
(12) United States Patent
Haber et al.

USOO881241 OB2

US 8,812.410 B2
Aug. 19, 2014

(10) Patent No.:
(45) Date of Patent:

(54) EFFICIENT DATA PROFILING TO OPTIMIZE
SYSTEMPERFORMANCE

(75) Inventors: Gad Haber, Nesher (IL); Marcel
Zalmanovici, Kiriat Motzkin (IL)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 269 days.

(21) Appl. No.: 13/217,269

(22) Filed: Aug. 25, 2011

(65) Prior Publication Data

US 2013/OO54494 A1 Feb. 28, 2013

(51) Int. Cl.
G06F 5/8 (2006.01)

(52) U.S. Cl.
USPC .. 7O6/12

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,165.242 B2 1/2007 Dmitriev
2006/0161648 A1* 7/2006 Ding et al. TO9,224
2009/0234944 A1* 9/2009 Sylor et al..................... TO9,224
2010, 0146220 A1 6/2010 Panchenko et al.
2011/0273476 A1* 1 1/2011 Tang et al. 345,660

-

No

Execute program

OTHER PUBLICATIONS

Britton, http://web.archive.org/web/20080519072535/http://
mathcentral.uregina.ca/QQ/database/QQ.09.02/carlos1.html. May
19, 2008, pp. 2.*
Chi-Keung Luk et al., “Profile-Guided Post-Link Stride Prefetch
ing'. Proceedings of the 16th international conference on
Supercomputing, 2002; Publisher: ACM.
Brad Calder et al., “Value Proling and Optimization'. In Proceedings
of the 30th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-97), pp. 259{269, Los Alamitos, Dec.
1{3 1997. IEEE Computer Society.
Robert Muth et al., “CodeSpecialization Based on Value Profiles”. J.
Palsberg (Ed.): SAS2000, LNCS 1824, pp.340-361, 2000. Springer
Verlag Berlin Heidelberg.
Tal Shaked, “Value Specialization using PLTO”. May 1, 2002. URL:
http://webcache.googleusercontent.com/
search?q=cache:v W3XPBpu8yoJ:www.cs.arizona.edu/solar/pa
pers/tal.thesis.
ps+function+specialization+%22common+values%22&cd=4
&hl=en&ct=clnk (Last Printed on Apr. 14, 2011).
Shaomei Wu et al., “Phoenix Feedback-Directed Static Compiler
Optimization”.

* cited by examiner

Primary Examiner — Li-Wu Chang

(57) ABSTRACT

Systems and methods for data profiling are provided. In one
embodiment, the method comprises monitoring value of at
least a target parameter during execution of logic code in a
computing environment, wherein the value of the target
parameter is incrementally updated in a sequence of data
points; and using statistical analysis to determine a target
value for the target parameter as of a current data point, in
response to determining a change in the value of the target
parameter at each data point.

17 Claims, 5 Drawing Sheets

Input program code -/ S110

Instrument program

S130

S140
Value of target variable

calculated?

Yes

Apply statistical - S150
analysis to determine ?
target value up to the
point of execution

U.S. Patent Aug. 19, 2014 Sheet 1 of 5 US 8,812.410 B2

Input program code

Instrument program
code

Execute program
code

alue of target variable
calculated?

Yes

Apply statistical S150
analysis to determine
target value up to the
point of execution

End

FIG. I.

U.S. Patent Aug. 19, 2014 Sheet 2 of 5 US 8,812.410 B2

Memory 220

Register 230

Register 240

Register 250

Register 260
Program
Code
280

Processor
270

Computer System 210

Mean

FIG. 2

US 8,812.410 B2 Sheet 4 of 5 Aug. 19, 2014 U.S. Patent

U03.JOS KeIdsIGI

U.S. Patent Aug. 19, 2014 Sheet 5 of 5 US 8,812.410 B2

Software Environment 1120 N

Application USer
Interface Software BrOWSer
1124 1122 1126

System Software 1121

Hardware Environment 1110

FIG. 4B

US 8,812,410 B2
1.

