 10 clonal antibody, specific for the protein may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.

In order to conduct the assay, the labeled compound is added to the coated surface containing the anchored DP-107 15 or DP-178 peptide. After the reaction is complete, unreacted components are removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a 20 number of ways. Where the compound is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the labeled component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled 25 antibody specific for the compound (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody).

Alternatively, such an assay can be conducted in a liquid phase, the reaction products separated from unreacted 30 components, and complexes detected; e.g., using an immobilized antibody specific for DP-107 or DP-178, whichever is appropriate for the given assay, or ab antibody specific for the compound, i.e., the test substance, in order to anchor any complexes formed in solution, and a labeled antibody spe- 35 cific for the other member of the complex to detect anchored complexes.

By utilizing procedures such as this, large numbers of types of molecules may be simultaneously screened for DP-107 or DP-178-binding capability, and thus potential 40 antiviral activity.

Further, compounds may be screened for an ability to inhibit the formation of or, alternatively, disrupt DP-107/ DP-178 complexes. Such compounds may then be tested for DP-178 will be referred to as "binding partners." Compounds that disrupt such interactions may exhibit antiviral activity. Such compounds may include, but are not limited to molecules such as antibodies, peptides, and the like described above.

The basic principle of the assay systems used to identify compounds that interfere with the interaction between the DP-107 and DP-178 peptides involves preparing a reaction mixture containing peptides under conditions and for a time sufficient to allow the two peptides to interact and bind, thus 55 forming a complex. In order to test a compound for disruptive activity, the reaction is conducted in the presence and absence of the test compound, i.e., the test compound may be initially included in the reaction mixture, or added at a time subsequent to the addition of one of the binding 60 partners; controls are incubated without the test compound or with a placebo. The formation of any complexes between the binding partners is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound indicates that the 65 compound interferes with the interaction of the DP-107 and DP-178 peptides.

## 100

The assay for compounds that interfere with the interaction of the binding partners can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring one of the binding partners onto a solid phase and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested. For example, test compounds that interfere with the interaction between the binding partners, e.g., by competition, can be identified by conducting the reaction in the presence of the test substance; i.e., by adding the test substance to the reaction mixture prior to or simultaneously with the binding partners. On the other hand, test compounds that disrupt preformed complexes, e.g. compounds with higher binding constants that displace one of the binding partners from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are described briefly below.

In a heterogeneous assay system, one binding partner, e.g., either the DP-107 or DP-178 peptide, is anchored onto a solid surface, and its binding partner, which is not anchored, is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored species may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody specific for the protein may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.

In order to conduct the assay, the binding partner of the immobilized species is added to the coated surface with or without the test compound. After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the binding partner was pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the binding partner is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the antiviral capability. For ease of description, DP-107 and 45 binding partner (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds which inhibit complex formation or which disrupt preformed complexes can be detected.

> Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test compound, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for one binding partner to anchor any complexes formed in solution, and a labeled antibody specific for the other binding partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds which inhibit complex or which disrupt preformed complexes can be identified.

> In an alternate embodiment of the invention, a homogeneous assay can be used. In this approach, a preformed complex of the DP-107 and DP-178 peptides is prepared in which one of the binding partners is labeled, but the signal generated by the label is quenched due to complex formation (see, e.g., U.S. Pat. No. 4,109,496 by Rubenstein which utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the

15

20

25

35

binding partners from the preformed complex will result in the generation of a signal above background. In this way, test substances which disrupt DP-107/DP-178 protein-protein interaction can be identified.

#### 5.6 Pharmaceutical Formulations, Dosages and Modes of Administration

With respect to HIV, the peptides of the invention may be used as a therapeutic in the treatment of AIDS. The peptides of the invention may be administered using techniques well known to those in the art. Preferably, agents are formulated and administered systemically. Techniques for formulation and administration may be found in "Remington's Pharmaceutical Sciences", 18th ed., 1990, Mack Publishing Co., Easton, Pa. Suitable routes may include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections, just to name a few. Most preferably, administration is intravenous. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiological saline buffer. For such transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

In addition, the peptides may be used as a prophylactic measure in previously uninfected individuals after acute 30 exposure to an HIV virus. Examples of such prophylactic use of the peptides may include, but are not limited to, prevention of virus transmission from mother to infant and other settings where the likelihood of HIV transmission exists, such as, for example, accidents in health care settings wherein workers are exposed to HIV-containing blood products. The peptides of the invention in such cases may serve the role of a prophylactic vaccine, wherein the host raises antibodies against the peptides of the invention, which then serve to neutralize HIV viruses by, for example, inhibiting 40 further HIV infection. Administration of the peptides of the invention as a prophylactic vaccine, therefore, would comprise administering to a host a concentration of peptides effective in raising an immune response which is sufficient to neutralize HIV, by, for example, inhibiting HIV ability to infect cells. The exact concentration will depend upon the specific peptide to be administered, but may be determined by using standard techniques for assaying the development of an immune response which are well known to those of ordinary skill in the art. The peptides to be used as vaccines 50 administration due to toxicity, or to organ dysfunctions. are usually administered intramuscularly.

The peptides may be formulated with a suitable adjuvant in order to enhance the immunological response. Such adjuvants may include, but are not limited to mineral gels such as aluminum hydroxide; surface active substances such 55 as lysolecithin, pluronic polyols, polyanions; other peptides; oil emulsions; and potentially useful human adjuvants such as BCG and Corynebacterium parvum. Many methods may be used to introduce the vaccine formulations described here. These methods include but are not limited to oral, 60 intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, and intranasal routes.

Alternatively, an effective concentration of polyclonal or monoclonal antibodies raised against the peptides of the invention may be administered to a host so that no unin- 65 fected cells become infected by HIV. The exact concentration of such antibodies will vary according to each specific

antibody preparation, but may be determined using standard techniques well known to those of ordinary skill in the art. Administration of the antibodies may be accomplished using a variety of techniques, including, but not limited to those described in this section.

Effective dosages of the peptides of the invention to be administered may be determined through procedures well known to those in the art which address such parameters as biological half-life, bioavailability, and toxicity. Given the data presented below in Section 6, DP-178, for example, may prove efficacious in vivo at doses required achieve circulating levels of long per ml of peptide.

A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal disruption of the PTK/adaptor protein complex, or a half-maximal inhibition of the cellular level and/or activity of a complex component) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography (HPLC).

The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the 45 patient's condition. (See e.g. Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p1).

It should be noted that the attending physician would know how to and when to terminate, interrupt, or adjust Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response were not adequate (precluding toxicity). The magnitude of an administrated dose in the management of the oncogenic disorder of interest will vary with the severity of the condition to be treated and to the route of administration. The dose and perhaps dose frequency, will also vary according to the age, body weight, and response of the individual patient. A program comparable to that discussed above may be used in veterinary medicine.

As demonstrated in the Example presented below in Section 6, the antiviral activity of the peptides of the invention may show a pronounced type and subtype specificity, i.e., specific peptides may be effective in inhibiting the activity of only specific viruses. This feature of the invention presents many advantages. One such advantage, for example, lies in the field of diagnostics, wherein one can use the antiviral specificity of the peptide of the invention to ascertain the identity of a viral isolate. With respect to HIV, one may easily determine whether a viral isolate consists of an HIV-1 or HIV-2 strain. For example, uninfected CD-4+ cells may be co-infected with an isolate which has been identified as containing HIV the DP-178 (SEQ ID:1) peptide, after which the retroviral activity of cell supernatents may be assayed, using, for example, the techniques described above in Section 5.2. Those isolates whose retroviral activity is completely or nearly completely inhibited 10 contain HIV-1. Those isolates whose viral activity is unchanged or only reduced by a small amount, may be considered to not contain HIV-1. Such an isolate may then be treated with one or more of the other DP-178 peptides of the invention, and subsequently be tested for its viral activity 15 in order to determine the identify of the viral isolate.

Use of pharmaceutically acceptable carriers to formulate the compounds herein disclosed for the practice of the invention into dosages suitable for systemic administration is within the scope of the invention. With proper choice of ²⁰ carrier and suitable manufacturing practice, the compositions of the present invention, in particular, those formulated as solutions, may be administered parenterally, such as by intravenous injection. The compounds can be formulated readily using pharmaceutically acceptable carriers well ²⁵ known in the art into dosages suitable for oral administration. Such carriers enable the compounds of the invention to be formulated as tablets, pills, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. ³⁰

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. The preparations formulated for oral administration may be in the form of tablets, dragees, capsules, or solutions.

The pharmaceutical compositions of the present invention 45 may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, 55 such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. optionally, the suspension may also contain suitable stabilizers or agents 60 which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipient, optionally grinding a resulting mixture, and processing the 65 mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients

are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.

Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added.

#### 6. EXAMPLE

#### DP-178 (SEQ ID:1) is a Potent Inhibitor of HIV-1 Infection

³⁵ In this example, DP-178 (SEQ ID:1) is shown to be a potent inhibitor of HIV-1 mediated CD-4⁺ cell-cell fusion and infection by cell free virus. In the fusion assay, this peptide completely blocks virus induced syncytia formation at concentrations of from 1–10 ng/ml. In the infectivity assay the inhibitory concentration is somewhat higher, blocking infection at 90 ng/ml. It is further shown that DP-178 (SEQ ID:1) shows that the antiviral activity of DP-178 (SEQ ID:1) is highly specific for HIV-1. Additionally, a synthetic peptide, DP-185 (SEQ ID:3), representing a HIV-1-derived DP-178 homolog is also found to block HIV-1-mediated syncytia formation.

#### 6.1. Materials and Methods

6.1.1. Peptide Synthesis

Peptides were synthesized using Fast Moc chemistry on an Applied Biosystems Model 431A peptide synthesizer. Amidated peptides were prepared using Rink resin (Advanced Chemtech) while peptides containing free carboxy termini were synthesized on Wang (p-alkoxy-benzylalcohol) resin (Bachem). First residues were double coupled to the appropriate resin and subsequent residues were single coupled. Each coupling step was followed by acetic anhydride capping. Peptides were cleaved from the resin by treatment with trifluoracetic acid (TFA) (10 ml), H₂O (0.5 ml), thioanisole (0.5 ml), ethanedithiol (0.25 ml), and crystalline phenol (0.75 g). Purification was carried out by reverse phase HPLC. Approximately 50 mg samples of crude peptide were chromatographed on a Waters Delta Pak C18 column (19mm×30 cm,  $15\mu$  spherical) with a linear gradient; H₂O/acetonitrile 0.1% TFA. Lyophilized peptides were stored desiccated and peptide solutions were made in water at about 1 mg/ml. Electrospray mass spectrometry

25

vielded the following results: DP-178 (SEQ ID:1):4491.87 (calculated 4491.94); DP-180 (SEQ ID:2):4491.45 (calculated 4491.94); DP-185 (SEQ ID:3):not done (calculated 4546.97).

6.1.2. Virus

The HIV-1_{LAI} virus was obtained from R. Gallo (Popovic, M. et al., 1984, Science 224:497-508) and propagated in CEM cells cultured in RPMI 1640 containing 10% fetal calf serum. Supernatant from the infected CEM cells was passed through a 0.2  $\mu$ m filter and the infectious titer estimated in 10 a microinfectivity assay using the AA5 cell line to support virus replication. For this purpose, 25  $\mu$ l of serial diluted virus was added to 75  $\mu$ l AA5 cells at a concentration of  $2 \times 10^{5}$ /ml in a 96-well microtitre plate. Each virus dilution was tested in triplicate. Cells were cultured for eight days by addition of fresh medium every other day. On day 8 post infection, supernatant samples were tested for virus replication as evidenced by reverse transcriptase activity released to the supernatant. The TCID₅₀ was calculated according to the Reed and Muench formula (Reed, L. J. et al., 1938, Am. 20 J. Hyg. 27:493–497). The titer of the HIV-1 $_{LAI}$  and HIV-1 $_{MN}$ stocks used for these studies, as measured on the AA5 cell line, was approximately  $1.4 \times 106$  and  $3.8 \times 10^4$  TCID₅₀/ml, respectively.

#### 6.1.3. Cell Fusion Assay

Approximately 7×10⁴ Molt cells were incubated with  $1 \times 10^4$  CEM cells chronically infected with the HIV-1_{LAI} virus in 96-well plates (one-half area cluster plates; Costar, Cambridge, Mass.) in a final volume of 100  $\mu$ l culture medium as previously described (Matthews, T. J. et al., 30 1987, Proc. Natl. Acad. Sci. USA 84: 5424-5428). Peptide inhibitors were added in a volume of 10  $\mu$ l and the cell mixtures were incubated for 24 hr. at 37° C. At that time, multinucleated giant cells were estimated by microscopic ization of the entire well in a single field.

6.1.4. Cell Free Virus Infection Assay

Synthetic peptides were incubated at 37° C. with either 247 TCID₅₀ (for experiment depicted in FIG. 2), or 62 TCID₅₀ (for experiment depicted in FIG. 3) units of HIV-40  $1_{LAI}$  virus or 25 TCID₅₀ units of HIV- $2_{NIH2}$  and CEM CD4⁺ cells at peptide concentrations of 0, 0.04, 0.4, 4.0, and 40  $\mu$ g/ml for 7 days. The resulting reverse transcriptase (RT) activity in counts per minute was determined using the assay described, below, in Section 6.1.5. See, Reed, L. J. et al., 45 1938, Am. J. Hyg. 27: 493-497 for an explanation of  $TCID_{50}$  calculations.

6.1.5. Reverse Transcriptase Assay

The micro-reverse transcriptase (RT) assay was adapted from Goff et al. (Goff, S. et al., 1981, J. Virol. 38:239–248) 50 and Willey et al. (Willey, R. et al., 1988, J. Virol. 62:139-147). Supertanants from virus/cell cultures are adjusted to 1% Triton-X100. A 10  $\mu$ l sample of supernatant was added to 50  $\mu$ l of RT cocktail in a 96-well U-bottom microtitre plate and the samples incubated at 37° C. for 90 min. The RT cocktail contained 75 mM KCl, 2 mM dithiothreitol, 5 mM MgCl₂,  $5 \mu$ g/ml poly A (Pharmacia, cat. No. 27-4110-01), 0.25 units/ml oligo dT (Pharmacia, cat. No. 27-7858-01), 0.05% NP40, 50 mM Tris-HCl, pH 7.8, 0.5  $\mu$ M non-radioactive dTTP, and 10  $\mu$ Ci/ml ³²P-dTTP 60 (Amersham, cat. No. PB.10167).

