US 20210036970A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2021/0036970 A1

IVKUSHKIN et al. 43) Pub. Date: Feb. 4, 2021
(54) SYSTEMS AND METHODS FOR HO4L 9/06 (2006.01)
EFFICIENTLY STORING A DISTRIBUTED GOG6F 9/46 (2006.01)
LEDGER OF RECORDS HO4L 29/06 (2006.01)
(52) US. CL
(71) Applicant: Insolar Technologies GmbH, Zug CPC ... HO4L 49/9042 (2013.01); HO4L 49/9015
(CH) (2013.01); HO4L 2209/38 (2013.01); GO6F
L. 9/466 (2013.01); HO4L 69/22 (2013.01);
(72) Inventors: Kirill IVKUSHKIN, Moscow (RU); HO4L 9/0643 (2013.01)
Vladimir STEPANOV, Moscow (RU);
Pavel KIRILLOV, Moscow (RU);
Andrei ZHULIN, Moscow (RU); Petr 7) ABSTRACT
FEDCHENKOV, Moscow (RU); Systems and methods for efficiently storing a distributed
Dmitrii ZHULIN, Moscow (RU) ledger of records. In an exemplary aspect, a method may
include generating a record comprising a payload and a
(21) Appl. No.: 17/075,495 header, wherein the payload stores a state of a data object
o associated with a distributed ledger and the header stores a
(22) Filed: Oct. 20, 2020 reference to state information in the payload. The method
Related U.S. Application Data may further comprise including the record in a trunk fila-
ment comprising a first plurality of records indicative of
(63) Continuation-in-part of application No. 16/507,665, historic states of the data object, wherein the trunk filament
filed on Jul. 10, 2019. is part of a first lifeline. The method may include identifying
A . . a jet of the distributed ledger, wherein the jet is a logical
Publication Classification structure storing a second lifeline with a second plurality of
(51) Int. CL records. In response to determining that the first plurality of
HO4L 12/861 (2006.01) records is related to the second plurality of records, the
HO4L 12/883 (2006.01) method may include storing the first lifeline in the jet.
100
\\‘\

Client Device 102

Blockchain
Network (110}

116
[N R 2 U A & S,
Blockchain
Client 106
,
Ve
y
e e e e e o o e e e e e e et e e

- N
| Distributed Ledger (114) "
| i
) Record 3.1 i
: |
i
' i
| : |
1 i
| t
| . i
R t
! Record 2.2 Record 2.1 i
115d 4 : Reason of !
117 [. SN e o [change _(can be i
| / !
I : Previous state i
) . {can be !
| R multiple) i
: H |

| H H
| Record 1.3 Recotd 1.2 Record 1.1 :
: Y > AT e = N i
| e |
| i

Patent Application Publication Feb. 4,2021 Sheet 1 of 7 US 2021/0036970 A1

100

\.‘

Blockchain
Network {110)

Client Device 102

Blockchain
Client 106

[15

o S ot e cmee wee ceen emen e een s e seww mmem swm mewe wwee wwee e ewn e wen e vewe owew weww weee e

Distributed Ledger (114)

Record 3.1 |]

|
;

!

!

!

!

*
!

; .

|

!

!

!

Record 2.2 Record 2.1
: Reason of

117 ! A e (U change {can be
1 b .
\J\\l Reason { Reason | multiple)

Y

Previous state

e m An AA AR AR AMAA AR AAAR AR AR A A WA AR AR MARA AAR AARA AAAn ARAs AAR Amar an Mama

{

i

i

| (can_ be

; multiple}

i : :

i Recoqd 13 Recoyd 1.2 Record 1.1

i ; _ :

i ' ol v » o am—— .

i Reason Reason ! Reason |
‘ |
’ j
N _

Feb. 4,2021 Sheet 2 of 7 US 2021/0036970 A1

Patent Application Publication

¢ ‘814

LPioddy | 9 plodsy

/

juBWefl Youelg SULSPIS

aulfapis

80¢ 4opeaH

907 UOiSUIINI

0T peojAed

70z Apog

€ piooay

§pioday el pploday
JusaWwely Youeq
€ploosy || zpioday || T ploday
]
_ juawe|y yunn
]
| aulisjy
}
|

00¢

Patent Application Publication Feb. 4, 2021 Sheet 3 of 7 US 2021/0036970 A1

300

LR

el
2
o S

{ o
N
o 35;55'5;: S S et ST e o a5 P e A e e e AT e 5 ATt 0 e o s T e o S e e A e S A o e S

9 50 st

Feb. 4,2021 Sheet 4 of 7 US 2021/0036970 A1

Patent Application Publication

IAIIBUL BAIIIR + 1$N1RIS
IBQUINNSSING

SN1EIGUMOL)ISET

2NUUOD

“Ysiuy 1se1s sn1els
sy

‘BUBPIS DRy (adA L

¥BPUiIse]

XOPUIsIY

Aseununsiusie)tq

jaydougiar

W [ewiooyldeyy T

oyozdoig

N Cmmcowmmmugm,zl.m:

oyodzdoiq

S H
ahig]]
peojhedpioday
UOISUIIXIPI0daY T I
T " I {
iiiiii - m m
Pl ITVEIEI E 1S
2071peojA

L e
mu.\/ﬁ : : A sameudiiensEay
Giuonoes _1v UBHO] FDINPOIY
T w\Sb E H H Jimeusisiasnpol
uonaasdoug soyuialay
Apogpioaay " etnoos
NT sounag
auA L pu0d8Y:
Anug Sogeied

1 N

aner paosy
JoquinNasing
doigiaf
T
doiagiar

>

00V

US 2021/0036970 A1

Feb. 4,2021 Sheet 5 of 7

005

Patent Application Publication

90%

sosng

706 upnop

FHHBSEAO}
P Jesyeg
1psin 84
g sdaolg - ind
Kx3a008 & .
B vorEdayg - = sresmd
afwrogs sy fuoty - 2
&
SO .
et L - [7]
FRLESTRN SARSEE 2 %
iz =
= &
=
irppus agpery, - Z :
ARION TR A b sofessop TR
SIPOR &
3 g
o
o TS
Z SRS) TORRMTEA Wiy P
o) T PEOLy
IBRETCUE U BOYIEIRRAY PRSI o
VOTTRFUSE HPUNE] - SRR naws DUDED JICIHTY
SPAN PIGNA soyedaton 5 SOUIYORHS PIIA / &
. /5
&
%
&
A
'
B IBEIROT
- L A yunussy
i BAYELS: : :
L reneey NG] g X PERHO
3 R T oo ...w..m... pRtitide:ire : : R VRO

¢0S

THU PROLD

Patent Application Publication Feb. 4,2021 Sheet 6 of 7 US 2021/0036970 A1

600

R

602
Generate a record comprising a payload and a header, wherein the]

payload stores a state of a data object associated with a distributed
ledger and the header stores a reference to state information in the
payload

!

Include the record in a trunk filament comprising a first plurality of 604
records indicative of historic states of the data object, wherein the trunk
filament is part of a first lifeline that further comprises one or more]
branch filaments comprising auxiliary information associated with the
data object

$ 606

identify a jet of the distributed ledger, wherein the jet is a logical]
structure storing a second lifeline with a second plurality of records
indicative of historic states of a different data object

Yes

608

Is the first plurality
of records related to the second
plurality of records?

