

US007851602B2

(12) United States Patent

Himmelsbach et al.

(54) GLUCOPYRANOSYL-SUBSTITUTED ((HETERO)CYCLOALKYLETHYNYL-**BENZYL)-BENZENE DERIVATIVES,** MEDICAMENTS CONTAINING SUCH COMPOUNDS, THEIR USE AND PROCESS FOR THEIR MANUFACTURE

- (75) Inventors: Frank Himmelsbach, Mittelbiberach (DE); Matthias Eckhardt, Biberach (DE); Peter Eickelmann, Mittelbiberach (DE); Leo Thomas, Biberach (DE)
- (73) Assignee: Boehringer Ingelheim International **GmbH**, Ingelheim am Rhein (DE)
- Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 454 days.
- (21) Appl. No.: 11/494,162
- (22)Filed: Jul. 27, 2006

Prior Publication Data (65)

US 2007/0027092 A1 Feb. 1, 2007

Foreign Application Priority Data (30)

Jul. 27, 2005	(EP)	 05016254
Sep. 2, 2005	(EP)	05019085

(51) Int. Cl.

A61K 31/7028	(2006.01)
A61K 31/7034	(2006.01)
C07H 7/04	(2006.01)

- (52) U.S. Cl. 536/1.11; 514/23 (58) Field of Classification Search None
- See application file for complete search history.

References Cited (56)

U.S. PATENT DOCUMENTS

4,602,023	Α	7/1986	Kiely et al.
4,786,755	Α	11/1988	Kiely et al.
6,414,126	B1	7/2002	Ellesworth et al.
6,515,117	B2	2/2003	Ellesworth et al.
6,627,611	B2	9/2003	Tomiyama et al.
6,774,112	B2	8/2004	Gougoutas
6,936,590	B2	8/2005	Washburn et al.
7,169,761	B2	1/2007	Tomiyama et al.
7,202,350	B2	4/2007	Imamura et al.
7,371,732	B2	5/2008	Eickelmann et al.
7,375,090	B2	5/2008	Himmelsbach et al.
7,393,836	B2	7/2008	Eckhardt et al.
7,417,032	B2	8/2008	Eckhardt et al.
7,419,959	B2	9/2008	Eckhardt et al.
7,579,449	B2	8/2009	Eckhardt et al.
2002/0137903	A1	9/2002	Ellsworth et al.
2003/0064935	A1	4/2003	Gougoutas
2003/0114390	A1	6/2003	Washburn et al.
2004/0138148	A1	7/2004	Fushimi et al.
2004/0138439	A1	7/2004	Deshpande et al.
2005/0065098	A1	3/2005	Fujikura et al.
2005/0124555	A1	6/2005	Tomiyama et al.
2005/0209166	A1	9/2005	Eckhardt et al.
2006/0009400	Al	1/2006	Eckhardt et al.
2000,0000400		1,2000	Dominiation of al.

US 7,851,602 B2 (10) Patent No.:

(45) Date of Patent: Dec. 14, 2010

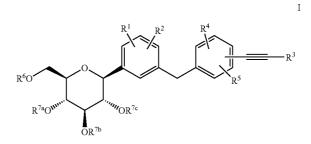
2006/0019948 A	.1 1/2006	Eckhardt et al.
2006/0025349 A	.1 2/2006	Eckhardt et al.
2006/0035841 A	.1 2/2006	Eckhardt et al.
2006/0063722 A	.1 3/2006	Washburn et al.
2006/0074031 A	.1 4/2006	Eckhardt et al.
2006/0142210 A	.1 6/2006	Eckhardt et al.
2006/0189548 A	.1 8/2006	Himmelsbach et al.
2006/0234953 A	.1 10/2006	Himmelsbach et al.
2006/0251728 A	.1 11/2006	Himmelsbach et al.
2006/0258749 A	.1 11/2006	Eckhardt et al.
2007/0004648 A	.1 1/2007	Himmelsbach et al.
2007/0027092 A	.1 2/2007	Himmelsbach et al.
2007/0049537 A	.1 3/2007	Eckhardt et al.
2007/0054867 A	.1 3/2007	Eckhardt et al.
2007/0073046 A	.1 3/2007	Eckhardt et al.
2007/0249544 A	.1 10/2007	Himmelsbach et al.
2007/0259821 A	.1 11/2007	Eckhardt et al.
2008/0058379 A	.1 3/2008	Eckhardt et al.
2009/0023913 A	.1 1/2009	Eckhardt et al.

FOREIGN PATENT DOCUMENTS

CA	2 388 818 A1	4/2001
CA	2 494 177 A1	2/2004
CA	2 508 024 A1	6/2004
CA	2 508 226 A1	6/2004
CA	2 557 269 A1	9/2005
CA	2 557 320 A1	9/2005
CA	2 557 801 A1	10/2005

(Continued)

OTHER PUBLICATIONS


Merriam-Webster's Collegiate Dictionary, published 1998 by Merriam-Webster INC, p. 924.*

(Continued)

Primary Examiner-Eric S Olson (74) Attorney, Agent, or Firm-Michael P. Morris; Edouard G. Lebel; David A. Dow

(57)ABSTRACT

Glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivatives of the general formula I

where the groups R^1 to R^6 as well as R^{7a} , R^{7b} , R^{7c} are defined according to claim 1, including the tautomers, the stereoisomers thereof, the mixtures thereof and the salts thereof. The compounds according to the invention are suitable for the treatment of metabolic disorders.

20 Claims, No Drawings

FOREIGN PATENT DOCUMENTS

$\mathbf{C}\mathbf{A}$	2 573 777 A1	2/2006
EP	0 206 567 A2	6/1986
EP	1344780 A1	9/2003
EP	1 385 856 A0	2/2004
EP	1224195 B	5/2005
EP	1 553 094 A1	7/2005
EP	1 609 785 A1	12/2005
JP	58/164502 A	9/1983
JP	62/030750 A	2/1987
JP	11/124392 A	5/1999
JP	2001/288178 A	10/2001
JP	2003/511458 A	3/2003
Л	2004/359630 A	12/2004
WO	98/31697	7/1998
WO	WO01/27128 *	4/2001
WO	01/74834 A1	10/2001
WO	02/064606 A1	8/2002
WO	02/083066 A2	10/2002
WO	03/099836 A1	12/2003
WO	2004/013118 A1	2/2004
WO	2004/052902 A1	6/2004
WO	2004/052903 A1	6/2004
WO	2004/063209 A2	7/2004
WO	2004/076470 A2	9/2004
WO	2004/080990 A1	9/2004
WO	2005/012326 A1	1/2005
WO	2005/012318 A2	2/2005
WO	2005/085237 A1	9/2005
WO	2005/085265 A1	9/2005
WO	2005/092877 A1	10/2005
WO	2006/011469 A1	2/2006
WO	2006/034489 A2	3/2006
WO	2006/064033 A2	6/2006
WO	2006/089872 A1	8/2006
WO	2006/108842 A1	10/2006
WO	2006/117360 A1	11/2006
wo	2006/120208 A1	11/2006
WO	2007/014894 A2	2/2007
wo	2007/025943 A2	3/2007
wo	2007/028814 A1	3/2007
wo	2007/031548 A2	3/2007
	2007/051510 112	5/2007

OTHER PUBLICATIONS

Adachi et al., "T-1095, a Renal Na+-Glucose Transporter Inhibitor, Improves Hyperglycemia in Streptozotocin-Induced Diabetic Rats" Metabolism (2000) vol. 49, No. 8, pp. 990-995.*

International Search Report for PCT/EP2006/064702 mailed Jul. 26, 2007.

Benhaddou, Rachida., et al; Tetra-n-Propylammonium Tetra-Oxoruthenate(VII): A Reagent of Choice for the Oxidation of Diversely Protected Glycopyranoses and Glycofuranoses to Lactones; Carbohydrate Research (1994) vol. 260 pp. 243-250.

Dohle, Wolfgang., et al; Copper-Mediated Cross-Coupling of Functionalized Arylmagnesium Reagents with Functionalized Alkyl and Benzylic Halides; Organic Letters (2001) vol. 3 No. 18 pp. 2871-2873.

Fuerstner, Alois., et al; Practical Method for the Rhodium-Catalyzed Addition of Aryl- and Alkenylboronic Acids to Aldehydes; Advanced Synthesis and Catalysis (2001) vol. 343 No. 4 pp. 343-350.

Hatsuda, Asanori., et al; A Practical Synthesis of Highly Functionalized Aryl Nitriles Through Cyanation of Aryl Bromides Employing Heterogeneous Pd/C; Tetrahedron Letters (2005) vol. 46 pp. 1849-1853; Elsevier Ltd.

Hutton, Craig A., et al; A Convenient Preparation of dityrosine Via Miyaura Borylation-Suzuki Coupling of Iodotyrosine Derivatives; Tetrahedron Letters (2003) vol. 44 pp. 4895-4898; Pergamon Press. Iida, Takehiko., et al; Tributylmagnesium Ate Complex-Mediated Novel Bromine-Magnesium Exchange Reaction for Selective Monosubstitution of Dibromoarenes; Tetrahedron Letters (2001) vol. 42 pp. 4841-4844; Pergamon Press. Jagdmann Jr, G. Erik ; Synthesis of 5-(4-Substituted Benzyl)-2,4-Diaminoquinazolines as Inhibitors of Candida Albicans Dihydrofolate Reductase; Journal Heterocyclic Chemical (1995) vol. 32 pp. 1461-1465.

Koo, Ja Seo., et al; 2-Pyridyl Cyanate: A Useful Reagent for he Preparation of Nitriles; Synthetic Communications (1996) vol. 26 No. 20 pp. 3709-3713; Marcel Dekker, Inc.

Kuribayashi, Takeshi., et al; c-Glycosylated Aryl tins: Versatile Building Blocks for Aryl C-Glycoside Glycomimetics; J. Carbohydrate Chemistry (1999) vol. 18, No. 4 pp. 371-382.

Kuribayashi, Takeshi., et al; C-Glycosylated Diphenylmethanes and Benzophenones: The Stille Coupling Reaction of C-Glycosylated Aryl tins with Benzyl Bromides and Acid Chlorides; J. Carbohydrate Chemistry (1999) vol. 18, No. 4 pp. 393-401.

Kuribayashi, Takeshi., et al; Bis C-Glycosylated Diphenylmethanes for Stable Glycoepitope Mimetics; Syntletters (1999) vol. 6 pp. 737-740.

Langle, Sandrine., et al; Selective Double Suzuki Cross-Coupling Reactions. Synthesis of Unsymmetrical Diaryl (or Heteroaryl) Methanes; Tetrahedron Letters (2003) vol. 44 pp. 9255-9258; Pergamon Press.

McLaughlin, Mark., et al; Suzuki-Miyaura Cross-Coupling of Benzylic Phospahates with Arylboronic Acids; Organic Letters (2005) vol. 7 No. 22 pp. 4875-4878.

Neamati, Ouri., et al.;, "Depsides and Depsidones as Inhibiton of HIV-1 Integrase: Dimvery of Novel Inhibitors Through 3D Database Searclung", J. Med. Chem., 1997, vol. 40, pp. 942-951.

Nobre, Sabrina M., et al; Synthesis of Diarylmethane Derivatives from Pd-Catalyzed Cross-Coupling Reactions of Benzylic Halides with Arylboronic Acids; Tetrahedron Letters (2004) vol. 45 8225-8228.

Oku, Akira., et al; T-1095, An Inhibitor or renal Na⁺ -Glucose Cotransporters, May Provide a Novel Approach to Treating Diabetes; Diabetes (1999) vol. 48 pp. 1794-1800.

Perner, Richard J., et al; 5,6,7-Trisubstituted 4-Aminopyrido[2,3d]pyrimidines as Novel inhibitors of Adenosime Kinase; Journal of Medicinal Chemistry (2003) vol. 46 pp. 5249-5257.

Sommer, Michael Bech., et al; displacement of Halogen of 2-Halogeno-Substituted Benzonitriles with Carbonions. Preparation of (2-Cyanoaryl)arylacetonitriles; Journal of Organic Chemistry (1990) vol. 55 pp. 4817-4821.

Revesz, Lasslo., et al; SAR of Benzoylpylpyridines and Benzophenones as p38 Alpha MAP Kinase Inhibitors with Oral Activity; Bioorganic & Medicinal Chemistry Letters (2004) vol. 14 pp. 3601-3605.

Stazi, Federica., et al; Statistical Experimental Design-Driven Discovery of room-Temperature Conditions for Palladium-Catalyzed Cyanation of Aryl Bromides; Tetrahedron Letters (2005) vol. 46 1815-1818; Elsevier Ltd.

Tykwinski, Rik R; Evolution in the Palladium-Catalyzed Cross-Coupling of sp- and sp2-Hybridized Carbon Atoms; Angew Chemical International Edition (2003) vol. 42 pp. 1566-1568.

Ueta, Kiichiro., et al; Long-Term Treatment with the Na⁺ -Glucose Cotransporter Inhibitor T-1095 Causes Sustained Improvement in Hyperglycemia and Prevents Diabetic Neuropathy in Goto-Kakizaki Rats; Life Sciences (2005) vol. 76 pp. 2655-2668.

Wallace, Debra J., et al; Cyclopropylboronic Acid: Synthesis and Suzuki Cross-Coupling Reactions; Tetrahedron Letters (2002) vol. 43 pp. 6987-6990; Pergamon Press.

Xue, Song., et al; Zinc-mediated Synthesis of Alpha-C-Glycosided from 1,2-Anhydroglycosides; Synletters (2003) vol. 6 pp. 870-872. International Search Report for PCT/EP2005/002618 mailed Jun. 30, 2005.

International Search Report for PCT/EP2006/061956 mailed on Jul. 5, 2006.

International Search report for PCT/EP2006/061957 mailed on Jul. 5, 2006.

International Search Report for PCT/EP2006/061520 mailed Jul. 26, 2006.

International Search Report for PCT/EP2006/062191 mailed Aug. 8, 2006.

International Search Report for PCT/EP2005/056806 mailed Dec. 27, 2006.

International Search Report for PCT/EP2006/066107 mailed Jan. 11, 2007.

International Search Report for $\mathrm{PCT}/\mathrm{EP2006}/\mathrm{066347}$ mailed Mar. 7, 2007.

International Search Report for PCT/EP2006/065710 mailed Mar. 8, 2007.

International Search Report for PCT/EP2007/051411 mailed on May 2, 2007.

International Search Report for PCT/EP2007/054248 mailed on Jun. 18, 2007.

U.S. Appl. No. 12/545,175, filed Aug. 21, 2009.

Notice of Allowance and Fee(s) Due dated Jan. 13, 2009 from U.S. Appl. No. 11/304,284 filed Dec. 15, 2005.

Non-Final Office Action dated Jun. 24, 2008 from U.S. Appl. No. 11/406,971 filed Apr. 19, 2006.

Non-Final Office Action dated Jun. 5, 2008 from U.S. Appl. No. 11/408,899 filed on Apr. 21, 2006.

Non Final Office Action dated Apr. 2, 2008 from U.S. Appl. No. 11/674,839 filed on Feb. 14, 2007.

Response dated Sep. 25, 2008 to Non-Final Office Action dated Apr. 2, 2008 from U.S. Appl. No. 11/674,839 filed Feb. 14, 2007.

Non-Final Office Action dated May 8, 2008 from U.S. Appl. No. 11/359,846 filed Feb. 22, 2006.

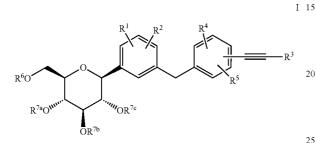
Response dated Nov. 5, 2008 to Non-Final Office Action dated May 8, 2008 from U.S. Appl. No. 11/359,846 filed Feb. 22, 2006.

Notice of Allowance and Fee(s) Due dated Feb. 3, 2009 from U.S. Appl. No. 11/359,846 filed Feb. 22, 2006.

Notice of Allowance and Fee(s) Due dated Dec. 30, 2008 from U.S. Appl. No. 11/674,839 filed Feb. 14, 2007.

Non Final Office Action dated Apr. 2, 2008 from U.S. Appl. No. 11/742,612 filed on May 1, 2007.

Response dated Sep. 25, 2008 to Non-Final Office Action dated Apr. 2, 2008 from U.S. Appl. No. 11/742,612 filed May 1, 2007.


Notice of Allowance and Fee(s) Due dated Jan. 2, 2009 from U.S. Appl. No. 11/742,612 filed May 1, 2007.

* cited by examiner

GLUCOPYRANOSYL-SUBSTITUTED ((HETERO)CYCLOALKYLETHYNYL-BENZYL)-BENZENE DERIVATIVES, MEDICAMENTS CONTAINING SUCH COMPOUNDS, THEIR USE AND PROCESS FOR THEIR MANUFACTURE

This application claims priority to EP 05 016 254, filed Jul. 27, 2005, and EP 05 019 085, filed Sep. 2, 2005.

The present invention relates to glucopyranosyl-substi-¹⁰ tuted ((hetero)cycloalkylethynyl-benzyl)-benzene derivatives of the general formula I

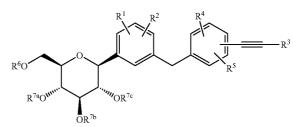
wherein the groups R^1 to R^6 and R^{7a} , R^{7b} , R^{7c} are as defined hereinafter, including the tautomers, the stereoisomers, the mixtures thereof and the salts thereof. The invention further relates to pharmaceutical compositions containing a compound of formula I according to the invention as well as the use of a compound according to the invention for preparing a pharmaceutical composition for the treatment of metabolic disorders. In addition, the invention relates to processes for preparing a pharmaceutical composition as well as a com-³⁵ pound according to the invention.

In the literature, compounds which have an inhibitory effect on the sodium-dependent glucose cotransporter SGLT2 are proposed for the treatment of diseases, particularly diabetes.

Glucopyranosyloxy- and glucopyranosyl-substituted aromatic groups and the preparation thereof and their possible activity as SGLT2 inhibitors are known from published International applications WO 98/31697, WO 01/27128, WO 02/083066, WO 03/099836, WO 2004/063209, WO 2004/ 080990, WO 2004/013118, WO 2004/052902, WO 2004/ 052903 and US application US 2003/0114390.

AIM OF THE INVENTION

The aim of the present invention is to find new pyranosylsubstituted benzene derivatives, particularly those which are active with regard to the sodium-dependent glucose cotransporter SGLT, particularly SGLT2. A further aim of the present invention is to discover pyranosyl-substituted benzene derivatives which have a good to very good inhibitory effect on the sodium-dependent glucose cotransporter SGLT2 in vitro and/or in vivo and/or have good to very good pharmacological and/or pharmacokinetic and/or physicochemical properties.


A further aim of the present invention is to provide new pharmaceutical compositions which are suitable for the prevention and/or treatment of metabolic disorders, particularly diabetes.

The invention also sets out to provide a process for preparing the compounds according to the invention. Other aims of the present invention will become apparent to the skilled man directly from the foregoing and following remarks.