After the incubation period,  $40 \,\mu$ l of reaction mixture was applied to a Schleicher and Schuell (S+S) NA45 membrane (or DE81 paper) saturated in 2×SSC buffer (0.3M NaCl and 0.003M sodium citrate) held in a S+S Minifold over one 65 sheet of GB003 (S+S) filter paper, with partial vacuum applied. Each well of the minifold was washed four times

with 200 µl 2×SSC, under full vacuum. The membrane was removed from the minifold and washed 2 more times in a pyrex dish with an excess of 2×SSC. Finally, the membrane was drained on absorbent paper, placed on Whatman #3 paper, covered with Saran wrap, and exposed to film overnight at -70° C.

#### 6.2. Results

6.2.1. Peptide Inhibition of Infected Cell-induced Syncytia Formation

The initial screen for antiviral activity assayed peptides' ability to block syncytium formation induced by overnight co-cultivation of uninfected Molt4 cells with chronically HIV-1 infected CEM cells. The results of several such experiments are presented herein. In the first of these experiments, serial DP-178 (SEQ ID:1) peptide concentrations between 10  $\mu$ g/ml and 12.5 ng/ml were tested for blockade of the cell fusion process. For these experiments, CEM cells chronically infected with either HIV-1_{LAI}, HIV- $1_{MN}$ , HIV- $1_{RF}$ , or HIV- $1_{SF2}$  virus were cocultivated overnight with uninfected Molt 4 cells. The results (FIG. 4) show that DP-178 (SEQ ID:1) afforded complete protection against each of the HIV-1 isolates down to the lowest concentration of DP-178 (SEQ ID:1) used. For HIV_{LAL} inhibition, the lowest concentration tested was 12.5 ng/ml; for all other HIV-1 viruses, the lowest concentration of DP-178 (SEQ ID:1) used in this study was 100 ng/ml. A second peptide, DP-180 (SEQ ID:2), containing the same amino acid residues as DP-178 (SEQ ID:1) but arranged in a random order exhibited no evidence of anti-fusogenic activity even at the high concentration of  $40 \,\mu\text{g/ml}$  (FIG. 4). These observations indicate that the inhibitory effect of DP-178 (SEQ ID:1) is primary sequence-specific and not related to non-specific peptide/protein interactions. The actual endpoint (i.e., the lowest effective inhibitory examination at a 40x magnification which allowed visual- 35 concentration) of DP-178 inhibitory action is within the range of 1–10 ng/ml.

> The next series of experiments involved the preparation and testing of a DP-178 (SEQ ID:1) homolog for its ability to inhibit HIV-1-induced syncytia formation. As shown in FIG. 1, the sequence of DP-185 (SEQ ID:3) is slightly different from DP-178 (SEQ ID:1) in that its primary sequence is taken from the HIV- $1_{SF2}$  isolate and contains several amino acid differences relative to DP-178 (SEQ ID:1) near the N terminus. As shown in FIG. 4, DP-185 (SEQ ID:3), exhibits inhibitory activity even at 312.5 ng/ml, the lowest concentration tested.

> The next series of experiments involved a comparison of DP-178 (SEQ ID:1) HIV-1 and HIV-2 inhibitory activity. As shown in FIG. 5, DP-178 (SEQ ID:1) blocked HIV-1mediated syncytia formation at peptide concentrations below 1 ng/ml. DP-178 (SEQ ID:1) failed, however, to block HIV-2 mediated syncytia formation at concentrations as high as 10  $\mu$ g/ml. This striking 4 log selectivity of DP-178 (SEQ ID:1) as an inhibitor of HIV-1-mediated cell fusion demonstrates an unexpected HIV-1 specificity in the action of DP-178 (SEQ ID:1). DP-178 (SEQ ID:1) inhibition of HIV-1-mediated cell fusion, but the peptide's inability to inhibit HIV-2 medicated cell fusion in the same cell type at the concentrations tested provides further evidence for the high degree of selectivity associated with the antiviral action of DP-178 (SEQ ID:1).

6.2.2. Peptide Inhigition of Infection by Cell-free Virus

DP-178 (SEQ ID:1) was next tested for its ability to block CD-4⁺ CEM cell infection by cell free HIV-1 virus. The results, shown in FIG. 2, are from an experiment in which DP-178 (SEQ ID:1) was assayed for its ability to block infection of CEM cells by an HIV-1_{LAI} isolate. Included in

the experiment were three control peptides, DP-116 (SEQ ID:9), DP-125 (SEQ ID:8), and DP-118 (SEQ ID:10). DP-116 (SEQ ID:9) represents a peptide previously shown to be inactive using this assay, and DP-125 (SEQ ID:8; Wild, C. et al., 1992, Proc. Natl. Acad, Sci. USA 89:10,537) and DP-118 (SEQ ID:10) are peptides which have previously been shown to be active in this assay. Each concentration (0, 0.04, 0.4, 4, and 40  $\mu$ g/ml) of peptide was incubated with 247 TCID₅₀ units of HIV-1_{LAI} virus and CEM cells. After 7 presence of RT activity as a measure of successful infection. The results, shown in FIG. 2, demonstrate that DP-178 (SEQ ID:1) inhibited the de novo infection process mediated by the HIV-1 viral isolate at concentrations as low as 90 ng/ml (IC50=90 ng/ml). In contrast, the two positive control 15 peptides, DP-125 (SEQ: ID:8) and DP-118 (SEQ ID:10), had over 60-fold higher IC50 concentrations of approximately 5  $\mu$ g/ml.

In a separate experiment, the HIV-1 and HIV-2 inhibitory action of DP-178 (SEQ ID:1) was tested with CEM cells and 20 either HIV-1_{LAI} or HIV-2_{NIHZ}. 62 TCID₅₀ HIV-1_{LAI} or 25  $GCID_{50}$  HIV-2_{NIHZ} were used in these experiments, and were incubated for 7 days. As may be seen in FIG. 3, DP-178 (SEQ ID:1) inhibited HIV-1 infection with an IC50 of about 31 ng/ml. In contrast, DP-178 (SEQ ID:1) exhibited a much 25 higher IC50 for HIV-2_{NIHZ}, thus making DP-178 (SEQ ID:1) two logs more potent as a HIV-1 inhibitor than a HIV-2 inhibitor. This finding is consistent with the results of the fusion inhibition assays described, above, in Section 6.2.1, and further supports a significant level of selectivity (i.e., for 30 HIV-1 over HIV-2).

#### 7. EXAMPLE

#### The HIV-1 Inhibitor, DP-178 SEQ ID NO:1, is Non-cytotoxic

In this Example, the 36 amino acid synthetic peptide inhibitor DP-178 (SEQ ID:1) is shown to be non-cytotoxic to cells in culture, even at the highest peptide concentrations (40  $\mu$ g/ml) tested.

#### 7.1. Materials and Methods

Cell proliferation and toxicity assay: Approximately 3.8× 10⁵ CEM cells for each peptide concentration were incubated for 3 days at 37° C. in T25 flasks. Peptides tested were DP-178 (SEQ ID:1) and DP-116 (SEQ ID:9), as described in FIG. 1. The concentrations of each peptide used were 0, 2.5, 10, and 40  $\mu$ g/ml. Cell counts were taken at incubation times of 0, 24, 48, and 72 hours.

#### 7.2. Results

Whether the potent HIV-1 inhibitor DP-178 (SEQ ID:1) exhibited any cytotoxic effects was assessed by assaying the peptide's effects on the proliferation and viability of cells in 55 culture. CEM cells were incubated in the presence of varying concentrations of DP-178 (SEQ ID:1), and DP-116 (SEQ ID:9), a peptide previously shown to be ineffective as a HIV inhibitor (Wild, C. et al., 1992, Proc. Natl. Acad. Sci. USA 89:10,537–10,541). Additionally, cells were incubated in the absence of either peptide.

The results of the cytotoxicity study demonstrate that DP-178 (SEQ ID: 1) exhibits no cytotoxic effects on cells in culture. As can be seen, below, in Table XI, even the proliferation and viability characteristics of cells cultured for 65 3 days in the presence of the highest concentration of DP-178 (SEQ ID:1) tested (40  $\mu$ g/ml) do not significantly

### 108

differ from the DP-116 (SEQ ID:9) or the no-peptide controls. The cell proliferation data is also represented in graphic form in FIG. 6. As was demonstrated in the Working Example presented above in Section 6, DP-178 (SEQ ID:1) completely inhibits HIV-1 mediated syncytia formation at peptide concentrations between 1 and 10 ng/ml, and completely inhibits cell-free viral infection at concentrations of at least 90 ng/ml. Thus, this study demonstrates that even at peptide concentrations greater than 3 log higher than the days of culture, cell-free supernatant was tested for the 10 HIV inhibitory dose, DP-178 (SEQ ID:1) exhibits no cytotoxic effects.

TABLE XI

5	Peptide	% Viability at time (hours)			
Peptide	Concentration $\mu$ g/ml	0	24	48	72
DP178	40	98	97	95	97
(SEQ	10	98	97	98	98
) ID:1)	2.5	98	93	96	96
DP116	40	98	95	98	97
(SEQ	10	98	95	93	98
ID:9)	2.5	98	96	98	99
No	0	98	97	99	98
Peptide					

#### 8. EXAMPLE

#### The Interaction of DP178 and DP107

Soluble recombinant forms of gp41 used in the example described below provide evidence that the DP178 peptide associates with a distal site on gp41 whose interactive structure is influenced by the DP107 leucine zipper motif. A single mutation disrupting the coiled-coil structure of the 35 leucine zipper domain transformed the soluble recombinant gp41 protein from an inactive to an active inhibitor of HIV-1 fusion. This transformation may result from liberation of the potent DP178 domain from a molecular clasp with the leucine zipper, DP107, determinant. The results also indicate that the anti-HIV activity of various gp41 derivatives (peptides and recombinant proteins) may be due to their ability to form complexes with viral gp41 and interfere with its fusogenic process.

#### 8.1. Materials and Methods

8.1.1. Construction of Fusion Proteins and GP41 Mutants Construction of fusion proteins and mutants shown in FIG. 7 was accomplished as follows: the DNA sequence corresponding to the extracellular domain of gp41 (540-686) was cloned into the Xmn I site of the expression 50 vector pMal-p2 (New England Biolab) to give M41. The gp41 sequence was amplified from pgtat (Malim et al., 1988, Nature 355: 181-183) by using polymerase chain reaction primer (PCR)with upstream 5'-ATGACGCTGACGGTACAGGCC-3' (primer A)(SEQ ID:11) primer and downstream 5'-TGACTAAGCTTAATACCACAGCCAATTTGTTAT-3' (primer B)(SEQ ID:12). M41-P was constructed by using the T7-Gen in vitro mutagenesis kit from United States 60 Biochemicals (USB) following the supplier's instructions. mutagenic primer The (5' -GGAGCTGCTTGGGGGCCCCAGAC-3') introduces (SEQ ID:13) an Ile to Pro mutation in M41 at position 578. M41Δ107 was made using a deletion mutagenic primer 5'-CCAAATCCCCAGGAGCTGCTCGAGCTGCACTAT-ACCAGAC-3' (primer C)(SEQ ID:14) following the USB T7-Gen mutagenesis protocol. M41Δ178 was made by clon-

ing the DNA fragment corresponding to gp41 amino acids 540-642 into the Xmn I site of pMal-p2. Primer A and 5'-ATAGCTTCTAGATTAATTGTTAATTTCTCTGTCCC-3' (primer D)(SEQ ID:15) were used in the PCR with the template pgtat to generate the inserted DNA fragments. M41-P was used as the template with primer A and D in PCR to generate M41-PA178. All inserted sequences and mutated residues were checked by restriction enzyme analysis and confirmed by DNA sequencing.

The fusion proteins were purified according to the protocol described in the manufacturer's brochure of protein fusion and purification systems from New England Biolabs (NEB). Fusion proteins (10 ng) were analyzed by electrophoresis on 8% SDS polyacrylamide gels. Western blotting 15 analysis was performed as described by Sambrook et al, 1989, Molecular Cloning: A Laboratory Manual, 2d Ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., Ch. 18, pp. 64-75. An HIV-1 positive serum diluted 1000-fold, or a human Fab derived from repertoire cloning 20 was used to react with the fusion proteins. The second antibody was HRP-conjugated goat antihuman Fab. An ECL Western blotting detection system (Amersham) was used to detect the bound antibody. A detailed protocol for this detection system was provided by the manufacturer. Rain-25 bow molecular weight marker (Amersham) were used to estimate the size of fusion proteins.

8.1.3. Cell Fusion Assays for Anti-HIV Activity

Cell fusion assays were performed as previously described (Matthews et al., 1987, Proc. Natl. Acad. Sci. USA 30 84: 5424–5481). CEM cells  $(7 \times 10^4)$  were incubated with HIV-1_{IIIB}. chronically infected CEM cells  $(10^4)$  in 96-well flat-bottomed half-area plates (Costar) in 100  $\mu$ l culture medium. Peptide and fusion proteins at various concentrations in 10  $\mu$ l culture medium were incubated with the cell 35 mixtures at 37° C. for 24 hours. Multinucleated syncytia were estimated with microscopic examination. Both M41 and M41-P did not show cytotoxicity at the concentrations tested and shown in FIG. 8.

Inhibition of HIV-1 induced cell-cell fusion activity was 40 carried out in the presence of 10 nM DP178 and various concentrations of M41 $\Delta$ 178 or M41-P $\Delta$ 178 as indicated in FIG. 9. There was no observable syncytia in the presence of 10 nM DP178. No peptide or fusion protein was added in the control samples.

