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57 ABSTRACT 

An alternate formulation is derived for predicting acoustic 
radiation from a vibrating object in an unbounded fluid 
medium. The radiated acoustic pressure is shown to be 
expressible as a Surface integral of the particle Velocity, 
which is determinable by using a non-intrusive laser Dop 
pler Velocimeter. Solutions thus obtained are unique. 
Moreover, the efficiency of numerical computations is high 
because the Surface integration can be readily implemented 
numerically by using the Standard Gaussian quadratures. 
This alternate formulation can be desirable for analyzing the 
acoustic and vibration responses of a lightweight, a flexible 
or a structure with a hostile environment for which a 
non-intrusive laser measurement technique must be used. 

18 Claims, 9 Drawing Sheets 
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SYSTEMAND METHOD FOR PREDICTING 
SOUND RADATION AND SCATTERING 

FROMAN ARBITRARILY SHAPED OBJECT 

This invention was made with government Support under 
Agreement No. CMS-9414424 by the National Science 
Foundation. The government has certain rights in the inven 
tion. 

BACKGROUND OF THE INVENTION 

A. Background 
The Kirchhoff integral formulation is one of the most 

widely used methods for predicting acoustic radiation and 
Scattering from an elastic Structure in engineering practice. 
The advantage of using this integral formulation is a reduc 
tion of the dimensionality of the problem by one. The first 
Step of this approach is to determine the acoustic quantities 
on the Surface. For an acoustic radiation problem, the normal 
component of the particle Velocity (or the Surface acoustic 
pressure for an acoustic Scattering problem) must be speci 
fied. Since the Surface is impermeable, the normal compo 
nent of the particle Velocity is equal to that of the Surface 
Velocity, which can be measured by an accelerometer. Next, 
the Surface acoustic pressure (or the normal component of 
the particle Velocity for acoustic scattering) is determined by 
Solving an integral equation. Once these quantities are 
known, the radiated acoustic preSSure anywhere can be 
calculated by the Kirchhoff integral formulation. 

It may be difficult to use a conventional accelerometer to 
measure the vibration response of a flexible or a lightweight 
Structure Such as a loudspeaker membrane or a passenger 
vehicle fuel pump, because the weight of the accelerometer 
may alter the desired signal. In other cases, it may be 
unfeasible to use an accelerometer on a structure with a 
hostile environment Such as an engine oil pan, where the 
temperature on the Surface is extremely high. Under these 
circumstances, we must rely on a non-intrusive measure 
ment technique. 
One approach commonly adopted in practice is to use a 

laser Vibrometer to measure the normal component of the 
particle Velocity, which is equal to that of the Surface 
Velocity at the interface, and then Solve an integral equation 
for the Surface acoustic pressure. The shortcomings of Such 
an approach are well-known: (1) the Surface Kirchhoff 
integral equation may fail to yield a unique Solution when 
ever the frequency is close to one of the eigenfrequencies 
asSociated with to the related interior boundary value 
problem, and (2) the numerical computation may become 
quite involved. This is because for an arbitrary Surface, we 
must discretize the Surface into many Segments with Several 
hundreds or even more nodes. Accordingly, we must Solve 
a large number of Simultaneous integral equations for the 
acoustic preSSures at these nodes using boundary element 
method (BEM). Since the central processing unit (CPU) 
time increases quadratically with the number of the nodes, 
the computation process may be excessively time 
consuming. 

Actually, the laser technique can be used to measure the 
displacement and Velocity vectors of a Suspended micropar 
ticle in an insonified medium. The work in this area, 
however, has received much leSS attention than that of 
measurements of the out-of-plane motion of a vibrating 
Structure. Summarized below are the basic principles and 
applications of the non-intrusive laser measurement tech 
niques to measurements of the particle displacement and 
velocity vectors both in fluids and in air. 
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2 
B. Laser techniques 
1. Laser Doppler velocimeter (LDV) 
LDV has become a standard tool for non-intrusive mea 