OBJECT OF THE INVENTION

In a first aspect the present invention relates to glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivatives of general formula I

I

wherein

4∩

45

50

- $\rm R^1$ denotes hydrogen, fluorine, chlorine, bromine, iodine, $\rm C_{1-4}$ -alkyl, $\rm C_{2-6}$ -alkynyl, $\rm C_{1-4}$ -alkoxy, $\rm C_{2-4}$ -alkenyl- $\rm C_{1-4}$ -alkoxy, $\rm C_{2-4}$ -alkenyl- $\rm C_{1-4}$ -alkoxy, methyl substituted by 1 to 3 fluorine atoms, ethyl substituted by 1 to 5 fluorine atoms, ethoxy substituted by 1 to 5 fluorine atoms, ethoxy substituted by 1 to 5 fluorine atoms, ethoxy substituted by 1 to 5 fluorine atoms, $\rm C_{1-3}$ -alkoxy group, $\rm C_{2-6}$ -alkenyl, $\rm C_{3-7}$ -Cycloalkyl, $\rm C_{3-7}$ -cycloalkyl- $\rm C_{1-3}$ -alkoxy, $\rm C_{5-7}$ -cycloalkyloxy, $\rm C_{3-7}$ -cycloalkyl- $\rm C_{1-3}$ -alkoxy, $\rm C_{5-6}$ -cycloalkyl groups a methylene group may be replaced by O;
- R^2 denotes hydrogen, fluorine, chlorine, bromine, hydroxy, $C_{1\text{-}4}\text{-}alkyl, C_{1\text{-}4}\text{-}alkoxy, cyano or nitro, while the alkyl or alkoxy group may be mono- or polysubstituted by fluorine, and$
- R^3 denotes $C_{3.7}$ -cycloalkyl, which is substituted with one to four substituents L2, or tetrahydrofuranyl or tetrahydropyranyl, which may be substituted with one to four substituents L2, and
- R⁴, R⁵ independently of one another denote hydrogen, fluorine, chlorine, bromine, iodine, cyano, nitro, C₁₋₃-alkyl, C₁₋₃-alkoxy, or a methyl- or methoxy-group substituted by 1 to 3 fluorine atoms,
- L1 independently of one another are selected from among fluorine, chlorine, bromine, iodine, hydroxy, cyano, C₁₋₃-alkyl, difluoromethyl, trifluoromethyl, C₁₋₃-alkoxy, difluoromethoxy, trifluoromethoxy, amino, C₁₋₃-alkyl-amino and di(C₁₋₃-alkyl)-amino; and
- L2 independently of one another are selected from among fluorine, chlorine, hydroxy, hydroxyl- C_{1-4} -alkyl, C_{1-4} -alkoxy, trifluoromethoxy, C_{1-4} -alkoxy- C_{1-4} -alkyl, cyano, C_{1-4} -alkyl, trifluoromethyl, amino, C_{1-4} -alkyl-carbony-lamino, C_{1-3} -alkyl-amino and di(C_{1-3} -alkyl)-amino; and R^6 , R^{7a} ,
- R^{7b} , R^{7c} independently of one another have a meaning selected from among hydrogen, $(C_{1-18}$ -alkyl)carbonyl, $(C_{1-18}$ -alkyl)oxycarbonyl, arylcarbonyl and aryl- $(C_{1-3}$ alkyl)carbonyl, while the aryl-groups may be mono- or disubstituted independently of one another by identical or different groups L1;

35

50

while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups which may be substituted as defined; and

while, unless otherwise stated, the above-mentioned alkyl groups may be straight-chain or branched,

the tautomers, the stereoisomers thereof, the mixtures thereof and the salts thereof.

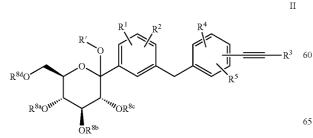
The compounds of general formula I according to the invention and the physiologically acceptable salts thereof 10 have valuable pharmacological properties, particularly an inhibitory effect on the sodium-dependent glucose cotransporter SGLT, particularly SGLT2. Moreover compounds according to the invention may have an inhibitory effect on the sodium-dependent glucose cotransporter SGLT1. Com-15 pared with a possible inhibitory effect on SGLT1 the compounds according to the invention preferably inhibit SGLT2 selectively.

The present invention also relates to the physiologically acceptable salts of the compounds according to the invention with inorganic or organic acids.

This invention also relates to pharmaceutical compositions, containing at least one compound according to the invention or a physiologically acceptable salt according to the invention, optionally together with one or more inert carriers and/or diluents.

This invention also relates to the use of at least one compound according to the invention or one of the physiologically acceptable salts thereof for preparing a pharmaceutical composition which is suitable for the treatment or prevention of diseases or conditions which can be influenced by inhibit- 30 ing the sodium-dependent glucose cotransporter SGLT, particularly SGLT2.

This invention also relates to the use of at least one compound according to the invention or one of the physiologically acceptable salts thereof for preparing a pharmaceutical composition which is suitable for the treatment of metabolic disorders.


This invention also relates to the use of at least one compound according to the invention or one of the physiologically acceptable salts thereof for preparing a pharmaceutical 40 composition for inhibiting the sodium-dependent glucose cotransporter SGLT, particularly SGLT2.

The invention further relates to a process for preparing a pharmaceutical composition according to the invention, characterised in that a compound according to the invention or one of the physiologically acceptable salts thereof is incorporated 45 in one or more inert carriers and/or diluents by a non-chemical method.

The present invention also relates to a process for preparing the compounds of general formula I according to the invention, characterised in that

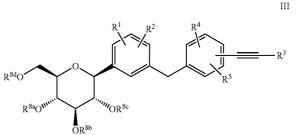
a) in order to prepare compounds of general formula I which are defined as hereinbefore and hereinafter,

a compound of general formula II

R' denotes H, C $_{1\text{-}4}\text{-}alkyl, (C_{1\text{-}18}\text{-}alkyl)carbonyl, (C_{1\text{-}18}\text{-}alkyl)$ oxycarbonyl, arylcarbonyl and aryl- $(C_{1-3}$ -alkyl)-carbonyl, wherein the alkyl or aryl groups may be mono- or polysubstituted by halogen;

4

wherein


- \mathbb{R}^{8a} , \mathbb{R}^{8b} , \mathbb{R}^{8c} , \mathbb{R}^{8d} independently of one another have one of the meanings given hereinbefore and hereinafter for the groups \mathbb{R}^6 , \mathbb{R}^{7a} , \mathbb{R}^{7b} , \mathbb{R}^{7c} , or denote an allyl group, a benzyl group or a $R^{a}R^{b}R^{c}Si$ group or a ketal or acetal group, particularly an alkylidene or arylalkylidene ketal or acetal group, while in each case two adjacent groups R^{8a} , R^{8b} , R^{8c} , R^{8d} may form a cyclic ketal or acetal group or a 1,2-di(C₁₋₃-alkoxy)-1,2di(C1-3-alkyl)-ethylene bridge, while the above-mentioned ethylene bridge forms, together with two oxygen atoms and the two associated carbon atoms of the pyranose ring, a substituted dioxane ring, particularly a 2,3-dimethyl-2,3di(C1-3-alkoxy)-1,4-dioxane ring, and while alkyl, aryl and/or benzyl groups may be mono- or polysubstituted by halogen or C_{1-3} -alkoxy, and while benzyl groups may also be substituted by a di- $(C_{1-3}$ -alkyl)amino group; and
- R^{a} , R^{b} , R^{c} independently of one another denote C_{1-4} -alkyl, aryl or aryl-C1-3-alkyl, wherein the aryl or alkyl groups may be mono- or polysubstituted by halogen;
- while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups, preferably phenyl groups;

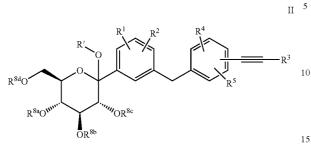
and wherein the groups R^1 to R^5 and R^6 , R^{7a} , R^{7b} , R^{7c} are defined as hereinbefore and hereinafter;

is reacted with a reducing agent in the presence of a Lewis or Brønsted acid, while any protective groups present are cleaved simultaneously or subsequently; or

b) in order to prepare compounds of general formula I wherein \mathbb{R}^6 , \mathbb{R}^{7a} , \mathbb{R}^{7b} and \mathbb{R}^{7c} denote hydrogen,

in a compound of general formula III

wherein R^{8a}, R^{8b}, R^{8c}, R^{8d} and R¹ to R⁵ are defined as hereinbefore and hereinafter, but at least one of the groups R^{8a} , \mathbb{R}^{8b} , \mathbb{R}^{8c} , \mathbb{R}^{8d} does not denote hydrogen,


protective groups selected from \mathbb{R}^{8a} , \mathbb{R}^{8b} , \mathbb{R}^{8c} , \mathbb{R}^{8d} (i.e. those groups selected from \mathbb{R}^{8a} , \mathbb{R}^{8b} , \mathbb{R}^{8c} , \mathbb{R}^{8d} which do not denote H) are removed, in particular hydrolised, and

- 55 if desired a compound of general formula I thus obtained wherein R⁶ denotes a hydrogen atom, is converted by acylation into a corresponding acyl compound of general formula I, and/or
- if necessary any protective group used in the reactions described above is cleaved and/or

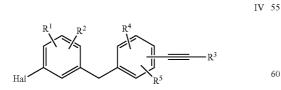
if desired a compound of general formula I thus obtained is resolved into its stereoisomers and/or

65 if desired a compound of general formula I thus obtained is converted into the salts thereof, particularly for pharmaceutical use into the physiologically acceptable salts thereof.

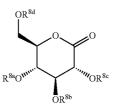
This invention further relates to a process for preparing compounds of general formula II

wherein

R' denotes H, C_{1-4} -alkyl, $(C_{1-18}$ -alkyl)carbonyl, $(C_{1-18}$ -alkyl) oxycarbonyl, arylcarbonyl and aryl- $(C_{1-3}$ -alkyl)-carbonyl, ²⁰ wherein the alkyl or aryl groups may be mono- or polysubstituted by halogen;


 $R^{8a}, R^{8b},$

- R^{8c} , R^{8d} independently of one another has one of the meanings given for the groups R^6 , R^{7a} , R^{7b} , R^{7c} , or denote an allyl group, a benzyl group or a $R^a R^b R^c Si$ group or a ketal or acetal group, while in each case two adjacent groups R^{8a} , R^{8b} , R^{8c} , R^{8d} may form a cyclic ketal or acetal group or may form, with two oxygen atoms of the pyranose ring, a substituted 2,3-oxydioxane ring, particularly a 2,3-dimethyl-2,3-di(C₁₋₃-alkoxy)-1,4-dioxane ring, and while alkyl, aryl and/or benzyl groups may be mono- or polysubstituted by halogen or C₁₋₃-alkoxy, and while benzyl 35 groups may also be substituted by a di-(C₁₋₃-alkyl)amino group; and
- R^{a} , R^{b} , R^{c} independently of one another denote C_{1-4} -alkyl, aryl or aryl- C_{1-3} -alkyl, while the alkyl or aryl groups may be mono- or polysubstituted by halogen;


while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups, preferably phenyl groups;

and R^1 to R^5 , R^6 , R^{7a} , R^{7b} , R^{7c} are defined as hereinbefore and hereinafter,

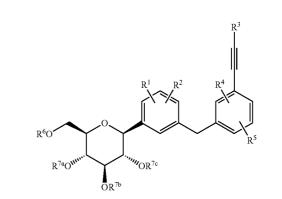
wherein an organometallic compound (V) which may be obtained by halogen-metal exchange or by inserting a metal 50 in the carbon-halogen bond of a halogen-benzylbenzene compound of general formula IV

wherein Hal denotes Cl, Br and I and R¹ to R⁵ are defined as hereinbefore and hereinafter, and optionally subsequent $_{65}$ transmetallation, is added to a gluconolactone of general formula VI

wherein R^{8a}, R^{8b}, R^{8c}, R^{8d} are defined as hereinbefore and hereinafter, and

then the resulting adduct, is reacted, preferably in situ, with water or an alcohol R'—OH, while R' denotes optionally substituted $C_{1.4}$ -alkyl, in the presence of an acid, such as for example methanesulphonic acid, sulphuric acid, hydrochloric acid, acetic acid or ammonium chloride, and optionally the product obtained in the reaction with water wherein R' denotes H is converted, in a subsequent reaction, with an acylating agent, such as for example the corresponding acid chloride or anhydride, into the product of formula II wherein R' denotes (C_{1-18} -alkyl)carbonyl, (C_{1-18} -alkyl)oxycarbonyl, arylcarbonyl or aryl-(C_{1-3} -alkyl)-carbonyl, which may be substituted as specified.

The intermediate products listed, particularly those of formula IV, formula II and formula III, are also a subject of this invention.

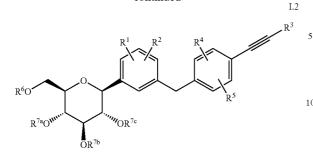

DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise stated, the groups, residues and substituents, particularly R^1 to R^5 , L1, L2, R^6 , R^{7a} , R^{7b} , R^{7c} , R^{8a} , R^{8b} , R^{8c} , R^{8d} , are defined as above and hereinafter.

If residues, substituents or groups occur several times in a compound, as for example L1 and L2, they may have the same or different meanings.

Some preferred meanings of individual groups and substituents of the compounds according to the invention will be given hereinafter.

The group $-C = C - R^3$ is preferably in the meta or para position of the phenyl-ring relative to the $-CH_2$ -bridge, so that compounds according to the following formulae I.1 and I.2, particularly formula I.2, are preferred:



6

I.1

30

The group R^1 preferably denotes hydrogen, fluorine, chlorine, bromine, $C_{1.4}$ -alkyl, $C_{1.4}$ -alkoxy, methyl substituted by 1 to 3 fluorine atoms, methoxy substituted by 1 to 3 fluorine atoms, cyano, C_{3-7} -cycloalkyloxy or C_{3-7} -cycloalkyl- C_{1-3} -alkoxy, while in the C_{5-6} -cycloalkyl groups a methylene 20 group may be replaced by O.

Particularly preferred meanings of R^1 are hydrogen, fluorine, chlorine, methyl, methoxy, ethoxy, cyano, cyclopentyloxy, cyclohexyloxy, tetrahydrofuran-3-yloxy and tetrahydropyran-4-yl-oxy; particularly methyl, chlorine and cyano.

Preferred meanings of the group R^2 are hydrogen, fluorine, chlorine, methyl, methoxy, ethoxy and methyl substituted by 1 to 3 fluorine atoms.

Particularly preferred meanings of the group R^2 are hydrogen, fluorine, methoxy, ethoxy and methyl, particularly hydrogen.

Preferred meanings of the group R^3 are C_{3-7} -cycloalkyl, tetrahydrofuranyl and tetrahydropyranyl, which are substituted with one to four substituents L2.

Additionally preferred meanings of the group R³ are tetrahydrofuranyl and tetrahydropyranyl; in particular tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydropyran-3-yl and tetrahydropyran-4-yl.

Particularly preferred meanings of the group R^3 are C_{3-7} cycloalkyl, tetrahydrofuranyl and tetrahydropyranyl, in particular cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydropyran-3yl and tetrahydropyran-4-yl, which are substituted with one or two substituents L2; particularly cyclobutyl, cyclopentyl and cyclohexyl substituted with one substituent L2. 45

Examples of particularly preferred meanings of R³ are 1-hydroxy-cyclopropyl, 1-hydroxy-cyclobutyl, 1-hydroxycyclopentyl, 1-hydroxy-cyclohexyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydropyran-4-yl, 4-hydroxy-tetrahydropyran-4-yl, 1-methoxy-cyclopropyl, 1-methoxy-cyclobutyl, 1-methoxy-cyclopentyl, 1-methoxy-cyclohexyl, 4-methoxy-tetrahydropyran-4-yl, 1-hydroxymethyl-cyclopropyl, 1-hydroxymethyl-cyclobutyl, 1-hydroxymethyl-cyclopentyl, 1-hydroxymethyl-cyclohexyl, 4-hydroxymethyltetrahydropyran-4-yl, which may be substituted with an 55 additional substituent L2.

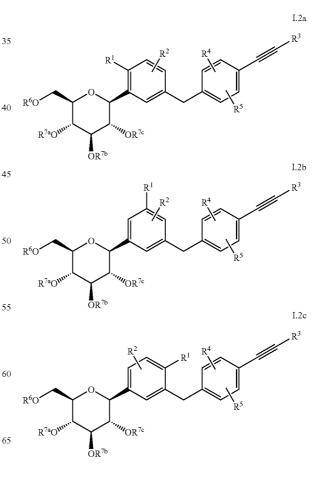
Preferred meanings of the group L1 independently of one another are selected from among fluorine, chlorine, bromine, cyano, hydroxy, C_{1-3} -alkyl, difluoromethyl, trifluoromethyl, C_{1-3} -alkoxy, difluoromethoxy, trifluoromethoxy and di(C_{1-3} - 60 alkyl)-amino.

Particularly preferred meanings of the group L1 are selected from fluorine, chlorine, hydroxy, trifluoromethyl, ethyl, methoxy, ethoxy and dimethylamino, particularly methyl, ethyl, methoxy, ethoxy and dimethylamino.

Preferred meanings of the group L2 independently of one another are selected from among fluorine, hydroxy, hydroxy $C_{1\text{-}4}\text{-}alkyl,\ C_{1\text{-}4}\text{-}alkoxy,\ C_{1\text{-}4}\text{-}alkyl,\ C_{1\text{-}4}\text{-}alkyl,\ trifluoromethyl,\ and\ C_{1\text{-}4}\text{-}alkyl\text{-}carbonylamino;}$

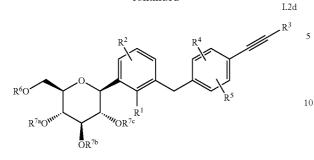
Particularly preferred meanings of the group L2 are selected from fluorine, hydroxy, hydroxy- C_{1-4} -alkyl, C_{1-4} -alkoxy, C_{1-4} -alkoxy, C_{1-4} -alkyl, C_{1-4} -alkyl, C_{1-4} -alkyl, particularly hydroxy, hydroxymethyl, methoxy and methyl.

Preferred meanings of the group R⁴ are hydrogen and fluorine, particularly hydrogen.


Preferred meanings of the group R⁵ are hydrogen and fluo-¹⁰ rine, particularly hydrogen.

The group \mathbb{R}^6 preferably denotes according to the invention hydrogen, (C₁₋₈-alkyl)oxycarbonyl, C₁₋₈-alkylcarbonyl or benzoyl, particularly hydrogen or (C₁₋₆-alkyl)oxycarbonyl or C₁₋₆-alkylcarbonyl, particularly preferably hydrogen, methylcarbonyl, methoxycarbonyl or ethoxycarbonyl, most particularly preferably hydrogen.

The substituents R^{7a} , R^{7b} , R^{7c} preferably represent independently of one another hydrogen, (C₁₋₈-alkyl)oxycarbonyl, (C₁₋₁₈-alkyl)oxycarbonyl or benzoyl, particularly hydrogen, (C₁₋₆-alkyl)oxycarbonyl or (C₁₋₈-alkyl)carbonyl, particularly preferably hydrogen, methoxycarbonyl, ethoxycarbonyl, methylcarbonyl or ethylcarbonyl. Most particularly preferably R^{7a} , R^{7b} and R^{7c} represent hydrogen.


The compounds of formula I wherein R^6 , R^{7a} , R^{7b} and R^{7c} according to the invention have a meaning other than hydrogen, for example C_{1-8} -alkylcarbonyl, are preferably suitable as intermediate products for the synthesis of compounds of formula I wherein R^6 , R^{7a} , R^{7b} and R^{7c} denote hydrogen.