No

v_J

610 /

612

Store the first lifeline in a different

Store the first lifeline in the jet jet]

Feb. 4,2021 Sheet 7 of 7 US 2021/0036970 A1

Patent Application Publication

¥ (S)eindwioo
sjowsl

(05) Ysomau
esie-|ed0|

¢ wWayshs
Bunessdo

6¢ elep| 8¢ ssnpow

weiboid| wesbosd Jego| L8 suopeayjdde

Ly (s)soinap
Aeidsip

L ~ -

¥ (s)aoiap
Indu

\4
| |
_ |
|
| 77 obeiois g7 obeioss “
| + 9|qeAowal 8|qeAowai-uou |
” 8P aoeusul| | 9 soeLBUI 6 elep wesboud "
| indino lesaydusad 7€ soeoul abeio)s 5 sompou] |,
| wesboid soyjo | |4
.
| i€ suopeosdde "
| €7 sng we)shs
| ke . G¢ wajsAs buiesado "
” < < AR "
m V 15 soepsl ¥4 [9z soig] |
m Homjau 108s9001d ¥ WOY “
| 7T fiowew waishs |,
_ 07 wesAs sonduwion

US 2021/0036970 Al

SYSTEMS AND METHODS FOR
EFFICIENTLY STORING A DISTRIBUTED
LEDGER OF RECORDS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation in-part of and
claims the benefit of U.S. Non-Provisional application Ser.
No. 16/507,665, filed Jul. 10, 2019, which is herein incor-
porated by reference.

FIELD OF TECHNOLOGY

[0002] The present disclosure relates generally to the field
of blockchain technology, more specifically, to systems and
methods for efficiently storing a distributed ledger of records
and providing means of reasoning about cause and effect
relationships between records in the distributed ledger.

BACKGROUND

[0003] Blockchain technology is an emerging technology
for decentralized digital recordkeeping and is being used in
a growing number of businesses and industries. The block-
chain is a data structure that stores a list of transactions and
can be thought of as a distributed electronic ledger that
records transactions between a source and a destination, or
a sender and a recipient. The transactions are batched
together into blocks and every block refers back to or is
linked to a prior block in the chain. Moreover, the transac-
tions themselves may be linked to each other, thus forming
a chain. Computer nodes, sometimes referred to as miners,
maintain the blockchain and cryptographically validate each
new block (and the transactions contained therein) using a
proof-of-work system or other schemes.

[0004] Blockchain networks immutably store the fact that
transactions take place, but do not offer functionality to store
the reason why such transactions take place to form the
reasoning behind a chain of events. The immutability of the
existing method also makes data erasure in compliance with
specific regulations impossible. More specifically, existing
distributed ledger networks only store a history of object
changes, but none of them provide means to natively record
the reasons for state changes.

[0005] Instead, those utilizing such other networks are
only able to store reasons using solutions that have to be
tailor-made for each application, which requires a lot of
human effort and processing when building applications. For
example, Ethereum can store various kinds of data but
cannot support a universal way to track causes between
applications. This means that there is no common way to
analyze reasons for changes. Tracking could be supported
within the ledger on a business logic level, but not on the
platform level. This results in a lack of interaction between
applications in a distributed ledger because applications do
not have a platform-standardized cause-tracking method.
Moreover, existing DLT networks do not allow for data
wipeout because the integrity of the blockchain would
break. Hence, in such networks data that may be subject to
subsequent deletion must be kept entirely off the blockchain,
which compromises efficiency of the business process.

SUMMARY

[0006] To address these shortcomings, the present disclo-
sure discusses a system and method for efficiently storing a
distributed ledger of records.

Feb. 4, 2021

[0007] According to an exemplary aspect of the present
disclosure, a method may include generating a record com-
prising a payload and a header, wherein the payload stores
a state of a data object associated with a distributed ledger
and the header stores a reference to state information in the
payload. The method may further comprise including the
record in a trunk filament comprising a first plurality of
records indicative of historic states of the data object,
wherein the trunk filament is part of a first lifeline that
further comprises one or more branch filaments comprising
auxiliary information associated with the data object. The
method may include identifying a jet of the distributed
ledger, wherein the jet is a logical structure-container storing
several lifelines with a second plurality of records indicative
of historic states of a plurality of data objects. In response to
determining that the first plurality of records is related to the
second plurality of records (i.e., whether they are associated
with a same object), the method may include storing the first
lifeline in the jet. Thus, data associated with the object will
not be collected from different places when processing
within one network cycle.

[0008] In some aspects, the plurality of data objects can be
reordered between a plurality of jets in accordance with a
statistic of inter-object calls for optimization purposes.
[0009] In some aspects, determining that the first plurality
of records is related to the second plurality of records based
on a record affinity function that is applied to all records in
question.

[0010] In some aspects, the distributed ledger comprises a
plurality of jets. In this plurality, one jet contains separate
data objects that relate to that jet alone and are not associated
with any other jet in the plurality of jets.

[0011] In some aspects, the auxiliary information in the
one or more branch filaments comprises records indicative
of at least one of (but not limited to): received requests,
transmitted requests, and processing logs.

[0012] In some aspects, records in the distributed ledger
are processed in cycles (e.g., pulses), and wherein all records
registered within a first cycle for all lifelines in the jet are
stored in a first jet drop (a physical storage unit), and all
records registered within a second cycle for all lifelines in
the jet are stored in a second jet drop. If the first jet drop and
second jet drop belong to one jet, then the second jet drop
has a utility record, which refers to the first jet drop. This
linking method is configured for connecting jet drops
chronologically.

[0013] In some aspects, the generated record is stored in
the first jet drop, and indexing information about the first jet
drop is stored in a DropEcho structure.

[0014] In some aspects, the method includes wiping out
data in the generated record at a subsequent time without
corrupting data integrity of the distributed ledger.

[0015] In some aspects, wiping out the data in the gener-
ated record comprises erasing data in the payload and not
erasing data in the header. The method further comprises
storing a reason for erasing the data in the payload in the
DropEcho structure, and validating the reason by confirming
that erasing the data in the payload took place in accordance
with rules of a blockchain network maintaining the distrib-
uted ledger.

[0016] It should be noted that the methods described
above may be implemented in a system comprising a
hardware processor. Alternatively, the methods may be

US 2021/0036970 Al

implemented using computer executable instructions of a
non-transitory computer readable medium.

[0017] The above simplified summary of example aspects
serves to provide a basic understanding of the present
disclosure. This summary is not an extensive overview of all
contemplated aspects, and is intended to neither identify key
or critical elements of all aspects nor delineate the scope of
any or all aspects of the present disclosure. Its sole purpose
is to present one or more aspects in a simplified form as a
prelude to the more detailed description of the disclosure
that follows. To the accomplishment of the foregoing, the
one or more aspects of the present disclosure include the
features described and exemplarily pointed out in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The accompanying drawings, which are incorpo-
rated into and constitute a part of this specification, illustrate
one or more example aspects of the present disclosure and,
together with the detailed description, serve to explain their
principles and implementations.

[0019] FIG.1 is a block diagram of a system for managing
and storing a distributed ledger of records.

[0020] FIG. 2 is a block diagram illustrating a lifeline and
a sideline.
[0021] FIG. 3 is a block diagram illustrating a plurality of

Jets and Jet Drops.

[0022] FIG. 4 is a block diagram illustrating a Jet Drop
and a DropEcho.

[0023] FIG. 5 is a block diagram illustrating an example
architecture for a blockchain network.

[0024] FIG. 6 is a flow diagram illustrating a method for
efficiently storing a distributed ledger of records.

[0025] FIG. 7 is a block diagram of a computer system on
which the disclosed system and method can be implemented
according to an exemplary aspect.