Surements of fluid particle Velocities. The basic premise in 
the LDV measurements is that motion of the microparticles 
in the fluid (either due to natural impurities or due to seeded 
particles) will scatter the incident light, and produce a 
Doppler shift in the scattered light which can be detected 
with appropriate electronicS and Signal processing. LDV 
used in the fluid mechanics was extended to the acoustics by 
measuring the in-air particle Velocities associated with 
Steady-state time-harmonic Standing waves and travelling 
waves inside a tube. Laser Doppler anemometry (LDA) has 
been used for the remote detection of Sound. The technique 
of LDA consists of measurements of the velocity of neu 
trally buoyant microparticles Suspended in an acoustic field 
by analyzing the spectral content of Doppler-shifted laser 
light scattered by the microparticles. LDV has been used to 
measure the acoustic particle Velocity in fluids. In particular, 
the measurements of acoustic particle displacements using 
different LDV systems has determined that LDV was 
capable of detecting the particle displacements in the order 
of a few nanometers with a bandwidth of several kilohertz. 
The performance and limitations of LDV systems were also 
analyzed, and the effect of Brownian motion (i.e., thermal 
agitation in the fluid) on the measured data was shown to 
produce only negligible broadening of the Spectral density of 
the Signal of interest. An equation of motion of micropar 
ticles in Suspension in an insonified fluid has been derived 
and it has been determined that the motion of neutrally 
buoyant microparticles closely emulates the displacement of 
the Surrounding insonified fluid and confirms the basic tenet 
associated with the laser detection of Sound. 

2. Differential laser Doppler interferometry (DLDI) 
DLDI is evolved from the principle of LDA and used to 

measure Simultaneously the out-of-plane and the in-plane 
Velocities on the Surface of a vibrating object. The principle 
of DLDI is to measure the phase shift of the reflected or 
Scattered light from the Surface due to Surface vibrational 
motion. The main component of a DLDI system is a probe 
head that has three illuminating single mode fibers. Prior to 
launching, the laser beams are frequency shifted by three 
acousto-optic Bragg cells by 40.0, 40.1, and 40.3 MHz, 
respectively, So the interference between the first and Second 
beams occurs at 100 kHz, while those between the second 
and third and the first and third occur at 200 and 300 kHz, 
respectively. Geometrically, the first and Second beams are 
positioned Symmetrically with respect to the unit normal on 
the Surface at an angle C, and the third beam is aligned with 
the first and Second beams at an angle f(B<C) with respect 
to the unit normal. In the differential configuration, the 100 
kHz carrier will be modulated by the in-plane motion, and 
the 200 and 300 kHz carriers will be modulated by both 
in-plane and out-of-plane motions, respectively. 

Mathematically, the Surface displacement vector can be 
written as 

(1) 

where u(t) and u(t) represent the in-place and out-of 
place components of the Surface displacement, respectively, 
and e. and e 
directions. 

Accordingly, the phase terms (p, where i,j=1 to 3, in the 
100, 200, and 300 kHz carriers can be written as 

(p12=2ku, (t) sin C. 

are the unit vectors in the corresponding didi 

(2a) 
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(p=(sin C+sin f)ku-(cOS f-cos C)ku.(t) (2b) 

(2c) 

where k is the optical wavenumber. Hence by measuring the 
phase shifts (p. in the 100,200, and 300 kHz carriers, one can 
determine the displacement vector on the Surface. Since 
there are only two unknowns, one can use any two 
equations, say, EqS. (2a) and (2b) to Specify up, and u. 

In one optical System, the demodulation is done by using 
a combination of filters and the phase-locked loops (PLL). 
The PLL demodulates the signal with phase (p and generates 
an output which is proportional to the time rate of changes 
of cpt. From Eqs. (2a) and (2b), one finds 

(p=(sin C+sin f)ku-(cOS f-cos C)ku.(t) 

din () - 1 dp12 (3a) 
dt 2ksina dt 

duou() . * - (sinci + sin?: dp12 1. (3.b) 

Tk(cos - coso) 
Therefore, by measuring the instantaneous frequency 

deviations dep/dt and dep/dt from the carrier frequencies at 
100 and 300 kHz, one can determine simultaneously the 
in-plane and out-of-plane components of the Surface Veloc 
ity. A three dimensional laser Vibrometer was designed based 
on this principle to measure Simultaneously the three com 
ponents of the Velocity on the Surface of a vibrating Struc 
ture. 