Particularly preferred compounds of general formula I are selected from among formulae I.2a to I.2d, particularly I.2c:

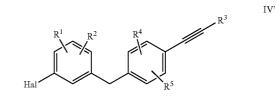
60

-continued

while the groups R^1 to R^6 and R^{7a} , R^{7b} , R^{7c} have one of the meanings given previously, particularly have one of the given meanings specified as being preferred; and particularly

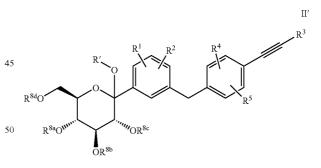
- R^1 denotes hydrogen, fluorine, chlorine, bromine, $C_{1,4}$ -alkyl, C1-4-alkoxy, methyl substituted by 1 to 3 fluorine atoms, 20 mula IV, particularly of general formula IV methoxy substituted by 1 to 3 fluorine atoms, cyano, C_{3-7} cycloalkyloxy or C3-7-cycloalkyl-C1-3-alkoxy, while in the C₅₋₆-cycloalkyl groups a methylene group may be replaced by O; R¹ particularly preferably denotes hydrogen, fluorine, chlorine, methyl, cyano, methoxy, ethoxy, cyclopen- 25 tyloxy, cyclohexyloxy, tetrahydrofuran-3-yloxy or tetrahydropyran-4-yl-oxy; and
- R^2 denotes hydrogen, fluorine, methoxy, ethoxy or methyl, particularly hydrogen; and
- R^3 denotes $C_{3.7}$ -cycloalkyl, tetrahydrofuranyl and tetrahy- ³⁰ dropyranyl, in particular cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuran-3-yl, tetrahydropyran-3-yl and tetrahydropyran-4-yl, which are substituted with one to four substituents L2; or tetrahydrofuranyl or tetrahydropyranyl; in particular tetrahydrofuran-2-yl, tetrahydro-³⁵ furan-3-yl, tetrahydropyran-3-yl or tetrahydropyran-4-yl; and
- R⁴ denotes hydrogen or fluorine, particularly hydrogen; and
- R⁵ denotes hydrogen or fluorine, particularly hydrogen; and L1 independently of one another are selected from among $\ ^{40}$ fluorine, chlorine, bromine, cyano, hydroxy, C1-3-alkyl, difluoromethyl, trifluoromethyl, C1-3-alkoxy, difluoromethoxy, trifluoromethoxy and di(C1-3-alkyl)-amino; particularly selected from among fluorine, chlorine, hydroxy, methyl, trifluoromethyl, ethyl, methoxy, ethoxy and dimethylamino; most preferably selected from among methyl, ethyl, methoxy, ethoxy and dimethylamino; and
- L2 independently of one another are selected from among fluorine, hydroxy, hydroxy-C₁₋₄-alkyl, C₁₋₄-alkoxy, C₁₋₄alkoxy-C₁₋₄-alkyl, C₁₋₄-alkyl, trifluoromethyl, and C₁₋₄alkyl-carbonylamino; particularly hydroxy, hydroxymethyl, methoxy and methyl; and
- R^5 denotes hydrogen, (C₁₋₆-alkyl)oxycarbonyl, (C₁₋₆-alkyl) carbonyl or benzoyl, particularly hydrogen, methylcarbonyl, methoxycarbonyl or ethoxycarbonyl, most particu-55 larly preferably hydrogen; and
- R^{7a} , R^{7b} , R^{7c} independently of one another represent hydrogen, (C $_{1-6}$ -alkyl)oxycarbonyl, (C $_{1-8}$ -alkyl)carbonyl or benzoyl, particularly hydrogen, methoxycarbonyl, ethoxycarbonyl, methylcarbonyl or ethylcarbonyl, particularly preferably hydrogen;

including the tautomers, the stereoisomers, the mixtures thereof and the salts thereof.


According to a variant of the embodiments given herein- 65 before, other preferred compounds are those wherein the phenyl group which carries the substituent $-C = C - R^3$ has

at least one other substituent R⁴ and/or R⁵ which is different from hydrogen. According to this variant, particularly preferred compounds are those which have a substituent R^4 representing fluorine.

The compounds of general formula I specified in the experimental section that follows, and the derivatives thereof, wherein R⁶ has a meaning according to the invention other than hydrogen, particularly wherein R⁶ denotes acetyl, ethoxycarbonyl or methoxycarbonyl, including the tautomers, the stereoisomers thereof and the mixtures thereof, are preferred according to another variant of this invention.


In the processes according to the invention the groups R^{1} R^2 , R^3 , R^4 and R^5 preferably have the meanings specified hereinbefore as being preferred. Moreover R' preferably denotes H, C_{1-3} -alkyl or benzyl, particularly H, ethyl or methyl. The groups R^{8a} , R^{8b} , R^{8c} and R^{8d} independently of one another preferably denote H, C_{1-4} -alkylcarbonyl or benzyl, particularly H, methylcarbonyl, ethylcarbonyl or benzyl.

The invention also relates to compounds of general for-

wherein Hal denotes chlorine, bromine or iodine and the groups R¹, R², R³, R⁴ and R⁵ are as hereinbefore defined, as intermediate products or starting materials in the synthesis of the compounds according to the invention. Particularly preferably, the groups R^1 , R^2 , R^3 , R^4 and R^5 have the meanings given following formulae I.2a to I.2d.

The invention also relates to compounds of general formula II, particularly of general formula II'

wherein R¹, R^{8a}, R^{8b}, R^{8c}, R^{8d}, R¹, R², R³, R⁴ and R⁵ are defined as hereinbefore and hereinafter; particularly wherein R' denotes H, C1-3-alkyl or benzyl, particularly H, ethyl or methyl; and the groups R^{8a}, R^{8b}, R^{8c} and R^{1d} independently of one another represent H, C₁₋₄-alkylcarbonyl or benzyl, particularly H, methylcarbonyl, ethylcarbonyl or benzyl and the groups R¹, R², R³, R⁴ and R⁵ are as hereinbefore defined, as intermediate products or starting materials in the synthesis of the compounds according to the invention. Particularly preferably the groups R¹, R², R³, R⁴ and R⁵ have the meanings given following formulae I.2a to I.2d.

Some terms used above and hereinafter to describe the compounds according to the invention will now be defined more closely.

60

65

The term halogen denotes an atom selected from the group consisting of F, Cl, Br and I, particularly F, Cl and Br.

The term C_{1-n} -alkyl, wherein n may have a value of 1 to 18, denotes a saturated, branched or unbranched hydrocarbon group with 1 to n C atoms. Examples of such groups include 5 methyl, ethyl, n-propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, neo-pentyl, tert-pentyl, n-hexyl, iso-hexyl, etc.

The term C_{2-n} -alkynyl, wherein n has a value of 3 to 6, denotes a branched or unbranched hydrocarbon group with 2 10to n C atoms and a C=C triple bond. Examples of such groups include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl etc. Unless otherwise stated alkynyl groups are 15 connected to the remainder of the molecule via the C atom in position 1. Therefore terms such as 1-propynyl, 2-propynyl, 1-butynyl, etc. are equivalent to the terms 1-propyn-1-yl, 2-propyn-1-yl, 1-butyn-1-yl, etc. This also applies analogously to C_{2-n} -alkenyl groups. 20

The term C_{1-n}-alkoxy denotes a C_{1-n}-alkyl-O group, wherein C_{1-n} -alkyl is as hereinbefore defined. Examples of such groups include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, iso-pentoxy, neo-pentoxy, tert-pentoxy, n-hexoxy, iso-25 hexoxy etc.

The term C_{1-n} -alkylcarbonyl denotes a C_{1-n} -alkyl-C(=O)group, wherein C_{1-n} -alkyl is as hereinbefore defined. Examples of such groups include methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, iso-propylcarbonyl, n-butylcarbo- 30 nyl, iso-butylcarbonyl, sec-butylcarbonyl, tert-butylcarbon-pentylcarbonyl, iso-pentylcarbonyl, nyl, neopentylcarbonyl, tert-pentylcarbonyl, n-hexylcarbonyl, isohexylcarbonyl, etc.

The term C_{3-n}-cycloalkyl denotes a saturated mono-, bi-, ³⁵ tri- or spirocarbocyclic group with 3 to n C atoms. Examples of such groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclododecyl, decalinyl, bicyclo[3.2.1.]octyl, spiro[4.5]decyl, norpinyl, norbonyl, norcaryl, adamantyl, etc. Preferably the term C_{3-7} - ⁴⁰ cycloalkyl denotes saturated monocyclic groups.

The term C_{5-n} -cycloalkenyl denotes a C_{5-n} -cycloalkyl group which is as hereinbefore defined and additionally has at least one unsaturated C=C double bond.

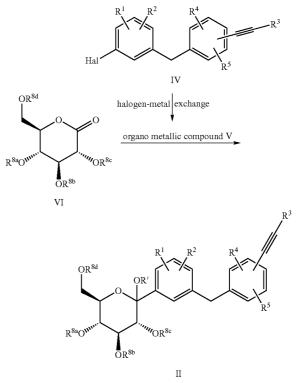
The term C_{3-n}-cycloalkylcarbonyl denotes a C_{3-n}-cy-⁴⁵ cloalkyl-C(=O) group wherein C_{3-n}-cycloalkyl is as hereinbefore defined.

The term tri-(C1-4-alkyl)silyl comprises silyl groups which have identical or two or three different alkyl groups.

The term di-(C1-3-alkyl)amino comprises amino groups which have identical or two different alkyl groups.

The term aryl preferably denotes naphthyl or phenyl, more preferably phenyl.

The nomenclature in structural formulas used above and 55 hereinafter, in which a bond of a substituent of a cyclic group, as e.g. a phenyl ring, is shown towards the centre of the cyclic group, denotes, unless otherwise stated, that this substituent may be bound to any free position of the cyclic group bearing an H atom.

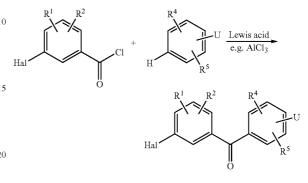

The compounds according to the invention may be obtained using methods of synthesis known in principle. Preferably the compounds are obtained by the following methods according to the invention which are described in more detail hereinafter.

The glucose derivatives of formula II according to the invention may be synthesised from D-gluconolactone or a

12

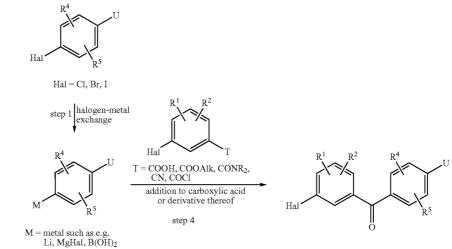
derivative thereof by adding the desired benzylbenzene compound in the form of an organometallic compound (Scheme 1).

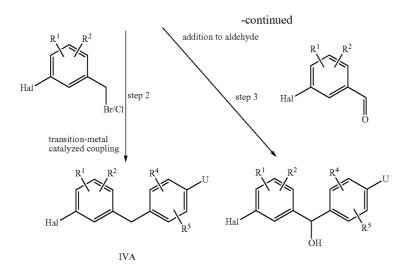
Scheme 1: Addition of an Organometal Compound to a Gluconolactone



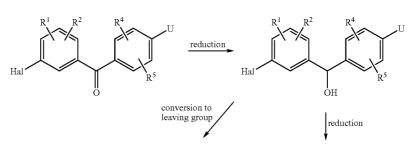
The reaction according to Scheme 1 is preferably carried out starting from a halogenated benzylbenzene compound of general formula IV, wherein Hal denotes chlorine, bromine, or iodine. Starting from the haloaromatic compound IV the corresponding organometallic compound (V) may be prepared either by means of a so-called halogen-metal exchange reaction or by inserting the metal into the carbon-halogen bond. The halogen-metal exchange with bromine or iodinesubstituted aromatic groups may be carried out for example with an organolithium compound such as e.g. n-, sec- or tert-butyllithium and thereby yields the corresponding lithiated aromatic group. The analogous magnesium compound may also be generated by a halogen-metal exchange with a suitable Grignard reagent such as e.g. isopropylmagnesium bromide or diisopropylmagnesium. The reactions are preferably carried out between 0 and -100° C., particularly preferably between -10 and -80° C., in an inert solvent or mixtures thereof, such as for example diethyl ether, tetrahydrofuran, toluene, hexane, or methylene chloride. The magnesium or lithium compounds thus obtained may optionally be transmetallated with metal salts such as e.g. cerium trichloride, to form alternative organometal compounds (V) suitable for addition. Alternatively, the organometallic compound (V) may also be prepared by inserting a metal into the carbonhalogen bond of the haloaromatic compound IV. Metals such as e.g. lithium or magnesium are suitable for this. The addition of the organometallic compound V to gluconolactone or derivatives thereof of formula VI is preferably carried out at temperatures between 0 and -100° C., particularly preferably at -30 to -80° C., in an inert solvent or mixtures thereof, to obtain the compound of formula II. The lithiation and/or coupling reaction may also be carried out in microreactors and/or micromixers in order to avoid low temperatures; for example analogously to the processes described in WO 2004/ 076470. Suitable solvents for the addition of the metallated phenyl group to the appropriately protected gluconolactone 5 are e.g. diethyl ether, toluene, methylene chloride, hexane, tetrahydrofuran or mixtures thereof. The addition reactions may be carried out without any further adjuvants or in the case of sluggishly reacting coupling partners in the presence of Lewis acids such as e.g. BF₃*OEt₂ or Me₃SiCl (see M. Schlo- 10 sser, Organometallics in Synthesis, John Wiley & Sons, Chichester/New York/Brisbane/Toronto/Singapore, 1994). Preferred definitions of the groups R^{8a} , R^{8b} , \tilde{R}^{8c} and R^{8d} are benzyl, substituted benzyl, trialkylsilyl, particularly preferably trimethylsilyl, triisopropylsilyl, 4-methoxybenzyl and 15 benzyl. If two adjacent groups of the group consisting of R^{8a}, R^{8b} , R^{8c} and R^{8d} are linked together, these two groups are preferably part of a benzylideneacetal, 4-methoxybenzylideneacetal, isopropylketal or constitute a 2,3-dimethoxy-butylene group which is linked via the 2 and 3 positions of the 20 butane with the adjacent oxygen atoms of the pyranose ring. The group R' preferably denotes hydrogen or C1-4-alkyl, particularly preferably hydrogen, methyl or ethyl. The group R' is inserted after the addition of the organometallic compound V or a derivative thereof to the gluconolactone VI. For this 25 purpose the reaction solution is treated with an alcohol such as e.g. methanol or ethanol or water in the presence of an acid such as e.g. methanesulphonic acid, toluenesulphonic acid, sulphuric acid, or hydrochloric acid.

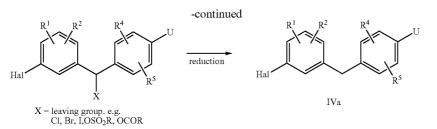
The synthesis of haloaromatic compound of formula IV 30 may be carried out using standard transformations in organic chemistry or at least methods known from the specialist literature in organic synthesis (see inter alia J. March, Advanced Organic Reactions, Reactions, Mechanisms, and Structure, 4th Edition, John Wiley & Sons, Chichester/New York/Bris-35 bane/Toronto/Singapore, 1992 and literature cited therein). More specifically, the use of transition metals and organo metal compounds for the synthesis of aromatic compounds has been detailed in different monographs (see e.g. L. Brandsma, S. F. Vasilevsky, H. D. Verkruijsse, Application of 40 Transition Metal Catalysts in Organic Synthesis, Springer-Verlag, Berlin/Heidelberg, 1998; M. Schlosser, Organometallics in Synthesis, John Wiley & Sons, Chichester/New 14


York/Brisbane/Toronto/Singapore, 1994; P. J. Stang, F. Diederich, *Metal-Catalyzed Cross-Coupling Reactions*, Wiley-VCH, Weinheim, 1997 and references quoted therein). The synthesis strategies described in the following provide a demonstration of this, by way of example.


Scheme 2: Synthesis of Diarylketones

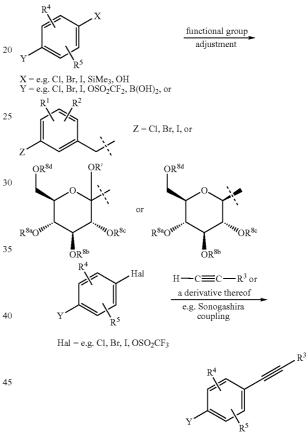
Scheme 2 shows the preparation of a precursor compound that may serve for the synthesis of the haloaromatic compounds of formula IV and IVa, respectively, starting from a benzoylchloride and a second aromatic group applying Friedel-Crafts acylation conditions or variations thereof. The second aromatic compound bears a substituent U selected from halogen such as chlorine, bromine, iodine, or a group that may subsequently be converted to a halogen atom or a pseudohalogen group, e.g. trifluoromethanesulfonate, or an alkyne unit. This classic reaction has a wide substrate scope and is commonly carried out in the presence of a catalyst which is used in catalytic or stoichiometric amounts, such as e.g. AlCl₃, FeCl₃, iodine, iron, ZnCl₂, sulphuric acid, or trifluoromethanesulphonic acid. Instead of the benzoyl chloride the corresponding carboxylic acid, anhydride, ester or benzonitrile may be used as well. The reactions are preferentially carried out in chlorinated hydrocarbons such as e.g. dichloromethane and 1,2-dichloroethane at temperatures from -30 to 120° C., preferably at 30 to 100° C. However, solvent-free reactions or reactions in a microwave oven are also possible.





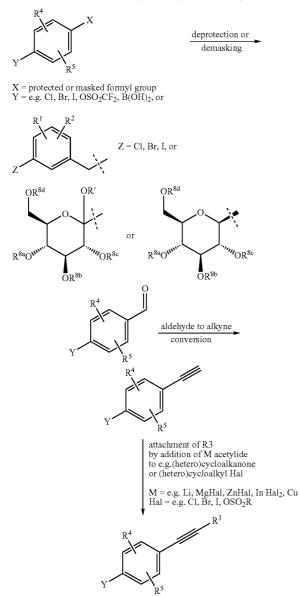
In Scheme 3 the term "Alk" denotes C₁₋₃-alkyl and each substituent R is independently selected from each other from the group consisting of H, C_{1-3} -alkyl and C_{1-3} -alkoxy, while ²⁵ the remaining groups R^1 to R^5 are defined as hereinbefore. The Scheme 3 delineates the synthesis of diarylmethanes and possible precursor compounds thereof starting from a metalated phenyl group that bears a residue U that is selected from a group consisting of an alkynyl residue, a halogen atom such as chlorine, bromine, iodine, pseudohalogen group such as e.g. trifluoromethanesulfonate, or a residue such as e.g. a silyl group or a masked or protected fromyl group, that is subsequently convertible into a halogen atom, pseudohalogen group, or an alkyne unit. Lithium or magnesium substituted aromatic compounds may be synthesized from chlorinated, brominated, or iodinated aromats by a halogen-metal exchange reaction with e.g. butyllithium, isopropylmagnesiumhalogenide, or diispropylmagnesium or by insertion of the elemental metal into the halogen-carbon bond. The corresponding boron substituted compound such as e.g. boronic acid, boronic acid ester, or dialkylarylborane, is accessible from these metallated phenyl groups by reaction with a boron electrophile such as e.g. boronic acid ester or a derivative thereof. In addition, the borylated aromatic compound may also be prepared from the corresponding halogenated or pseudohalogenated precursor and a diboron or borane compound through a transition metal, e.g. palladium, catalyzed reaction (see e.g. Tetrahedron Lett. 2003, p. 4895-4898 and references quoted therein). The lithium or magnesium substituted phenyl compounds add to benzaldehydes (step 3) and

benzoic acids or derivatives thereof (step 4) such as benzoic acid esters, benzamides such as e.g. of the Weinreb type, benzonitriles, or benzoyl chlorides. These reactions may principally be conducted without an additional transition metal catalyst or transmetalation to another metal such as e.g. cerium or zinc; sometimes the use of one of the latter alternatives is advantageous. Aryl boronic acids can be added to benzaldehydes by means of a rhodium catalyst furnishing the respective diarylmethanol (see e.g. Adv. Synth. Catal. 2001, p. 343-350 and references quoted therein). Moreover, arylboronic acids, esters thereof, dialkylarylboranes, or aryltrifluoroborates may be coupled with benzoyl chlorides mediated by a transition metal such as e.g. palladium, a complex or a salt thereof delivering diarylketones. Metallated phenyl groups can be reacted with benzyl electrophiles such as benzyl chlorides, bromides, or iodides affording diarylmethanes. Lithium or magnesium derivatized phenyl compounds are reacted favorably but not always necessarily in the presence of a transition metal as e.g. copper, iron, or palladium (see e.g. Org. Lett. 2001, 3, 2871-2874 and references quoted therein). Transmetallation from lithium or magnesium to e.g. boron, tin, silicon, or zinc furnishes e.g. the corresponding aromatic boronic acids, stannanes, silanes or zinc compounds, respectively, that may undergo coupling with benzyl electrophiles, e.g. benzyl halogenides, phosphates, sulfonates, or carboxylic esters. The reaction is conducted in the presence of a transition metal, e.g. palladium, nickel, rhodium, copper, or iron (see Tetrahedron Lett. 2004, p. 8225-8228 and references cited therein).