EFFICIENT DATAPROFILING TO OPTIMIZE
SYSTEMPERFORMANCE

COPYRIGHT & TRADEMARK NOTICES

A portion of the disclosure of this patent document may
contain material, which is subject to copyright protection.
The owner has no objection to the facsimile reproduction by
any one of the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyrights whatsoever.

Certain marks referenced herein may be common law or
registered trademarks of the applicant, the assignee or third
parties affiliated or unaffiliated with the applicant or the
assignee. Use of these marks is for providing an enabling
disclosure by way of example and shall not be construed to
exclusively limit the scope of the disclosed subject matter to
material associated with Such marks.

TECHNICAL FIELD

The disclosed subject matter relates generally to perfor
mance optimization in a computing environment and, more
particularly, to efficient calculation of data profiles to opti
mize execution performance.

BACKGROUND

Data profiling generally refers to the process of examining
the data available in an existing data source (e.g., a database
or a file) and collecting statistics and information about that
data for various purposes. For example, data profiling may be
used to optimize the execution of logic code in a computing
environment by trying to understand data challenges early on
in a data or calculation intensive project.

If complex calculations are not performed in advance,
execution of the logic code may be delayed. Using data pro
filing, one can determine in advance, for example, the values
that may be commonly used by certain variables during
execution of logic code. Once such values are determined,
then the execution of the logic code may be optimized by
using the calculated values instead of having to calculate
those values at a later point in time when the execution of the
logic code needs to use said values.

In particular, data profiling is important to profile-based
compilation and optimization. Many compilers and optimi
Zation tools, such as just-in-time (JIT) compilers, require
efficient data profile gathering in order to optimize the pro
gram code-JIT compilation involves a method where logic
code segments are dynamically compiled at execution time
from a high-level language to executable code, in contrast to
a static compilation method in which the entire program code
is compiled into executable code once, and is then executed
multiple times.
Most data profiling schemes require instrumenting the pro

gram code for data profiling by first performing a test run and
allowing the program code to fully or partially run the entire
course of execution. During the test run, all the related values
for the target variables may be temporarily stored in memory
or in a database. After all the values are stored, then an
analysis program is run on the stored data to perform a sta
tistical analysis by applying the desired statistical formulas to
the data.

The above method, depending on the length of the test run,
the number of variables involved, the complexity of the cal
culations and the amount of data that is stored and analyzed,
may require a Substantial overhead in terms of execution and

10

15

25

30

35

40

45

50

55

60

65

2
storage resources. Further, the length of time that it may take
to analyze the data or to calculate the results of the test run
may be prohibitively long, in an implementation in which the
data analysis or calculation is performed during the execution
of the program code.

SUMMARY

For purposes of Summarizing, certain aspects, advantages,
and novel features have been described herein. It is to be
understood that not all such advantages may be achieved in
accordance with any one particular embodiment. Thus, the
disclosed subject matter may be embodied or carried out in a
manner that achieves or optimizes one advantage or group of
advantages without achieving all advantages as may be taught
or suggested herein.

In accordance with one embodiment, a method for data
profiling is provided. The method comprises monitoring
value of at least a target parameter during execution of logic
code in a computing environment, wherein the value of the
target parameter is incrementally updated in a sequence of
data points; and using statistical analysis to determine a target
value for the target parameter as of a current data point, in
response to determining a change in the value of the target
parameter at each data point, wherein the statistical analysis
used to determine the target value at the current data point is
repeatedly applied to calculate the target value as the value of
the target parameter is incrementally updated during future
data points.

In one embodiment, each data point is associated with a
point of time in the execution of the logic code. The calculated
target value may be used to optimize execution of the logic
code for a certain implementation and statistical analysis may
be used to determine the most common value for the value
assigned to the target parameter during the execution of the
logic code at each data point.