DETAILED DESCRIPTION

[0026] Exemplary aspects are described herein in the
context of a system, method, and computer program product
for managing and storing a distributed ledger of records.
Those of ordinary skill in the art will realize that the
following description is illustrative only and is not intended
to be in any way limiting. Other aspects will readily suggest
themselves to those skilled in the art having the benefit of
this disclosure. Reference will now be made in detail to
implementations of the example aspects as illustrated in the
accompanying drawings. The same reference indicators will
be used to the extent possible throughout the drawings and
the following description to refer to the same or like items.
[0027] FIG. 1 is a block diagram of a system 100 for
managing and storing a distributed ledger of records, accord-
ing to an exemplary aspect. The system 100 may include one
or more client device(s) 102 communicatively connected to
a blockchain network 110. The client device 102 may be one
of personal computers, servers, laptops, tables, mobile
devices, smart phones, cellular devices, portable gaming
devices, media players or any other suitable devices that can
retain, manipulate and transfer data. The client device 102
may include a blockchain client 106, which is a software
application configured to generate and transmit one or more
blockchain-based transactions or messages 116 to the block-
chain network 110 for accessing or modifying records stored
in the distributed ledger, such as managing user accounts,

Feb. 4, 2021

the transfer of cryptographic assets to and from such user
accounts, and other types of operations.

[0028] According to an exemplary aspect, the blockchain
network 110 can be a distributed peer-to-peer network
formed from a plurality of nodes 112 (computing devices)
that collectively maintain a distributed ledger 114. For
purposes of the present discussion, the terms distributed
ledger and blockchain may be interchangeably used. The
blockchain 114 is a continuously-growing list of data
records hardened against tampering and revision using cryp-
tography and is composed of data structure blocks that hold
the data received from other nodes 112 or other client nodes,
including the client device 102 executing an instance of the
blockchain client 106. The blockchain client 106 is config-
ured to transmit data values to the blockchain network 110
as a transaction data structure 116, and the nodes 112 in the
blockchain network record and validate/confirm when and in
what sequence the data transactions enter and are logged in
the existing blockchain 114.

[0029] In some aspects, the distributed ledger may be
organized into multiple blockchains 114 which are config-
ured to ensure chronological and immutable storage of data.
In one aspect, the distributed ledger may include one or
more lifeline blockchains, sideline blockchains, and jet
blockchains. In one implementation, lifeline blockchains are
individual blockchains in which each data object and all its
states are stored (i.e., objects are treated as individual
blockchains). Lifeline blockchains can have logic and code
associated with them, so the terms lifeline blockchain,
object, and smart contract may be used interchangeably. In
one aspect, sideline blockchains are utility lifeline block-
chains used to store temporary or auxiliary data such as
indexes, pending operations, or debug logs. A lifeline block-
chain can have several associated sideline blockchains to
store information. A jet blockchain may be configured to act
as a shard or partition which make up storage blocks and
form shard chains. Records in a jet blockchain may be first
produced by a lifeline blockchain, then packaged into
blocks, and placed in sequence to form a chain of blocks.
Replication and distribution of data can be managed indi-
vidually by blocks and jet blockchains. The use of multiple
kinds of blockchains enables dynamic reconfiguration of
storage by splitting and merging of jet blocks without
comprising data immutability.

[0030] Distributed ledgers, e.g., having a blockchain 114,
are used to store a plurality of records 115, which may
contain information such as a request, a response, a control
of state, and maintenance details. In known approaches to
blockchain technology, records 115 of a distributed ledger
are ordered chronologically by time of creation or registra-
tion, and each record of a ledger may represent an operation
(or a change) made and can have a reference to a previous
record which represents a baseline for the operation. The
reference uniquely identifies an entity (e.g., record) and is
based on or includes information (e.g., checksum, hash, or
signature) to validate the integrity of the entity the reference
points to. Although data stored in blockchains might track
changes of the state of the object in a ledger and the entity
making the change, such storage techniques fail to log the
reason for the change. Often, the reason for the change is
entirely absent from the blockchain or might be shallowly
recorded. This results in a non-uniform approach, e.g., it
may require the user to include excessive detail on certain
records, or to track dependencies using third-party systems

US 2021/0036970 Al

that are external to a distributed ledger or blockchain system.
The drawback to the known approach to blockchain tech-
nology arises in scenarios in which an investigation, claims,
or reporting takes place with respect to the validity of ledger
changes. Such investigations can become more costly as
time goes by due to the amount of blockchain operations that
must be investigated and the reasons as to why such opera-
tions were conducted (on the records of the ledger). More-
over, many organizations might not have the resource capac-
ity to carry out such a resource-intensive investigation.
[0031] In some aspects, each record 115 may contain data
objects. The term ‘object’ refers to an instance of a smart
contract of a particular class/type (‘type’ and ‘class’ are used
interchangeably). On the storage level, an object is repre-
sented by its lifeline (i.e., a set of different filaments that are
linked to each other via their addresses and via the type
systems (record and filament types)). A filament is a linked
list of records. All filaments consist of records of different
types. The terms ‘smart contract’, ‘object’, and ‘lifeline’
may be used interchangeably when one considers a particu-
lar instance of a class/type.

[0032] On the other hand, each object is associated with
the code of the smart contract that was instantiated upon
creating this instance. This code gets invoked by the network
whenever this instance is processed (resulting in states that
are stored in records and linked into the filament and further
into the lifeline). The code is stored separately as a lifeline
of a special type.

[0033] A record is a data structure that consists of several
components that are stored separately. These are Catalo-
gEntry, Record Body, Record Payload, Record Extension
(s). CatalogEntry stores the required hashes and references
and has the same structure for all record types. The platform
uses CatalogEntry to manage records without having to dive
deep into their internal structure. The links that are stored
inside the CatalogEntry include both links to other records
and links to binary objects inside Record Body, Record
Payload, Record Extension(s), which are interpreted in
accordance with the record type. When deleting data, you
can delete data from Record Payload (for example), but
CatalogEntry will remain unchanged.

[0034] A smart contract is a code comprised of computer-
executable instructions that is run by one of the nodes 112
of the blockchain network when triggered by certain mes-
sages or transactions from other nodes or clients (e.g.,
blockchain clients 106). The smart-contract contains func-
tionality that may be accessed to modify a state of the object.
As used herein, the term functionality may be computer-
executable code configured to perform one or more specific
tasks or operations, and which may be organized within a
single computing subroutine (e.g., function, method, proce-
dure), distributed across multiple subroutines, distributed
across multiple objects, or some combination thereof. When
deployed to the blockchain 114, a smart contract may be
allocated a unique contract address associated with the smart
contract. For example, the contract address of the smart
contract may be formatted similarly to a hash of a public
encryption key, but does not have any mathematical relation
to a corresponding private key (as a public key has). The
contract address associated with the smart contract can be
used to trigger the functionality provided by the smart
contract. For example, the blockchain client 106 may send
a blockchain transaction to the blockchain network having a
recipient address field specifying the smart contract and a

Feb. 4, 2021

payload specifying that the particular functionality is to be
triggered. In another example, there may be other smart
contract that are each deployed to the blockchain 114, and
that interact with each other by calling or sending digital
messages via the blockchain 114. That is, the smart-con-
tract’s functionality may be triggered by an invocation
request from another smart-contract for example, using
smart-contract messaging.

[0035] Aspects of the present disclosure provide an
extended form of a distributed ledger referred to herein as an
“assured” ledger that tracks causality as the chain of reasons
why the ledger was updated and a change was made to a
certain object that is represented on the ledger.

[0036] Accordingly, the assured ledger system strengthens
blockchain technology and its application in business pro-
cesses by allowing a full history and causation of actions to
be maintained, together with the reasons why data within the
ledger has been updated. This is particularly useful, for
example, in contracting, since the origins of all operations
can be traced for legal purposes, and the integrity of the
reasons is guaranteed (assured).