Scheme 4: Reduction of Diarylketones and Diarylmethanols to Diarylmethanes

In Scheme 4 the substituent R denotes C1-3-alkyl or aryl while the remaining substituents R¹ to R⁵ are defined as here-15 inbefore. Starting from the diarylketone or diarylmethanol the diarylmethane is accessible in one or two reaction steps (U is selected from a group comprising alkynyl residues, halogen atoms such as chlorine, bromine, iodine, pseudohalogen groups such as e.g. trifluoromethanesulfonate, or residues $\ ^{20}$ such as e.g. silvl groups or masked or protected formyl groups, that are subsequently convertible into a halogen atom, pseudohalogen group, or an alkyne unit). The diarylketone may be reduced to the diarylmethane in two steps via the $_{25}$ corresponding diphenylmethanol or in one step. In the twostep variant the ketone is reduced with a reducing agent such as for example a metal hydride such as e.g. NaBH₄, LiAlH₄ or iBu₂AlH to form the alcohol. The resulting alcohol can be converted in the presence of a Lewis acid such as for example 30 BF₃*OEt₂, trifluoroacetic acid, InCl₃ or AlCl₃ with a reducing agent such as e.g. Et₃SiH, NaBH₄, or Ph₂SiClH to the desired diphenylmethane. The one-step process starting from the ketone to obtain the diphenylmethane may be carried out e.g. with a silane such as e.g. Et₃SiH, a borohydride such as e.g. NaBH₄ or an aluminum hydride such as LiAlH₄ in the presence of a Lewis acid such as for example BF₃*OEt₂, tris(pentafluorophenyl)borane, trifluoroacetic acid, aluminum chloride or $InCl_3$. The reactions are preferably carried $_{40}$ out in solvents such as e.g. halogenated hydrocarbons such as dichloromethane, toluene, or acetonitrile at temperatures of -30 to 150° C., preferably at 20 to 100° C. Reductions with hydrogen in the presence of a transition metal catalyst such as e.g. Pd on charcoal are another possible method of synthesis. 45 Reductions according to Wolff-Kishner or variants thereof are also possible. The ketone is first of all converted with hydrazine or a derivative thereof, such as e.g. 1,2-bis(tertbutyldimethylsilyl)hydrazine, into the hydrazone which breaks down under strongly basic reaction conditions and 50 heating to form the diphenylmethane and nitrogen. The reaction may be carried out in one reaction step or after isolation of the hydrazone or a derivative thereof in two separate reaction steps. Suitable bases include e.g. KOH, NaOH or KOtBu in solvents such as e.g. ethyleneglycol, toluene, DMSO, 2-(2butoxyethoxy)ethanol or t-butanol; solvent-free reactions are also possible. The reactions may be carried out at temperatures between 20 to 250° C., preferably between 80 to 200° C. An alternative to the basic conditions of the Wolff-Kishner reduction is the Clemmensen reduction which takes place under acidic conditions, which may also be used here. The alcohol function in diarylmethanol may also first be transformed into a leaving group such as e.g. chloride, bromide, iodide, acetate, phosphate, or sulfate; the subsequent reduc-65 tion step to form the diarylmethane is widely described in the organic chemistry literature.

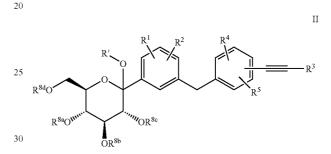
Scheme 5: Introduction of the Alkyne Moiety



Scheme 5 displays possible pathways to attach the alkyne residue to the peripheral phenyl group at various stages of the synthesis of the target molecules. The alkyne is preferentially introduced via a transition metal mediated coupling reaction of a terminal alkyne with a halogenated or pseudohalogenated phenyl group. One of the most popular coupling protocols to accomplish this transformation is the so-called Sonogashira coupling reaction. The reaction comprises the use of a copper and a palladium catalyst under inert gas conditions. A lot of alternative methods are known that include the employment of metal acetylides, e.g. zinc acetylides, alkynylstannanes, or alkynylsilanes, that may be prepared from the terminal alkynes prior to the addition of the coupling partner (see P. J. Stang, F. Diederich, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 1997; Angew. Chem. Int Ed. 2003, 42, 1566-1568 and references quoted therein). The halogenated or pseudohalogenated aromatic

55

compounds are accessible by known procedures. Electrophilic aromatic substitution with a halogen electrophile replaces a hydrogen atom or silvl group on the benzene ring for the halogen. The replacement of a silvl group for chlorine, bromine, or iodine can be performed under very mild conditions making this kind of derivatized benzene attractive for late stage introduction of the halogen for alkyne appendage. Starting from phenols the corresponding pseudohalogenated benzene compounds are accessible by e.g. sulfonylation with e.g. trifluoromethanesulfonic acid anhydride. All these syntheses are broadly detailed in the organic chemistry literature.


Scheme 6: Introduction of the Alkyne Moiety from an Aldehyde

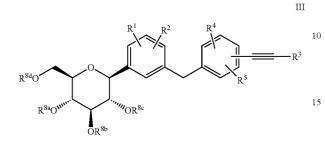
An alternative introduction of the alkyne group is the synthesis starting from an aldehyde (Scheme 6). The aldehyde itself can be introduced as such, protected, or masked. Popular protective groups for the aldehyde function are acetals, but 65 other protective groups may be used as well (see T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthe-

sis, John Wiley & Sons, Inc., New York, 1999). Suitable masks for the aldehyde function are e.g. olefins and thiazoles. The aldehyde can be converted to the alkyne via a one or two-step procedure. The most frequently used methods include the reactions of Corey-Fuchs, Wittig-Horner-Emmons, and Gilbert-Seyferth and modifications thereof (see J. Org. Chem. 2000, p. 1889-1891; J. Am. Chem. Soc. 2002, p. 11600-11601; Synlett 1996, p. 521-522 and references cited therein). The group R^3 is finally attached to the terminal alkyne via addition of the acetylide that may be generated from the alkyne by deprotonation in situ or prior to the addition to the coupling partner that may be a ketone or a (hetero) cycloalkyl halide. The coupling reaction with the halide may be catalyzed by nickel, iron or palladium salts or complexes 15 thereof.

In order to prepare compounds of general formula I, in process a) according to the invention, a compound of general formula II

wherein R', R^1 to R^5 are as hereinbefore defined and

R^{8a}, R^{8b}, R^{8c}, R^{8d} are as hereinbefore defined and indepen-³⁵ dently of one another represent for example acetyl, pivaloyl, benzoyl, tert-butoxycarbonyl, benzyloxycarbonyl, trialkylsilyl, benzyl or substituted benzyl or in each case two adjacent groups R^{8a}, R^{8b}, R^{8c}, R^{8d} form a benzylideneacetal or isopropylideneketal or a 2,3-dimethoxy-butylene group which is 40 linked via position 2 and 3 of the butylene group to the oxygen atoms of the pyranose ring and forms with them a substituted dioxane.


which may be obtained as hereinbefore described, is reacted 45 with a reducing agent in the presence of a Lewis or Brønsted acid.

Suitable reducing agents for the reaction include for example silanes, such as triethyl-, tripropyl-, triisopropyl- or diphenylsilane, sodium borohydride, sodium cyanoborohy-50 dride, zinc borohydride, boranes, lithium aluminium hydride, diisobutylaluminium hydride or samarium iodide. The reductions are carried out without or in the presence of a suitable Brønsted acid, such as e.g. hydrochloric acid, toluenesulphonic acid, trifluoroacetic acid or acetic acid, or Lewis acid, such as e.g. boron trifluoride etherate, trimethylsilyltriflate, titaniium tetrachloride, tin tetrachloride, scandium triflate or zinc iodide. Depending on the reducing agent and the acid the reaction may be carried out in a solvent, such as for example methylene chloride, chloroform, acetonitrile, toluene, hex-60 ane, diethyl ether, tetrahydrofuran, dioxane, ethanol, water or mixtures thereof at temperatures between -60° C. and 120° C. One particularly suitable combination of reagents consists for example of triethylsilane and boron trifluoride etherate, which is conveniently used in acetonitrile or dichloromethane at temperatures of -60° C. and 60° C. Moreover, hydrogen may be used in the presence of a transition metal catalyst, such as e.g. palladium on charcoal or Raney nickel, in sol-

25

vents such as tetrahydrofuran, ethyl acetate, methanol, ethanol, water or acetic acid, for the transformation described.

Alternatively, in order to prepare compounds of general formula I according to process b) according to the invention, in a compound of general formula III

wherein R^1 to R^5 are as hereinbefore defined and

 R^{8a} to R^{8a} denote one of the protective groups defined hereinbefore, such as e.g. an acyl, arylmethyl, acetal, ketal or silyl group, and which may be obtained for example by reduction from the compound of formula II as hereinbefore described, the protective groups are cleaved.

Any acyl protecting group used is cleaved for example hydrolytically in an aqueous solvent, e.g. in water, isopropanol/water, acetic acid/water, tetrahydrofuran/water or dioxane/water, in the presence of an acid such as trifluoroacetic acid, hydrochloric acid or sulphuric acid or in the presence of an alkali metal base such as lithium hydroxide, sodium hydroxide or potassium hydroxide or aprotically, e.g. in the presence of iodotrimethylsilane, at temperatures between 0 and 120° C., preferably at temperatures between $_{35}$ 10 and 100° C. A trifluoroacetyl group is preferably cleaved by treating with an acid such as hydrochloric acid, optionally in the presence of a solvent such as acetic acid at temperatures between 50 and 120° C. or by treating with sodium hydroxide solution optionally in the presence of a solvent such as tet-40 rahydrofuran or methanol at temperatures between 0 and 50° С.

Any acetal or ketal protecting group used is cleaved for example hydrolytically in an aqueous solvent, e.g. in water, isopropanol/water, acetic acid/water, tetrahydrofuran/water or dioxane/water, in the presence of an acid such as trifluoroacetic acid, hydrochloric acid or sulphuric acid or aprotically, e.g. in the presence of iodotrimethylsilane, at temperatures between 0 and 120° C., preferably at temperatures between 10 and 100° C.

A trimethylsilyl group is cleaved for example in water, an aqueous solvent mixture or a lower alcohol such as methanol or ethanol in the presence of a base such as lithium hydroxide, sodium hydroxide, potassium carbonate or sodium methoxide.

In aqueous or alcoholic solvents, acids such as e.g. hydrochloric acid, trifluoroacetic acid or acetic acid are also suitable. For cleaving in organic solvents, such as for example diethyl ether, tetrahydrofuran or dichloromethane, it is also suitable to use fluoride reagents, such as e.g. tetrabutylammonium fluoride.

A benzyl, methoxybenzyl or benzyloxycarbonyl group is advantageously cleaved hydrogenolytically, e.g. with hydrogen in the presence of a catalyst such as palladium/charcoal in a suitable solvent such as methanol, ethanol, ethyl acetate or 65 glacial acetic acid, optionally with the addition of an acid such as hydrochloric acid at temperatures between 0 and 100°

C., but preferably at ambient temperatures between 20 and 60° C., and at a hydrogen pressure of 1 to 7 bar, but preferably 3 to 5 bar. A 2,4-dimethoxybenzyl group, however, is preferably cleaved in trifluoroacetic acid in the presence of anisole.

A tert.butyl or tert.butyloxycarbonyl group is preferably cleaved by treating with an acid such as trifluoroacetic acid or hydrochloric acid or by treating with iodotrimethylsilane optionally using a solvent such as methylene chloride, dioxane, methanol or diethylether.

In the reactions described hereinbefore, any reactive groups present such as ethynyl, hydroxy, amino, alkylamino or imino groups may be protected during the reaction by conventional protecting groups which are cleaved again after the reaction.

For example, a protecting group for an ethynyl group may be the trimethylsilyl or triisopropyl group. The 2-hydroxisoprop-2-yl group may also be used as a protective group.

For example, a protecting group for a hydroxy group may 20 be a trimethylsilyl, acetyl, trityl, benzyl or tetrahydropyranyl group.

Protecting groups for an amino, alkylamino or imino group may be, for example, a formyl, acetyl, trifluoroacetyl, ethoxycarbonyl, tert.butoxycarbonyl, benzyloxycarbonyl, benzyl, methoxybenzyl or 2,4-dimethoxybenzyl group.

Moreover, the compounds of general formula I obtained may be resolved into their enantiomers and/or diastereomers, as mentioned hereinbefore. Thus, for example, cis/trans mixtures may be resolved into their cis and trans isomers, and compounds with at least one optically active carbon atom may be separated into their enantiomers.

Thus, for example, the cis/trans mixtures may be resolved by chromatography into the cis and trans isomers thereof, the compounds of general formula I obtained which occur as racemates may be separated by methods known per se (cf. Allinger N. L. and Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) into their optical antipodes and compounds of general formula I with at least 2 asymmetric carbon atoms may be resolved into their diastereomers on the basis of their physical-chemical differences using methods known per se, e.g. by chromatography and/or fractional crystallisation, and, if these compounds are obtained in racemic form, they may subsequently be resolved into the enantiomers as mentioned above.

The enantiomers are preferably separated by column separation on chiral phases or by recrystallisation from an optically active solvent or by reacting with an optically active substance which forms salts or derivatives such as e.g. esters or amides with the racemic compound, particularly acids and the activated derivatives or alcohols thereof, and separating the diastereomeric mixture of salts or derivatives thus obtained, e.g. on the basis of their differences in solubility, whilst the free antipodes may be released from the pure dias- $_{55}$ tereomeric salts or derivatives by the action of suitable agents. Optically active acids in common use are e.g. the D- and L-forms of tartaric acid or dibenzoyltartaric acid, di-o-tolyltartaric acid, malic acid, mandelic acid, camphorsulphonic acid, glutamic acid, aspartic acid or quinic acid. An optically active alcohol may be for example (+) or (-)-menthol and an optically active acyl group in amides, for example, may be a (+)- or (-)-menthyloxycarbonyl.

Furthermore, the compounds of formula I may be converted into the salts thereof, particularly for pharmaceutical use into the physiologically acceptable salts with inorganic or organic acids. Acids which may be used for this purpose include for example hydrochloric acid, hydrobromic acid,

sulphuric acid, methanesulphonic acid, phosphoric acid, fumaric acid, succinic acid, lactic acid, citric acid, tartaric acid or maleic acid.

Moreover, the compounds obtained may be converted into mixtures, for example 1:1 or 1:2 mixtures with amino acids, particularly with alpha-amino acids such as proline or phenylalanine, which may have particularly favourable properties such as a high crystallinity.

The compounds according to the invention are advantageously also obtainable using the methods described in the examples that follow, which may also be combined for this purpose with methods known to the skilled man from the literature, for example the methods described in WO 98/31697, WO 01/27128, WO 02/083066, WO 03/099836 15 and WO 2004/063209.

As already mentioned, the compounds of general formula I according to the invention and the physiologically acceptable salts thereof have valuable pharmacological properties, particularly an inhibitory effect on the sodium-dependent 20 glucose cotransporter SGLT, preferably SGLT2.

The biological properties of the new compounds may be investigated as follows:

The ability of the substances to inhibit the SGLT-2 activity may be demonstrated in a test set-up in which a CHO-K1 cell ²⁵ line (ATCC No. CCL 61) or alternatively an HEK293 cell line (ATCC No. CRL-1573), which is stably transfected with an expression vector pZeoSV (Invitrogen, EMBL accession number L36849), which contains the cDNA for the coding sequence of the human sodium glucose cotransporter 2 (Genbank Acc. No. NM_003041) (CHO-hSGLT2 or HEK-hS-GLT2). These cell lines transport ¹⁴C-labelled alpha-methylglucopyranoside (¹⁴C-AMG, Amersham) into the interior of the cell in sodium-dependent manner.

The SGLT-2 assay is carried out as follows:

CHO-hSGLT2 cells are cultivated in Ham's F12 Medium (BioWhittaker) with 10% foetal calf serum and 250 $\mu\text{g/ml}$ zeocin (Invitrogen), and HEK293-hSGLT2 cells are cultivated in DMEM medium with 10% foetal calf serum and 250 $_{40}$ μ g/ml zeocin (Invitrogen). The cells are detached from the culture flasks by washing twice with PBS and subsequently treating with trypsin/EDTA. After the addition of cell culture medium the cells are centrifuged, resuspended in culture medium and counted in a Casy cell counter. Then 40,000 cells 45 per well are seeded into a white, 96-well plate coated with poly-D-lysine and incubated overnight at 37° C., 5% CO₂. The cells are washed twice with 250 µl of assay buffer (Hanks Balanced Salt Solution, 137 mM NaCl, 5.4 mM KCl, 2.8 mM $CaCl_2$, 1.2 mM MgSO₄ and 10 mM HEPES (pH7.4), 50 ₅₀ μ g/ml of gentamycin). 250 μ l of assay buffer and 5 μ l of test compound are then added to each well and the plate is incubated for a further 15 minutes in the incubator. 5 µl of 10% DMSO are used as the negative control. The reaction is started by adding 5 μl of $^{14}\text{C-AMG}$ (0.05 $\mu Ci)$ to each well. After 2 $_{55}$ hours' incubation at 37° C., 5% CO2, the cells are washed again with 250 μl of PBS (20° C.) and then lysed by the addition of 25 µl of 0.1 N NaOH (5 min. at 37° C.). 200 µl of MicroScint20 (Packard) are added to each well and incubation is continued for a further 20 min at 37° C. After this incubation the radioactivity of the 14C-AMG absorbed is measured in a Topcount (Packard) using a ¹⁴C scintillation program.

To determine the selectivity with respect to human SGLT1 an analogous test is set up in which the cDNA for hSGLT1 65 (Genbank Acc. No. NM000343) instead of hSGLT2 cDNA is expressed in CHO—K1 or HEK293 cells.

The compounds of general formula I according to the invention may for example have EC50 values below 1000 nM, particularly below 200 nM, most preferably below 50 nM.

In view of their ability to inhibit the SGLT activity, the compounds of general formula I according to the invention and the corresponding pharmaceutically acceptable salts thereof are theoretically suitable for the treatment and/or preventative treatment of all those conditions or diseases which may be affected by the inhibition of the SGLT activity, particularly the SGLT-2 activity. Therefore, compounds according to the invention are particularly suitable for the prevention or treatment of diseases, particularly metabolic disorders, or conditions such as type 1 and type 2 diabetes mellitus, complications of diabetes (such as e.g. retinopathy, nephropathy or neuropathies, diabetic foot, ulcers, macroangiopathies), metabolic acidosis or ketosis, reactive hypoglycaemia, hyperinsulinaemia, glucose metabolic disorder, insulin resistance, metabolic syndrome, dyslipidaemias of different origins, atherosclerosis and related diseases, obesity, high blood pressure, chronic heart failure, edema and hyperuricaemia. These substances are also suitable for preventing beta-cell degeneration such as e.g. apoptosis or necrosis of pancreatic beta cells. The substances are also suitable for improving or restoring the functionality of pancreatic cells, and also of increasing the number and size of pancreatic beta cells. The compounds according to the invention may also be used as diuretics or antihypertensives and are suitable for the prevention and treatment of acute renal failure.

In particular, the compounds according to the invention, including the physiologically acceptable salts thereof, are suitable for the prevention or treatment of diabetes, particularly type 1 and type 2 diabetes mellitus, and/or diabetic 35 complications.