The DLDI technique can be extended in principle to the 
measurement of the Velocity of a microparticle in the 
vicinity of a vibrating object. Imagine that an object is 
Surrounded by neutrally buoyant microparticles. AS the 
object vibrates, the acoustic pressure fluctuations will excite 
the microparticles into oscillations. Suppose that we define 
a control Surface and focus the laser beams on a micropar 
ticle lying on that Surface. There is no restriction on the 
formation of the control Surface So long as it completely 
encloses the vibrating object. In the Special case in which the 
control Surface coincides with the vibrating Surface, the 
normal component of the displacement of the microparticle 
will be equal to that of the Surface displacement, while the 
tangible components may be different. In any event, the 
microparticle displacement in the directions normal and 
tangential to the control Surface will cause a Doppler shift in 
the phase (p of the reflected light, which is modulated in the 
frequency carriers. Once the signal with phase p is 
demodulated, we can calculate the microparticle Velocity 
which is proportional to the time derivative of the phase, 
dop/dt. 

3. Electronic speckle pattern interferometry (ESPI) 
Alternatively, we can use ESPI to measure the phase term 

of a microparticle, which is an established optical technique 
for measuring Static and dynamic deformations and Surface 
shapes for more than two decades. Specifically, we can 
utilize the stroboscopic technique, which “freezes' the 
dynamic motion of a particle at one position So that during 
other times of the movement cycle, the particle is not 
illuminated and therefore is “invisible” to the imaging 
device. In practice, this technique can be implemented by 
using a pulsed laser or a light Shuttering device with a 
continuous wave laser. The time interval between two con 
secutive pulses or shutters is typically in the range of 
nanoSeconds, So ESPI can capture very high frequency 
oscillations. By using an additive-Subtractive Speckle pattern 
interferometry, the accuracy of the phase measurement can 
be further enhanced. 

Suppose that we take five frames of additive Speckle 
patterns of the motion of a microparticle in Suspension S. 

dt dt 2sinC. dt 
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4 
j=0, 1 . . . , and 4. Here the Speckle pattern S is taken with 
the laser illumination pulsed at the instant when the micro 
particle reaches its Zero amplitude of a harmonic oscillation. 
The remaining four Speckle patterns, S to S, are taken with 
the laser illumination pulsed at the instants when the micro 
particle reaches its maximum and minimum amplitudes. 
During the acquisition of So to S, the phase of the reference 
beam is shifted appropriately and is Synchronized with the 
pulses. Accordingly, the displacement-induced phase term (p 

-> 

of a microparticle at any Surface point Xs can be written as 

(p = tan F - F3 
F2 - Fo 

where F, n=0, 1, 2, and 3, are the additive-Subtractive fringe 
patterns which have the same form as that of the Michelson 
interferometric fringe pattern, except for the randomly dis 
tributed modulation term B/cos / contributed by the 
Speckles, 

(4) 

F=Blcos p1-cos(p+nT/2) (5) 

Once the phase term p is determined, the microparticle 
velocity which is proportional to the time derivative of the 
phase can be specified. 

SUMMARY OF THE INVENTION 

The present invention provides an explicit integral for 
mulation for predicting acoustic radiation and Scattering 
from an object of arbitrary shape. The radiated acoustic 
preSSure is shown to be expressible as integrations of normal 
and tangential components of the particle Velocity at the 
Surface of a vibrating object, which are determined by a 
non-intrusive laser Doppler Velocimeter. 
The present invention is readily extensible to transient 

acoustic radiation. Since the acoustic pressure is expressed 
as an explicit function of the Velocity distribution, one can 
use the Fourier transformation to obtain the acoustic pres 
Sure in the frequency domain first, and then take an inverse 
Fourier transformation to get the time-domain Signal. 
AS illustrative examples only, the present invention can be 

utilized to predict acoustic radiation from automotive 
components, vehicle interior noise, the acoustic radiation 
from a vehicle as perceived by a Stationary observer, Sound 
radiation from Submarines, etc. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The above, as well as other advantages of the present 
invention, will become readily apparent to those skilled in 
the art from the following detailed description of a preferred 
embodiment when considered in the light of the accompa 
nying drawings in which: 

FIG. 1 is a Schematic of the System for predicting Sound 
radiation from a vibrating object of the present invention; 