In accordance with one or more embodiments, a system
comprising one or more logic units is provided. The one or
more logic units are configured to perform the functions and
operations associated with the above-disclosed methods. In
yet another embodiment, a computer program product com
prising a computer readable storage medium having a com
puter readable program is provided. The computer readable
program when executed on a computer causes the computer
to perform the functions and operations associated with the
above-disclosed methods.
One or more of the above-disclosed embodiments in addi

tion to certain alternatives are provided in further detail below
with reference to the attached figures. The disclosed subject
matter is not, however, limited to any particular embodiment
disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed embodiments may be better understood by
referring to the figures in the attached drawings, as provided
below.

FIG. 1 illustrates flow diagram of an exemplary data pro
filing method in accordance with one or more embodiments.

FIG. 2 is an exemplary block diagram of a computer system
for performing statistical analysis, in accordance with one
embodiment.

FIG.3 is a block diagram of an exemplary illustration of the
data values stored in a fixed number of memory slots or
registers at each execution point in accordance with one
embodiment.

US 8,812,410 B2
3

FIGS. 4A and 4B are block diagrams of hardware and
Software environments in which the disclosed systems and
methods may operate, in accordance with one or more
embodiments.

Features, elements, and aspects that are referenced by the
same numerals in different figures represent the same, equiva
lent, or similar features, elements, or aspects, in accordance
with one or more embodiments.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

In the following, numerous specific details are set forth to
provide a thorough description of various embodiments. Cer
tain embodiments may be practiced without these specific
details or with some variations in detail. In some instances,
certain features are described inless detailso as not to obscure
other aspects. The level of detail associated with each of the
elements or features should not be construed to qualify the
novelty or importance of one feature over the others.

In accordance with one embodiment, an efficient data pro
filing technique is provided to determine the value of target
variables or parameters used in a program code during execu
tion. The value may be a single number, a pair, the difference
between a pair of values, or a tuple, for example. As provided
in further detail below, in one embodiment, a constant number
of memory slots and low-overhead calculations are used to
perform the statistical analysis as a part of the data profiling.

Depending on implementation and the nature of the pro
gram code being executed, certain values are stored in regis
ters or are assigned to variables or function parameters which
are then analyzed to derive additional values that are used to
help optimize performance of certain functions or operations.
Examples of optimizations that benefit from data profiling
include stride data prefetching and function specialization.

Data prefetching is a technique that attempts to overcome
the performance gap between a processor and a memory
device, by prefetching data from the main memory into a
cache device that has faster data access rates than the memory
device. The processor hardware or program code executed on
the processor anticipates in advance the data that is to be
fetched and requests that data from main memory before it is
actually needed.

In stride prefetching, the data is fetched in fixed strides
(e.g., a predetermined number of data blocks are fetched)
depending on cache size, the stride function or other factors.
The prefetched data is placed in the cache until it is actually
needed to be processed. In this manner, the data may be
fetched from the cache in a shorter amount of time than if it is
to be retrieved from the main memory. Data profiling, as
provided below, may be utilized to, for example, determine
the most common stride value for the stride function to avoid
bad or missing prefetching instances.

Function specialization, another example in which data
profiling is useful, involves the creation of a specialized func
tion from an otherwise general function employed by a com
puting component such as the compiler. The specialized func
tion is utilized in certain circumstances when, for example,
one or more predetermined conditions are met during the
execution of the program code. The specialized function uses
a fixed value for a parameter instead of a value that would
have otherwise been calculated by the general function under
different circumstances.

In the following, a discussion of efficient data profiling
methods and systems is provided, first in the form of a general
overview and later in more detail by way of example as
applicable to specific scenarios or functions. The disclosed

10

15

25

30

35

40

45

50

55

60

65

4
data profiling approach, in one embodiment, may be used to
determine the most common value for one or more variables
or parameters to avoid last minute calculations, thereby opti
mizing the performance of the system.