The dosage required to achieve the corresponding activity for treatment or prevention usually depends on the compound which is to be administered, the patient, the nature and gravity of the illness or condition and the method and frequency of administration and is for the patient's doctor to decide. Expediently, the dosage may be from 1 to 100 mg, preferably 1 to 30 mg, by intravenous route, and 1 to 1000 mg, preferably 1 to 100 mg, by oral route, in each case administered 1 to 4 times a day. For this purpose, the compounds of formula I prepared according to the invention may be formulated, optionally together with other active substances, together with one or more inert conventional carriers and/or diluents, e.g. with corn starch, lactose, glucose, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethylene glycol, propylene glycol, cetylstearyl alcohol, carboxymethylcellulose or fatty substances such as hard fat or suitable mixtures thereof, to produce conventional galenic preparations such as plain or coated tablets, capsules, powders, suspensions or suppositories.

The compounds according to the invention may also be used in conjunction with other active substances, particularly for the treatment and/or prevention of the diseases and conditions mentioned above. Other active substances which are suitable for such combinations include for example those which potentiate the therapeutic effect of an SGLT antagonist according to the invention with respect to one of the indications mentioned and/or which allow the dosage of an SGLT antagonist according to the invention to be reduced. Therapeutic agents which are suitable for such a combination include, for example, antidiabetic agents such as metformin, sulphonylureas (e.g. glibenclamide, tolbutamide, glimepiride), nateglinide, repaglinide, thiazolidinediones (e.g. rosiglitazone, pioglitazone), PPAR-gamma-agonists (e.g. GI 262570) and antagonists, PPAR-gamma/alpha modulators (e.g. KRP 297), alpha-glucosidase inhibitors (e.g. acarbose, voglibose), DPPIV inhibitors (e.g. LAF237, MK-431), 5 alpha2-antagonists, insulin and insulin analogues, GLP-1 and GLP-1 analogues (e.g. exendin-4) or amylin. The list also includes inhibitors of protein tyrosinephosphatase 1, substances that affect deregulated glucose production in the liver, such as e.g. inhibitors of glucose-6-phosphatase, or fructose- 10 1,6-bisphosphatase, glycogen phosphorylase, glucagon receptor antagonists and inhibitors of phosphoenol pyruvate carboxykinase, glycogen synthase kinase or pyruvate dehydrokinase, lipid lowering agents such as for example HMG-CoA-reductase inhibitors (e.g. simvastatin, atorvastatin), 15 fibrates (e.g. bezafibrate, fenofibrate), nicotinic acid and the derivatives thereof, PPAR-alpha agonists, PPAR-delta agonists, ACAT inhibitors (e.g. avasimibe) or cholesterol absorption inhibitors such as, for example, ezetimibe, bile acidbinding substances such as, for example, cholestyramine, 20 inhibitors of ileac bile acid transport, HDL-raising compounds such as CETP inhibitors or ABC1 regulators or active substances for treating obesity, such as sibutramine or tetrahydrolipostatin, dexfenfluramine, axokine, antagonists of the cannabinoid1 receptor, MCH-1 receptor antagonists, 25 MC4 receptor agonists, NPY5 or NPY2 antagonists or B3-agonists such as SB-418790 or AD-9677 and agonists of the 5HT2c receptor.

Moreover, combinations with drugs for influencing high blood pressure, chronic heart failure or atherosclerosis such 30 as e.g. A-II antagonists or ACE inhibitors, ECE inhibitors, diuretics, β-blockers, Ca-antagonists, centrally acting antihypertensives, antagonists of the alpha-2-adrenergic receptor, inhibitors of neutral endopeptidase, thrombocyte aggregation inhibitors and others or combinations thereof are suitable. 35 Examples of angiotensin II receptor antagonists are candesartan cilexetil, potassium losartan, eprosartan mesylate, valsartan, telmisartan, irbesartan, EXP-3174, L-158809, EXP-3312, olmesartan, medoxomil, tasosartan, KT-3-671, GA-0113, RU-64276, EMD-90423, BR-9701, etc. Angio- 40 tensin II receptor antagonists are preferably used for the treatment or prevention of high blood pressure and complications of diabetes, often combined with a diuretic such as hydrochlorothiazide.

A combination with uric acid synthesis inhibitors or urico- 45 surics is suitable for the treatment or prevention of gout.

A combination with GABA-receptor antagonists, Na-channel blockers, topiramat, protein-kinase C inhibitors, advanced glycation end product inhibitors or aldose reductase inhibitors may be used for the treatment or prevention of 50 complications of diabetes.

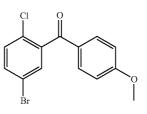
The dosage for the combination partners mentioned above is usefully 1/5 of the lowest dose normally recommended up to 1/1 of the normally recommended dose.

Therefore, in another aspect, this invention relates to the 55 use of a compound according to the invention or a physiologically acceptable salt of such a compound combined with at least one of the active substances described above as a combination partner, for preparing a pharmaceutical composition which is suitable for the treatment or prevention of diseases or 60 conditions which can be affected by inhibiting the sodiumdependent glucose cotransporter SGLT. These are preferably metabolic diseases, particularly one of the diseases or conditions listed above, most particularly diabetes or diabetic complications. 65

The use of the compound according to the invention, or a physiologically acceptable salt thereof, in combination with

another active substance may take place simultaneously or at staggered times, but particularly within a short space of time. If they are administered simultaneously, the two active substances are given to the patient together; while if they are used at staggered times the two active substances are given to the patient within a period of less than or equal to 12 hours, but particularly less than or equal to 6 hours.

Consequently, in another aspect, this invention relates to a pharmaceutical composition which comprises a compound according to the invention or a physiologically acceptable salt of such a compound and at least one of the active substances described above as combination partners, optionally together with one or more inert carriers and/or diluents.


Thus, for example, a pharmaceutical composition according to the invention comprises a combination of a compound of formula I according to the invention or a physiologically acceptable salt of such a compound and at least one angiotensin II receptor antagonist optionally together with one or more inert carriers and/or diluents.

The compound according to the invention, or a physiologically acceptable salt thereof, and the additional active substance to be combined therewith may both be present together in one formulation, for example a tablet or capsule, or separately in two identical or different formulations, for example as a so-called kit-of-parts.

In the foregoing and following text, H atoms of hydroxyl groups are not explicitly shown in every case in structural formulae. The Examples that follow are intended to illustrate the present invention without restricting it:

Preparation of the Starting Compounds:

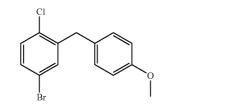
EXAMPLE I

(5-bromo-2-chloro-phenyl)-(4-methoxy-phenyl)methanone

38.3 ml oxalyl chloride and 0.8 ml of dimethylformamide are added to a mixture of 100 g of 5-bromo-2-chloro-benzoic acid in 500 ml dichloromethane. The reaction mixture is stirred for 14 h, then filtered and separated from all volatile constituents in rotary evaporator. The residue is dissolved in 150 ml dichloromethane, the solution is cooled to -5° C., and 46.5 g of anisole are added. Then 51.5 g of aluminium trichloride are added batchwise so that the temperature does not exceed 5° C. The solution is stirred for another 1 h at 1-5° C. and then poured onto ice. The organic phase is separated off and the aqueous phase is extracted another three times with dichloromethane. The combined organic phases are washed with aqueous 1 M hydrochloric acid, twice with 1 M sodium hydroxide solution and with saturated sodium chloride solution. Then the organic phase is dried, the solvent is removed and the residue is recrystallised from ethanol.

Yield: 86.3 g (64% of theory) Mass spectrum (ESI⁺): m/z=325/327/329 (Br+Cl) [M+H]⁺

10


15

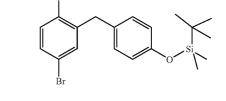
40

45

50

28 EXAMPLE IV

washed twice with 2 M potassium hydroxide solution and


once with aqueous sodium chloride solution and then dried

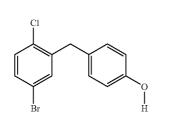
over sodium sulphate. After the solvent has been evaporated,

EXAMPLE III

the residue is washed with ethanol and dried at 60° C.

m/z=310/312/314 (Br+CI) [M+H]+

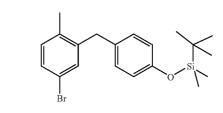
[4-(5-bromo-2-chloro-benzyl)-phenoxy]-tert-butyl-


dimethyl-silane A solution of 86.2 g (5-bromo-2-chloro-phenyl)-(4-methoxy-phenyl)-methanone and 101.5 ml triethylsilane in 75 ml A solution of 13.9 g 4-(5-bromo-2-chloro-benzyl)-phenol dichloromethane and 150 ml acetonitrile is cooled to 10° C. in 140 ml dichloromethane is cooled in an ice bath. Then 7.54 Then with stirring 50.8 ml of boron trifluoride etherate are 20 g tert-butyldimethylsilylchloride in 20 ml dichloromethane added so that the temperature does not exceed 20° C. The are added followed by 9.8 ml triethylamine and 0.5 g 4-dimsolution is stirred for 14 h at ambient temperature, before ethylaminopyridine. The solution is stirred for 16 h at ambianother 9 ml triethylsilane and 4.4 ml boron trifluoride etherate are added. The solution is stirred for a further 3 h at 45-50° 25 C. and then cooled to ambient temperature. A solution of 28 g potassium hydroxide in 70 ml of water is added and the mixture is stirred for 2 h. Then the organic phase is separated off and the aqueous phase is extracted another three times

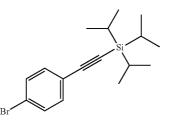
ent temperature and then diluted with 100 ml dichloromethane. The organic phase is washed twice with aqueous 1 M hydrochloric acid and once with aqueous sodium hydrogen carbonate solution and then dried over sodium sulphate. After the solvent has been eliminated the residue is filtered through silica gel (cyclohexane/ethyl acetate 100:1). with diisopropylether. The combined organic phases are 30

Yield: 16.8 g (87% of theory) Mass spectrum (EI): m/z=410/412/414 (Br+Cl) [M]+

The following compound may be obtained analogously to Example IV


(1) [4-(5-bromo-2-methyl-benzyl)-phenoxy]-tert-butyl-dim-Yield: 50.0 g (61% of theory) Mass spectrum (ESI⁺): 35 ethyl-silane

4-(5-bromo-2-chloro-benzyl)-phenol


A solution of 14.8 g 4-bromo-1-chloro-2-(4-methoxy-benzyl)-benzene in 150 ml dichloromethane is cooled in an ice 55 bath. Then 50 ml of a 1 M solution of boron tribromide in dichloromethane are added, and the solution is stirred for 2 h at ambient temperature. The solution is then cooled in an ice bath again, and saturated potassium carbonate solution is added dropwise. At ambient temperature the mixture is 60 adjusted with aqueous 1 M hydrochloric acid to a pH of 1, the organic phase is separated off and the aqueous phase is extracted another three times with ethyl acetate. The combined organic phases are dried over sodium sulphate, and the solvent is removed completely. 65

Yield: 13.9 g (98% of theory) Mass spectrum (ESI-): m/z=295/297/299 (Br+Cl) [M-H]-

Mass spectrum (EI): m/z=390/392 (Br) [M]+

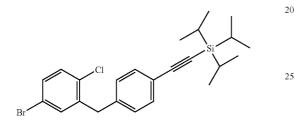
EXAMPLE V

1-bromo-4-triisopropylsilylethynyl-benzene

Under argon 11.6 ml triisopropylacetylen and 14.4 ml triethylamine followed by 0.2 g copper iodide and 0.73 g bis-

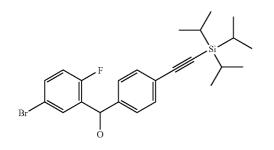
15

(triphenylphosphine)-palladium dichloride are added to an oxygen-free solution of 15.0 g 1-bromo-4-iodo-benzene in 150 ml dry tetrahydrofuran. The solution is stirred for 16 h at ambient temperature and then filtered through Celite and evaporated down.


The residue is chromatographed through silica gel (cyclohexane).

Yield: 17.4 g (100% of theory) Mass spectrum (ESI⁺): m/z=336/338 (Br) [M]⁺

The following compound may be obtained analogously to Example V:

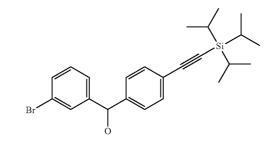

(1) [4-(5-bromo-2-chloro-benzyl)-phenylethynyl]-triisopropyl-silane

4-bromo-1-chloro-2-(4-iodo-benzyl)-benzene is used as starting material

This compound may also be obtained according to 30 Example X.

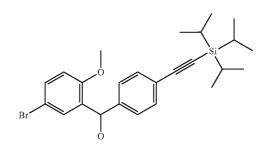
EXAMPLE VI

(5-bromo-2-fluoro-phenyl)-[4-[(triisopropylsilyl)ethynyl]-phenyl]-methanol

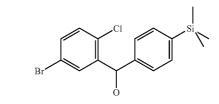

33.8 ml of a 1.6 M solution of n-butyllithium in hexane are added dropwise under argon to a solution of 17.4 g 1-bromo-4-triisopropylsilylethynyl-benzene in 120 ml dry tetrahydro-55 furan chilled to -78° C. The solution is stirred for 1 h at -70° C. Then 10.8 g 5-bromo-2-fluoro-benzaldehyde dissolved in 30 ml of tetrahydrofuran are added dropwise over 15 min. The resulting solution is left in the cooling bath to warm up overnight to ambient temperature. Then water is added and the mixture is extracted with ethyl acetate. The combined organic phase are dried over sodium sulphate, and the solvent is removed. The residue is purified through silica gel (cyclohexane/ethyl acetate 4:1).

Yield: 14.3 g (60% of theory) Mass spectrum (ESI⁺): m/z=461/463 (Br) $[M+H]^+$

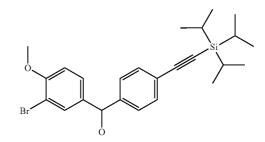
30


The following compounds may be obtained analogously to Example VI:

(1) (3-bromo-phenyl)-{4-[(triisopropylsilyl)-ethynyl]-phe-5 nyl}-methanol


Mass spectrum (ESI⁻): m/z=487/489 (Br) [M+HCOO]⁻

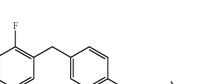
(2) (5-bromo-2-methoxy-phenyl)-{4-[(triisopropylsilyl)ethynyl]-phenyl}-methanol



Mass spectrum (ESI⁺): m/z=473/475 (Br) [M+H]⁺

(3) (5-Bromo-2-chloro-phenyl)-(4-trimethylsilyl-phenyl)methanol

(4) (3-bromo-4-methoxy-phenyl)-{4-[(triisopropylsilyl)ethynyl]-phenyl}-methanol

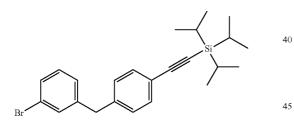


Mass spectrum (ESI⁻): m/z=517/519 (Br) [M+HCOO]⁻

40

45

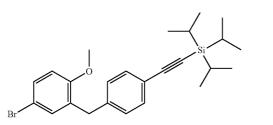
10

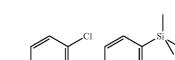

[4-(5-bromo-2-fluoro-benzyl)-phenylethynyl]-triisopropyl-silane

A solution of 5.6 g (5-bromo-2-fluoro-phenyl)-{4-[(triisopropylsily)-ethynyl]-phenyl}-methanol and 4.1 ml triethylsilane in 50 ml dichloromethane is cooled in an ice bath. Then 4.7 ml trifluoroacetic acid are slowly added dropwise, and the solution is stirred for 4 h at ambient temperature. The solution is diluted with dichloromethane and washed with aqueous sodium hydrogen carbonate solution. After drying over sodium sulphate the solvent is removed and the residue is purified using silica gel (cyclohexane).

Yield: 2.6 g (48% of theory) Mass spectrum (EI): m/z=445/-30447 (Br) $[M]^+$

The following compounds may be obtained analogously to Example VII:

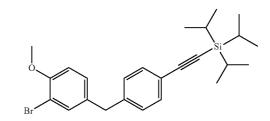

(1) [4-(3-bromo-benzyl)-phenylethynyl]-triisopropyl-silane ³⁵


Mass spectrum (ESI⁺): m/z=427/429 (Br) [M+H]⁺

(2) [4-(5-bromo-2-methoxy-benzyl)-phenylethynyl]-triiso- ₅₀ propyl-silane

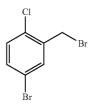
In a departure from the process described hereinbefore the reaction solution is stirred in an ice bath instead of at ambient temperature until the reaction is complete.

Mass spectrum (ESI⁺): m/z=457/459 (Br) [M+H]⁺



32

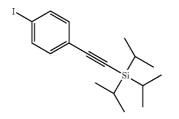
(3) [4-(5-Bromo-2-chloro-benzyl)-phenyl]-trimethyl-silane


(4) [4-(3-bromo-4-methoxy-benzyl)-phenylethynyl]-triisopropyl-silane

In a departure from the process described hereinbefore the reaction solution is stirred in an ice bath instead of at ambient 15 temperature until the reaction is complete.

Mass spectrum (ESI⁺): m/z=457/459 (Br) [M+H]⁺

EXAMPLE VIII



4-bromo-2-brommethyl-1-chloro-benzene

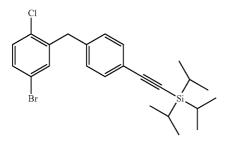
4.0 g N-bromosuccinimide are slowly added to a solution of 5.0 g of 4-bromo-1-chloro-2-hydroxymethyl-benzene and 5.9 g triphenylphosphine in 50 ml of tetrahydrofuran chilled to 5° C. After 1 h stirring at ambient temperature the precipitate is filtered off and the solvent is eliminated in vacuo. The residue is purified through silica gel (cyclohexane/ethyl acetate 50:1).

Yield: 4.9 g (76% of theory) Mass spectrum (EI): m/z=282/ 284/286 (Br+Cl) [M]⁺

EXAMPLE IX

65

60

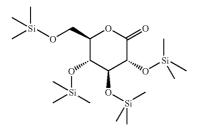

25

(4-iodo-phenylethynyl)-triisopropyl-silane

Under argon 18.0 g sodium iodide (dry), 0.6 g copper iodide and 0.8 g N,N'-dimethyl-cyclohexane-1,2-diamine are added to a solution of 20.0 g (4-bromo-phenylethynyl)-triiso-⁵ propyl-silane. The solution is refluxed with stirring for 24 h and then cooled to ambient temperature. 1% ammonia solution (100 ml) is added and the mixture is extracted with ethyl acetate. After drying over sodium sulphate the solvent is removed and the residue is purified using silica gel (cyclo-¹⁰ hexane).

Yield: 21.0 g (92% of theory) Mass spectrum (EI): $m/z=384 \text{ [M]}^+$

EXAMPLE X

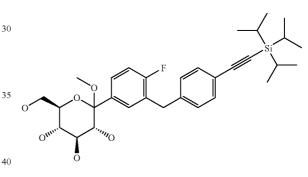


[4-(5-bromo-2-chloro-benzyl)-phenylethynyl]-triisopropyl-silane

Under argon 0.66 ml of a 2 M solution of isopropylmagnesium chloride in tetrahydrofuran are added dropwise to a solution of 0.50 g (4-iodo-phenylethynyl)-triisopropyl-silane in 2.2 ml dry tetrahydrofuran chilled to -25° C. The solution 35 is stirred for 30 min at -25° C. and then combined with 0.26 ml of a 1 M solution of CuCN*2 LiCl in tetrahydrofuran (prepared by dissolving CuCN and LiCl in the ratio 1:2). Shortly afterwards, 0.35 g 4-bromo-2-bromomethyl-1-chlorbenzene are added and the reaction mixture is brought up to $_{40}$ -5° C. in the cooling bath. After 6 h stirring at -5° C. the solution is heated to ambient temperature and stirred overnight. Then a mixture of saturated ammonium chloride solution and 25% ammonia solution (9:1) is added and the resulting mixture is added to water. The organic phase is separated 45 off and the aqueous phase is extracted with ethyl acetate, the combined organic phases are dried over sodium sulphate, and the solvent is removed. The residue is purified through silica gel (cyclohexane).