[0037] According to an aspect, the blockchain 114 is
configured such that a record 115 comprised in the block-
chain contains a reference to a previous record and a
reference 117 to a record (i.e., a “reason record”) that
represents another operation that caused creation of the
record from the previous record. For instance, in the
example portion of the blockchain 114 shown in FIG. 1, the
record 1.2 contains a first reference to a previous record 1.1
(record 1.1 representing the previous state of record 1.2) and
a second reference to a reason record 2.1 that represents an
operation that caused creation of record 1.2 from record 1.1.
In some aspects, the reference to a previous record can be
omitted when the record introduces a new entity or element
into a ledger. It is understood that the record 2.1 and records
1.1 and 1.2 may live in completely separate blockchains
and/or different types of blockchains. That is, a reason
record (record 2.1) may be stored in a separate blockchain
and/or type of blockchain as the records representing current
and previous states of an object (records 1.1 and 1.2). In
some aspects, a data object and all its states are stored in a
blockchain of records (e.g., records 1.1, 1.2, and 1.3).
[0038] In one aspect, each record 115 may include infor-
mation about which nodes/servers have performed the
operation described by the record, and may include a proof
(or a reference to a record with such proof) that node(s) had
rights or were entitled to perform the operation with to create
or register the record. In some aspects, such information
may include binding digital signatures of which node did
what action and indications of why the action was permitted.
[0039] As will be described below, the logical organiza-
tion of the assured distributed ledger 114 in the present
disclosure is based on records, which are base elements that
represent a minimal storage unit; filaments, which are a
sequence of records associated with the same entity or
function; lifelines, which are a combination of primary
filaments for object state and other auxiliary filaments
attached; and Jets, which are groups of lifelines and their
records, which will be stored together.

[0040] FIG. 2 is block diagram 200 illustrating a lifeline
and a sideline. As shown in FIG. 2, a lifeline may comprise
a trunk filament and a branch filament. A sideline may
comprise a sideline branch filament. Each filament com-
prises a set of linked records.

US 2021/0036970 Al

[0041] In the present disclosure, a request may be a call
from a smart contract or come from an event external to
system 100 (e.g., an API-request from a user). The content
of the request determines how the state of an object should
be changed and the initiator of the changes. In response to
requests, output in the form of results is produced by smart
contracts during execution, and returned to the calling party;
and the state of the called object is changed and saved in a
new record of this object’s lifeline.

[0042] A record (e.g., record 3) comprises a plurality of
parts. In particular, a record may comprise record body 202,
record payload 204, record extension 206, and record header
(CatalogEntry) 208. Record body 202 is for storing the data
required by the network to correctly route a request, as a
service call, between network components such as the
requestor and the initiator of changes. For some record
types, record payload 204 may comprise parameters of the
request that should be passed to the smart contract for
processing. For other record types, e.g. for records related to
changing the state of an object, the state of the object is also
stored in payload 204. Record extension 206 is storage for
side effects (i.e., additional parameters or outputs for net-
work mechanisms or for smart contracts) produced during
routing of the call and processing the request.

[0043] Record body 202, record payload 204, and record
extension 206 comprise serialized data (e.g. in binary for-
mat). They are stored separately from the header 208 of the
record which is called CatalogEntry. The CatalogEntry
comprises links (references or addresses) to record body
202, record payload 204, and record extension 206, and it
may also contain digital signatures of the producer of a
record (i.e., the virtual node that performed the processing of
body 202, payload 204, and extension 206) and the registrar
of a record (i.e. the node that performed composition of the
record). Due to this record composition, a storage subsystem
of'ledger 114 may operate on records without de-serializing
the data. The division of records into these parts makes
records quicker to manipulate, allows for optimized storage
of the payload data of particular records and collections of
records, and allows for manipulation of the payload data
without breaking the header. The lightweight, fixed-size
composition of CatalogEntries allows efficient storage
operations in terms of organizing, searching, and retrieving
storage blocks and individual records without reading the
full stored data, and without manipulating blockchains of
individual objects.

[0044] The next level of storage organization is a filament,
which is a sequence of records connected in a unidirectional
linked list, which is in a most-to-less recent order. A filament
is identified by reference to its head (the first record), and
every record of a filament has an affinity field, which refers
to the filament’s head. More specifically, object states may
be stored in filaments. The data of one object can be stored
in one or several filaments. The trunk filament, which may
also be referred to as a main thread filament, stores records
of state changes of an object. A branch filament, which may
also be referred to as an auxiliary filament, may be used for
different purposes. For example, there may be a branch
filament to store requests that caused state changes of
objects. There may be another branch filament, which can
store technical information about the object (e.g., the query
execution time, or computation capacity that was used, or
various execution logs).

Feb. 4, 2021

[0045] Records inside filaments may refer to records of
other filaments. Each record has a unique reference, or
address, that uniquely identifies the record in the scope of
the concrete platform instance. Moreover, a filament may be
addressed as a whole, in particular by the address of the very
first record in the filament. To speed up operations, each
entry within a filament comprises a field that stores the
address of the beginning of its filament. Thus, the record
indicates which filament it belongs to.

[0046] Together, a trunk and one or more branch filaments
linked to the trunk constitute the lifeline of an object.
Lifelines require a head-to-tail index to find the tail (i.e., the
most recent record). The head of a lifeline is its permanent
identifier, while the tail is its most recent state.

[0047] Independent objects (e.g., lifelines) and their parts
(e.g., trunk and branch filaments, sidelines) are stored inde-
pendently from each other, thus providing options for scal-
able storage management. Storage of lifelines is organized
so that related filaments and records are stored as close
together as possible, and can be retrieved with minimal
effort.

[0048] The network core differentiates between filaments
that can only be accessed through the address of their lifeline
(branch filaments) and those that can be accessed directly
(sidelines). This is done to optimize the management of
special types of information, since it can be moved to a
sideline and stored/retrieved separately.

[0049] Records in filaments can be of different types, for
example: start of filament, end of filament, start of lifeline,
continuation of a sharded storage structure (discussed in
FIG. 3), state of an object, request to the object, result of the
request, dust records for debugging information, records for
storing logs of used resources, etc.

[0050] Different filaments may comprise only records of a
certain set of types, according to the specialization of a
filament. For example, the trunk filament may mostly com-
prise states of objects, along with records for maintaining
lifeline consistency across different Jet Drops (discussed in
FIG. 3). For a particular object, a filament may be used to
store requests that the object has sent to other objects and
another filament may be used to store requests that the object
has received from other objects, and the former filament may
contain the results that were received in response to the
requests. In some aspects, there may be a separate filament
of “results”, in which responses to requests are stored.

[0051] Every record of the object state may refer to a
request record in a filament. This is realized by storing a
reference (address) of the record that comprises the request
for this state change in the special field of the state record.
This provides a method for tracking the history of all
object’s states in their connection to the originating events.
In some cases, to trace the state change to the originating
request it may be necessary to traverse a set of linked records
that contain statuses of several stages of the request pro-
cessing, all those records may be stored in the branch
filament dedicated to storage of requests.

[0052] FIG. 3 is block diagram 300 illustrating a plurality
of Jet Drops and Jets. Since the amount of data in a
distributed network is constantly growing, an efficient dis-
tributed storage and sharding mechanism is necessary to
flexibly scale and manipulate (e.g., retrieve and store) the
data. In the proposed implementation, this mechanism is
based on several principles.