8.1.4. ELISA Analysis of DP178 Binding to the Leucine Zipper Motif of GP41

The amino acid sequence of DP178 used is: YTSLIH-SLIEESQNQQEKNEQELLELDKWASLWNWF. For enzyme linked immunoassay (ELISA), M41Δ178 or M41- 50  $P\Delta 178$  (5  $\mu$ g/ml) in 0.1M NaHCO₃, pH 8.6, were coated on 96 wells Linbro ELISA plates (Flow Lab, Inc.) overnight. Each well was washed three times with distilled water then blocked with 3% bovine serum albumin (BSA) for 2 hours. After blocking, peptides with 0.5% BSA in TBST (40 mM 55 Tris-HCl pH7.5, 150 mM NaCl, 0.05% Tween 20) were added to the ELISA plates and incubated at room temperature for 1 hour. After washing three times with TBST, Fab-d was added at a concentration of 10 ng/ml with 0.5% BSA in TBST. The plates were washed three times with TBST after 60 incubation at room temperature for 1 hour. Horse radish peroxidase (HRP) conjugated goat antihuman Fab antiserum at a 2000 fold dilution in TBST with 0.5% BSA was added to each well and incubated at room temperature for 45 minutes. The plates were then washed four times with TBST. 65 The peroxidase substrate o-phenylene diamine (2.5 mg/ml) and 0.15% H₂O₂ were added to develop the color. The

reaction was stopped with an equal volume of  $4.5 \text{ N H}_2\text{SO}_4$ after incubation at room temperature for 10 minutes. The optical density of the stopped reaction mixture was measured with a micro plate reader (Molecular Design) at 490 nm. Results are shown in FIG. 10.

#### 8.2. Results

8.2.1. The Expression and Characterization of the Ectodomain of GP41

As a step toward understanding the roles of the two helical 8.1.2. Purification and Chatacterization of Fusion Proteins 10 regions in gp41 structure and function, the ectodomain of gp41 was expressed as a maltose binding fusion protein (M41) (FIG. 7). The fusogenic peptide sequence at the N-terminal of gp41 was omitted from this recombinant protein and its derivatives to improve solubility. The maltose binding protein facilitated purification of the fusion proteins under relatively mild, non-denaturing conditions. Because the M41 soluble recombinant gp41 was not glycosylated, lacked several regions of the transmembrane protein (i.e., the fusion peptide, the membrane spanning, and the cytoplasmic domains), and was expressed in the absence of gp120, it was not expected to precisely reflect the structure of native gp41 on HIV-1 virions. Nevertheless, purified M41 folded in a manner that preserved certain discontinuous epitopes as evidenced by reactivity with human monoclonal antibodies, 98-6, 126-6, and 50-69, previously shown to bind conformational epitopes on native gp41 expressed in eukaryotic cells (Xu et al., 1991, J. Virol. 65: 4832-4838; Chen, 1994, J. Virol. 68:2002-2010). Thus, at least certain regions of native gp41 defined by these antibodies appear to be reproduced in the recombinant fusion protein M41. Furthermore, M41 reacted with a human recombinant Fab (Fab-d) that recognizes a conformational epitope on gp41 and binds HIV-1 virions as well as HIV-1 infected cells but not uninfected cells as analyzed by FACS. Deletion of either helix motif, i.e., DP107 or DP178, of the M41 fusion protein eliminated reactivity with Fab-d. These results indicate that both helical regions, separated by 60 amino acids in the primary sequence, are required to maintain the Fab-d epitope.

> 8.2.2. Anti-HIV Activity of the Recombinant Ectodomain of **GP41**

The wild type M41 fusion protein was tested for anti-HIV-1 activity. As explained, supra, synthetic peptides corresponding to the leucine zipper (DP107) and the C-terminal 45 putative helix (DP178) show potent anti-HIV activity. Despite inclusion of both these regions, the recombinant M41 protein did not affect HIV-1 induced membrane fusion at concentrations as high as 50 AM (Table XII, below).

TABLE XII

-	DISRUPTION OF THE LEUCINE ZIPPER OF GP41 FREES THE ANTI-HIV MOTIF							
	DP107	DP178	<b>M</b> 41	M41-P	M41-P∆178			
Cell fusion (IC ₉₀ )	$1 \ \mu M$	1 n <b>M</b>	>50 µM	83 nM	$>50 \ \mu M$			
Fab-D binding (k _D )	—	—	$3.5 \times 10^{-9}$	$2.5 \times 10^{-8}$	—			
HIV infectiv- ity (IC ₉₀ )	· 1 μΜ	80 n <b>M</b>	>16 µM	66 n <b>M</b>	>8 µM			

1 The affinity constants of Fab-d binding to the fusion proteins were determined using a protocol described by B. Friguet et al., 1985, J. Immunol. Method. 77:305-319.

= No detectable binding of Fab-d to the fusion proteins.

Antivirul Infectivity Assays. 20  $\mu$ l of serially diluted virus stock was incubated for 60 minutes at ambient temperature with 20 µl of the indicated concentration of purified recom-

binant fusion protein in RPMI 1640 containing 10% fetal bovine serum and antibiotics in a 96-well microtiter plate. 20  $\mu$ l of CEM4 cells at  $6 \times 10^5$  cells/ml were added to each well, and cultures were incubated at 37° C in a humidified CO₂ incubator. Cells were cultured for 9 postinfection, supernatant samples were assayed for reverse transcriptase (RT) activity, as described below, to monitor viral replication. The 50% tissue culture infectious dose (TCID₅₀) was calculated for each condition according to the formula of Reed & Muench, 1937, Am. J. Hyg. 27:493–497. RT activity was 10 determined by a modification of the published methods of Goff et al., 1981, J. Virol. 38:239–248 and Willey et al., 1988, J. Virol. 62:139–147 as described in Chen et al., 1993, AIDS Res. Human Retroviruses 9:1079–1086.

Surprisingly, a single amino acid substitution, proline in 15 place of isoleucine in the middle of the leucine zipper motif, yielded a fusion protein (M41-P) which did exhibit antiviral activity (Table XII and FIG. 8). As seen in Table XII, M41-P blocked syncytia formation by 90% at approximately 85 nM and neutralized HIV-1_{IIIB} infection by 90% at approximately 20 70 nM concentrations. The anti-HIV-1 activity of M41-P appeared to be mediated by the C-terminal helical sequence since deletion of that region from M41-P yielded an inactive fusion protein, M41-PA178 (Table XII). That interpretation was reinforced by experiments demonstrating that a truncated fusion protein lacking the DP178 sequence, M41 $\Delta$ 178, abrogated the potent anti-fusion activity of the DP178 peptide in a concentration-dependent manner (FIG. 9). The same truncated fusion protein containing the proline mutation disrupting the leucine zipper, M41-P $\Delta$ 178, was not 30 active in similar competition experiments (FIG. 9). The results indicate that the DP178 peptide associates with a second site on gp41 whose interactive structure is dependent on a wild type leucine zipper sequence. A similar interaction may occur within the wild type fusion protein, M41, and act 35 FIG. 12. to form an intramolecular clasp which sequesters the DP178 region, making it unavailable for anti-viral activity.

A specific association between these two domains is also indicated by other human monoclonal Fab-d studies. For example, Fab-d failed to bind either the DP178 peptide or 40 the fusion protein M41 $\Delta$ 178, but its epitope was reconstituted by simply mixing these two reagents together (FIG. **10**). Again, the proline mutation in the leucine zipper domain of the fusion protein, M41-P $\Delta$ 178, failed to reconstitute the epitope in similar mixing experiments. 45

#### 9. EXAMPLE

# Method for Computer-Assisted Identification of DP-107-like and DP-178-like Sequences

A number of known coiled-coil sequences have been well described in the literature and contain heptad repeat positioning for each amino acid. Coiled-coil nomenclature labels each of seven amino acids of a heptad repeat A through G, with amino acids A and D tending to be hydrophobic 55 positions. Amino acids E and G tend to be charged. These four positions (A, D, E, and G) form the amphipathic backbone structure of a monomeric alpha-helix. The backbones of two or more amphipathic helices interact with each other to form di-, tri-, tetrameric, etc., coiled-coil structures. 60 In order to begin to design computer search motifs, a series of well characterized coiled coils were chosen including yeast transcription factor GCN4 (SEQ ID:20), Influenza Virus hemagglutinin loop 36 (SEQ ID:24), and human proto-oncogenes c-Myc (SEQ ID:23), c-Fos (SEQ ID:21), 65 and c-Jun (SEQ ID:22). For each peptide sequence, a strict homology for the A and D positions, and a list of the amino

acids which could be excluded for the B, C, E, F, and G positions (because they are not observed in these positions) was determined. Motifs were tailored to the DP-107 and DP-178 sequences by deducing the most likely possibilities for heptad positioning of the amino acids of HIV-1 Bru DP-107, which is known to have coiled-coil structure, and HIV-1 Bru DP-178, which is still structurally undefined. The analysis of each of the sequences is contained in FIG. **12**. For example, the motif for GCN4 was designed as follows:

- 1. The only amino acids (using standard single letter amino acid codes) found in the A or D positions of GCN4 were [LMNV].
- 2. All amino acids were found at B, C, E, F, and G positions except {CFGIMPTW}.
- 3. The PESEARCH motif would, therefore, be written as follows:
  - $[LMNV]-\{CFGIMPTW\}$  (2)-[LMNV]-{CFGIMPTW} (3)-
  - [LMNV]-{CFGIMPTW} 2)-[LMNV]-{CFGIMPTW} 3)-
  - [LMNV]-{CFGIMPTW} 2)-[LMNV]-{CFGIMPTW} 3)-
  - [LMNV]-{CFGIMPTW} 2)-[LMNV]-{CFGIMPTW} 3)

25 Translating or reading the motif: "at the first A position either L, M, N, or V must occur; at positions B and C (the next two positions) accept everything except C, F, G, I, M, P, T, or W; at the D position either L, M, N, or V must occur; at positions E, F, and G (the next 3 positions) accept
30 everything except C, F, G, I, M, P, T, or W." This statement is contained four times in a 28-mer motif and five times in a 35-mer motif. The basic motif key then would be: [LMNV]-{CFGIMPTW}. The motif keys for the remaining well described coiled-coil sequences are summarized in 35 FIG. 12.

The motif design for DP-107 and DP-178 was slightly different than the 28-mer model sequences described above due to the fact that heptad repeat positions are not defined and the peptides are both longer than 28 residues. FIG. 13
40 illustrates several possible sequence alignments for both DP-107 and DP-178 and also includes motif designs based on 28-mer, 35^{-mer}, and full-length peptides. Notice that only slight differences occur in the motifs as the peptide are lengthened. Generally, lengthening the base peptide results
45 in a less stringent motif. This is very useful in broadening the possibilities for identifying DP-107-or DP-178-like primary amino acid sequences referred to in this document as "hits".

In addition to making highly specific motifs for each type peptide sequence to be searched, it is also possible to make "hybrid" motifs. These motifs are made by "crossing" two or more very stringent motifs to make a new search algorithm which will find not only both "parent" motif sequences but also any peptide sequences which have similarities to one, the other, or both "parents". For example, in Table 3 the "parent" sequence of GCN4 is crossed with each of the possible "parent" motifs of DP-107. Now the hybrid motif must contain all of the amino acids found in the A and D positions of both parents, and exclude all of the amino acids not found in either parent at the other positions. The resulting hybrid from crossing GCN4 or [LMNV] {CFGIMPTW} and DP-107 (28-mer with the first L in the D position) or [ILQT] {CDFIMPST}, is [ILMNQTV] {CFIMPT}. Notice that now only two basic hybrid motifs exist which cover both framing possibilities, as well as all peptide lengths of the parent DP-107 molecule. FIG. 15 represents the hybridizations of GCN4 with DP-178. FIG. 16 represents the hybridizations of DP-107 and DP-178. It is important to

40

keep in mind that the represented motifs, both parent and hybrid, are motif keys and not the depiction of the fulllength motif needed to actually do the computer search.

Hybridizations can be performed on any combination of two or more motifs. Table 5 summarizes several three-motif hybridizations including GCN4, DP-107 (both frames), and DP-178 (also both frames). Notice that the resulting motifs are now becoming much more similar to each other. In fact, the first and third hybrid motifs are actually subsets of the second and fourth hybrid motifs respectively. This means 10 that the first and third hybrid motifs are slightly more stringent than the second and fourth. It should also be noted that with only minor changes in these four motifs, or by hybridizing them, a single motif could be obtained which would find all of the sequences. However, it should be 15 to contain a coiled-coil region using the Lupas method. remembered that stringency is also reduced. Finally, the most broad-spectra and least-stringent hybrid motif is described in FIG. 18 which summarizes the hybridization of GCN4, DP-107 (both frames), DP-178 (both frames), c-Fos, c-Jun, c-Myc, and Flu loop 36.

A special set of motifs was designed based on the fact that DP-178 is located only approximately ten amino acids upstream of the transmembrane spanning region of gp41 and just C-terminal to a proline which separates DP-107 and DP-178. It has postulated that DP-178 may be an amphip-25 athic helix when membrane associated, and that the proline might aid in the initiation of the helix formation. The same arrangement was observed in Respiratory Syncytial Virus; however, the DP-178-like region in this virus also had a leucine zipper just C-terminal to the proline. Therefore, 30 designed N-terminal proline-leucine zipper motifs were designed to analyze whether any other viruses might contain this same pattern. The motifs are summarized in FIG. 19.

The PC/Gene protein database contains 5879 viral amino acid sequences (library file PVIRUSES; CD-ROM release 35 11.0). Of these, 1092 are viral envelope or glycoprotein sequences (library file PVIRUSE1). Tables V through X contain lists of protein sequence names and motif hit locations for all the motifs searched.