Yield: 0.28 g (50% of theory) Mass spectrum (EI): 50 m/z=461/463/465 (Br+CI) $[M+H]^+$

EXAMPLE XI



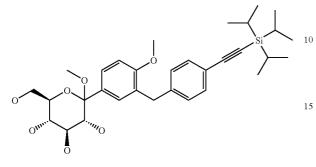
2,3,4,6-tetrakis-O-(trimethylsilyl)-D-glucopyranone

A solution of 20 g D-glucono-1,5-lactone and 98.5 ml N-methylmorpholine in 200 ml of tetrahydrofuran is cooled to -5° C. Then 85 ml trimethylsilylchloride are added drop-wise so that the temperature does not exceed 5° C. The solution is then stirred for 1 h at ambient temperature, 5 h at 35° C. and again for 14 h at ambient temperature. After the addition of 300 ml of toluene the solution is cooled in an ice bath, and 500 ml of water are added so that the temperature does not exceed 10° C. The organic phase is then separated off and washed in each case once with aqueous sodium dihydrogen phosphate solution. The solvent is removed and the residue is azeotropically dried with toluene.

Yield: 52.5 g (approx. 90% pure) Mass spectrum (ESI⁺): $^{20}\,$ m/z=467 [M+H]+

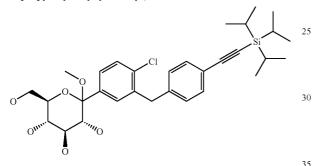
EXAMPLE XII

1-fluoro-4-(1-methoxy-D-glucopyranos-1-yl)-2-(4triisopropylsilylethynyl-benzyl)-benzene


A solution of 4.46 g [4-(5-bromo-2-fluoro-benzyl)-phenylethynyl]-triisopropyl-silane in 30 ml dry diethyl ether is cooled to -80° C. under argon. 11.8 ml of a 1.7 M solution of tert-butyllithium in pentane are slowly added dropwise to the cooled solution, and then the solution is stirred for 45 min at -80° C. Then a solution of 5.19 g of 2,3,4,6-tetrakis-O-(tri-55 methylsilyl)-D-glucopyranone in 50 ml diethyl ether, chilled to -80° C., is added dropwise to this solution through a transfer needle. The resulting solution is stirred for 3 h at -78° C. Then a solution of 1.7 ml methanesulphonic acid in 50 ml 60 of methanol is added, the cooling bath is removed and the solution is stirred for 16 h at ambient temperature. The solution is then neutralised with ethyldiisopropylamine and evaporated down to dryness. The residue is purified through silica gel (dichloromethane/methanol 50:1->4:1).

Yield: 2.8 g (50% of theory) Mass spectrum (ESI⁺): $m/z=576 [M+NH_4]^+$

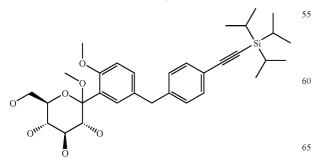
The following compounds may be obtained analogously to Example XII:

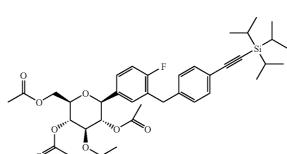

(1) 1-methoxy-4-(1-methoxy-D-glucopyranos-1-yl)-2-(4-triisopropylsilylethynyl-benzyl)-benzene

Advantageously the reaction mixture is quenched with ⁵ acetic acid instead of methanesulphonic acid.

Mass spectrum (ESI⁺): m/z=588 [M+NH₄]⁺

(2) 1-chloro-4-(1-methoxy-D-glucopyranos-1-yl)-2-(4-triisopropylsilylethynyl-benzyl)-benzene

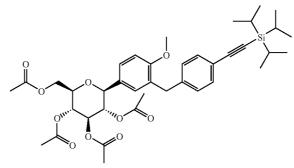



Mass spectrum (ESI⁺): m/z=592/594 (CI) [M+NH₄]⁺ (3) 1-methyl-4-(1-methoxy-D-glucopyranos-1-yl)-2-[4-(tert-butyl-dimethyl-silyloxy)-benzyl]-benzene

Mass spectrum (ESI⁺): m/z=522 [M+NH₄]⁺ (4) 1-methoxy-2-(1-methoxy-D-glucopyranos-1-yl)-4-(4triisopropylsilylethynyl-benzyl)-benzene

Advantageously the reaction mixture is quenched with acetic acid instead of methanesulphonic acid.

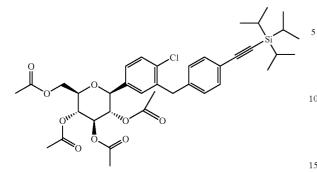
1-fluoro-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-(4-triisoprolysilylethynyl-benzyl)-benzene


ö

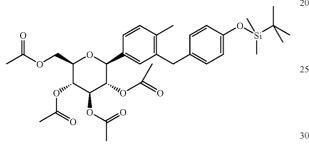
A solution of 0.8 g 1-fluoro-4-(1-methoxy-D-glucopyranos-1-yl)-2-(4-triisopropylsilylethynyl-benzyl)-benzene and 0.5 ml triethylsilane in 6 ml dichloromethane and 10 ml acetonitrile is cooled to -10° C. 0.27 ml boron trifluoride etherate are added dropwise to the cooled solution. The solu-³⁰ tion is then stirred for 3 h in an ice bath. Aqueous sodium hydrogen carbonate solution is added to the solution and then the mixture is extracted with ethyl acetate. The organic phase is dried over sodium sulphate, the solvent is removed and the residue is taken up in 6 ml dichloromethane. Then 1.2 ml of pyridine, 1.3 ml of acetic anhydride and 8 mg of 4-dimethylaminopyridine are added. The solution is stirred for 1 h at ambient temperature and then combined with water. The mixture is extracted with dichloromethane, the organic phase is washed with 1 M hydrochloric acid and dried over sodium sulphate. After the solvent has been eliminated the residue is chromatographed through silica gel (cyclohexane/ethyl acetate 4:1->1:1).

Yield: 0.23 g (23% of theory) Mass spectrum (ESI⁺): $^{45}\ m/z{=}714\ [M{+}NH_4]^+$

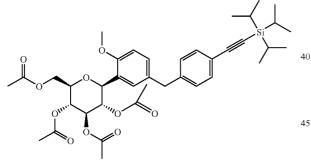
The following compounds may be obtained analogously to Example XIII:


(1) 1-methoxy-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos ⁵⁰ 1-yl)-2-(4-triisopropylsilylethynyl-benzyl)-benzene

Mass spectrum (ESI⁺): m/z=726 [M+NH₄]⁺

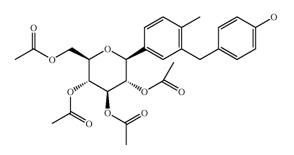

Mass spectrum (ESI⁺): m/z=588 [M+NH₄]⁺

36 EXAMPLE XIII (2) 1-chloro-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-(4-triisopropylsilylethynyl-benzyl)-benzene



Mass spectrum (ESI⁺): m/z=730/732 (CI) [M+NH₄]⁺

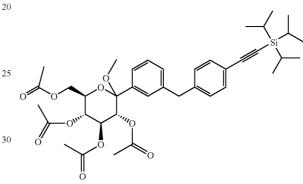
(3) 1-methyl-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-[4-(tert-butyl-dimethyl-silyloxy)-benzyl]-benzene



Mass spectrum (ESI⁺): m/z=660 [M+NH₄]⁺

Mass spectrum (ESI⁺): m/z=726 [M+NH₄]⁺

EXAMPLE XIV

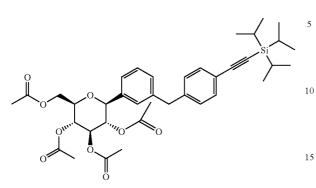

1-methyl-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-(4-hydroxy-benzyl)-benzene

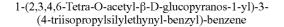
2.02 ml of a 1 M solution of tetrabutylammoniumfluoride in tetrahydrofuran are added to a solution of 1.3 g 1-methyl-4 (2.2.4 f tetra O control β D chooreverse 1 ml) 2 [4

4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-[4-(tert-butyl-dimethyl-silyloxy)-benzyl]-benzene and 0.12 ml acetic acid in 10 ml of tetrahydrofuran. The solution is stirred for 30 mm at ambient temperature, and then 50 ml ethyl
10 acetate and 10 ml water are added. The organic layer is separated, washed with aqueous NaHCO₃ solution, and dried over MgSO₄. After removal of the solvent, the residue is recrystallized from ethyl acetate and petrol ether.

Yield: 0.90 g (84% of theory) Mass spectrum (ESI⁺): 15 m/z=546 [M+NH₄]⁺

EXAMPLE XV

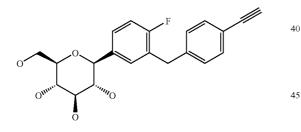



1-(2,3,4,6-Tetra-O-acetyl-1-methoxy-D-glucopyranos-1-yl)-3-(4-triisopropylsilylethynyl-benzyl)-benzene

A solution of 2.6 g [4-(3-bromo-benzyl)-phenylethynyl]triisopropyl-silane in 20 ml dry diethyl ether is cooled to -80° C. under argon. 7.9 ml of a 1.7 M solution of tert-butyllithium in pentane are slowly added dropwise to the cooled solution, and then the solution is stirred for 30 min at -80° C. A solution 45 of 3.2 g 2,3,4,6-tetrakis-O-(trimethylsilyl)-D-glucopyranone in 30 ml diethyl ether chilled to -80° C. is then added dropwise to this solution through a transfer needle. The resulting solution is stirred for 2 h at -78° C. and then another solution of 1.0 g 2,3,4,6-tetrakis-O-(trimethylsilyl)-D-glucopyranone 50 in 10 ml diethyl ether chilled to -80° C. is added dropwise. After another hour's stirring at -78° C. a solution of 2 ml methanesulphonic acid in 20 ml of methanol is added, the cooling bath is removed and the solution is stirred for 16 h at ambient temperature. The solution is then neutralised with 55 ethyldiisopropylamine, the solvent is removed completely and the residue is taken up in 50 ml of toluene. 8.5 ml ethyldiisopropylamine are added, and the solution is cooled in an ice bath. Then 4.3 ml acetic anhydride and 0.15 g 4-dimethylaminopyridine are added. The solution is stirred for 2 h at 60 ambient temperature and then combined with aqueous sodium hydrogen carbonate solution. After extraction with ethyl acetate, the combined organic phases are dried over sodium sulphate, and the solvent is removed. The residue is chromatographed through silica gel (cyclohexane/ethyl 65 acetate 4:1->1:3).

Yield: 2.0 g (46% of theory) Mass spectrum (ESI⁺): $m/z=726 [M+NH_4]^+$

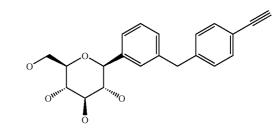
50



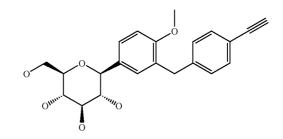
1.2 ml triethylsilane and 0.36 ml boron trifluoride etherate are added dropwise to an ice-cooled solution of 1.0 g 1-(2,3, 4,6-tetra-O-acetyl-1-methoxy-D-glucopyranos-1-yl)-3-(4triisopropylsilylethynyl-benzyl)-benzene and 25 μ l water in 10 ml acetonitrile. The solution is then stirred for 3 h in an ice bath and for 1 h at ambient temperature. Then the solution is again cooled in an ice bath, and another 1.2 ml triethylsilane and 0.36 ml boron trifluoride etherate are added. The solution is stirred for a further 0.5 h in an ice bath and 2 h at ambient temperature. Aqueous sodium hydrogen carbonate solution is 30 then added to the reaction solution, and the resulting solution is extracted with ethyl acetate. The organic phase is dried over sodium sulphate and the solvent is removed.

Yield: 0.78 g (81% of theory) Mass spectrum (ESI⁺): $m/z=696 [M+NH_4]^+$

EXAMPLE XVII

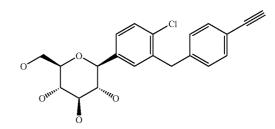

1-fluoro-4-(β-D-glucopyranos-1-yl)-2-(4-ethynylbenzyl)-benzene

0.33 ml of a 1 M solution of tetrabutylammoniumfluoride in tetrahydrofuran are added to a solution of 0.23 g 1-fluoro-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-(triisopropylsilylethynyl-benzyl)-benzene in 1.5 ml of tetrahydro-55 furan. The solution is stirred for 1 h at ambient temperature. Then 1 ml of methanol and 1.5 ml of 4 M potassium hydroxide solution are added and the solution is stirred for a further hour at ambient temperature. The solution is neutralised with 1 M hydrochloric acid and then the methanol is evaporated 60 off. The residue is combined with aqueous sodium chloride solution and extracted with ethyl acetate. The organic extracts collected are dried over sodium sulphate, and the solvent is removed. The residue is chromatographed through silica gel (dichloromethane/methanol 19:1->2:1). 65

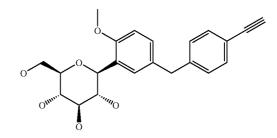

Yield: 0.060 g (49% of theory) Mass spectrum (ESI⁺): $m/z=390 [M+NH_4]^+$

The following compounds may be obtained analogously to Example XVII:

(1) $1-(\beta-D-glucopyranos-1-yl)-3-(4-ethynyl-benzyl)-benzene$

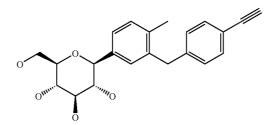


Mass spectrum (ESI⁺): m/z=372 [M+NH₄]⁺ (2) 1-methoxy-4-(β -D-glucopyranos-1-yl)-2-(4-ethynyl-benzyl)-benzene

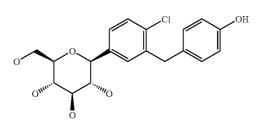

Mass spectrum (ESI⁺): $m/z=402 [M+NH_4]^+$

 $_{35}$ (3) 1-chloro-4-(β -D-glucopyranos-1-yl)-2-(4-ethynyl-benzyl)-benzene

Mass spectrum (ESI⁺): m/z=406/408 (CI) [M+NH₄]⁺ This compound may also be synthesized analogously to Example XXI


(4) $2-(\beta-D-glucopyranos-1-yl)-1$ -methoxy-4-(4-ethynyl-benzyl)-benzene

Mass spectrum (ESI⁺): m/z=402 [M+NH₄]⁺

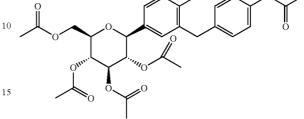

20

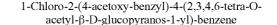
(5) $1-(\beta$ -D-glucopyranos-1-yl)-3-(4-ethynyl-benzyl)-4-me-thyl-benzene

Mass spectrum (ESI⁺): m/z=386 [M+NH₄]⁺

EXAMPLE XVIII

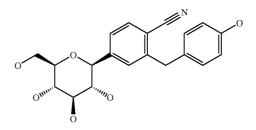



1-chloro-4-(β-D-glucopyranos-1-yl)-2-(4-hydroxybenzyl)-benzene


A solution of 4.0 g [4-(5-bromo-2-chloro-benzyl)-phe- 35 noxy]-tert-butyl-dimethyl-silane in 42 ml dry diethyl ether is cooled to -80° C. under argon. 11.6 ml of a 1.7 M solution of tert-butyllithium in pentane are slowly added dropwise to the cooled solution, and then the solution is stirred for 30 min at -80° C. This solution is then added dropwise through a trans- 40 fer needle, which is cooled with dry ice, to a solution of 4.78 g 2,3,4,6-tetrakis-O-(trimethylsilyl)-D-glucopyranone in 38 ml diethyl ether chilled to -80° C. The resulting solution is stirred for 3 h at -78° C. Then a solution of 1.1 ml methanesulphonic acid in 35 ml of methanol is added and the solution 45 is stirred for 16 h at ambient temperature. The solution is then neutralised with solid sodium hydrogen carbonate, ethyl acetate is added and the methanol is removed together with the ether. Aqueous sodium hydrogen carbonate solution is added to the remaining solution that is extracted four times 50 with ethyl acetate. The organic phases are dried over sodium sulphate and evaporated down. The residue is dissolved in 30 ml acetonitrile and 30 ml dichloromethane and the resulting solution is cooled to -10° C. After the addition of 4.4 ml triethylsilane 2.6 ml boron trifluoride etherate are added drop-55 wise so that the temperature does not exceed -5° C. After the addition has ended the solution is stirred for another 5 h at -5to -10° C. and then quenched by the addition of aqueous sodium hydrogen carbonate solution. The organic phase is separated off and the aqueous phase is extracted four times 60 with ethyl acetate. The combined organic phase are dried over sodium sulphate, the solvent is removed and the residue is purified using silica gel. The product then obtained is an approx. 6:1 mixture of β/α which can be converted into the pure β -anomer by total acetylation of the hydroxy groups 65 with acetic anhydride and pyridine in dichloromethane and recrystallising the product in ethanol. The product thus

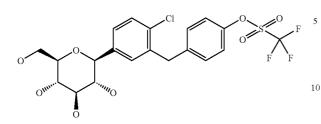
obtained is converted into the title compound by reacting in methanol with 4 M potassium hydroxide solution.

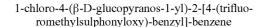
Yield: 1.6 g (46% of theory) Mass spectrum (ESI⁺): m/z=398/400 (CI) [M+H]⁺



To a solution of 14.6 g 1-chloro-2-(4-hydroxy-benzyl)-4-(β-D-glucopyranos-1-yl)-benzene in 200 mL dichloromethane is added in succession 36 mL pyridine, 40 mL acetic anhydride and 400 mg 4-dimethylaminopyridine. The reaction solution is stirred at ambient temperature for 4 h. The solution is diluted with 100 mL dichloromethane, washed twice with 300 mL 1 M hydrochloric acid and once with aqueous sodium hydrogen carbonate solution. After drying over sodium sulfate, the solvent is evaporated and the residue is recrystallized from ethanol.

Yield: 18.5 g (82% of theory) Mass spectrum (ESI⁺): m/z=608/610 (CI) [M+NH₄]⁺

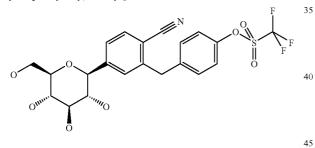

EXAMPLE XX



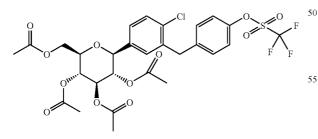
1-Cyano-2-(4-hydroxy-benzyl)-4-(β-D-glucopyranos-1-yl)-benzene

A mixture of 200 mg 1-chloro-2-(4-acetoxy-benzyl)-4-(2, 3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-benzene, 35 mg sodium cyanide and 75 mg nickel bromide in 0.5 mL N-methyl-2-pyrrolidinone is heated in a microwave oven at 220° C. for 15 min. After cooling to room temperature, water is added and the resultant mixture is extracted with ethyl acetate. After drying over sodium sulfate and evaporation of the solvent, the residue is dissolved in 3 mL methanol. 3 mL of 4 M aqueous potassium hydroxide solution is added and the reaction solution is stirred at ambient temperature for 3 h. The solution is neutralized with 1 M hydrochloric acid and the methanol is evaporated. The residue is extracted with ethylacetate, the combined extracts are dried over sodium sulfate and the solvent is removed under reduced pressure. The residue is purified by HPLC on reversed phase (YMC C18; water/acetonitrile 95:5->1:99).