US 2021/0036970 Al

[0053] First, data should be stored in such a way that the
cost of recording and retrieving it would be minimized
(“least possible cost’). This principle is realized by organiz-
ing the storage of records as a linked list, with each record
containing links (one or more) to other records. This allows
for the traversing of any particular chain in linear time while
keeping the storing time constant.

[0054] Second, related data should be stored close (“affin-
ity’) to minimize retrieval time. This is achieved by storing
data of a particular object in a logical structure called a Jet.
The uppermost logical element of capacity scalability man-
agement is a Jet, which is a partition or shard to which nodes
with storage and processing capacities are allocated. All
records of a filament and all filaments attached to a lifeline
are associated with the same Jet. Thus, each object is always
associated to one particular Jet, while one Jet may contain
many different objects. Since each object belongs to one
particular Jet, the network can structure the processing and
storage of a set of different objects into several Jets, accord-
ing to the storage capacity and/or the processing power that
is required to process and handle the data of those particular
objects.

[0055] When controlling jets, the platform can take into
account the statistics of inter-object calls to optimize the
placement of objects so that objects that often call each other
are allocated to the same one jet.

[0056] Third, while processing an object, the recently
stored data will be read most frequently by the processing
mechanism. Therefore, data is stored in such a way as to
facilitate quick access to all objects that have been processed
recently (‘caching’).

[0057] Inthe network of the present disclosure, the storage
system and the processing system of a network 110, work in
time cycles known as pulses. During each pulse, all records
pertaining to all objects that have been processed during this
pulse are structured into their respective Jets, and units of
physical storage, or Jet Drops, are formed.

[0058] In the proposed terminology, each pulse-related
storage block is called a Jet Drop, and chronological
sequences of Jet Drops constitute one or several Jets. Jet
Drops contain all records registered within a pulse for all
lifelines and filaments of a Jet. Jet Drops are units of storage
that are linked together through a mechanism that is similar
to linking records in the object blockchain. Namely, each Jet
Drop contains a hash of the previous Jet Drop, both Jet
Drops representing successive states in a lifecycle of a
particular Jet which progresses over consecutive pulses.
Thus, Jet Drops are write-once elements of the linked list.
[0059] In FIG. 3, plurality of records are shown. Records
R1-R3 are comprised in lifeline 1, records R4-R8 are
comprised in lifeline 2, and records R9-R15 are comprised
in lifeline 3. Each record is connected in the particular order
shown. For simplicity, suppose that each lifeline comprises
only one filament each. Records R1, R2, R4, R5, R6, R7 R9,
R10, R11, R12, and R13 may be associated with Jet 00.
Records R3 may be associated with Jet 10, and records R8,
R14, and R15 may be associated with Jet 01. As noted
before, each Jet Drop comprises all records registered within
a pulse for all lifelines and filaments of a Jet. As shown in
FIG. 3, this indicates that records R7, R12, and R13 (which
are contained in Jet Drop 2) were registered in a separate
pulse than all other records of Jet 00 (which are contained in
Jet Drop 1). Jet 10 comprises Jet Drop 3 and Jet 01
comprises Jet Drop 4.

Feb. 4, 2021

[0060] FIG. 4 is block diagram 400 illustrating a Jet Drop
and a DropEcho. After saving the Jet Drop, the append-only
DropEcho structure is created. A DropEcho is built on the
basis of records and filaments which were included into the
corresponding Jet Drop. A DropEcho is used to speed up the
search of data and to facilitate delayed operations on binary
data in the Jet Drop (like wipeouts, which will be described
below). In particular, a DropEcho may comprise indexing
information about each filament included in the Jet Drop
(e.g., start of filament, end of filament, continuity informa-
tion to link filaments between different Jet Drops, types of
filaments and objects, status of filaments and objects (e.g.,
active or inactive)).

[0061] In FIG. 4, the Jet Drop has a pulse number indica-
tive of the cycle the record was registered and a Jet ID
indicative of the Jet that the Jet Drop is associated with. The
Jet Drop comprises a record that has four parts: Catalo-
gEntry, the record body, payload, and extension. Catalo-
gEntry that has links to the record payload, body, and
extension, as well as an indication of the type of record, and
references to the previous record, the root, the reason, and a
rejoin reference. The DropEcho has a reference to the Jet
Drop, a Filament Summary with Index Information, and
own records, which can have record type, record status, and
last known status.

[0062] Every Jet Drop may contain several sections (e.g.,
for main (i.e. state) information on objects, for additional
and for auxiliary information). There may be more than one
section of each type. A Jet is composed of objects, i.e., from
lifelines/filaments of all sorts that compose those objects.
The network core balances the load on the storage. As
indicated above, if an object becomes too heavy in size,
network 110 may split the Jet that it is contained in. When
an object becomes too light in size, network 110 may merge
two Jets into one. More specifically, when the amount of
data for a specific object decreases, network 110 may merge
the previously separated Jets together. The network may take
into account additional information when performing splits
and mergers of the Jets, e.g., statistics of interactions
between objects, so that their records can be stored closer
together (in a single common Jet) or farther apart (in
different Jets). On the level of storage units (i.e., Jet Drops),
there may be more or fewer Jet Drops. Therefore, in addition
to data records, each Jet Drop contains auxiliary information
about splits and mergers.

[0063] As an example of what can be achieved with this
storage structure, consider the wipeout of data—when a
particular data expires and can be erased according to
business process rules, or when a particular agent (i.e., a
client) requires that some data be erased from the system
(e.g., GDPR compliance requirements). Existing DLT net-
works do not allow for wipeout because the integrity of the
blockchain would break. Hence, in such networks data that
may be subject to subsequent deletion must be kept entirely
off the blockchain, which compromises efficiency of the
business process.

[0064] Since the CatalogEntry stores only hashes and does
not store actual data, it is technically possible to erase data
while not breaking the storage integrity. However, if part of
the data is deleted, the hashes that are calculated from this
data will no longer match the recorded ones. Since those
recorded hashes are part of the data source for the following
blocks, a deletion like this is impossible for a traditional

US 2021/0036970 Al

blockchain architecture. Therefore, an approach has been
implemented to maintain integrity in the structure with the
ability to delete data.

[0065] If there’s a need to wipe the data of a particular
record, the following may take place. The state of the object
in the record in the original Jet Drop is erased by an
executing node in network 110 (e.g., the binary payload of
a particular record). The DropEcho is then updated to
include a record of special type (‘wipeout’) to justify the fact
of erasure. This record will comprise the request or a link to
the request upon which the wipeout was performed as the
reason. The wipeout operation will be validated according to
the network logic (i.e., whether the executing nodes were
indeed elected as executors, and their signatures are correct).
Later on, when the full validation of the affected object
might be performed, the network will automatically collect
both the remaining data from the original Jet Drop compris-
ing the affected record, and data from the DropEcho com-
prising the wipeout record. The reason for the wipeout will
be validated along with the data, and the full output will be
given to the validating party, i.e., the fact that the original
record was amended plus the reason for the amendment.

[0066] As an example, an erasure request may come from
a user (external to the network) making an API call from
their management console (e.g., from a GDPR-compliant
PII management console) to the platform to erase data. The
API call is handled by the platform, and a series of requests
are exchanged between different objects within the platform
as a result (involving the creation of new object states,
amending of blockchains, etc.). The erasure request result-
ing from the API call is passed to the object representing the
calling user. The method for performing erasure on this
object is invoked. The smart contract representing the user
makes a special erasure request to a special smart contract
(provided for control when the rules of the network have
been set up) to find and erase a particular record in the
lifeline (object) at a specific time. The record can be erased
in its entirety or partly—which would imply creation of
some new record with a partial copy of information. This
request is promptly handled by the platform: i.e. it is
executed by some node and then validated on the next pulse
validated by other nodes.