Referring to FIGS. 1 and 2, an exemplary process is illus
trated for optimizing the performance of program code 280
on a processor 270 included in a computer system 210. As
shown, the computer system 210 comprises memory 220
having a plurality of registers. To optimize program code 280,
it may be provided as input to computer system 210 (S.110).
Program code 280 is then instrumented (S120) and executed
(S130) on the processor 270.
By way of instrumentation of program code 280, certain

parameters or variables may be targeted or monitored so that
when the value of the parameter or variable is calculated or
updated (S140), due to a function call for example, the new
value is analyzed according to a statistical formula. As pro
vided in further detail below, in certain embodiments, statis
tical analysis is applied to determine the value of a target
parameter or variable up to the particular point of execution
(S150).

Depending on the nature of the data profiling, the type of
function targeted, the context in which the program code 280
is executed, or other details, statistical analysis is performed
to determine the value or values that may be used to optimize
the performance of program code 280. In the following, a
more detailed discussion is provided as applicable to certain
exemplary functions. It is noteworthy, however, that in other
embodiments same or similar concepts may be implemented
or applied to other functions without detracting from the
Scope of the claimed Subject matter.

Referring to FIGS. 2 and 3, one embodiment is imple
mented based on the calculation of the most common value in
a given sequence of profiled data points. In this context, data
points refer to stream of values being used to calculate the
most common value. Since the values provided at each of the
data points may be generated irregularly, in this example
embodiment, the most common value is determined by cal
culating the mean and variance from the sequence of profiled
data points.

In one embodiment, the mean is considered to be a constant
or common value, if the variance falls in a small predefined
range (i.e., a delta threshold). Each data access or value may
be profiled during the instrumentation phase noted earlier.
Desirably, the memory consumption and computation time at
the execution phase is kept constant for each profiled memory
access. That is, the instrumented data profiling scheme may
be used to determine the value of a target parameter or vari
able using a fixed number of counters, operations and
memory (e.g., registers).
To achieve an implementation that Supports fixed memory

size and execution time thresholds, in one embodiment, an
incremental computation method is utilized to calculate the
mean and the variance of a sequence of profiled data points at
each step that data point is reached during execution. In one
embodiment, the computation method for determining the
most common value is based on calculation of the mean (L)
of n data points x . . . X, which arrive in a stream (i.e., in a
sequence), in accordance with the following formula:

pl = {t-1 + (x, - 4-1)
it.

US 8,812,410 B2

where:
L the current mean,
l, the previous mean,

in the total number of data points and
X, the new data point.
Referring to the exemplary operations discussed earlier, for

function specialization, X, is, for example, the parameter
value. And for data prefetching the parameter is X, mem
mem, i.e. the difference between current and previous
memory accesses, wherein mem, refers to a memory address
the parameter value x is stored.

In one embodiment, the variance of n data points x . . . X,
with a mean equal to L is determined according to the for
mula provided below, which suggests a method of collecting
incremental mean and incremental variance without having to
store all the data in a database first and then running a mean
and variance calculation on the entire data:

o, WS/n

Accordingly, to optimize the performance of the program
code in the above exemplary scenarios, the most common
value of a target function parameter is incrementally deter
mined at each data point based on the above-noted formulas.
Desirably, the system utilizes a fixed and limited amount of
memory (e.g., registers) and a relatively small number of
calculations are performed at each data point, as provided in
further detail below.

Referring to FIG.3, ten (n=10) exemplary data points (x to
X) are illustrated, where three memory locations 220 (e.g.,
on chip registers 230,240,250 or three main memory slots—
not shown) are used to store the incrementally calculated
values for the mean (M), the variance (V) and the sequence
number (n) at each data point (see Table 310). A data point
may be, for example, an instance during execution of program
code in which a function that uses or updates a target param
eter is called.
As shown, the value for the target parameter in sequence

300 varies from 5 to 6 to 7 at different data points. The mean
at data point n=1 is calculated according to the above formula
as 7, with a variance of 0. At data point n-2, the mean is 6.
with a variance of 1, and so on until the last data point n=10.
in which the mean is 5.4 and the variance is 0.44. In this
example, since the variance is less than 0.5, it may be assumed
with a high level of certainty that the most common value for
the target parameter is 5 in sequence 300.