Yield: 35 mg (27% of theory) Mass spectrum (ESI⁺): $m/z=389 [M+NH_4]^+$



10 mg 4-dimethylaminopyridine are added to a solution of 0.38 g 1-chloro-4-(β -D-glucopyranos-1-yl)-2-(4-hydroxybenzyl)-benzene, 0.21 ml triethylamine and 0.39 g N,N-bis-²⁰ (trifluoromethanesulphonyl)-aniline in 10 ml dry dichloromethane. The solution is stirred for 4 h at ambient temperature and then combined with aqueous sodium chloride solution. It is extracted with ethyl acetate, the organic extracts are dried over sodium sulphate, and the solvent is ²⁵ removed. The residue is chromatographed through silica gel (dichloromethane/methanol 1:0->4:1).

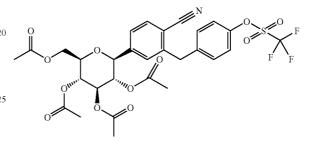

Yield: 0.33 g (64% of theory) Mass spectrum (ESI⁺): m/z=530/532 (CI) [M+NH₄]⁺

The following compound may be obtained analogously to ³⁰ Example XXI:

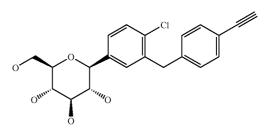
(1) 1-cyano-4-(β-D-glucopyranos-1-yl)-2-[4-(trifluoromethylsulphonyloxy)-benzyl]-benzene

EXAMPLE XXII

1-chloro-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-[4-(trifluoromethylsulfonyloxy)-benzyl]benzene


To a solution of 5.6 g 1-chloro-4- $(\beta$ -D-glucopyranos-1-yl)-2-[4-(trifluoromethylsulfonyloxy)-benzyl]-benzene in 75 44

mL dichloromethane is added consecutively 7 mL pyridine, 7.8 mL acetic anhydride and 0.12 g 4-dimethylaminopyridine. The solution is stirred at ambient temperature for 1 h. After adding 50 mL of water, the resultant mixture is stirred for another 5 min. The organic phase is separated and washed with aqueous 1 M hydrochloric acid and aqueous sodium hydrogen carbonate solution. After drying over magnesium sulfate and evaporation of the organic solvent, the product is yielded as white solid.


Yield: 7.0 g (94% of theory) Mass spectrum (ESI⁺): m/z=698/700 (CI) $[M+NH_4]^+$

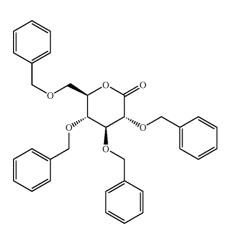
The following compound may be obtained analogously to Example XXII:

(1) 1-cyano-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-[4-(trifluoromethylsulfonyloxy)-benzyl]-benzene

EXAMPLE XXIII

1-chloro-4-(β-D-glucopyranos-1-yl)-2-(4-ethynylbenzyl)-benzene

25 mg of copper iodide, 44 mg of bis-(triphenylphosphine)-palladium dichloride, 0.30 ml triethylamine and finally 0.14 ml of trimethylsilylacetylene are added under argon to a solution of 0.32 g 1-chloro-4-(β-D-glucopyranos-1-yl)-2-[4-(trifluoromethylsulphonyloxy)-benzyl]-benzene in 3 ml of dimethylformamide. The flask is tightly sealed and stirred for 8 h at 90° C. Then another 25 mg of bis-(triphenylphosphine)-palladium dichloride and 0.1 ml trimethylsilylacetylene are added, and the solution is stirred for a further 10 h at 90° C. Then aqueous sodium hydrogen carbonate solution is added, the mixture is extracted three times with 60 ethyl acetate, and the combined organic phases are dried over sodium sulphate. After the solvent has been eliminated the residue is dissolved in 5 ml of methanol and combined with 0.12 g potassium carbonate. The mixture is stirred for 1 h at ambient temperature and then neutralised with 1 M hydrochloric acid. Then the methanol is evaporated off, the residue 65 is combined with aqueous sodium chloride solution and extracted with ethyl acetate. The organic extracts collected

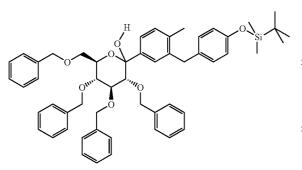

15

are dried over sodium sulphate, and the solvent is removed. The residue is chromatographed through silica gel (dichloromethane/methanol 1:0->5:1).

Yield: 0.095 g (40% of theory) Mass spectrum (ESI⁺): m/z=406/408 (CI) [M+NH₄]⁴

This compound may also be obtained according to Example XVII.

EXAMPLE XXIV

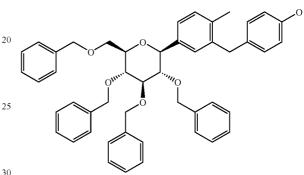


2,3,4,6-Tetra-O-benzyl-D-glucopyranone

4 g freshly activated molecular sieve 4 Å and 3.3 g N-me- 30 thylmorpholine-N-oxide are added to a solution of 10.0 g 2,3,4,6-tetra-O-benzyl-a-D-glucopyranose in 140 ml dichloromethane. The solution is stirred for 20 min at ambient temperature, before adding 0.3 g of tetrapropylammonium 35 perruthenate. After 2 h stirring at ambient temperature the solution is diluted with dichloromethane and filtered through Celite. The filtrate is washed with aqueous sodium thiosulphate solution and water and then dried over sodium sulphate. After the solvent has been eliminated the residue is chromato-4∩ graphed through silica gel (cyclohexane/ethyl acetate 4:1).

Yield: 8.2 g (82% of theory) Mass spectrum (ESI⁺): m/z=539 [M+H]

EXAMPLE XXV

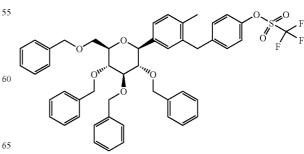

1-(2,3,4,6-Tetra-O-benzyl-1-hydroxy-D-glucopyranos-1-yl)-3-[4-(tert-butyl-dimethyl-silyloxy)-benzyl]-4-methyl-benzene

A solution of 0.34 g [4-(5-bromo-2-methyl-benzyl)-phenoxy]-tert-butyl-dimethyl-silane in 3 ml dry tetrahydrofuran 65 is cooled to -80° C. under argon. 0.54 ml of a 1.6 M solution of n-butyllithium in hexane are added dropwise to the cooled

solution, and the solution is stirred for 1.5 h at -78° C. A solution of 0.43 g 2,3,4,6-tetra-O-benzyl-D-glucopyranone in 2.5 ml of tetrahydrofuran chilled to -80° C. is added dropwise to this solution by means of transfer needle. The resulting solution is stirred for 5 h at -78° C. The reaction is quenched with a solution of 0.1 ml acetic acid in 1 ml of tetrahydrofuran and heated to ambient temperature. Then aqueous sodium hydrogen carbonate solution is added and the mixture is extracted four times with ethyl acetate. The 10 organic phases are dried over sodium sulphate and evaporated down. The residue is purified by chromatography on silica gel (cyclohexane/ethyl acetate 15:1->4:1).

Yield: 0.48 g (approx. 88% pure) Mass spectrum (ESI⁺): m/z=868 [M+H]*

EXAMPLE XXVI

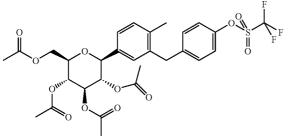


1-(2,3,4,6-tetra-O-benzyl-\beta-D-glucopyranos-1-yl)-3-(4-hydroxy-benzyl)-4-methyl-benzene

A solution of 0.48 g (approx. 88% pure) 1-(2,3,4,6-tetra-O-benzyl-1-hydroxy-D-glucopyranosyl)-3-[4-(tert-butyldimethyl-silyloxy)-benzyl]-4-methyl-benzene in 3.5 ml dry acetonitrile is cooled to -40° C. under argon. 0.13 ml triisopropylsilane and 0.08 ml boron trifluoride etherate are added dropwise to the cooled solution. The solution is stirred for 3 h at -35° C., before another 0.02 ml of triisopropylsilane and 0.01 ml of boron trifluoride etherate are added. After a further 2 h at -40° C. aqueous potassium carbonate is added and the solution is stirred for 1 h at ambient temperature. Then it is 45 diluted with water and extracted four times with ethyl acetate. The organic phase is dried over sodium sulphate, concentrated and chromatographed through silica gel (cyclohexane/ ethyl acetate 10:1->4:1).

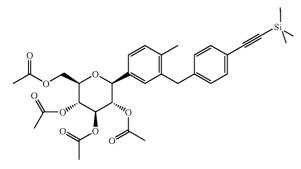
Yield: 0.24 g (68% of theory). Mass spectrum (ESI⁺): 50 m/z=738 [M+NH₄]*

EXAMPLE XXVII


1-(2,3,4,6-tetra-O-benzyl-β-D-glucopyranos-1-yl)-3-[4-(trifluoromethylsulphonyloxy)-benzyl]-4-methylbenzene

A solution of 0.62 g 1-(2,3,4,6-tetra-O-benzyl- β -D-glu- 5 copyranos-1-yl)-3-(4-hydroxy-benzyl)-4-methyl-benzene in 4.5 ml dry dichloromethane is cooled to -10° C. under argon. 0.14 ml of pyridine and a solution of 0.3 g trifluoromethane-sulphonic anhydride in 0.5 ml dichloromethane are added to the cooled solution. The solution is stirred for 0.5 h at -5 to 10 -10° C., before aqueous sodium hydrogen carbonate solution is added. The mixture is extracted three times with dichloromethane, the combined organic phases are washed with aqueous 1 M hydrochloric acid and dried over sodium sulphate. After the solvent has been eliminated the residue is 15 chromatographed through silica gel (cyclohexane/ethyl acetate 15:1->7:1).

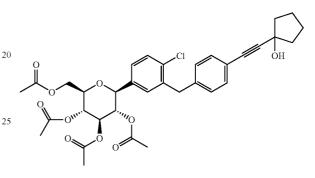
Yield: 0.62 g (84% of theory) Mass spectrum (ESI⁺): m/z=853 [M+H]⁺


The following compound may be obtained analogously to ²⁰ Example XXVII:

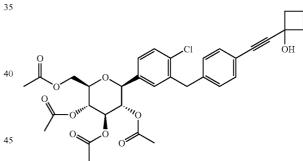
(1) 1-methyl-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-[4-(trifluoromethylsulfonyloxy)-benzyl]-benzene

Mass spectrum (ESI⁺): m/z=678 [M+NH₄]⁺

EXAMPLE XXVIII

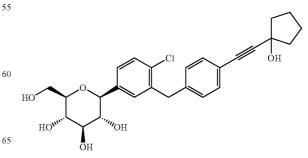

Under argon, 17.3 mg copper iodide, 31.9 mg bis-(triphenylphosphine)-palladium dichloride, 0.22 ml triethylamine and finally 0.19 ml trimethylsilylacetylene are added to a solution of 0.30 g 1-(2,3,4,6-tetra-O-acetyl- β -D-glucopyra- 65 nos-1-yl)-3-[4-(trifluoromethylsulfonyloxy)-benzyl]-4-methyl-benzene in 1.5 ml of dimethylformamide. The flask is

tightly sealed and stirred at 90° C. over night. After 4 h additional 20 mg bis-(triphenylphosphine)-palladium dichloride and 0.2 ml trimethylsilylacetylene are added, and the mixture is further stirred at 90° C. for 4 h. After cooling the reaction mixture to room temperature, the solvent is removed and the residue purified by chromatography on silica gel (cyclohexane/ethyl acetate 4:1->1:2).


Yield: 200 mg (72% of theory) Mass spectrum (ESI⁺): $m/z=626 [M+H]^+$

The following compounds may be obtained analogously to Example XXVIII:

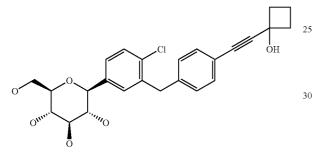
(1) 1-Chloro-4-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranos-1-yl)-2-{4-[(1-hydroxy-cyclopentyl)-ethynyl]-benzyl}-benzene



Mass spectrum (ESI⁺): m/z=658/660 (CI) [M+NH₄]⁺
 (2) 1-Chloro-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-{4-[(1-hydroxy-cyclobutyl)-ethynyl]-benzyl}-benzene

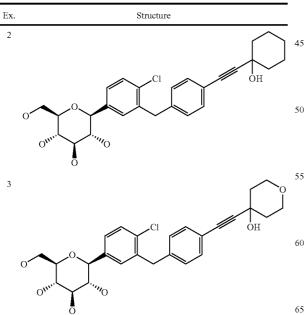
Mass spectrum (ESI⁺): m/z=644/646 (CI) [M+NH₄]⁺ 50 Preparation of the End Compounds:

EXAMPLE 1

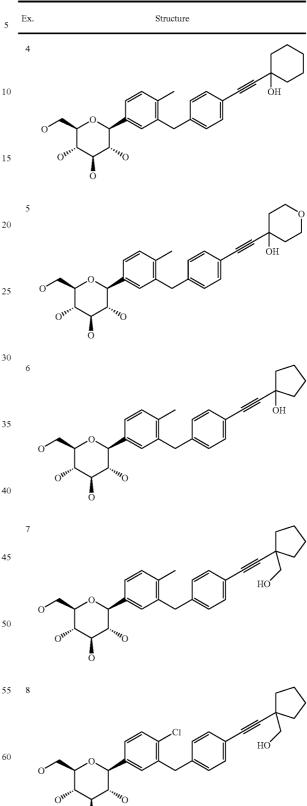

1-Chloro-4-(β-D-glucopyranos-1-yl)-2-{4-[(1-hydroxy-cyclopentyl)-ethynyl]-benzyl}-benzene

To a solution of 0.73 g 1-chloro-4-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranos-1-yl)-2-[4-(1-hydroxy-cyclopentyl-ethynyl)-benzyl]-benzene in 4 mL methanol and 2 mL tetrahydrofuran is added 5.1 mL of a 1 M solution of sodium hydroxide in water. The reaction solution is stirred at ambient temperature for 1 h and then neutralized with 1 M hydrochloric acid. The solvent is removed and brine is added to the 10 residue. The resulting mixture is extracted with ethyl acetate and the combined organic extracts are washed with water and brine and dried over sodium sulfate. After removal of the solvent in vacuo the product is yielded.

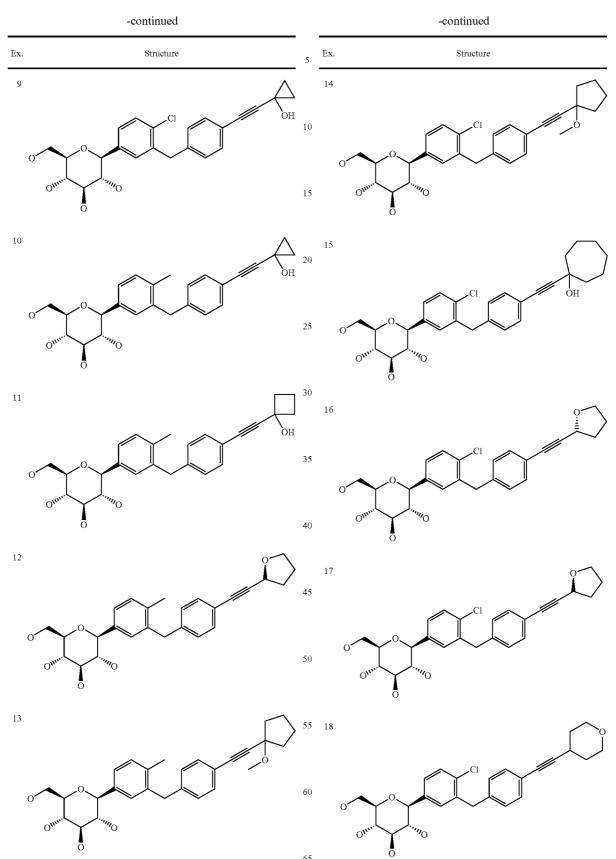
Yield: 540 mg (100% of theory) Mass spectrum (ESI⁺): 15 m/z=490/492 (CI) [M+NH₄]⁺

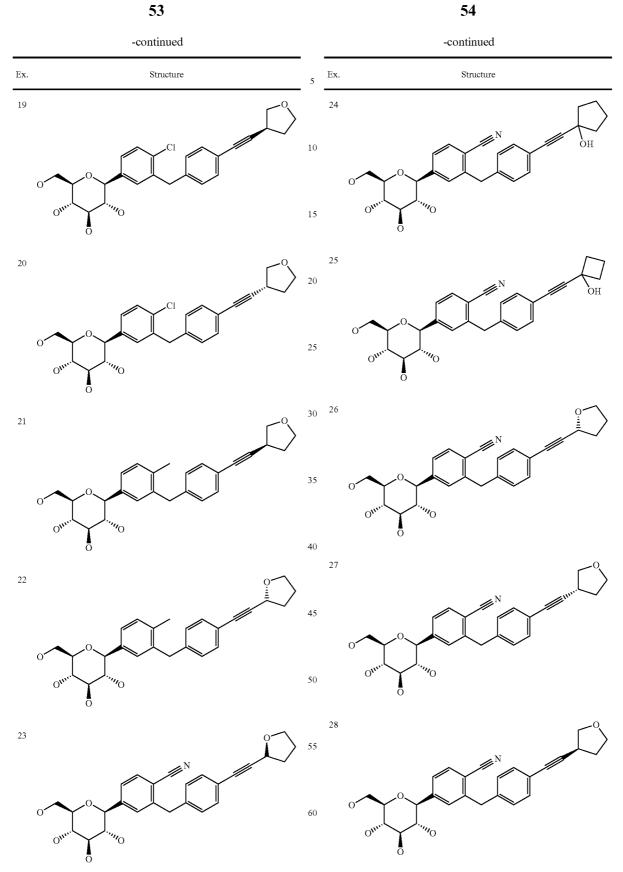

The following compound may be obtained analogously to Example 1:

(1) 1-Chloro-4-(β -D-glucopyranos-1-yl)-2-{4-[(1-hydroxy- 20 cyclobutyl)-ethynyl]-benzyl}-benzene

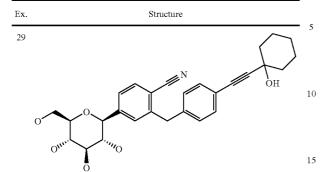

Mass spectrum (ESI⁺): m/z=476/478 (CI) [M+NH₄]⁺

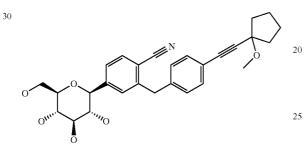
The following compounds are also prepared analogously to the above-mentioned Examples and other methods known from the literature:

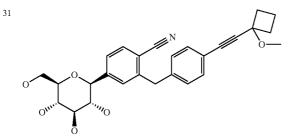




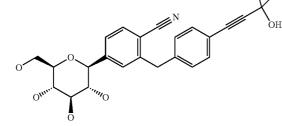
US 7,851,602 B2

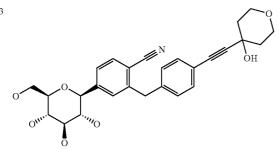

US 7,851,602 B2




US 7,851,602 B2

55


-continued



32

33

Some examples of formulations will now be described in which the term "active substance" denotes one or more compounds according to the invention, including the salts thereof. In the case of one of the combinations with one or additional

56

active substances as described previously, the term "active substance" also includes the additional active substances.

EXAMPLE A

Tablets Containing 100 ma of Active Substance

Composition:

⁾ 1 tablet contains:

active substance	100.0 mg
lactose	80.0 mg
corn starch	34.0 mg
polyvinylpyrrolidone	4.0 mg
magnesium stearate	2.0 mg
	220.0
	220.0 mg

⁵ Method of Preparation:

30

35

40

50

55

The active substance, lactose and starch are mixed together and uniformly moistened with an aqueous solution of the polyvinylpyrrolidone. After the moist composition has been screened (2.0 mm mesh size) and dried in a rack-type drier at 50° C. it is screened again (1.5 mm mesh size) and the lubricant is added. The finished mixture is compressed to form tablets.