#### 10. EXAMPLE

#### Computer-assisted Identification of DP-107 and DP-178-like Sequences in Human Immunodeficiency Virus

FIG. 20 represents search results for HIV-1 BRU isolate gp41 (PC/Gene protein sequence PENV_HV1BR). Notice that the hybrid motif which crosses DP-107 and DP-178 (named 107×178×4; the same motif as found in FIG. 16 found three hits including amino acids 550-599, 636-688, 50 and 796-823. These areas include DP-107 plus eight N-terminal and four C-terminal amino acids; DP-178 plus seven N-terminal and ten C-terminal amino acids; and an area inside the transmembrane region (cytoplasmic). FIG. 20 (SEQ ID:26) also contains the results obtained from search- 55 ing with the motif named ALLMOTI5, for which the key is found in FIG. 17 ({CDGHP} {CFP}×5). This motif also found three hits including DP-107 (amino acids 510-599), DP-178 (615-717), and a cytoplasmic region (772-841). These hits overlap the hits found by the motif  $107 \times 178 \times 4$  60 with considerable additional sequences on both the amino and carboxy termini. This is not surprising in that 107× 178×4 is a subset of the ALLMOTI5 hybrid motif. Importantly, even though the stringency of ALLMOTI5 is considerably less than 107×178×4, it still selectively iden- 65 tifies the DP-107 and DP-178 regions of gp41 shown to contain sequences for inhibitory peptides of HIV-1. The

results of these two motif searches are summarized in Table V under the PC/Gene protein sequence name PENV HV1BR. The proline-leucine zipper motifs also gave several hits in HIV-1 BRU including 503-525 which is at the very C-terminus of gp120, just upstream of the cleavage site (P7LZIPC and P12LZIPC); and 735-768 in the cytoplasmic domain of gp41 (P23LZIPC). These results are found in Tables VIII, IX, and X under the same sequence name as mentioned above. Notice that the only area of HIV-1 BRU which is predicted by the Lupas algorithm to contain a coiled-coil region, is from amino acids 635-670. This begins eight amino acids N-terminal to the start and ends eight amino acids N-terminal to the end of DP-178. DP-107, despite the fact that it is a known coiled coil, is not predicted

#### 11. EXAMPLE

#### Computer-assisted Identification of DP-107-like and DP-178-like Sequences in Human Respiratory Syncytial Virus

FIG. 21 represents search results (SEQ ID:27) for Human Respiratory Syncytial Virus (RSV; Strain A2) fusion glycoprotein F1 (PC/Gene protein sequence name PVGLF_ HRSVA). Motif 107×178×4 finds three hits including amino acids 152-202, 213-243, and 488-515. The arrangement of these hits is similar to what is found in HIV-1 except that the motif finds two regions with similarities to DP-178, one just downstream of what would be called the DP-107 region or amino acids 213-243, and one just upstream of the transmembrane region (also similar to DP-178) or amino acids 488-515. Motif ALLMOTI5 also finds three areas including amino acids 116-202, 267-302, and 506-549. The prolineleucine zipper motifs also gave several hits including amino acids 205-221 and 265-287 (P1LZIPC 265-280, P12LZIPC), and 484-513 (P7LZIPC and P12LZIPC 484–506, P23LZIPC). Notice that the PLZIP motifs also identify regions which share location similarities with DP-178 of HIV-1.

#### 12. EXAMPLE

#### Computer-assisted Identification of DP-107-like and DP-178-like Sequences in Simian Immunodeficiency Virus

45 Motif hits (SEQ ID:28) for Simian immunodeficiency Virus gp41 (AGM3 isolate; PC/Gene protein sequence name PENV_SIVAG) are shown in FIG. 22. Motif 107×178×4 finds three hits including amino acids 566-593, 597-624, and 703-730. The first two hits only have three amino acids between them and could probably be combined into one hit from 566-624 which would represent a DP-107-like hit. Amino acids 703 to 730 would then represent a DP-178-like hit. ALLMOTI5 also finds three hits including amino acids 556-628 (DP-107-like), 651-699 (DP-178-like), and 808-852 which represents the transmembrane spanning region. SIV also has one region from 655-692 with a high propensity to form a coiled coil as predicted by the Lupas algorithm. Both 107×178×4 and ALLMOTI5 motifs find the same region. SIV does not have any PLZIP motif hits in gp41.

#### 13. EXAMPLE

Computer-assisted Identification of DP-107-like and DP-178 Like Sequences in Canine Distemper Virus

Canine Distemper Virus (strain Onderstepoort) fusion glycoprotein F1 (PC/Gene Protein sequence name PVGLF_

CDVO) has regions similar to Human RSV which are predicted to be DP-107-like and DP-178-like (FIG. 23, SEQ ID:29). Motif 107×178×4 highlights one area just C-terminal to the fusion peptide at amino acids 252-293. Amino acids 252-286 are also predicted to be coiled coil using the Lupas algorithm. Almost 100 amino acids C-terminal to the first region is a DP-178-like area at residues 340-367. ALLMOTI5 highlights three areas of interest including: amino acids 228-297, which completely overlaps both the Lupas prediction and the DP-107-like 10 107×178×4 hit; residues 340-381, which overlaps the second 107×178×4 hit; and amino acids 568-602, which is DP178-like in that it is located just N-terminal to the transmembrane region. It also overlaps another region (residues 570-602) predicted by the Lupas method to have 15 a high propensity to form a coiled coil. Several PLZIP motifs successfully identified areas of interest including P6 and P12LZIPC which highlight residues 336-357 and 336-361 respectively; P1 and P12LZIPC which find residues 398-414; and P12 and P23LZIPC which find residues 20 562-589 and 562-592 respectively.

#### 14. EXAMPLE

Computer-assisted Identification of DP-107-like and DP-178-like Sequences in Newcastle Disease Virus

FIG. **24** shows the motif hits (SEQ ID NO:30) found in Newcastle Disease Virus (strain Australia-Victoria/32; PC Gene protein sequence name PVGLF_NDVA). Motif 107× 178×4 finds two areas including a DP-107-like hit at amino acids 151–178 and a DP-178-like hit at residues 426–512. ALLMOTI5 finds three areas including residues 117–182, 231–272, and 426–512. The hits from 426–512 include a region which is predicted by the Lupas method to have a high coiled-coil propensity (460–503). The PLZIP motifs identify only one region of interest at amino acids 273–289 (P1 and 12LZIPC).

#### 15. EXAMPLE

#### Computer-assisted Identification of DP-107-like and DP-178-like Sequences in Human Parainfluenza Virus

Both motifs 107×178×4 and ALLMOTI5 exhibit DP-107like hits in the same region, 115–182 and 117–182 respectively, of Human Parainfluenza Virus (strain NIH 47885; PC/Gene protein sequence name PVGLF_p13H4; (FIG. **25**, SEQ ID NO:31). In addition, the two motifs have a DP-178-like hit just slightly C-terminal at amino acids 207–241. Both motifs also have DP-178-like hits nearer the transmembrane region including amino acids 457–497 and 462–512 respectively. Several PLZIP motif hits are also observed including 283–303 (P5LZIPC), 283–310 (P12LZIPC), 453–474 (P6LZIPC), and 453–481 55 (P23LZIPC). The Lupas algorithm predicts that amino acids 122–176 have a propensity to form a coiled-coil.

#### 16. EXAMPLE

Computer-assisted Identification of DP-107-like and DP-178-like Sequences of Influenza A Virus

FIG. 26 illustrates the Lupas prediction (SEQ ID NO:32) for a coiled coil in Influenza A Virus (strain A/Aichi/2/68) at residues 379–436, as well as the motif hits for 107×178×4 at amino acids 387–453, and for ALLMOTI5 at residues 380–456. Residues 383–471 (38–125 of HA2) were shown

by Carr and Kim to be an extended coiled coil when under acidic pH (Carr and Kim, 1993, Cell 73: 823–832). The Lupas algorithyan predicts a coiled-coil at residues 379–436. All three methods successfully predicted the region shown to actually have coiled-coil structure; however, ALLMOTI5 predicted the greatest portion of the 88 residue stretch.

#### 17. EXAMPLE

#### **RSV** Antiviral Compounds

In the Example presented herein, respiratory syncytial virus (RSV) peptide sequences identified by utilizing the computer-assisted coiled-coil peptide sequence searches described in Example 9, above, are shown to encode peptide domains that exhibit structural similarity to actual, known coiled-coil peptides, and are, additionally found to exhibit antiviral activity.

#### 17.1 Materials and Methods

Structural analyses consisted of circular dichroism (CD) studies, which were conducted according to the methods described in the Applicants' co-pending U.S. patent application Ser. No 08/073,028.

Anti-RSV antiviral activity was assayed as described in Pringle, C. R. et al., 1985, J. Medical Vir. 17:377–386.

A 48 amino acid RSV F2 peptide (SEQ ID NO:33) and a 53 amino acid F1-178 (SEQ ID NO:34) peptide are utilized which span sequences that were identified via the computer assisted peptide sequence search strategies described in Example 9, above. See FIG. **21** for the exact position of these sequences and for the motifs utilized.

#### 17.2 Results

35-mer oligopeptides were synthesized which constituted portions of the 48 amino acid RSV F2 peptide sequence (FIG. 27) and portions of the 53 amino acid F1-178 peptide sequence (FIG. 28). The oligopeptides were assayed, via CD analysis, for structural similarity to known coiled-coil structures, and for anti-RSV activity. As shown in FIGS. 27 and 28, a number of these oligopeptides exhibited substantial coiled-coil structural similarity and/or antiviral activity.

⁴⁵ Thus, the computer assisted searches described, herein, in Example 9, for example, successfully identified viral peptide domains that represent highly promising anti-RSV antiviral compounds.

#### 18. EXAMPLE

#### HPF3 Antiviral Compounds

In the Example presented herein, human parainfluenza virus 3 (HPF3) peptide sequences identified by utilizing the computer-assisted coiled-coil peptide sequence searches described in Example 9, above, are shown to encode peptide domains that exhibit structural similarity to actual, known coiled-coil peptides, and are, additionally found to exhibit antiviral activity.

#### 18.1 Materials and Methods

60

Structural analyses consisted of circular dichroism (CD) studies, which were conducted according to the methods described in the Applicants' co-pending U.S. patent application Ser. No 08/073,028.

Anti-HPF3 antiviral activity was assayed as described in Pringle, C. R. et al., 1985, J. Medical Vir. 17:377–386.

10

15

## 117

A 56 amino acid and 70 amino acid HPF3 peptide are utilized which span sequences that were identified via the computer assisted peptide sequence search strategies described in Example 9, above. See FIG. **25** for the exact positions of these sequences and for the motifs utilized.

#### 18.2 Results

35-mer oligopeptides were synthesized which constituted portions of the 56 amino acid (SEQ ID NO:35) sequence (FIG. **29**) and portions of the 70 amino acid HPF3 peptide (SEQ ID NO:36) sequence (FIG. **30**). The oligopeptides were assayed, via CD analysis, for structural similarity to known coiled-coil structures, and for anti-HPF3 activity. As shown in FIGS. **29** and **30**, a number of these oligopeptides exhibited substantial coiled-coil structural similarity and/or antiviral activity.

## 118

Thus, the computer assisted searches described, herein, in Example 9, for example, successfully identified viral peptide domains that represent highly promising anti-HPF3 antiviral compounds.

The present invention is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

#### SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
```

```
(iii) NUMBER OF SEQUENCES: 111
```

(2) INFORMATION FOR SEQ ID NO:1:

```
    (i) SEQUENCE CHARACTERISTICS:
    (A) LENGTH: 36 amino acids
    (B) TYPE: amino acid
    (D) TOPOLOGY: unknown
```

(ii) MOLECULE TYPE: peptide

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
```

Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln Gln 1 5 10 15

```
Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu
20 25 30
```

```
Trp Asn Trp Phe
35
```

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 36 amino acids(B) TYPE: amino acid
    - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
```

Ser Ser Glu Ser Phe Thr Leu Leu Glu Gln Trp Asn Asn Trp Lys Leu 1 5 10 15

Gln Leu Ala Glu Gln Trp Leu Glu Gln Ile Asn Glu Lys His Tyr Leu 20 25 30

```
Glu Asp Ile Ser
35
```

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 36 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: unknown

120

```
-continued
```

(ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: Tyr Thr Asn Thr Ile Tyr Thr Leu Leu Glu Glu Ser Gln Asn Gln Gln 5 10 15 Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu 20 25 30 Trp Asn Trp Phe 35 (2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid(D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: Tyr Thr Gly Ile Ile Tyr Asn Leu Leu Glu Glu Ser Gln Asn Gln Gln 10 Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Asn Leu 20 25 30 Trp Asn Trp Phe 35 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: Tyr Thr Ser Leu Ile Tyr Ser Leu Leu Glu Lys Ser Gln Thr Gln Gln 5 10 15 Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu 20 25 30 Trp Asn Trp Phe 35 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids(B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Leu Glu Ala Asn Ile Ser Lys Ser Leu Glu Gln Ala Gln Ile Gln Gln 5 10 15 1 Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Ile Phe 20 25 30 Gly Asn Trp Phe 35 (2) INFORMATION FOR SEQ ID NO:7:

```
-continued
```

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: Leu Glu Ala Asn Ile Ser Gln Ser Leu Glu Gln Ala Gln Ile Gln Gln 10 1 Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Val Phe 20 25 30 Thr Asn Trp Leu 35 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 amino acids(B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Cys Gly Gly Asn Asn Leu Leu Arg Ala Ile Glu Ala Gl<br/>n Gln His Leu 10 15 Leu Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu 20 25 30 Ala Val Glu Arg Tyr Leu Lys Asp Gln 35 40 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: Leu Gln Ala Arg Ile Leu Ala Val Glu Arg Tyr Leu Lys Asp Gln Gln 10 1 5 15 Gln (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 amino acids (B) TYPE: amino acid(D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Gln Gln Leu Leu Asp Val Val Lys Arg Gln Gln Glu Met Leu Arg Leu 10 Thr Val Trp Gly Thr Lys Asn Leu Gln Ala Arg Val Thr Ala Ile Glu 20 25 30 Lys Tyr Leu Lys Asp Gln 35

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: ATGACGCTGA CGGTACAGGC C 21 (2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: TGACTAAGCT TAATACCACA GCCAATTTGT TAT 33 (2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: GGAGCTGCTT GGGGCCCCAG AC 22 (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: CCAAATCCCC AGGAGCTGCT CGAGCTGCAC TATACCAGAC 40 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: ATAGCTTCTA GATTAATTGT TAATTTCTCT GTCCC 35 (2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 amino acids

(B) TYPE: amino acid

```
-continued
```

(D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "x comprises an amino group, an acetyl group, a 9-fluoromethyoxymethyl-carbonyl group, a hydrophobic group, or a macromolecule carrier (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 50 (D) OTHER INFORMATION: /label= B /note= " x comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: Xaa Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn 15 10 Lys Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu 20 25 30 Asp Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met Gln Ser 35 40 45 Thr Xaa 50 (2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "x comprises an amino group, an acetyl group, a 9-fluoromethyoxymethyl-carbonyl group, or a macromolecule carrier group." (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 39 (D) OTHER INFORMATION: /label= B /note= "x comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group. (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17: Xaa Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser151015 Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg 20 25 30 Lys Ser Asp Glu Leu Leu Xaa 35 (2) INFORMATION FOR SEQ ID NO:18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 amino acids (B) TYPE: amino acid(D) TOPOLOGY: unknown