It is notable that using the above data profiling scheme, the
mean and the variance are updated at each data point and are
kept current as to the prior values that are considered as of the
current data point. As such, the value of the target parameter
is incrementally calculated at each data point such that if
program execution is suspended or terminate, the latest incre
mentally calculated value for the target parameter may be
utilized for the purpose of optimization. In contrast, other
data profiling methods that do not use an incremental analysis
approach may have to start the analysis over from the begin
ning.

Advantageously, in the data profiling implementation dis
closed here, the mean and variance values are incrementally
update at each data point in real time. This approach limits the
use of memory space to a fixed number of memory spaces.
For example, as shown in FIG.3, a minimum of three memory
locations are used for storing values associated with means,
variance and N which are incrementally updated during each
data point.

10

15

25

30

35

40

45

50

55

60

65

6
In different embodiments, the claimed subject matter may

be implemented as a combination of both hardware and soft
ware elements, or alternatively either entirely in the form of
hardware or entirely in the form of software. Further, com
puting systems and program software disclosed herein may
comprise a controlled computing environment that may be
presented in terms of hardware components or logic code
executed to perform methods and processes that achieve the
results contemplated herein. Said methods and processes,
when performed by a general purpose computing system or
machine, convert the general purpose machine to a specific
purpose machine.

Referring to FIGS. 4A and 4B, a computing system envi
ronment in accordance with an exemplary embodiment may
be composed of a hardware environment 1110 and a software
environment 1120. The hardware environment 1110 may
comprise logic units, circuits or other machinery and equip
ments that provide an execution environment for the compo
nents of software environment 1120. In turn, the software
environment 1120 may provide the execution instructions,
including the underlying operational settings and configura
tions, for the various components of hardware environment
1110.

Referring to FIG. 4A, the application software and logic
code disclosed herein may be implemented in the form of
computer readable code executed over one or more comput
ing systems represented by the exemplary hardware environ
ment 1110. As illustrated, hardware environment 110 may
comprise a processor 1101 coupled to one or more storage
elements by way of a system bus 1100. The storage elements,
for example, may comprise local memory 1102, storage
media 1106, cache memory 1104 or other computer-usable or
computer readable media. Within the context of this disclo
sure, a computer usable or computer readable storage
medium may include any recordable article that may be uti
lized to contain, store, communicate, propagate or transport
program code.
A computer readable storage medium may be an elec

tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor medium, system, apparatus or device. The com
puter readable storage medium may also be implemented in a
propagation medium, without limitation, to the extent that
such implementation is deemed statutory subject matter.
Examples of a computer readable storage medium may
include a semiconductor or solid-state memory, magnetic
tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag
netic disk, an optical disk, or a carrier wave, where appropri
ate. Current examples of optical disks include compact disk,
read only memory (CD-ROM), compact disk read/write (CD
R/W), digital video disk (DVD), high definition video disk
(HD-DVD) or Blue-rayTM disk.

In one embodiment, processor 1101 loads executable code
from storage media 1106 to local memory 1102. Cache
memory 1104 optimizes processing time by providing tem
porary storage that helps reduce the number of times code is
loaded for execution. One or more user interface devices 1105
(e.g., keyboard, pointing device, etc.) and a display screen
1107 may be coupled to the other elements in the hardware
environment 1110 either directly or through an intervening
I/O controller 1103, for example. A communication interface
unit 1108, such as a network adapter, may be provided to
enable the hardware environment 1110 to communicate with
local or remotely located computing systems, printers and
storage devices via intervening private or public networks
(e.g., the Internet). Wired or wireless modems and Ethernet
cards are a few of the exemplary types of network adapters.