Weight of tablet: 220 mg

Diameter: 10 mm, biplanar, facetted on both sides and notched on one side.

EXAMPLE B

Tablets Containing 150 ma of Active Substance

Composition:

45 1 tablet contains:

active substance powdered lactose corn starch colloidal silica polyvinylpyrrolidone magnesium stearate	150.0 mg 89.0 mg 40.0 mg 10.0 mg 10.0 mg 1.0 mg
	300.0 mg

Preparation:

The active substance mixed with lactose, corn starch and silica is moistened with a 20% aqueous polyvinylpyrrolidone solution and passed through a screen with a mesh size of 1.5 mm. The granules, dried at 45° C., are passed through the same screen again and mixed with the specified amount of magnesium stearate. Tablets are pressed from the mixture.

Weight of tablet: 300 mg die: 10 mm, flat EXAMPLE C

Hard Gelatine Capsules Containing 150 mg of Active Substance

Composition:

1 capsule contains:

active substance corn starch (dried) lactose (powdered) magnesium stearate	approx.	150.0 mg 180.0 mg 87.0 mg 3.0 mg
	approx.	420.0 mg

Preparation:

The active substance is mixed with the excipients, passed ²⁰ through a screen with a mesh size of 0.75 mm and homogeneously mixed using a suitable apparatus. The finished mixture is packed into size 1 hard gelatine capsules.

Capsule filling: approx. 320 mg

Capsule shell: size 1 hard gelatine capsule.

EXAMPLE D

Suppositories Containing 150 ma of Active Substance

Composition:

1 suppository contains:

active substance polyethyleneglycol 1500 polyethyleneglycol 6000 polyoxyethylene sorbitan monostearate	150.0 mg 550.0 mg 460.0 mg 840.0 mg	40
	2,000.0 mg	

Preparation:

After the suppository mass has been melted the active substance is homogeneously distributed therein and the melt is poured into chilled moulds.

EXAMPLE E

Ampoules Containing 10 mg Active Substance

Composition:

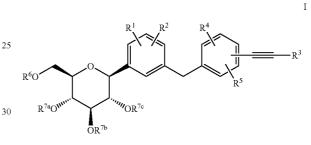
active substance	10.0 mg	
0.01 N hydrochloric acid	q.s.	c 0
double-distilled water	ad 2.0 ml	60

Preparation:

The active substance is dissolved in the necessary amount $_{65}$ of 0.01 N HCl, made isotonic with common salt, filtered sterile and transferred into 2 ml ampoules.

Ampoules Containing 50 mg of Active Substance

5 Composition:


	active substance	50.0 mg	
10	0.01 N hydrochloric acid	q.s	
	double-distilled water	ad 10.0 ml	

Preparation:

The active substance is dissolved in the necessary amount 15 of 0.01 N HCl, made isotonic with common salt, filtered sterile and transferred into 10 ml ampoules.

The invention claimed is:

1. A glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivative of general formula I

wherein

35

45

50

55

- $\rm R^1$ denotes hydrogen, fluorine, chlorine, bromine, iodine, C_{1-4}-alkyl, C_{2-6}-alkynyl, C_{1-4}-alkoxy, C_{2-4}-alkenyl-C_{1-4}-alkoxy, C_{2-4}-alkynyl-C_{1-4}-alkoxy, methyl substituted by 1 to 3 fluorine atoms, ethyl substituted by 1 to 5 fluorine atoms, methoxy substituted by 1 to 3 fluorine atoms, ethoxy substituted by 1 to 5 fluorine atoms, ethoxy substituted by 1 to 5 fluorine atoms, C_{1-4}-alkoxy substituted by a hydroxy or C_{1-3}-alkoxy group, C_{2-4}-alkoxy substituted by a hydroxy or C_{1-3}-alkoxy group, C_{2-6}-alkenyl, C_{3-7}-cycloalkyl, C_{3-7}-cycloalkyl-C_{1-3}-alkoxy, C_{5-7}-cycloalkyloxy, C_{3-7}-cycloalkyl-C_{1-3}-alkoxy, cyano, while in the C_{5-6}-cycloalkyl groups a methylene group may be replaced by O;
- R^2 denotes hydrogen, fluorine, chlorine, bromine, hydroxy, C₁₋₄-alkyl, C₁₋₄-alkoxy, cyano or nitro, while the alkyl or alkoxy group may be mono- or polysubstituted by fluorine, and
- R^3 denotes C_{3-7} -cycloalkyl, which is substituted with one to four substituents L2, or

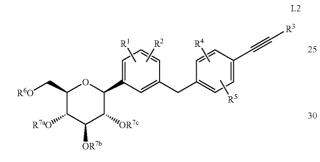
tetrahydrofuranyl or tetrahydropyranyl, which may be substituted with one to four substituents L2, and

- R^4 , R^5 independently of one another denote hydrogen, fluorine, chlorine, bromine, iodine, cyano, nitro, C_{1-3} alkyl, C_{1-3} -alkoxy or a methyl- or methoxy-group substituted by 1 to 3 fluorine atoms,
- L1 independently of one another are selected from among fluorine, chlorine, bromine, iodine, hydroxy, cyano, C_{1-3} -alkyl, difluoromethyl, trifluoromethyl, C_{1-3} -alkoxy, difluoromethoxy, trifluoromethoxy, amino, C_{1-3} -alkyl-amino and di(C_{1-3} -alkyl)-amino; and
- L2 independently of one another are selected from among fluorine, chlorine, hydroxy, hydroxyl- C_{1-4} -alkyl, C_{1-4} -alkoxy, trifluoromethoxy, C_{1-4} -alkoxy- C_{1-4} -alkyl,

-

15

cyano, C1-4-alkyl, trifluoromethyl, amino, C1-4-alkylcarbonylamino, C_{1-3} -alkyl-amino and di(C_{1-3} -alkyl)amino; and


 R^{6}, R^{7a}

 R^{7b} , R^{7c} independently of one another have a meaning 5 selected from among hydrogen, (C1-18-alkyl)carbonyl, (C1-18-alkyl)oxycarbonyl, arylcarbonyl and aryl-(C1-3alkyl)-carbonyl, while the aryl-groups may be mono- or disubstituted independently of one another by identical or different groups L1;

while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups which may be substituted as defined; and

- while, unless otherwise stated, the above-mentioned alkyl groups may be straight-chain or branched,
- the tautomers, the stereoisomers thereof, the mixtures thereof and the salts thereof.

2. A glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivative of general formula I.2

wherein the groups R^1 to R^6 and R^{7a} , R^{7b} and R^{7c} are defined 35 as in claim 1.

3. A glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivative according to claim 1, characterised in that the group R^3 denotes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuran-2-yl, tetrahydrofu-40 ran-3-yl, tetrahydropyran-3-yl or tetrahydropyran-4-yl, which are substituted with one or two substituents L2, which are defined as in claim 1; or R³ denotes tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydropyran-3-yl or tetrahydropyran-4-yl.

4. A glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivative according to claim 1, characterised in that the group R1 denotes hydrogen, fluorine, chlorine, bromine, C_{1-4} -alkyl, C_{1-4} -alkoxy, methyl substituted by 1 to 3 fluorine atoms, methoxy substituted by 1 to 3 fluorine $_{50}$ atoms, cyano, C_{3-7}-cycloalkyloxy or C_{3-7}-cycloalkyl-C_{1-3}alkoxy, while in the C5-6-cycloalkyl groups a methylene group may be replaced by O.

5. A glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivative according to claim 1 charac- 55 terised in that the group R² denotes hydrogen, fluorine, chlorine, methyl, methoxy, ethoxy and methyl substituted by 1 to 3 fluorine atoms.

6. A glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivative according to claim 1 charac-60 terised in that the groups R⁴ and/or R⁵ independently of one another represent hydrogen or fluorine.

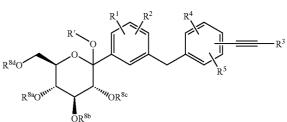
7. A glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivative according to claim 1 characterised in that the group R^6 denotes hydrogen, (C₁₋₈-alkyl) 65 oxycarbonyl, C1-8-alkylcarbonyl or benzoyl, preferably hydrogen.

8. A glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivative according to claim 1 characterised in that the groups R^{7a} , R^{7b} , R^{7c} represent hydrogen.

9. Physiologically acceptable salts of the compounds according to claim 1 with inorganic or organic acids.

10. A pharmaceutical composition containing a compound according to claim 1 or a physiologically acceptable salt thereof optionally together with one or more inert carriers and/or diluents.

11. A method of treating a metabolic disorder selected from the group consisting of type 1 and type 2 diabetes mellitus, complications of diabetes, metabolic acidosis or ketosis, reactive hypoglycaemia, hyperinsulinaemia, glucose metabolic disorder, insulin resistance, metabolic syndrome, dyslipidaemias of different origins, atherosclerosis and related diseases, obesity, high blood pressure, chronic heart failure, edema and hyperuricaemia, said method comprised of the steps of administering to a patient in need thereof a therapeutically effective amount of a compound according to claim 1 ²⁰ or a pharmaceutically acceptable salt thereof.

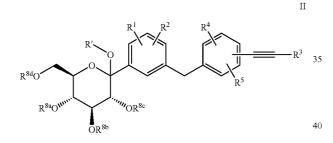

12. A method of inhibiting the sodium-dependent glucose transporter SGLT2 said method comprised of the steps of administering to a patient in need thereof a therapeutically effective amount of a compound according to claim 1 or a pharmaceutically acceptable salt thereof.

13. A method of treating the degeneration of pancreatic beta cells and/or for improving and/or restoring the functionality of pancreatic beta cells, said method comprised of the step of administering to a patient in need thereof a therapeutically acceptable amount of a compound according to claim 1 or a pharmaceutically acceptable salt thereof.

14. A pharmaceutical composition comprising a compound according to claim 1 or a pharmaceutically acceptable salt thereof and one or more inert carriers or diluents.

15. A process for preparing a compound of general formula I according to claim 1, characterised in that a compound of general formula II

wherein

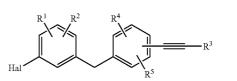

R' denotes H, C1-4-alkyl, (C1-18-alkyl)carbonyl, (C1-18alkyl)oxycarbonyl, arylcarbonyl and aryl-(C_{1-3} -alkyl)carbonyl, wherein the alkyl or aryl groups may be monoor polysubstituted by halogen;

 R^{8a}, \hat{R}^{8b}

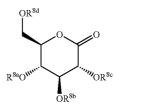
R^{8c}, R^{8d} independently of one another have one of the meanings given for the groups R⁶, R^{7a}, R^{7b}, R^{7c}, or denote an allyl group, a benzyl group or a $R^{a}R^{b}R^{c}Si$ group or a ketal or acetal group, while in each case two adjacent groups \mathbb{R}^{8a} , \mathbb{R}^{8b} , \mathbb{R}^{8c} , \mathbb{R}^{8d} may form a cyclic ketal or acetal group or a 1,2-di(C1-3-alkoxy)-1,2di(C1-3-alkyl)-ethylene bridge, while the above-mentioned ethylene bridge forms, together with two oxygen atoms and the two associated carbon atoms of the pyranose ring, a substituted dioxane ring, and while alkyl,

aryl and/or benzyl groups may be mono- or polysubstituted by halogen or C_{1-3} -alkoxy, and while benzyl groups may also be substituted by a di- $(C_{1-3}$ -alkyl) amino group; and

- R^{a}, R^{b}, R^{c} independently of one another denote C_{1-4} -alkyl, 5 aryl or aryl-C1-3-alkyl, wherein the aryl or alkyl groups may be mono- or polysubstituted by halogen;
- while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups;
- and R^1 to R^5 and R^6 , R^{7a} , R^{7b} , R^{7c} have the meanings given 10 in claim 1,
- is reacted with a reducing agent in the presence of a Lewis or Brønsted acid, while any protective groups present are cleaved simultaneously or subsequently;
- if desired a compound of general formula I thus obtained 15 wherein R⁶ denotes a hydrogen atom, is converted by acylation into a corresponding acyl compound of general formula I, and/or
- if necessary any protective group used in the reactions described above is cleaved and/or 20
- if desired a compound of general formula I thus obtained is resolved into its stereoisomers and/or
- if desired a compound of general formula I thus obtained is converted into the salts thereof, particularly for pharmaceutical use into the physiologically acceptable salts 25 thereof.
- 16. A process for preparing compounds of general formula Π


wherein

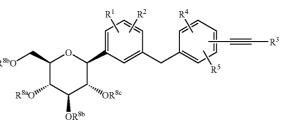
R' denotes H, C₁₋₄-alkyl, (C₁₋₁₈-alkyl)carbonyl, (C₁₋₁₈alkyl)oxycarbonyl, arylcarbonyl and aryl-(C₁₋₃-alkyl)-45 carbonyl, wherein the alkyl or aryl groups may be monoor polysubstituted by halogen;


- $\mathbb{R}^{8a}, \mathbb{R}^{8b}, \mathbb{R}^{8c}, \mathbb{R}^{8d}$ independently of one another have one of the meanings given for the groups R⁶, R⁷, R^{7b}, R^{7c}, or 50 denote an allyl group, a benzyl group or a $R^{a}R^{b}R^{c}Si$ group or a ketal or acetal group, while in each case two adjacent groups R^{8a}, R^{8b}, R^{8c}, R^{8d} may form a cyclic ketal or acetal group or a 1,2-di(C1-3-alkoxy)-1,2di(C1-3-alkyl)-ethylene bridge, while the above-men- 55 tioned ethylene bridge forms, together with two oxygen atoms and the two associated carbon atoms of the pyranose ring, a substituted dioxane ring, and while alkyl, aryl and/or benzyl groups may be mono- or polysubstituted by halogen or $\mathrm{C}_{1\text{-}3}\text{-}\mathrm{alkoxy},$ and while benzyl $_{60}$ groups may also be substituted by a di- $(C_{1-3}$ -alkyl) amino group; and
- R^{a}, R^{b}, R^{c} independently of one another denote C_{1-4} -alkyl, aryl or aryl-C1-3-alkyl, wherein the aryl or alkyl groups may be mono- or polysubstituted by halogen; 65
- while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups;

62

- and R¹ to R⁵ and R⁶, R^{7a}, R^{7b}, R^{7c} have the meanings given in claim 1,
- wherein an organometallic compound (V) which may be obtained by halogen-metal exchange or by the insertion of a metal in the carbon-halogen bond of a halogenbenzylbenzene compound of general formula IV

wherein Hal denotes Cl, Br and I and R¹ to R⁵ are as hereinbefore defined, and optionally subsequent transmetallation, is added to a gluconolactone of general formula VI


wherein R^{8a}, R^{8b}, R^{8c}, R^{8d} are as hereinbefore defined, and

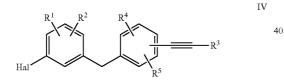
then the resulting adduct is reacted with water or an alcohol R'-OH, where R' denotes optionally substituted C1-4alkyl, in the presence of an acid and optionally the product obtained in the reaction with water wherein R' denotes H is converted in a subsequent reaction with an acylating agent into the product of formula II wherein R' denotes (C1-8-alkyl)carbonyl, (C1-18-alkyl)oxycarbonyl, arylcarbonyl or aryl-(C_{1-3} -alkyl)-carbonyl, which may be substituted as specified.

17. The process according to claim 16, characterised in that the organometallic compound (V) is a lithium or magnesium compound.

18. A process for preparing the compounds of general formula I according to claim 15, wherein R⁶, R^{7a}, R^{7b} and R^{7c} represent hydrogen, characterised in that in a compound of general formula III

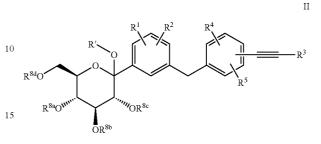
Ш

wherein


R^{8a}, R^{8b}, R^{8c}, R^{8d} independently of one another have one of the meanings given for the groups R⁶, R^{7a}, R^{7b}, R^{7c}, but at least one of the groups R^{8a}, R^{8b}, R^{8c}, R^{8d} does not

VI

IV


denote hydrogen, or denotes an allyl group, a benzyl group or a $R^a R^b R^c Si$ group or a ketal or acetal group, while in each case two adjacent groups R^{8a}, R^{8b}, R^{8c} R^{8d} may form a cyclic ketal or acetal group or a 1,2-di (C₁₋₃-alkoxy)-1,2-di(C₁₋₃-alkyl)-ethylene bridge, while 5 the above-mentioned ethylene bridge forms a substituted dioxane ring together with two oxygen atoms and the associated two carbon atoms of the pyranose ring, and while alkyl, aryl and/or benzyl groups may be mono- or polysubstituted by halogen or C_{1-3} -alkoxy, and 10 while benzyl groups may also be substituted by a di-(C1-3-alkyl)amino group; and

- R^{a} , R^{b} , R^{c} independently of one another represent $C_{1.4}$ alkyl, aryl or aryl- $\mathrm{C}_{1\text{-}3}\text{-}\mathrm{alkyl},$ while the alkyl or aryl groups may be mono- or polysubstituted by halogen;
- while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups,
- and R^1 to R^5 , R^6 , R^{7a} , R^{7b} , R^{7c} have the meanings given in claim 15.
- protective groups selected from $\mathbf{R}^{8a},~\mathbf{R}^{8b},~\mathbf{R}^{8c},~\mathbf{R}^{8d}$ are 20 removed, and
 - if desired a compound of general formula I thus obtained wherein R6 denotes a hydrogen atom is converted by acylation into a corresponding acyl compound of gen-25 eral formula I, and/or
 - if necessary any protective group used in the reactions described above is cleaved and/or
 - if desired a compound of general formula I thus obtained is resolved into its stereoisomers and/or 30
 - if desired a compound of general formula I thus obtained is converted into the salts thereof, particularly for pharmaceutical use into the physiologically acceptable salts thereof.
- 19. A compound of general formula IV

wherein Hal denotes chlorine, bromine or iodine and the groups R¹, R², R³, R⁴ and R⁵ are defined as in one or more of claim 1.

20. A compound of general formula II

wherein

- R' denotes H, C $_{1\text{-}4}\text{-}alkyl,$ (C $_{1\text{-}18}\text{-}alkyl)carbonyl,$ (C $_{1\text{-}18}\text{-}$ alkyl)oxycarbonyl, arylcarbonyl and aryl-(C1-3-alkyl)carbonyl, wherein the alkyl or aryl groups may be monoor polysubstituted by halogen;

35

- $\mathbb{R}^{8a}, \mathbb{R}^{8b}, \mathbb{R}^{8c}, \mathbb{R}^{8d}$ independently of one another have one of the meanings given for the groups R⁶, R^{7a}, R^{7b}, R^{7c}, or denote an allyl group, a benzyl group or a $R^{a}R^{b}R^{c}Si$ group or a ketal or acetal group, while in each case two adjacent groups R^{8a}, R^{8b}, R^{8c}, R^{8d} may form a cyclic ketal or acetal group or a 1,2-di(C1-3-alkoxy)-1,2 $di(C_{1-3}$ -alkyl)-ethylene bridge, while the above-mentioned ethylene bridge forms, together with two oxygen atoms and the two associated carbon atoms of the pyranose ring, a substituted dioxane ring, and while alkyl, aryl and/or benzyl groups may be mono- or polysubstituted by halogen or C₁₋₃-alkoxy, and while benzyl groups may also be substituted by a di-(C1-3-alkyl) amino group; and
- R^{a} , R^{b} , R^{c} independently of one another denote C_{1-4} -alkyl, aryl or aryl-C₁₋₃-alkyl, while the alkyl or aryl groups may be mono- or polysubstituted by halogen;
- while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups;

and R^1 to R^5 are defined as in one or more of claim 1.