[0067] This provides various advantages over conven-
tional networks. Firstly, there is transaction assurance with
native (platform level) recording of both object states and
requests that resulted in those states, resulting in the ability
to collect and check/validate the full object history along
with the originating events. The transaction assurance fur-
ther has a native (platform level) ability to trace any object
state or any request to the external (e.g., API) call that led to
that state or request being recorded in the ledger, by con-
structing the full chain of requests on the basis of links
stored in the state records. This leads to enhanced verifica-
tion and validation for changes in object states, allowing for
complex business logic of change tracking.

[0068] Furthermore, there is optimized sharded storage of
data where segmented storage of object data in different
blockchains is linked together, allowing for flexible storage
of different object parts (e.g., frequently accessed vs rarely
accessed). Storage of objects in dedicated shards (jets)
which may be stored independently, allowing for greater
storage scaling and wipeout may be achieved by removal of
data without corrupting the system integrity.

Feb. 4, 2021

[0069] FIG. 5 is a block diagram illustrating an example
architecture for a blockchain network of nodes. An example
system 500 according to the depicted architecture shown in
FIG. 5 can be configured to provide the blockchain network
(110) of nodes suitable for managing the distributed ledger
114 and implementing assured ledger technology and asso-
ciated techniques described herein.

[0070] The system 500 comprises a plurality of compo-
nent and subcomponents that supports execution of a fed-
eration of Clouds 502 (e.g., Cloud n, Cloud n+1), where
each Cloud 502 is run and governed independently (e.g., by
a community, company, industry consortia, or national
agency). In one aspect, each Cloud 502 may be comprised
of a blockchain network under a same node membership
policy. Each Cloud 502 organizes and unifies software
capabilities, hardware capacities, and financial and legal
liability of nodes to ensure transparent and seamless opera-
tion of business services. Each Cloud 502 may include a
Globula network 504 having a plurality of nodes 506 (i.e.,
computing instances or servers that provide hardware capac-
ity to a Cloud). The Globula network 504 may act as a
backbone of a Cloud, using a set of protocols enabling the
coordination of networks of multitudes of nodes (e.g.,
1,000’s of nodes), including P2P networks and hierarchical
nodes. In one aspect, the Globula network 504 may be
configured to run as a decentralized network with consis-
tency between the nodes managed by a leaderless, byzantine
fault tolerant (BFT)-based consensus mechanism. In some
aspects, the system 500 may include larger node networks of
multiple Globula networks (e.g., 100 Globulas each having
1,000 nodes for a total of 100,000 nodes) that behave
transparently across such networks in accordance with
whichever contract logic is in place, and that rely on an
inter-Globula network protocol with leader-based consen-
sus.

[0071] In one aspect, each of the plurality of nodes 506
may be configured using a multi-role model: each node has
a single static role (e.g., virtual, light material, heavy mate-
rial, neutral) that defines its primary purpose and a set of
dynamically assigned roles within the system 500. For
example, a node having a virtual role performs calculations;
a node having a light material role performs short-term data
storage and network trafficking; a node having a heavy
material role performs long-term data storage; and a node
having a neutral role participates in the network consensus
(not in the workload distribution) and has at least one utility
role.

[0072] In one aspect, a Cloud 502 may include one or
more domains 510 which is a decentralized application that
governs access to consensus, mutability, and other capabili-
ties for other decentralized applications. The use of multiple
domains (e.g., Domain 1, Domain 2, . . . Domain n) enables
different governance models, and can be used to define
policies 512 for data and (smart) contracts 514, such as
policies that allow public or permissioned models, or to
apply national or industry standards. In one aspect, domains
510 establish governance of contracts and nodes, thus acting
as a super contract that can contain objects and their history
and can apply varying policies to the objects contained
therein.

[0073] In one aspect, the Cloud 502 may be configured to
store a distributed ledger 508 of data and records that are
distributed across a network of nodes 506 that store data. In
one aspect, data is stored in the ledger 508 as a series of

US 2021/0036970 Al

immutable records. Records may be created and signed by
virtual nodes. Each record may be addressed by its hash and
a pulse number. Records can contain a reference to another
record, thus, creating a chain. A record can contain a
reference to another record (e.g., a reason record) in the
same blockchain or in a different blockchain. An example of
a chain is the object’s lifeline. Each material node may be
responsible for its own lifelines determined by their hashes.
[0074] FIG. 6 is a flow diagram illustrating method 600 for
efficiently storing a distributed ledger of records. At 602, a
hardware processor of a node 112 in network 110 generates
arecord (e.g., record 3 in FIG. 2) comprising a payload (e.g.,
payload 204) and a header (e.g., header 208), wherein the
payload stores a state of a data object associated with a
distributed ledger (e.g., blockchain 114) and the header
stores a reference to state information in the payload.
[0075] At 604, the hardware processor includes the record
in a trunk filament (e.g., see FIG. 2) comprising a first
plurality of records (e.g., records 1, 2, 3) indicative of
historic states of the data object, wherein the trunk filament
is part of a first lifeline that further comprises one or more
branch filaments comprising auxiliary information associ-
ated with the data object. The auxiliary information in the
one or more branch filaments comprises records indicative
of at least one of: received/transmitted requests (e.g., to
process a data object) and processing logs.

[0076] At 606, the hardware processor identifies a jet (e.g.,
jet 00) of the distributed ledger, wherein the jet is a logical
structure storing a second lifeline (e.g., lifeline 2) with a
second plurality of records indicative of historic states of a
various data objects (e.g., R4, R5, etc.).

[0077] At 608, the hardware processor determines whether
the first plurality of records is related to the second plurality
of records. For example, the hardware processor may decide
which lifeline (and subsequently which Jet Drop) a particu-
lar record belongs to. In the case of a set of records, the
hardware processor performs analysis on whether the first
set of records and the second set of records belong to the
same object. If so, the lifelines should be stored in the same
jet.

[0078] At 610, in response to determining the respective
pluralities are related, the hardware processor stores the first
lifeline in the jet. If it is determined that the respective
pluralities are not related, method 600 proceeds to 612,
where the hardware processor stores the first lifeline in a
different jet (e.g., generates a new jet or identifies a more
relatable jet). It should be noted that the distributed ledger
may comprise a plurality of jets including the jet and
different jet. While each jet may be associated with multiple
objects, a particular object may not be associated with more
than one jet.

[0079] Furthermore, because records in the distributed
ledger are processed in cycles, all records registered within
a first cycle for all lifelines in the jet are stored in a first jet
drop, and all records registered within a second cycle for all
lifelines in the jet are stored in a second jet drop.

[0080] Suppose that the generated record at 602 is stored
in the first jet drop. The indexing information about the first
jet drop may be stored in a DropEcho structure. This
facilitates abilities such as performing data wipeout. For
example, the hardware processor may wipe out data in the
generated record at a subsequent time without corrupting
data integrity of the distributed ledger. Here, wiping out the
data in the generated record comprises erasing data in the

Feb. 4, 2021

payload and not erasing data in the header. The hardware
processor stores a reason for erasing the data in the payload
in the DropEcho structure, helps validate the reason by
confirming that erasing the data in the payload took place in
accordance with rules of a blockchain network maintaining
the distributed ledger (which may be defined by some high
level policies and/or business logic in the custom contracts).
[0081] Once the data is stored in the manner described in
method 600, restoring the full object history is performed by
collecting all states of a given data object by traversing the
trunk filament. A hardware processor may determine reasons
(i.e. requests that resulted in those state changes), by using
references of that request stored in the header of the corre-
sponding record or by additionally traversing records in a
branch filament containing statuses of different stages of
processing of the request. As this traversal occurs, the
hardware processor collects statuses and reasons. In some
aspects, the hardware processor includes the information
from the auxiliary or branch filaments into constructing the
state information, thus considering the state of the object
along with any additional info stored in those filaments as a
side effect produced by the request indicated by the reason.
[0082] In terms of restoring the full trace of requests that
led to a specified state change, a hardware processor may
identify a specified state of some specified data object (e.g.,
specified by a request). The hardware processor may then
determine the reason, which would be a request that was sent
by some caller object. The hardware processor may deter-
mine the caller object from the reason and consider the state
of that caller object. The hardware processor may collect all
the discovered states and requests, thus restoring the full
trace. In some aspects, the hardware processor may not start
from the data object’s state, but from some specified request.
In that case, the caller object is identified directly from the
specified request.