```
-continued
```

(ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "x comprises an amino group, an acetly group, a 9-fluoromethyoxymethyl-carbonyl group, a hydrophobic group, or a macromolecule carrier (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 37 (D) OTHER INFORMATION: /label= B /note= "x comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: Xaa Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro Ile Asp Ile Ser 10 15 Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu Ser Lys Glu Trp 20 25 30 Ile Arg Arg Ser Xaa 35 (2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "x comprises an amino group, an acetly group, a 9-fluoromethyoxymethyl-carbonyl group, a hydrophobic group, or a macromolecule carrier (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 37 (D) OTHER INFORMATION: /label= B /note= "x comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: Xaa Ala Leu Gly Val Ala Thr Ser Ala Gln Ile Thr Ala Ala Val Ala 10 5 15 Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu Lys Glu 2.0 25 30 Ala Ile Arg Asp Xaa 35 (2) INFORMATION FOR SEQ ID NO:20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: Met Lys Gln Leu Glu Asp Lys Val Glu Glu Leu Leu Ser Lys Asn Tyr

130

-continued 1 5 10 15 His Leu Glu Asn Glu Val Ala Arg Leu Lys Lys Leu 20 25 (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids(B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Leu Glu Asp Glu Lys Ser 1 5 10 15 Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu 20 25 (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22: Ile Ala Arg Leu Glu Glu Lys Val Lys Thr Leu Lys Ala Gln Asn Ser 5 10 15 1 Glu Leu Ala Ser Thr Ala Asn Met Leu Arg Glu Gln 20 25 (2) INFORMATION FOR SEQ ID NO:23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23: Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Leu Glu Lys Arg Arg Glu 10 5 1 Gln Leu Lys His Lys Leu Glu Gln Leu Arg Asn Ser 20 25 (2) INFORMATION FOR SEQ ID NO:24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids(B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: Ile Glu Lys Thr Asn Glu Lys Phe His Gln Ile Glu Lys Glu Phe Ser 10 15 1 5 Glu Val Glu Gly Arg Ile Gln Asp Leu Glu Lys Tyr 2.0 25 (2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu Gln Leu 10 1 Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala Val Glu 25 Arg Tyr Leu Lys Asp Gln 35 (2) INFORMATION FOR SEQ ID NO:26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 338 amino acids(B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: Phe Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly Ala Arg Ser151015 Met Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln202530 Gln Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu 35 40 45 Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala 50 55 60 Val Glu Arg Tyr Leu Lys Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys 65 70 75 80 Ser Gly Lys Leu Ile Cys Thr Thr Ala Val Pro Trp Asn Ala Ser Trp 85 90 95 Ser Asn Lys Ser Leu Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu 100 105 110 Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile 115 120 125 Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu 130 135 140 Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn Trp 145 150 155 160 Leu Trp Tyr Ile Lys Ile Phe Ile Met Ile Val Gly Leu Val Gly 165 170 175 Leu Arg Ile Val Phe Ala Val Leu Ser Ile Val Asn Arg Val Arg Gln 180 185 190 Gly Tyr Ser Pro Leu Ser Phe Gln Thr His Leu Pro Thr Pro Arg Gly 200 195 Pro Asp Arg Pro Glu Gly Ile Glu Glu Glu Gly Gly Glu Arg Asp Arg 210 215 220 Asp Arg Ser Ile Arg Leu Val Asn Gly Ser Leu Ala Leu Ile Trp Asp225230235240 Asp Leu Arg Ser Leu Cys Leu Phe Ser Tyr His Arg Leu Arg Asp Leu 245 250 255

											_	con	tin	ued	
Leu	Leu	Ile	Val 260	Thr	Arg	Ile	Val	Glu 265	Leu	Leu	Gly	Arg	<b>A</b> rg 270	Gly	Trp
Glu	Ala	Leu 275	Lys	Tyr	Trp	Trp	Asn 280	Leu	Leu	Gln	Tyr	Trp 285	Ser	Gln	Glu
Leu	Lys 290	Asn	Ser	Ala	Val	Ser 295	Leu	Leu	Asn	Ala	Thr 300	Ala	Ile	Ala	Val
Ala 305	Glu	Gly	Thr	Asp	Arg 310	Val	Ile	Glu	Val	Val 315	Gln	Gly	Ala	Cys	Arg 320
Ala	Ile	Arg	His	Ile 325	Pro	Arg	Arg	Ile	Arg 330	Gln	Gly	Leu	Glu	Arg 335	Ile
Leu	Leu														
(2)	INFO	RMAT	LION	FOR	SEQ	ID I	NO:27	7:							
	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 437 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(D) TOPOLOGY: unknown</li> </ul>														
					YPE:	_									
Phe							Val					Ala	Ser	Gly	Val
1		-		5		_		_	10					15	
			20				Leu	25	_				30		-
Ser	Ala	Leu 35	Leu	Ser	Thr	Asn	Lys 40	Ala	Val	Val	Ser	Leu 45	Ser	Asn	Gly
Val	Ser 50	Val	Leu	Thr	Ser	Lys 55	Val	Leu	Asp	Leu	Lys 60	Asn	Tyr	Ile	Asp
Lys 65	Gln	Leu	Leu	Pro	Ile 70	Val	Asn	Lys	Gln	Ser 75	Сув	Ser	Ile	Ser	Asn 80
Ile	Glu	Thr	Val	Ile 85	Glu	Phe	Gln	Gln	Lys 90	Asn	Asn	Arg	Leu	Leu 95	Glu
Ile	Thr	Arg	Glu 100	Phe	Ser	Val	Asn	Ala 105	Gly	Val	Thr	Thr	Pro 110	Val	Ser
Thr	Met	Leu 115	Thr	Asn	Ser	Glu	Leu 120	Leu	Ser	Leu	Ile	Asn 125	Asp	Met	Pro
Ile	Thr 130	Asn	Asp	Gln	Lys	Lys 135	Leu	Met	Ser	Asn	Asn 140	Val	Gln	Ile	Val
Arg 145	Gln	Gln	Ser	Tyr	Ser 150	Ile	Met	Ser	Ile	Ile 155	Lys	Glu	Glu	Val	Leu 160
_	Tyr	Val	Val	Gln 165		Pro	Leu	Tyr	Gly 170	_	Ile	Asp	Thr	Pro 175	
Trp	Lys	Leu	His 180		Ser	Pro	Leu	С <b>у</b> в 185		Thr	Asn	Thr	L <b>y</b> s 190	_	Gly
Ser	Asn	Ile 195		Leu	Thr	Arg	Thr 200		Arg	Gly	Trp	T <b>y</b> r 205		Asp	Asn
Ala	-		Val	Ser	Phe		Pro	Gln	Ala	Glu			Lys	Val	Gln
Ser	210 Asn	Arg	Val	Phe	Cys	215 Asp	Thr	Met	Asn	Ser	220 Leu	Thr	Leu	Pro	Ser
225 Glu	Ile	Asn	Leu	Cvs	230 Asn	Val	Asp	Ile	Phe	235 Asn	Pro	Lvs	Tvr	Asp	240 C <b>y</b> s
				245			-		250			-	-	255	-
Lys	Ile	Met	Thr 260	Ser	Lys	Thr	Asp	Val 265	Ser	Ser	Ser	Val	Ile 270	Thr	Ser

Leu Gly Ala Ile Val Ser Cys Tyr Gly Lys Thr Lys Cys Thr Ala Ser 275 280 285 Asn Lys Asn Arg Gly Ile Ile Lys Thr Phe Ser Asn Gly Cys Asp Tyr 290 295 300 Val Ser Asn Lys Gly Met Asp Thr Val Ser Val Gly Asn Thr Leu Tyr 305 310 315 Tyr Val Asn Lys Gln Glu Gly Lys Ser Leu Tyr Val Lys Gly Glu Pro 330 325 Ile Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp 340 345 Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe 355 360 365 Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala Gly Lys Ser 370 375 380 Thr Thr Asn Ile Met Ile Thr Thr Ile Ile Ile Val Ile Ile Val Ile 385 390 395 400 Leu Leu Ser Leu Ile Ala Val Gly Leu Leu Leu Tyr Cys Lys Ala Arg 410 405 Ser Thr Pro Val Thr Leu Ser Lys Asp Gln Leu Ser Gly Ile Asn Asn 420 425 430 Ile Ala Phe Ser Asn 435 (2) INFORMATION FOR SEQ ID NO:28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 328 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28: Phe Leu Gly Phe Leu Gly Ala Ala Gly Thr Ala Met Gly Ala Ala Ala 5 10 Thr Ala Leu Thr Val Gln Ser Gln His Leu Leu Ala Gly Ile Leu Gln 20 25 30 Gln Gln Lys Asn Leu Leu Ala Ala Val Glu Ala Gln Gln Gln Met Leu 40 Lys Leu Thr Ile Trp Gly Val Lys Asn Leu Asn Ala Arg Val Thr Ala 50 55 60 Leu Glu Lys Tyr Leu Glu Asp Gln Ala Arg Leu Asn Ala Trp Gly Cys 65 70 75 80 Ala Trp Lys Gln Val Cys His Thr Thr Val Pro Trp Gln Trp Asn Asn 85 90 95 Arg Thr Pro Asp Trp Asn Asn Met Thr Trp Leu Glu Trp Glu Arg Gln100105110 Ile Ser Tyr Leu Glu Gly Asn Ile Thr Thr Gln Leu Glu Glu Ala Arg 120 115 125 Ala Gln Glu Glu Lys Asn Leu Asp Ala Tyr Gln Lys Leu Ser Ser Trp 130 135 140 
 Ser Asp Phe Trp Ser Trp Phe Asp Phe Ser Lys Trp Leu Asn Ile Leu

 145
 150
 155
 160
 Lys Ile Gly Phe Leu Asp Val Leu Gly Ile Ile Gly Leu Arg Leu Leu 165 170 175

⁻continued

Tyr	Thr	Val	<b>Ty</b> r 180	Ser	Cys	Ile	Ala	<b>A</b> rg 185	Val	Arg	Gln	Gly	<b>Ty</b> r 190	Ser	Pro
Leu	Ser	Pro 195	Gln	Ile	His	Ile	His 200	Pro	Trp	Lys	Gly	Gln 205	Pro	Asp	Asn
Ala	Glu 210	Gly	Pro	Gly	Glu	Gly 215	Gly	Asp	Lys	Arg	L <b>y</b> s 220	Asn	Ser	Ser	Glu
Pro 225	Trp	Gln	Lys	Glu	Ser 230	Gly	Thr	Ala	Glu	Trp 235	Lys	Ser	Asn	Trp	Cys 240
Lys	Arg	Leu	Thr	Asn 245	Trp	Суз	Ser	Ile	Ser 250	Ser	Ile	Trp	Leu	<b>Tyr</b> 255	Asn
Ser	Cys	Leu	Thr 260	Leu	Leu	Val	His	Leu 265	Arg	Ser	Ala	Phe	Gln 270	Tyr	Ile
Gln	Tyr	Gly 275	Leu	Gly	Glu	Leu	Lys 280	Ala	Ala	Ala	Gln	Glu 285	Ala	Val	Val
Ala	Leu 290	Ala	Arg	Leu	Ala	Gln 295	Asn	Ala	Gly	Tyr	Gln 300	Ile	Trp	Leu	Ala
C <b>y</b> s 305	Arg	Ser	Ala	Tyr	Arg 310	Ala	Ile	Ile	Asn	Ser 315	Pro	Arg	Arg	Val	Arg 320
Gln	Gly	Leu	Glu	Gly 325	Ile	Leu	Asn								
(2)	INFO	RMAT	LION	FOR	SEQ	ID 1	NO:29	•:							
		(I MOI	) TO	DPOLO	amin DGY: YPE:										
	(xi)	SEÇ	QUENC	CE DI	ESCR	IPTIC	DN: S	SEQ I	ID NO	29:	:				
Phe 1	Ala	Gly	Val	Val 5	Leu	Ala	Gly	Val	Ala 10	Leu	Gly	Val	Ala	Thr 15	Ala
Ala	Gln	Ile	Thr 20	Ala	Gly	Ile	Ala	Leu 25	His	Gln	Ser	Asn	Leu	Asn	Ala
Gln	71-												30		
	AIA	Ile 35	Gln	Ser	Leu	Arg	Thr 40	Ser	Leu	Glu	Gln	Ser 45		Lys	Ala
Ile		35			Leu Glu	-	40					45	Asn	-	
	Glu 50	35 Glu	Ile	Arg Tyr		Ala 55 Asn	40 Thr	Gln	Glu	Thr Val	Val 60	45 Ile	Asn Ala	Val	Gln
Gly 65	Glu 50 Val	35 Glu Gln	Ile Asp	Arg Tyr	Glu Val	Ala 55 Asn	40 Thr Asn	Gln Glu	Glu Leu	Thr Val 75	Val 60 Pro	45 Ile Ala	Asn Ala Met	- Val Gln	Gln His 80
Gly 65 Met	Glu 50 Val Ser	35 Glu Gln Cys	Ile Asp Glu	Arg Tyr Leu 85	Glu Val 70	Ala 55 Asn Gly	40 Thr Asn Gln	Gln Glu Arg	Glu Leu Leu 90	Thr Val 75 Gly	Val 60 Pro Leu	45 Ile Ala Arg	Asn Ala Met Leu	Val Gln Leu 95	Gln His 80 Arg
Gly 65 Met Tyr	Glu 50 Val Ser Tyr	35 Glu Gln Cys Thr	Ile Asp Glu Glu 100	Arg Tyr Leu 85 Leu	Glu Val 70 Val	Ala 55 Asn Gly Ser	40 Thr Asn Gln Ile	Gln Glu Arg Phe 105	Glu Leu 90 Gly	Thr Val 75 Gly Pro	Val 60 Pro Leu Ser	45 Ile Ala Arg Leu	Asn Ala Met Leu Arg 110	Val Gln Leu 95 Asp	Gln His 80 Arg Pro
Gly 65 Met Tyr Ile	Glu 50 Val Ser Tyr Ser	35 Glu Gln Cys Thr Ala 115	Ile Asp Glu Glu 100 Glu	Arg Tyr Leu 85 Leu Ile	Glu Val 70 Val Leu	Ala 55 Asn Gly Ser Ile	40 Thr Asn Gln Ile Gln 120	Gln Glu Arg Phe 105 Ala	Glu Leu 90 Gly Leu	Thr Val 75 Gly Pro Ile	Val 60 Pro Leu Ser Tyr	45 Ile Ala Arg Leu Ala 125	Asn Ala Met Leu Arg 110 Leu	Val Gln Leu 95 Asp Gly	Gln His 80 Arg Pro Gly
Gly 65 Met Tyr Ile Glu	Glu 50 Val Ser Tyr Ser Ile 130	35 Glu Gln Cys Thr Ala 115 His	Ile Asp Glu Glu Glu Glu Lys	Arg Tyr Leu 85 Leu Ile Ile	Glu Val Val Leu Ser	Ala 55 Asn Gly Ser Ile Glu 135	40 Thr Asn Gln Ile Gln 120 Lys	Gln Glu Arg Phe 105 Ala Leu	Glu Leu 90 Gly Leu Gly	Thr Val 75 Gly Pro Ile Tyr	Val 60 Pro Leu Ser Tyr Ser 140	45 Ile Ala Arg Leu Ala 125 Gly	Asn Ala Met Leu Arg 110 Leu Ser	Val Gln Leu 95 Asp Gly Asp	Gln His 80 Arg Pro Gly Met
Gly 65 Met Tyr Ile Glu Ile 145	Glu 50 Val Ser Tyr Ser Ile 130 Ala	35 Glu Gln Cys Thr Ala 115 His Ile	Ile Asp Glu Glu Glu Lys Leu	Arg Tyr Leu 85 Leu Ile Glu	Glu Val 70 Val Leu Ser Leu Ser	Ala 55 Asn Gly Ser Ile Glu 135 Arg	40 Thr Asn Gln 120 Lys Gly	Gln Glu Arg Phe 105 Ala Leu Ile	Glu Leu 90 Gly Leu Gly Lys	Thr Val 75 Gly Pro Ile Tyr Thr 155	Val 60 Pro Leu Ser Tyr Ser 140 Lys	45 Ile Ala Arg Leu Ala 125 Gly Ile	Asn Ala Met Leu Arg 110 Leu Ser Thr	Val Gln Leu 95 Asp Gly Asp His	Gln His 80 Arg Pro Gly Met Val 160
Gly 65 Met Tyr Ile Glu Ile 145 Asp	Glu 50 Val Ser Tyr Ser Ile 130 Ala Leu	35 Glu Gln Cys Thr Ala 115 His Ile Pro	Ile Asp Glu Glu Lys Leu Gly	Arg Tyr Leu Eleu Ile Glu Lys 165	Glu Val 70 Val Leu Ser Leu Ser 150	Ala 55 Asn Gly Ser Ile Glu 135 Arg Ile	40 Thr Asn Gln 120 Lys Gly Ile	Gln Glu Arg Phe 105 Ala Leu Ile	Glu Leu 90 Gly Leu Gly Lys Ser 170	Thr Val 75 Gly Pro Ile Tyr Thr 155 Ile	Val 60 Pro Leu Ser Tyr Ser 140 Lys Ser	45 Ile Ala Arg Leu Ala 125 Gly Ile Tyr	Asn Ala Met Leu Arg 110 Leu Ser Thr Pro	Val Gln Leu 95 Asp Gly Asp His Thr 175	Gln His 80 Arg Pro Gly Met Val 160 Leu

-con	. + .	ı nı		~
-001	ις.	<b>T</b> T T I	ue	u

							-continued												
		195					200					205							
Thr	Asn 210	Gly	Tyr	Leu	Ile	Ser 215	Asn	Phe	Asp	Glu	Ser 220	Ser	Сув	Val	Phe				
Val 225	Ser	Glu	Ser	Ala	Ile 230	Cys	Ser	Gln	Asn	Ser 235	Leu	Tyr	Pro	Met	Ser 240				
Pro	Leu	Leu	Gln	Gln 245	Сув	Ile	Arg	Gly	Asp 250	Thr	Ser	Ser	Cys	Ala 255	Arg				
Thr	Leu	Val	Ser 260	Gly	Thr	Met	Gly	Asn 265	Lys	Phe	Ile	Leu	Ser 270	Lys	Gly				
Asn	Ile	Val 275	Ala	Asn	Сув	Ala	Ser 280	Ile	Leu	Сув	Lys	С <b>у</b> в 285	Tyr	Ser	Thr				
Ser	Thr 290	Ile	Ile	Asn	Gln	Ser 295	Pro	Asp	Lys	Leu	Leu 300	Thr	Phe	Ile	Ala				
Ser 305	Asp	Thr	Cys	Pro	Leu 310	Val	Glu	Ile	Asp	Gly 315	Ala	Thr	Ile	Gln	Val 320				
Gly	Gly	Arg	Gln	T <b>y</b> r 325	Pro	Asp	Met	Val	Tyr 330	Glu	Gly	Lys	Val	Ala 335	Leu				
Gly	Pro	Ala	Ile 340	Ser	Leu	Asp	Arg	Leu 345	Asp	Val	Gly	Thr	Asn 350	Leu	Gly				
Asn	Ala	Leu 355	Lys	Lys	Leu	Asp	Asp 360	Ala	Lys	Val	Leu	Ile 365	Asp	Ser	Ser				
Asn	Gln 370	Ile	Leu	Glu	Thr	Val 375	Arg	Arg	Ser	Ser	Phe 380	Asn	Phe	Gly	Ser				
Leu 385	Leu	Ser	Val	Pro	Ile 390	Leu	Ser	Сув	Thr	Ala 395	Leu	Ala	Leu	Leu	Leu 400				
Leu	Ile	Tyr	Суз	С <b>у</b> в 405	Lys	Arg	Arg	Tyr	Gln 410	Gln	Thr	Leu	Lys	Gln 415	His				
Thr	Lys	Val	Asp 420	Pro	Ala	Phe	Lys	Pro 425	Asp	Leu	Thr	Gly	Thr 430	Ser	Lys				
Ser	Tyr	Val 435	Arg	Ser	Leu														
(2)	INFO	ORMA:	FION	FOR	SEQ	ID 1	NO:3(	):											
	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 436 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(D) TOPOLOGY: unknown</li> </ul>																		
	(ii) MOLECULE TYPE: protein																		
	(xi)	) SEÇ	QUENC	CE DI	ESCR	IPTIC	ON: S	SEQ I	ED NG	<b>:</b> 30	:								
Phe 1	Ile	Gly	Ala	Ile 5	Ile	Gly	Ser	Val	Ala 10	Leu	Gly	Val	Ala	Thr 15	Ala				
Ala	Gln	Ile	Thr 20	Ala	Ala	Ser	Ala	Leu 25	Ile	Gln	Ala	Asn	Gln 30	Asn	Ala				
Ala	Asn	Ile 35	Leu	Arg	Leu	Lys	Glu 40	Ser	Ile	Thr	Ala	Thr 45	Ile	Glu	Ala				
Val	His 50	Glu	Val	Thr	Asp	Gly 55	Leu	Ser	Gln	Leu	Ala 60	Val	Ala	Val	Gly				
Lys 65	Met	Gln	Gln	Phe	Val 70	Asn	Asp	Gln	Phe	Asn 75	Asn	Thr	Ala	Gln	Glu 80				
Leu	Asp	Суз	Ile	L <b>y</b> s 85	Ile	Thr	Gln	Gln	Val 90	Gly	Val	Glu	Leu	Asn 95	Leu				
Tyr	Leu	Thr	Glu 100	Leu	Thr	Thr	Val	Phe 105	Gly	Pro	Gln	Ile	Thr 110	Ser	Pro				

Ala Leu Thr Gln Leu Thr Ile Gln Ala Leu Tyr Asn Ala Gly Gly Asn 120 115 125 Met Asp Tyr Leu Leu Thr Lys Leu Gly Val Gly Asn Asn Gln Leu Ser 130 135 140 Ser Leu Ile Gly Ser Gly Leu Ile Thr Gly Asn Pro Ile Leu Tyr Asp 145 150 155 160 Ser Gln Thr Gln Leu Leu Gly Ile Gln Val Thr Leu Pro Ser Val Gly 170 165 Asn Leu Asn Asn Met Arg Ala Thr Tyr Leu Glu Thr Leu Ser Val Ser 185 Thr Thr Lys Gly Phe Ala Ser Ala Leu Val Pro Lys Val Val Thr Gln 195 200 205 Val Gly Ser Val Ile Glu Glu Leu Asp Thr Ser Tyr Cys Ile Glu Thr 210 215 220 Asp Leu Asp Leu Tyr Cys Thr Arg Ile Val Thr Phe Pro Met Ser Pro225230235240 Gly Ile Tyr Ser Cys Leu Asn Gly Asn Thr Ser Ala Cys Met Tyr Ser 245 250 255 Lys Thr Glu Gly Ala Leu Thr Thr Pro Tyr Met Thr Leu Lys Gly Ser 260 265 270 Val Ile Ala Asn Cys Lys Met Thr Thr Cys Arg Cys Ala Asp Pro Pro 275 280 285 Gly Ile Ile Ser Gln Asn Tyr Gly Glu Ala Val Ser Leu Ile Asp Arg 290 295 300 His Ser Cys Asn Val Leu Ser Leu Asp Gly Ile Thr Leu Arg Leu Ser 305 310 315 Gly Glu Phe Asp Ala Thr Tyr Gln Lys Asn Ile Ser Ile Leu Asp Ser 325 330 Gln Val Ile Val Thr Gly Asn Leu Asp Ile Ser Thr Glu Leu Gly Asn 350 345 340 Val Asn Asn Ser Ile Ser Asn Ala Leu Asp Lys Leu Glu Glu Ser Asn 355 360 365 Ser Lys Leu Asp Lys Val Asn Val Lys Leu Thr Ser Thr Ser Ala Leu370375380 Ile Thr Tyr Ile Ala Leu Thr Ala Ile Ser Leu Val Cys Gly Ile Leu 385 390 395 400 Ser Leu Val Leu Ala Cys Tyr Leu Met Tyr Lys Gln Lys Ala Gln Gln 405 410 415 Lys Thr Leu Leu Trp Leu Gly Asn Asn Thr Leu Gly Gln Met Arg Ala 420 425 430 Thr Thr Lys Met 435 (2) INFORMATION FOR SEQ ID NO:31: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 430 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

 Phe Phe Gly Gly Val Ile Gly Thr Ile Ala Leu Gly Val Ala Thr Ser

 1
 5
 10
 15

⁻continued

													• =		
Ala	Gln	Ile	Thr 20	Ala	Ala	Val	Ala	Leu 25	Val	Glu	Ala	Lys	Gln 30	Ala	Arg
Ser	Asp	Ile 35	Glu	Lys	Leu	Lys	Glu 40	Ala	Ile	Arg	Asp	Thr 45	Asn	Lys	Ala
Val	Gln 50	Ser	Val	Gln	Ser	Ser 55	Ile	Gly	Asn	Leu	Ile 60	Val	Ala	Ile	Lys
Ser 65	Val	Gln	Asp	Tyr	Val 70	Asn	Lys	Glu	Ile	Val 75	Pro	Ser	Ile	Ala	Arg 80
Leu	Gly	Cys	Glu	Ala 85	Ala	Gly	Leu	Gln	Leu 90	Gly	Ile	Ala	Leu	Thr 95	Gln
His	Tyr	Ser	Glu 100	Leu	Thr	Asn	Ile	Phe 105	Gly	Asp	Asn	Ile	Gly 110	Ser	Leu
Gln	Glu	L <b>y</b> s 115	Gly	Ile	Lys	Leu	Gln 120	Gly	Ile	Ala	Ser	Leu 125	Tyr	Arg	Thr
Asn	Ile 130	Thr	Glu	Ile	Phe	Thr 135	Thr	Ser	Thr	Val	Asp 140	Lys	Tyr	Asp	Ile
T <b>y</b> r 145	Asp	Leu	Leu	Phe	Thr 150	Glu	Ser	Ile	Lys	Val 155	Arg	Val	Ile	Asp	Val 160
Asp	Leu	Asn	Asp	T <b>y</b> r 165	Ser	Ile	Thr	Leu	Gln 170	Val	Arg	Leu	Pro	Leu 175	Leu
Thr	Arg	Leu	Leu 180	Asn	Thr	Gln	Ile	T <b>y</b> r 185	Arg	Val	Asp	Ser	Ile 190	Ser	Tyr
Asn	Ile	Gln 195	Asn	Arg	Glu	Trp	<b>Ty</b> r 200	Ile	Pro	Leu	Pro	Ser 205	His	Ile	Met
Thr	Lys 210	Gly	Ala	Phe	Leu	Gly 215	Gly	Ala	Asp	Val	L <b>y</b> s 220	Glu	Суз	Ile	Glu
Ala 225	Phe	Ser	Ser	Tyr	Ile 230	Cys	Pro	Ser	Asp	Pro 235	Gly	Phe	Val	Leu	Asn 240
His	Glu	Met	Glu	Ser 245	Cys	Leu	Ser	Gly	Asn 250	Ile	Ser	Gln	Cys	Pro 255	Arg
Thr	Val	Val	L <b>y</b> s 260	Ser	Asp	Ile	Val	Pro 265	Arg	Tyr	Ala	Phe	Val 270	Asn	Gly
Gly	Val	Val 275	Ala	Asn	Cys	Ile	Thr 280	Thr	Thr	Cys	Thr	C <b>ys</b> 285	Asn	Gly	Ile
Gly	Asn 290	Arg	Ile	Asn	Gln	Pro 295	Pro	Asp	Gln	Gly	Val 300	Lys	Ile	Ile	Thr
His 305	Lys	Glu	Суз	Asn	Thr 310	Ile	Gly	Ile	Asn	Gl <b>y</b> 315	Met	Leu	Phe	Asn	Thr 320
Asn	Lys	Glu	Gly	Thr 325	Leu	Ala	Phe	Tyr	Thr 330	Pro	Asn	Asp	Ile	Thr 335	Leu
Asn	Asn	Ser	Val 340	Ala	Leu	Asp	Pro	Ile 345	Asp	Ile	Ser	Ile	Glu 350	Leu	Asn
Lys	Ala	L <b>y</b> s 355	Ser	Asp	Leu	Glu	Glu 360	Ser	Lys	Glu	Trp	Ile 365	Arg	Arg	Ser
Asn	Gln 370	Lys	Leu	Asp	Ser	Ile 375	Gly	Asn	Trp	His	Gln 380	Ser	Ser	Thr	Thr
Ile 385	Ile	Ile	Val	Leu	Ile 390	Met	Ile	Ile	Ile	Leu 395	Phe	Ile	Ile	Asn	Val 400
Thr	Ile	Ile	Ile	Ile 405	Ala	Val	Lys	Tyr	<b>Tyr</b> 410	Arg	Ile	Gln	Lys	Arg 415	Asn
Arg	Val	Asp	Gln 420	Asn	Asp	Lys	Pro	<b>Ty</b> r 425	Val	Leu	Thr	Asn	L <b>y</b> s 430		

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 221 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32: Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly 1 5 10 15 Met Ile Asp Gly Trp Tyr Gly Phe Arg His Gln Asn Ser Glu Gly Thr 20 25 30 Gly Gln Ala Ala Asp Leu Lys Ser Thr Gln Ala Ala Ile Asp Gln Ile 45 35 40 Asn Gly Lys Leu Asn Arg Val Ile Glu Lys Thr Asn Glu Lys Phe His 50 55 60 Gln Ile Glu Lys Glu Phe Ser Glu Val Glu Gly Arg Ile Gln Asp Leu 65 70 75 80 Glu Lys Tyr Val Glu Asp Thr Lys Ile Asp Leu Trp Ser Tyr Asn Ala 85 90 95 Glu Leu Val Ala Leu Glu Asn Gln His Thr Ile Asp Leu Thr Asp 100 105 110 Ser Glu Met Asn Lys Leu Phe Glu Lys Thr Arg Arg Gln Leu Arg Glu 115 125 120 Asn Ala Glu Glu Met Gly Asn Gly Cys Phe Lys Ile Tyr His Lys Cys 135 130 140 Asp Asn Ala Cys Ile Glu Ser Ile Arg Asn Gly Thr Tyr Asp His Asp 145 150 155 160 145 150 155 Val Tyr Arg Asp Glu Ala Leu Asn Asn Arg Phe Gln Ile Lys Gly Val 170 165 Glu Leu Lys Ser Gly Tyr Lys Asp Trp Ile Leu Trp Ile Ser Phe Ala 185 180 190 Ile Ser Cys Phe Leu Leu Cys Val Val Leu Gly Phe Ile Met Trp 195 200 205 Ala Cys Gln Arg Gly Asn Ile Arg Cys Asn Ile Cys Ile 210 215 220 (2) INFORMATION FOR SEQ ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 48 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33: Tyr Thr Ser Val Ile Thr Ile Glu Leu Ser Asn Ile Lys Glu Asn Lys151015 Cys Asn Gly Thr Asp Ala Lys Val Lys Leu Ile Lys Gln Glu Leu Asp 20 25 30 Lys Tyr Lys Asn Ala Val Thr Glu Leu Gln Leu Leu Met Gln Ser Thr 35 40 15 (2) INFORMATION FOR SEQ ID NO:34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 amino acids