US 8,812,410 B2
7

It is noteworthy that hardware environment 1110, in certain
implementations, may not include Some or all the above com
ponents, or may comprise additional components to provide
Supplemental functionality or utility. Depending on the con
templated use and configuration, hardware environment 1110
may be a desktop or a laptop computer, or other computing
device optionally embodied in an embedded system such as a
set-top box, a personal digital assistant (PDA), a personal
media player, a mobile communication unit (e.g., a wireless
phone), or other similar hardware platforms that have infor
mation processing or data storage capabilities.

In some embodiments, communication interface 1108 acts
as a data communication port to provide means of communi
cation with one or more computing systems by sending and
receiving digital, electrical, electromagnetic or optical sig
nals that carry analog or digital data streams representing
various types of information, including program code. The
communication may be established by way of a local or a
remote network, or alternatively by way of transmission over
the air or other medium, including without limitation propa
gation over a carrier wave.
As provided here, the disclosed software elements that are

executed on the illustrated hardware elements are defined
according to logical or functional relationships that are exem
plary in nature. It should be noted, however, that the respec
tive methods that are implemented by way of said exemplary
Software elements may be also encoded in said hardware
elements by way of configured and programmed processors,
application specific integrated circuits (ASICs), field pro
grammable gate arrays (FPGAs) and digital signal processors
(DSPs), for example.

Referring to FIG. 4B: software environment 1120 may be
generally divided into two classes comprising system soft
ware 1121 and application software 1122 as executed on one
or more hardware environments 1110. In one embodiment,
the methods and processes disclosed here may be imple
mented as system software 1121, application software 1122.
or a combination thereof. System software 1121 may com
prise control programs. Such as an operating system (OS) or
an information management system, that instruct one or more
processors 1101 (e.g., microcontrollers) in the hardware envi
ronment 1110 on how to function and process information.
Application software 1122 may comprise but is not limited to
program code, data structures, firmware, resident Software,
microcode or any other form of information or routine that
may be read, analyzed or executed by a processor 1101.

In other words, application software 1122 may be imple
mented as program code embedded in a computer program
product in form of a computer-usable or computer readable
storage medium that provides program code for use by, or in
connection with, a computer or any instruction execution
system. Moreover, application Software 1122 may comprise
one or more computer programs that are executed on top of
system software 1121 after being loaded from storage media
1106 into local memory 1102. In a client-server architecture,
application software 1122 may comprise client software and
server software. For example, in one embodiment, client soft
ware may be executed on a client computing system that is
distinct and separable from a server computing system on
which server software is executed.

Software environment 1120 may also comprise browser
software 1126 for accessing data available over local or
remote computing networks. Further, software environment
1120 may comprise a user interface 1124 (e.g., a graphical
user interface (GUI)) for receiving user commands and data.
It is worthy to repeat that the hardware and software archi
tectures and environments described above are for purposes

10

15

25

30

35

40

45

50

55

60

65

8
of example. As such, one or more embodiments may be
implemented over any type of system architecture, functional
or logical platform or processing environment.

It should also be understood that the logic code, programs,
modules, processes, methods and the order in which the
respective processes of each method are performed are purely
exemplary. Depending on implementation, the processes or
any underlying Sub-processes and methods may be per
formed in any order or concurrently, unless indicated other
wise in the present disclosure. Further, unless stated other
wise with specificity, the definition of logic code within the
context of this disclosure is not related or limited to any
particular programming language, and may comprise one or
more modules that may be executed on one or more proces
sors in distributed, non-distributed, single or multiprocessing
environments.
As will be appreciated by one skilled in the art, a software

embodiment may include firmware, resident Software, micro
code, etc. Certain components including Software or hard
ware or combining software and hardware aspects may gen
erally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, the subject matter disclosed may be
implemented as a computer program product embodied in
one or more computer readable storage medium(s) having
computer readable program code embodied thereon. Any
combination of one or more computer readable storage medi
um(s) may be utilized. The computer readable storage
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any Suitable
combination of the foregoing.