[0083] FIG. 7 is a block diagram illustrating a computer
system 20 on which aspects of systems and methods for
efficiently storing records in a distributed ledger may be
implemented in accordance with an exemplary aspect. It
should be noted that the computer system 20 could corre-
spond to the client device 102, for example, described
earlier. The computer system 20 can be in the form of
multiple computing devices, or in the form of a single
computing device, for example, a desktop computer, a
notebook computer, a laptop computer, a mobile computing
device, a smart phone, a tablet computer, a server, a main-
frame, an embedded device, and other forms of computing
devices.

[0084] As shown, the computer system 20 includes a
central processing unit (CPU) 21, a system memory 22, and
a system bus 23 connecting the various system components,
including the memory associated with the central processing
unit 21. The system bus 23 may comprise a bus memory or
bus memory controller, a peripheral bus, and a local bus that
is able to interact with any other bus architecture. Examples
of the buses may include PCI, ISA, PCI-Express, Hyper
Transport™, InfiniBand™, Serial ATA, 12C, and other suit-
able interconnects. The central processing unit 21 (also
referred to as a processor) can include a single or multiple
sets of processors having single or multiple cores. The
processor 21 may execute one or more computer-executable
code implementing the techniques of the present disclosure.
The system memory 22 may be any memory for storing data
used herein and/or computer programs that are executable

US 2021/0036970 Al

by the processor 21. The system memory 22 may include
volatile memory such as a random access memory (RAM)
25 and non-volatile memory such as a read only memory
(ROM) 24, flash memory, etc., or any combination thereof.
The basic input/output system (BIOS) 26 may store the basic
procedures for transfer of information between elements of
the computer system 20, such as those at the time of loading
the operating system with the use of the ROM 24.

[0085] The computer system 20 may include one or more
storage devices such as one or more removable storage
devices 27, one or more non-removable storage devices 28,
or a combination thereof. The one or more removable
storage devices 27 and non-removable storage devices 28
are connected to the system bus 23 via a storage interface 32.
In an aspect, the storage devices and the corresponding
computer-readable storage media are power-independent
modules for the storage of computer instructions, data
structures, program modules, and other data of the computer
system 20. The system memory 22, removable storage
devices 27, and non-removable storage devices 28 may use
a variety of computer-readable storage media. Examples of
computer-readable storage media include machine memory
such as cache, static random access memory (SRAM),
dynamic random access memory (DRAM), zero capacitor
RAM, twin transistor RAM, enhanced dynamic random
access memory (eDRAM), extended data output random
access memory (EDO RAM), double data rate random
access memory (DDR RAM), electrically erasable program-
mable read-only memory (EEPROM), NRAM, resistive
random access memory (RRAM), silicon-oxide-nitride-sili-
con (SONOS) based memory, phase-change random access
memory (PRAM); flash memory or other memory technol-
ogy such as in solid state drives (SSDs) or flash drives;
magnetic cassettes, magnetic tape, and magnetic disk stor-
age such as in hard disk drives or floppy disks; optical
storage such as in compact disks (CD-ROM) or digital
versatile disks (DVDs); and any other medium which may
be used to store the desired data and which can be accessed
by the computer system 20.

[0086] The system memory 22, removable storage devices
27, and non-removable storage devices 28 of the computer
system 20 may be used to store an operating system 35,
additional program applications 37, other program modules
38, and program data 39. The computer system 20 may
include a peripheral interface 46 for communicating data
from input devices 40, such as a keyboard, mouse, stylus,
game controller, voice input device, touch input device, or
other peripheral devices, such as a printer or scanner via one
or more 1/O ports, such as a serial port, a parallel port, a
universal serial bus (USB), or other peripheral interface. A
display device 47 such as one or more monitors, projectors,
or integrated display, may also be connected to the system
bus 23 across an output interface 48, such as a video adapter.
In addition to the display devices 47, the computer system
20 may be equipped with other peripheral output devices
(not shown), such as loudspeakers and other audiovisual
devices.

[0087] The computer system 20 may operate in a network
environment, using a network connection to one or more
remote computers 49. The remote computer (or computers)
49 may be local computer workstations or servers compris-
ing most or all of the aforementioned elements in describing
the nature of a computer system 20. Other devices may also
be present in the computer network, such as, but not limited

Feb. 4, 2021

to, routers, network stations, peer devices or other network
nodes. The computer system 20 may include one or more
network interfaces 51 or network adapters for communicat-
ing with the remote computers 49 via one or more networks
such as a local-area computer network (LAN) 50, a wide-
area computer network (WAN), an intranet, and the Internet.
Examples of the network interface 51 may include an
Ethernet interface, a Frame Relay interface, SONET inter-
face, and wireless interfaces.

[0088] Aspects of the present disclosure may be a system,
a method, and/or a computer program product. The com-
puter program product may include a computer readable
storage medium (or media) having computer readable pro-
gram instructions thereon for causing a processor to carry
out aspects of the present disclosure.

[0089] The computer readable storage medium can be a
tangible device that can retain and store program code in the
form of instructions or data structures that can be accessed
by a processor of a computing device, such as the computing
system 20. The computer readable storage medium may be
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
thereof. By way of example, such computer-readable storage
medium can comprise a random access memory (RAM), a
read-only memory (ROM), EEPROM,; a portable compact
disc read-only memory (CD-ROM), a digital versatile disk
(DVD), flash memory, a hard disk, a portable computer
diskette, a memory stick, a floppy disk, or even a mechani-
cally encoded device such as punch-cards or raised struc-
tures in a groove having instructions recorded thereon. As
used herein, a computer readable storage medium is not to
be construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
transmission media, or electrical signals transmitted through
a wire.

[0090] Computer readable program instructions described
herein can be downloaded to respective computing devices
from a computer readable storage medium or to an external
computer or external storage device via a network, for
example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network interface in each
computing device receives computer readable program
instructions from the network and forwards the computer
readable program instructions for storage in a computer
readable storage medium within the respective computing
device.

[0091] Computer readable program instructions for carry-
ing out operations of the present disclosure may be assembly
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language, and conventional proce-
dural programming languages. The computer readable pro-
gram instructions may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone
software package, partly on the user’s computer and partly
on a remote computer or entirely on the remote computer or

US 2021/0036970 Al

server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a LAN or WAN, or the connection may
be made to an external computer (for example, through the
Internet). In some embodiments, electronic circuitry includ-
ing, for example, programmable logic circuitry, field-pro-
grammable gate arrays (FPGA), or programmable logic
arrays (PLA) may execute the computer readable program
instructions by utilizing state information of the computer
readable program instructions to personalize the electronic
circuitry, in order to perform aspects of the present disclo-
sure.