```
-continued
```

(B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34: Gly Glu Pro Ile Ile Asn Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp 1 5 10 15 Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser 25 20 Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn Ala 35 40 Gly Lys Ser Thr Thr 50 (2) INFORMATION FOR SEQ ID NO:35: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 56 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35: Tyr Thr Pro Asn Asp Ile Thr Leu Asn Asn Ser Val Ala Leu Asp Pro 10 Ile Asp Ile Ser Ile Glu Leu Asn Lys Ala Lys Ser Asp Leu Glu Glu 20 25 30 Ser Lys Glu Trp Ile Arg Arg Ser Asn Gln Lys Leu Asp Ser Ile Gly 35 40 45 Asn Trp His Gln Ser Ser Thr Thr 50 55 (2) INFORMATION FOR SEQ ID NO:36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 amino acids (B) TYPE: amino acid(D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36: Gly Thr Ile Ala Leu Gly Val Ala Thr Ser Ala Gln Ile Thr Ala Ala 5 10 15 Val Ala Leu Val Glu Ala Lys Gln Ala Arg Ser Asp Ile Glu Lys Leu 30 20 25 Lys Glu Ala Ile Arg Asp Thr Asn Lys Ala Val Gln Ser Val Gln Ser 35 40 45 Ser Ile Gly Asn Leu Ile Val Ala Ile Lys Ser Val Gln Asp Tyr Val505560 Asn Lys Glu Ile Val Pro 65 70 (2) INFORMATION FOR SEQ ID NO:37: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown

```
-continued
```

(ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group. carrier group. (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 4 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37: Phe Tyr Asp Pro 1 (2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 5 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: Phe Tyr Asp Pro Leu 1 5 (2) INFORMATION FOR SEQ ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site

```
(B) LOCATION: 6
           (D) OTHER INFORMATION: /label= B
                /note= "Following this amino acid, there may be a
                carboxyl group, an amido group, a hydrophobic group,
                or a macromolecular carrier group."
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
Phe Tyr Asp Pro Leu Val
                  5
 1
(2) INFORMATION FOR SEQ ID NO:40:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 7 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS:
           (D) TOPOLOGY: unknown
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Modified-site
           (B) LOCATION: 1
           (D) OTHER INFORMATION: /label= A
                /note= "Preceeding this amino acid, there may be an
                amino group, an acetyl group, a 9-fluorenylmethoxy-
                carbonyl group, a hydrophobic group or a macromolecular
carrier group."
    (ix) FEATURE:
           (A) NAME/KEY: Modified-site
           (B) LOCATION: 7
           (D) OTHER INFORMATION: /label= B
                /note= "Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group."
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
Phe Tyr Asp Pro Leu Val Phe
1
                  5
(2) INFORMATION FOR SEQ ID NO:41:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 8 amino acids(B) TYPE: amino acid
           (C) STRANDEDNESS:
           (D) TOPOLOGY: unknown
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Modified-site
           (B) LOCATION: 1
           (D) OTHER INFORMATION: /label= A
                /note= "Preceeding this amino acid, there may be an
                amino group, an acetyl group, a 9-fluorenylmethoxy-
                carbonyl group, a hydrophobic group or a macromolecular carrier group."
    (ix) FEATURE:
           (A) NAME/KEY: Modified-site
           (B) LOCATION: 8
           (D) OTHER INFORMATION: /label= B
                /note= "Following this amino acid, there may be a
                carboxyl group, an amido group, a hydrophobic group,
                or a macromolecular carrier group."
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
Phe Tyr Asp Pro Leu Val Phe Pro
1
                  5
```

(2) INFORMATION FOR SEQ ID NO:42:

### -continued

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 9 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42: Phe Tyr Asp Pro Leu Val Phe Pro Ser 5 1 (2) INFORMATION FOR SEQ ID NO:43: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 10 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp 1 5 10 (2) INFORMATION FOR SEQ ID NO:44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site
(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A

156

## -continued

/note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 11 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu 1 5 10 (2) INFORMATION FOR SEQ ID NO:45: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 12 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe 1 5 10 (2) INFORMATION FOR SEQ ID NO:46: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site
(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 13 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group."

```
-continued
```

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:46:
Phe 1	Tyr	Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp 5 10
(2)	INFO	RMATION FOR SEQ ID NO:47:
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown
	(ii)	MOLECULE TYPE: peptide
	(ix)	<pre>FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A     /note= "Preceeding this amino acid, there may be an     amino group, an acetyl group, a 9-fluorenylmethoxy-     carbonyl group, a hydrophobic group or a macromolecular     carrier group."</pre>
	(ix)	<pre>FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 14 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group."</pre>
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:47:
Phe 1	Tyr	Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala 5 10
(2)	INFO	RMATION FOR SEQ ID NO:48:
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown
	(ii)	MOLECULE TYPE: peptide
	(ix)	<pre>FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A     /note= "Preceeding this amino acid, there may be an     amino group, an acetyl group, a 9-fluorenylmethoxy-     carbonyl group, a hydrophobic group or a macromolecular     carrier group."</pre>
	(ix)	<pre>FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 15 (D) OTHER INFORMATION: /label= B     /note= "Following this amino acid, there may be a     carboxyl group, an amido group, a hydrophobic group,     or a macromolecular carrier group."</pre>
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:48:
Phe 1	Tyr	Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser 5 10 15
(2)	INFO	RMATION FOR SEQ ID NO:49:
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown

#### -continued

(ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 10 1 15 (2) INFORMATION FOR SEQ ID NO:50: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 17 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 1 5 10 15 Ser (2) INFORMATION FOR SEQ ID NO:51: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group."

# -continued

(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 18 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a
carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 10 Ser Gln (2) INFORMATION FOR SEQ ID NO:52: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 19 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 1 5 10 15 Ser Gln Val (2) INFORMATION FOR SEQ ID NO:53: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 20 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group."

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 1 5 10 15 Ser Gln Val Asn 20 (2) INFORMATION FOR SEQ ID NO:54: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site
(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 21 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 10 15 1 5 Ser Gln Val Asn Glu 20 (2) INFORMATION FOR SEQ ID NO:55: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids
(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 22 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 1 5 10 15 Ser Gln Val Asn Glu Lys 20

(2) INFORMATION FOR SEQ ID NO:56: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 23 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 10 1 5 15 Ser Gln Val Asn Glu Lys Ile 20 (2) INFORMATION FOR SEQ ID NO:57: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 24 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 5 10 15 1 Ser Gln Val Asn Glu Lys Ile Asn 20 (2) INFORMATION FOR SEQ ID NO:58: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids(B) TYPE: amino acid

```
-continued
```

(C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 25 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 10 15 1 Ser Gln Val Asn Glu Lys Ile Asn Gln 20 (2) INFORMATION FOR SEQ ID NO:59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 26 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 1 5 10 15 Ser Gln Val Asn Glu Lys Ile Asn Gln Ser 20 25 (2) INFORMATION FOR SEQ ID NO:60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site

-continued

(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 27 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 10 1 5 15 Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu 20 25 (2) INFORMATION FOR SEQ ID NO:61: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site
(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 28 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 10 1 Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala 20 25 (2) INFORMATION FOR SEQ ID NO:62: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group."

(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 29 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 5 10 15 1 Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe 20 25 (2) INFORMATION FOR SEQ ID NO:63: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 30 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 5 10 15 1 Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile 20 25 30 (2) INFORMATION FOR SEQ ID NO:64: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 31 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group."

172

```
-continued
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 1 10 5 15 Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg 20 25 30 (2) INFORMATION FOR SEQ ID NO:65: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 32 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys 20 25 30 (2) INFORMATION FOR SEQ ID NO:66: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 33 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 5 1 10 15 Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys

176

	-continued 20 25 30
2) I	INFORMATION FOR SEQ ID NO:67:
2) I	
2) I	
	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 34 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: unknown</li> </ul>
(	(ii) MOLECULE TYPE: peptide
(	<ul> <li>(ix) FEATURE:         <ul> <li>(A) NAME/KEY: Modified-site</li> <li>(B) LOCATION: 1</li> <li>(D) OTHER INFORMATION: /label= A</li></ul></li></ul>
(	<ul> <li>(ix) FEATURE:         <ul> <li>(A) NAME/KEY: Modified-site</li> <li>(B) LOCATION: 34</li> <li>(D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group."</li> </ul> </li> </ul>
(	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:
ne T L	Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 5 10 15
er G	In Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys 20 25 30
er A	dsp
2) Т	INFORMATION FOR SEQ ID NO:68:
	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 35 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: unknown</li> </ul>
(	(ii) MOLECULE TYPE: peptide
(	<ul> <li>(ix) FEATURE:         <ul> <li>(A) NAME/KEY: Modified-site</li> <li>(B) LOCATION: 1</li> <li>(D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy- carbonyl group, a hydrophobic group or a macromolecular carrier group."</li> </ul> </li> </ul>
(	<pre>(ix) FEATURE:     (A) NAME/KEY: Modified-site     (B) LOCATION: 35     (D) OTHER INFORMATION: /label= B         /note= "Following this amino acid, there may be a         carboxyl group, an amido group, a hydrophobic group,         or a macromolecular carrier group."</pre>
(	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:
ne T L	Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 5 10 15
er G	Sln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys 20 25 30

Ser Asp Glu

```
-continued
```

35 (2) INFORMATION FOR SEQ ID NO:69: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 36 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69: Phe Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile 1 5 10 15 Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys 20 25 30 Ser Asp Glu Leu 35 (2) INFORMATION FOR SEQ ID NO:70: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 4 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70: Asp Glu Leu Leu 1 (2) INFORMATION FOR SEO ID NO:71: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids

```
-continued
```

```
(B) TYPE: amino acid
           (C) STRANDEDNESS:
           (D) TOPOLOGY: unknown
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Modified-site
           (B) LOCATION: 1
           (D) OTHER INFORMATION: /label= A
                /note= "Preceeding this amino acid, there may be an
                amino group, an acetyl group, a 9-fluorenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
carrier group."
    (ix) FEATURE:
           (A) NAME/KEY: Modified-site
           (B) LOCATION: 5
           (D) OTHER INFORMATION: /label= B
                /note= "Following this amino acid, there may be a
                carboxyl group, an amido group, a hydrophobic group,
or a macromolecular carrier group."
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:
Ser Asp Glu Leu Leu
 1
(2) INFORMATION FOR SEQ ID NO:72:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 6 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS:
           (D) TOPOLOGY: unknown
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Modified-site
           (B) LOCATION: 1
           (D) OTHER INFORMATION: /label= A
                /note= "Preceeding this amino acid, there may be an
                amino group, an acetyl group, a 9-fluorenylmethoxy-
                carbonyl group, a hydrophobic group or a macromolecular carrier group."
    (ix) FEATURE:
           (A) NAME/KEY: Modified-site
           (B) LOCATION: 6
           (D) OTHER INFORMATION: /label= B
                /note= "Following this amino acid, there may be a
                carboxyl group, an amido group, a hydrophobic group,
                or a macromolecular carrier group."
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:
Lys Ser Asp Glu Leu Leu
                   5
(2) INFORMATION FOR SEQ ID NO:73:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 7 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS:
           (D) TOPOLOGY: unknown
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Modified-site
           (B) LOCATION: 1
           (D) OTHER INFORMATION: /label= A
                /note= "Preceeding this amino acid, there may be an
                amino group, an acetyl group, a 9-florenylmethoxy-
carbonyl group, a hydrophobic group or a macromolecular
```

```
-continued
```

carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 7 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73: Arg Lys Ser Asp Glu Leu Leu 5 (2) INFORMATION FOR SEQ ID NO:74: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 8 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74: Ile Arg Lys Ser Asp Glu Leu Leu 1 5 (2) INFORMATION FOR SEQ ID NO:75: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 9 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75: Phe Ile Arg Lys Ser Asp Glu Leu Leu