In the context of this document, a computer readable stor
age medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device. A computer readable
signal medium may include a propagated data signal with
computer readable program code embodied therein, for
example, in baseband or as part of a carrier wave. Such a
propagated signal may take any of a variety of forms, includ
ing, but not limited to, electro-magnetic, optical, or any Suit
able combination thereof. A computer readable signal
medium may be any computer readable medium that is not a
computer readable storage medium and that can communi
cate, propagate, or transport a program for use by or in con
nection with an instruction execution system, apparatus, or
device.

Program code embodied on a computer readable storage
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
Computer program code for carrying out the disclosed opera
tions may be written in any combination of one or more
programming languages, including an, object oriented pro
gramming language such as Java, Smalltalk, C++ or the like
and conventional procedural programming languages. Such
as the “C” programming language or similar programming
languages.
The program code may execute entirely on the user's com

puter, partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or

US 8,812,410 B2
9

the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro
vider).

Certain embodiments are disclosed with reference to flow
chart illustrations and/or block diagrams of methods, appa
ratus (systems) and computer program products according to
embodiments. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable storage medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, Such that the
instructions stored in the computer readable storage medium
produce an article of manufacture including instructions
which implement the function/act specified in the flowchart
and/or block diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara
tus or other devices to produce a computer implemented
process Such that the instructions which execute on the com
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
each block in the flowchart or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures.

For example, two blocks shown in Succession may, in fact,
be executed substantially concurrently, or the blocks may
Sometimes be executed in the reverse order, depending upon
the functionality involved. It will also be noted that each block
of the block diagrams and/or flowchart illustration, and com
binations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com
puter instructions.
The claimed subject matter has been provided here with

reference to one or more features or embodiments. Those
skilled in the art will recognize and appreciate that, despite of
the detailed nature of the exemplary embodiments provided
here, changes and modifications may be applied to said
embodiments without limiting or departing from the gener
ally intended scope. These and various other adaptations and
combinations of the embodiments provided here are within
the scope of the disclosed subject matter as defined by the
claims and their full set of equivalents.

10

15

25

30

35

40

45

50

55

60

65

10
What is claimed is:

1. A computer-implemented data profiling method com
prising:

instrumenting logic code to include a plurality of data
points at which value of a target parameter defined by the
logic code is of interest, wherein the value of the target
parameter varies during execution of the program code;

monitoring value of the target parameter during execution
of the logic code in a computing environment, wherein
the value of the target parameter is calculated at each
data point in the subset of the plurality of data points
based on incrementally updating the target value asso
ciated with the target parameter in a sequence of data
points traversed during the execution of the logic code;
and

wherein statistical analysis is used to update, in real time,
the target value for the target parameter based on calcu
lated value for the target parameter at a data point being
traversed at that time and based on at least one value
calculated for the target parameter during a previously
traversed data point,

wherein the statistical analysis determines a value to be
assigned to the target parameter as a most common value
of the plurality of data points, the most common value
being a most frequent value in the plurality of data
points;

wherein the statistical analysis is repeatedly applied during
traversal of Subsequent data points in the Subset of plu
rality of data points to calculate an updated target value
for the target parameter, and

wherein the target parameter value is stored.
2. The method of claim 1, wherein the computation method

for determining the most common value is based on calcula
tion of the mean (L.) of n data points

1
kiln Filn-1 (vn - pin-1)

X . . . X., which are incrementally updated in a sequence,
wherein the computation is in accordance with the fol
lowing formula:

pl = {t-1 + (x, - 4-1)
it.

where:

, the current mean,
L-the previous mean,
n=the total number of data points and
X, the new data point.

3. The method of claim 2, wherein in a function special
ization implementation, the target parameter value is equal to
X

4. The method of claim 2, wherein in a data prefetching
implementation, the target parameter value is equal to the
difference between current and previous values obtained by
memory accesses, wherein the previous value is a meanbased
on n-1 data points, and the current value is a mean based on
in data points.

US 8,812,410 B2
11

5. The method of claim 2, wherein a variance O, of n data
points X ... X, with a mean equal to L is determined accord
ing to the following formula:

o, WS/n.

6. The method of claim 5, wherein the incremental mean is
calculated without storing the related data at each data point
in a database first and then running a mean calculation on the
stored data in the database.