[0092] In wvarious aspects, the systems and methods
described in the present disclosure can be addressed in terms
of modules. The term “module” as used herein refers to a
real-world device, component, or arrangement of compo-
nents implemented using hardware, such as by an applica-
tion specific integrated circuit (ASIC) or FPGA, for
example, or as a combination of hardware and software,
such as by a microprocessor system and a set of instructions
to implement the module’s functionality, which (while being
executed) transform the microprocessor system into a spe-
cial-purpose device. A module may also be implemented as
a combination of the two, with certain functions facilitated
by hardware alone, and other functions facilitated by a
combination of hardware and software. In certain imple-
mentations, at least a portion, and in some cases, all, of a
module may be executed on the processor of a computer
system (such as the one described in greater detail in FIG.
5, above). Accordingly, each module may be realized in a
variety of suitable configurations, and should not be limited
to any particular implementation exemplified herein.
[0093] In the interest of clarity, not all of the routine
features of the aspects are disclosed herein. It would be
appreciated that in the development of any actual imple-
mentation of the present disclosure, numerous implementa-
tion-specific decisions must be made in order to achieve the
developer’s specific goals, and these specific goals will vary
for different implementations and different developers. It is
understood that such a development effort might be complex
and time-consuming, but would nevertheless be a routine
undertaking of engineering for those of ordinary skill in the
art, having the benefit of this disclosure.

[0094] Furthermore, it is to be understood that the phrase-
ology or terminology used herein is for the purpose of
description and not of restriction, such that the terminology
or phraseology of the present specification is to be inter-
preted by the skilled in the art in light of the teachings and
guidance presented herein, in combination with the knowl-
edge of the skilled in the relevant art(s). Moreover, it is not
intended for any term in the specification or claims to be
ascribed an uncommon or special meaning unless explicitly
set forth as such.

[0095] The various aspects disclosed herein encompass
present and future known equivalents to the known modules
referred to herein by way of illustration. Moreover, while
aspects and applications have been shown and described, it
would be apparent to those skilled in the art having the
benefit of this disclosure that many more modifications than
mentioned above are possible without departing from the
inventive concepts disclosed herein.

What is claimed is:

1. A method for storing a distributed ledger of records, the
method comprising:

Feb. 4, 2021

generating a record comprising a payload and a header,
wherein the payload stores a state of a data object
associated with a distributed ledger and the header
stores a reference to state information in the payload;

including the record in a trunk filament comprising a first
plurality of records indicative of historic states of the
data object, wherein the trunk filament is part of a first
lifeline that further comprises one or more branch
filaments comprising auxiliary information associated
with the data object;

identifying a jet of the distributed ledger, wherein the jet

is a logical structure storing several lifelines with a
second plurality of records indicative of historic states
of a plurality of data objects; and

in response to determining that the first plurality of

records is related to the second plurality of records,
storing the first lifeline in the jet.

2. The method of claim 1, wherein the plurality of data
objects can be reordered between a plurality of jets in
accordance with a statistic of inter-object calls for optimi-
zation purposes.

3. The method of claim 1, wherein the distributed ledger
comprises a plurality of jets including the jet, and wherein
the data object and the plurality of data objects are both
associated with the jet and are not associated with any other
jet in the plurality of jets.

4. The method of claim 1, wherein the auxiliary informa-
tion in the one or more branch filaments comprises records
indicative of at least one of: received requests, transmitted
requests, and processing logs.

5. The method of claim 1, wherein records in the distrib-
uted ledger are processed in cycles, and wherein all records
registered within a first cycle for all lifelines in the jet are
stored in a first jet drop, and all records registered within a
second cycle for all lifelines in the jet are stored in a second
jet drop, wherein a jet drop is a physical storage unit.

6. The method of claim 5, wherein the generated record is
stored in the first jet drop, and wherein indexing information
about the first jet drop is stored in a DropEcho structure.

7. The method of claim 6, further comprising wiping out
data in the generated record at a subsequent time without
corrupting data integrity of the distributed ledger.

8. The method of claim 7, wherein wiping out the data in
the generated record comprises:

erasing data in the payload and not erasing data in the

header;
storing a reason for erasing the data in the payload in the
DropEcho structure; and

validating the reason by confirming that erasing the data
in the payload took place in accordance with rules of a
blockchain network maintaining the distributed ledger.

10. A system for storing a distributed ledger of records,
the system comprising:

a memory; and

a hardware processor communicatively coupled to the

memory and configured to:

generate a record comprising a payload and a header,
wherein the payload stores a state of a data object
associated with a distributed ledger and the header
stores a reference to state information in the payload;

include the record in a trunk filament comprising a first
plurality of records indicative of historic states of the
data object, wherein the trunk filament is part of a
first lifeline that further comprises one or more

US 2021/0036970 Al

branch filaments comprising auxiliary information
associated with the data object;

identify a jet of the distributed ledger, wherein the jet
is a logical structure storing several lifelines with a
second plurality of records indicative of historic
states of a plurality of data objects; and

in response to determining that the first plurality of
records is related to the second plurality of records,
store the first lifeline in the jet.

11. The system of claim 10, wherein the plurality of data
objects can be reordered between a plurality of jets in
accordance with a statistic of inter-object calls for optimi-
zation purposes.

12. The system of claim 10, wherein the distributed ledger
comprises a plurality of jets including the jet, and wherein
the data object and the plurality of data objects are both
associated with the jet and are not associated with any other
jet in the plurality of jets.

13. The system of claim 10, wherein the auxiliary infor-
mation in the one or more branch filaments comprises
records indicative of at least one of: received requests,
transmitted requests, and processing logs.

14. The system of claim 10, wherein records in the
distributed ledger are processed in cycles, and wherein all
records registered within a first cycle for all lifelines in the
jet are stored in a first jet drop, and all records registered
within a second cycle for all lifelines in the jet are stored in
a second jet drop, wherein a jet drop is a physical storage
unit.

15. The system of claim 14, wherein the generated record
is stored in the first jet drop, and wherein indexing infor-
mation about the first jet drop is stored in a DropEcho
structure.

16. The system of claim 15, wherein the hardware pro-
cessor is further configured to wipe out data in the generated
record at a subsequent time without corrupting data integrity
of the distributed ledger.

17. The system of claim 16, the hardware processor is
configured to wipe out the data in the generated record by:

10

Feb. 4, 2021

erasing data in the payload and not erasing data in the

header;
storing a reason for erasing the data in the payload in the
DropEcho structure; and

validating the reason by confirming that erasing the data
in the payload took place in accordance with rules of a
blockchain network maintaining the distributed ledger.
18. A non-transitory computer readable medium compris-
ing computer-executable instructions for storing a distrib-
uted ledger of records, including instructions for:
generating a record comprising a payload and a header,
wherein the payload stores a state of a data object
associated with a distributed ledger and the header
stores a reference to state information in the payload;

including the record in a trunk filament comprising a first
plurality of records indicative of historic states of the
data object, wherein the trunk filament is part of a first
lifeline that further comprises one or more branch
filaments comprising auxiliary information associated
with the data object;

identifying a jet of the distributed ledger, wherein the jet

is a logical structure storing several lifelines with a
second plurality of records indicative of historic states
of a plurality of data objects; and

in response to determining that the first plurality of

records is related to the second plurality of records,
storing the first lifeline in the jet.

19. The non-transitory computer readable medium of
claim 18, wherein the plurality of data objects can be
reordered between a plurality of jets in accordance with a
statistic of inter-object calls for optimization purposes.

20. The non-transitory computer readable medium of
claim 18, wherein the distributed ledger comprises a plural-
ity of jets including the jet, and wherein the data object and
the plurality of data objects are both associated with the jet
and are not associated with any other jet in the plurality of
jets.