# -continued

1 5 (2) INFORMATION FOR SEQ ID NO:76: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 10 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76: Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 1 5 10 (2) INFORMATION FOR SEQ ID NO:77: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 11 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 10 (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids (B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide

#### -continued

(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 12 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 1 5 10 (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 13 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79: Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 1 5 10 (2) INFORMATION FOR SEQ ID NO:80: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site(B) LOCATION: 14 (D) OTHER INFORMATION: /label= B

-continued

187

/note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80: Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 5 10 1 (2) INFORMATION FOR SEQ ID NO:81: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 15 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81: Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu (2) INFORMATION FOR SEQ ID NO:82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 16 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82: Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 5 10 15 (2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE CHARACTERISTICS:

188

```
-continued
```

(A) LENGTH: 17 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 17 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83: Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu 1 5 10 15 Leu (2) INFORMATION FOR SEQ ID NO:84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 18 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84: Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu 1 5 10 15 Leu Leu (2) INFORMATION FOR SEQ ID NO:85: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site

-continued

(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 19 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85: Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp 1 5 10 15 Glu Leu Leu (2) INFORMATION FOR SEQ ID NO:86: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 20 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86: Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser 10 1 5 Asp Glu Leu Leu 20 (2) INFORMATION FOR SEQ ID NO:87: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE:

# -continued

(A) NAME/KEY: Modified-site (B) LOCATION: 21 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87: Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys 10 Ser Asp Glu Leu Leu 20 (2) INFORMATION FOR SEQ ID NO:88: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 22 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88: Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg 1 5 10 15 Lys Ser Asp Glu Leu Leu 20 (2) INFORMATION FOR SEQ ID NO:89: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 23 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group."

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89: Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile 1 5 10 15 Arg Lys Ser Asp Glu Leu Leu 20 (2) INFORMATION FOR SEQ ID NO:90: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site
(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 24 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90: Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe 10 15 1 5 Ile Arg Lys Ser Asp Glu Leu Leu 20 (2) INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids
(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 25 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91: Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala 5 10 15 Phe Ile Arg Lys Ser Asp Glu Leu Leu 20 25

(2) INFORMATION FOR SEQ ID NO:92: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 26 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92: Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu 5 10 1 15 Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 20 25 (2) INFORMATION FOR SEQ ID NO:93: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 27 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93: Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser 5 10 15 1 Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 20 25 (2) INFORMATION FOR SEQ ID NO:94: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids(B) TYPE: amino acid

```
-continued
```

(C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 28 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94: Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln 5 10 Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 20 25 (2) INFORMATION FOR SEQ ID NO:95: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 29 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95: Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn 1 5 10 15 Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 20 25 (2) INFORMATION FOR SEQ ID NO:96: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site

-continued

(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 30 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96: Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile 5 1 10 15 Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 20 25 30 (2) INFORMATION FOR SEQ ID NO:97: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site
(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 31 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97: Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys 5 10 1 Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 20 25 30 (2) INFORMATION FOR SEQ ID NO:98: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group."

204

-continued (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 32 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98: Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu 10 1 5 Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 20 25 30 (2) INFORMATION FOR SEQ ID NO:99: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 33 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99: Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn 5 10 15 1 Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu 20 25 30 Leu (2) INFORMATION FOR SEQ ID NO:100: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 34 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a

# 206

# -continued

carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100: Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val 5 10 15 Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu 20 25 30 Leu Leu (2) INFORMATION FOR SEQ ID NO:101: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site
(B) LOCATION: 35 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101: Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln 5 10 15 Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp 20 25 30 Glu Leu Leu 35 (2) INFORMATION FOR SEQ ID NO:102: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 36 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group."

```
-continued
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102: Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser 10 5 15 Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser 25 30 20 Asp Glu Leu Leu 35 (2) INFORMATION FOR SEQ ID NO:103: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site(B) LOCATION: 35 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103: Tyr Asp Pro Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser 10 15 Gln Val Asn Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser 20 25 30 Asp Glu Leu 35 (2) INFORMATION FOR SEQ ID NO:104: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site
(B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxycarbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 35 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

-continued

Leu Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn 10 5 15 Glu Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu 20 25 30 Leu His Asn 35 (2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 35 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105: Val Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu 1 5 10 15 Lys Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu 20 25 30 His Asn Val 35 (2) INFORMATION FOR SEQ ID NO:106: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group or a macromolecular carrier group." (ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 35 (D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

-continued

Phe Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys 1 5 10 15
Ile Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His 20 25 30
Asn Val Asn 35
(2) INFORMATION FOR SEQ ID NO:107:
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 35 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: unknown</li> </ul>
(ii) MOLECULE TYPE: peptide
<ul> <li>(ix) FEATURE:</li> <li>(A) NAME/KEY: Modified-site</li> <li>(B) LOCATION: 1</li> <li>(D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy- carbonyl group, a hydrophobic group or a macromolecular carrier group."</li> </ul>
<pre>(ix) FEATURE:    (A) NAME/KEY: Modified-site    (B) LOCATION: 35    (D) OTHER INFORMATION: /label= B         /note= "Following this amino acid, there may be a         carboxyl group, an amido group, a hydrophobic group,         or a macromolecular carrier group."</pre>
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:
Pro Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile 1 5 10 15
Asn Gln Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu His Asn 20 25 30
Val Asn Ala 35
(2) INFORMATION FOR SEQ ID NO:108:
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 35 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: unknown</li> </ul>
(ii) MOLECULE TYPE: peptide
<ul> <li>(ix) FEATURE:</li> <li>(A) NAME/KEY: Modified-site</li> <li>(B) LOCATION: 1</li> <li>(D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy- carbonyl group, a hydrophobic group or a macromolecular carrier group."</li> </ul>
<pre>(ix) FEATURE:    (A) NAME/KEY: Modified-site    (B) LOCATION: 35    (D) OTHER INFORMATION: /label= B       /note= "Following this amino acid, there may be a       carboxyl group, an amido group, a hydrophobic group,       or a macromolecular carrier group."</pre>
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:
Ser Asp Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn

	-continued
1	5 10 15
ln	n Ser Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu His Asn Val 20 25 30
sn	Ala Gly 35
2)	INFORMATION FOR SEQ ID NO:109:
	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 35 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: unknown</li> </ul>
	(ii) MOLECULE TYPE: peptide
	<ul> <li>(ix) FEATURE:         <ul> <li>(A) NAME/KEY: Modified-site</li> <li>(B) LOCATION: 1</li> <li>(D) OTHER INFORMATION: /label= A /note= "Preceeding this amino acid, there may be an amino group, an acetyl group, a 9-fluorenylmethoxy- carbonyl group, a hydrophobic group or a macromolecular carrier group."</li> </ul> </li> </ul>
	<ul> <li>(ix) FEATURE:         <ul> <li>(A) NAME/KEY: Modified-site</li> <li>(B) LOCATION: 35</li> <li>(D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group."</li> </ul> </li> </ul>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:
sp 1	Glu Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln 5 10 15
er	E Leu Ala Phe Ile Arg Lys Ser Asp Glu Leu Leu His Asn Val Asn 20 25 30
la	a Gly Lys 35
2)	INFORMATION FOR SEQ ID NO:110:
	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 35 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: unknown</li> </ul>
	(ii) MOLECULE TYPE: peptide
	<ul> <li>(ix) FEATURE:         <ul> <li>(A) NAME/KEY: Modified-site</li> <li>(B) LOCATION: 1</li> <li>(D) OTHER INFORMATION: /label= A</li></ul></li></ul>
	<pre>(ix) FEATURE:     (A) NAME/KEY: Modified-site     (B) LOCATION: 35     (D) OTHER INFORMATION: /label= B         /note= "Following this amino acid, there may be a         carboxyl group, an amido group, a hydrophobic group,         or a macromolecular carrier group."</pre>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:
he	Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu
-	E 10 1E

Phe Asp Ala Ser Ile Ser Gln Val Asn Glu Lys Ile Asn Gln Ser Leu 1 5 10 15

-continued

Ala	Phe	Ile	Arg 20	Lys	Ser	Asp	Glu	Leu 25	Leu	His	Asn	Val	Asn 30	Ala	Gly
Lys	Ser	Thr 35													
(2)	INFORMATION FOR SEQ ID NO:111:														
	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 35 amino acids</li> <li>(B) TYPE: amino acid</li> <li>(C) STRANDEDNESS:</li> <li>(D) TOPOLOGY: unknown</li> </ul>														
	(ii) MOLECULE TYPE: peptide														
	<ul> <li>(ix) FEATURE:         <ul> <li>(A) NAME/KEY: Modified-site</li> <li>(B) LOCATION: 1</li> <li>(D) OTHER INFORMATION: /label= A</li></ul></li></ul>														
	<pre>(ix) FEATURE:     (A) NAME/KEY: Modified-site</pre>														
	(B) LOCATION: 35														
	(D) OTHER INFORMATION: /label= B /note= "Following this amino acid, there may be a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group."														
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:														
Asp 1	Ala	Ser	Ile	Ser 5	Gln	Val	Asn	Glu	Lys 10	Ile	Asn	Gln	Ser	Leu 15	Ala
Phe	Ile	Arg	Lys 20	Ser	Asp	Glu	Leu	Leu 25	His	Asn	Val	Asn	Ala 30	Gly	Lys
Ser	Thr	Thr 35													

What is claimed is:

**1**. A method for the inhibition of transmission of a respiratory syncytial virus to a cell, comprising contacting the cell with an effective concentration of an isolated peptide 45 consisting of an amino acid sequence of a 16 to 39 amino acid residue region of a respiratory syncytial virus protein for an effective period of time, wherein:

- (a) said region is recognized by an ALLMOTI5,  $107 \times 178 \times 4$ , or PLZIP sequence search motif;
- (b) said peptide further comprises an amino terminal X, and a carboxy terminal Z in which:
  - X comprises an amino group, an acetyl group, a 9-fluorenylmethoxy-carbonyl group, a hydrophobic group, or a macromolecular carrier group; and
  - Z comprises a carboxyl group, an amido group, a ⁵⁵ hydrophobic group, or a macromolecular carrier group; and
- (c) fusion of the virus to the cell is inhibited.

2. A method for the inhibition of transmission of a respiratory syncytial virus to a cell, comprising contacting ⁶⁰ the cell with an effective concentration of a peptide for an effective period of time, wherein the peptide has the formula:

- X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDE-Z (SEQ ID NO:68); 65
- X-DPLVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z (SEQ ID NO:101);

- X-YDPLVFPSDEFDASISQVNEKINQSLAFIRKSDEL-Z (SEQ ID NO:103);
- X-LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHN-Z (SEQ ID NO:104);
- X-VFPSDEFDASISQVNEKINQSLAFIRKSDELLHN-V-Z (SEQ ID NO:105);
- X-FPSDEFDASISQVNEKINQSLAFIRKSDELLHNV-N-Z (SEQ ID NO:106);
- X-PSDEFDASISQVNEKINQSLAFIRKSDELLHNVN-A-Z (SEQ ID NO:107);
- X-SDEFDASISQVNEKINQSLAFIRKSDELLHNVNA-G-Z (SEQ ID NO:108);
- X-DEFDASISQVNEKINQSLAFIRKSDELLHNVNA-GK-Z (SEQ ID NO:109);
- X-FDASISQVNEKINQSLAFIRKSDELLHNVNAGK-ST-Z (SEQ ID NO:110); or
- X-DASISQVNEKINQSLAFIRKSDELLHNVNAGKS-TT-Z (SEQ ID NO:111)

in which:

amino acid residues are presented by the single-letter code;

X comprises an amino group, an acetyl group, a 9-fluoromethyoxymethyl-carbonyl group, a hydrophobic group, or a macromolecular carrier group;

25

Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group;

and wherein fusion of the virus to the cell is inhibited. 3. The method of claim 2, wherein the peptide has the 5 formula:

X-DPLVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z (SEQ ID NO. 101).

4. The method of claim 2, wherein the peptide has the formula:

X-YDPLVFPSDEFDASISQVNEKINQSLAFIRKSDEL-Z (SEQ ID NO. 103).

5. The method of claim 2, wherein the peptide has the formula:

X-LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHN-¹⁵ Z (SEQ ID NO. 104).

6. The method of claim 2, wherein the peptide has the formula:

X-VFPSDEFDASISQVNEKINQSLAFIRKSDELLHNV- ₂₀ Z (SEQ ID NO. 105).

7. The method of claim 2, wherein the peptide has the formula:

X-FPSDEFDASISQVNEKINQSLAFIRKSDELLHNV-N-Z (SEQ ID NO. 106).

8. The method of claim 2, wherein the peptide has the formula:

X-PSDEFDASISQVNEKINQSLAFIRKSDELLHNVN-A-Z (SEQ ID NO. 107).

9. The method of claim 2, wherein the peptide has the formula:

X-SDEFDASISQVNEKINQSLAFIRKSDELLHNVNA-G-Z (SEQ ID NO. 108).

10. The method of claim 2, wherein the peptide has the formula:

X-DEFDASISQVNEKINQSLAFIRKSDELLHNVNA-GK-Z (SEQ ID NO. 109).

11. The method of claim 2, wherein the peptide has the formula:

X-FDASISQVNEKINQSLAFIRKSDELLHNVNAGK-ST-Z (SEQ ID NO. 110).

12. The method of claim 2, wherein the peptide has the formula:

X-DASISQVNEKINQSLAFIRKSDELLHNVNAGKS-TT-Z (SEQ ID NO. 111).

13. The method of claim 2, wherein the peptide has the formula:

X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDE-Z (SEQ ID NO. 68).

* * * * *