7. The method of claims, wherein the incremental variance
is calculated without storing the related data at each data point
in a database first and then running a variance calculation on
the stored data in the database.

8. The method of claim 1, wherein each data point is
associated with a point of time in the execution of the logic
code.

9. The method of claim 1, further comprising using the
calculated target value to optimize execution of the logic code
for a certain implementation.

10. A data profiling system comprising:
one or more processor in communication with memory for

storing data generated by the one or more processors;
a logic code for instrumenting logic code to include a

plurality of data points at which value of a target param
eter defined by the logic code is of interest, wherein the
value of the target parameter varies during execution of
the program code:

a logic code for monitoring value of the target parameter
during execution of the logic code in a computing envi
ronment, wherein the value of the target parameter is
calculated at each data point in the subset of the plurality
of data points based on incrementally updating the target
value associated with the target parameter in a sequence
of data points traversed during the execution of the logic
code; and

a logic code for using wherein statistical analysis is used to
update, in real time, the target value for the target param
eter based on calculated value for the target parameter at
a data point being traversed at that time and at least one
value calculated for the target parameter during a previ
ously traversed data point,

wherein the statistical analysis determines a value to be
assigned to the target parameter as a most common value
of the plurality of data points, the most common value
being a most frequent value in the plurality of data
points,

wherein the statistical analysis is repeatedly applied during
traversal of Subsequent data points in the Subset of plu
rality of data points to calculate an updated target value
for the target parameter, and

wherein the target parameter value is stored.
11. The system of claim 10, wherein the computation

method for determining the most common value is based on
calculation of the mean (L.) of n data points X ... X., which
are incrementally updated in a sequence, wherein the com
putation is in accordance with the following formula:

pl = {t-1 + (x, - 4-1)
it.

where:
LL, the current mean,
L-the previous mean,
n=the total number of data points and
X, the new data point.

10

15

25

30

35

40

45

50

55

60

12
12. The system of claim 11, wherein in a function special

ization implementation, the target parameter value is equal to
X.

13. The system of claim 11, wherein in a data prefetching
implementation, the target parameter value is equal to the
difference between current and previous values obtained by
memory accesses.

14. The system of claim 11, wherein a variance of O. data
points X ... X, with a mean equal to L is determined accord
ing to the following formula:

o, WS/n.

15. A computer program product comprising a non-transi
tory data storage medium having a computer readable pro
gram, wherein the computer readable program when
executed on a computer causes the computer to:

instrument logic code subject to data profiling to include a
plurality of data points at which value of a target param
eter defined by the logic code is of interest, wherein the
value of the target parameter varies during execution of
the program code:

monitor value of the target parameter during execution of
the logic code in a computing environment, wherein the
value of the target parameter is calculated at each data
point in the subset of the plurality of data points based on
incrementally updating the target value associated with
the target parameter in a sequence of data points tra
versed during the execution of the logic code; and

use wherein statistical analysis is used to update, in real
time, the target value for the target parameter based on
calculated value for the target parameter at a data point
being traversed at that time and at least one value calcu
lated for the target parameter during a previously tra
versed data point,

wherein the statistical analysis determines a value to be
assigned to the target parameter as a most common value
of the plurality of data points, the most common value
being a most frequent value in the plurality of data
points,

wherein the statistical analysis is repeatedly applied during
traversal of Subsequent data points in the Subset of plu
rality of data points to calculate an updated target value
for the target parameter, and

wherein the target parameter value is stored.
16. The method of claim 15, wherein the computation

method for determining the most common value is based on
calculation of the mean (L.) of n data points X ... X., which
are incrementally updated in a sequence, wherein the com
putation is in accordance with the following formula:

pl = {t-1 + (x, - 4-1)
it.

where:
, the current mean,
L-the previous mean,
n=the total number of data points and
X, the new data point.

17. The method of claim 16, wherein in a function special
ization implementation, the target parameter value is equal to
X