FIG. 2 is a flowchart of the method of predicting Sound 
radiation from a vibrating object of the present invention; 
FIG.3 shows the uniqueness of solution obtained by using 

Eq. (14) for dimensionless Surface acoustic pressure for a 
finite cylinder; 

FIG. 4a is a comparison of the dimensionless acoustic 
pressure given by Eq. (14), real part, and the exact Solution; 

FIG. 4b is a comparison of the dimensionless acoustic 
pressure given by Eq. (14), imaginary part, and the exact 
Solution; 

FIG. 5 is a comparison of the radiation pattern of the 
dimensionless field acoustic pressure give by Eq. (15), and 
the exact Solution; 
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FIG. 6a is a comparison of the dimensionless acoustic 
pressure given by Eq. (14), real part, and the exact Solution; 

FIG. 6b is a comparison of the dimensionless acoustic 
pressure given by Eq. (14), imaginary part, and the exact 
Solution; 

FIG. 7 is a comparison of the radiation pattern of the 
dimensionless field acoustic pressure given by Eq. (15), and 
the exact Solution; 

FIG. 8a is a comparison of the dimensionless acoustic 
pressure given by Eq. (14), real part, and the exact Solution; 

FIG. 8b is a comparison of the dimensionless acoustic 
pressure given by Eq. (14), imaginary part, and the exact 
Solution; 

FIG. 9 is a comparison of the radiation pattern of the 
dimensionless field acoustic pressure given by Eq. (15), and 
the exact Solution; 

FIG. 10a is a comparison of the dimensionless acoustic 
pressure given by Eq. (14), real part, and the exact Solution; 

FIG. 10b is a comparison of the dimensionless acoustic 
pressure given by Eq. (14), imaginary part, and the exact 
Solution; and 

FIG. 11 is a comparison of the radiation pattern of the 
dimensionless field acoustic pressure given by Eq. (15), and 
the exact Solution. 

DETAILED DESCRIPTION OF A PREFERRED 
EMBODIMENT 

The present invention provides a System 20 for predicting 
acoustic radiation and Scattering from an object 22 of 
arbitrary shape. A spherical object 22 is shown only for 
illustrative purposes. It will be demonstrated that the system 
20 of the present invention is useful for objects 22 of 
arbitrary shape. 
The system 20 preferably includes a CPU 26 having a 

monitor 28 and keyboard 30 or other input device. Further, 
as will be explained later, the system 20 may further include 
an accelerometer 32, which is preferably a non-intrusive 
laser Doppler velocimeter 32. 

In operation, the shape, i.e. Outer Surface 36 of the object 
22 is defined mathematically and input into the CPU 26 in 
step 40. This can be accomplished utilizing input device 30, 
CAD models, or imaging techniques, all of which are well 
known in the art. The particle velocity distribution over the 
surface 36 of the vibrating object 22 is then measured by a 
non-intrusive laser Doppler Velocimeter 32 and input into 
the CPU 26 in step 42. Alternatively, the particle velocity 
distribution over the surface of the vibrating object 22 can be 
described mathematically and input into CPU 26 utilizing 
the input device 30. 

In step 46, the CPU 26 integrates the particle velocity over 
the surface 36 of the vibrating object 22. In step 48, the CPU 
26 determines the acoustic pressure at a point other than that 
the surface 36 of the vibrating object 22. As will be 
described below, this point could be interior or exterior to 
the surface 36 of the vibrating object 22. 

The present invention provides an alternate formulation 
which enables one to predict the radiated acoustic pressure 
directly, once the particle Velocity at the interface of a 
Vibrating Surface is determined by a non-intrusive laser 
Doppler Velocimeter. The Significance of this alternate for 
mulation is two-fold: (1) Solutions thus obtained are unique 
and (2) the efficiency of numerical computations is high. 
This is because in this alternate formulation, the radiated 
acoustic pressure is expressed as a Surface integral of the 
particle Velocity that can be implemented numerically using 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
the Standard Gaussian quadratures. There is no need to use 
BEM to Solve a Set of Simultaneous integral equations for the 
Surface acoustic preSSures at the discretized nodes, which 
can be time-consuming for an arbitrarily shaped object. 
Such an approach can be desirable for analyzing the acoustic 
and vibration responses of the Structure which requires the 
use of a non-intrusive laser measurement technique. 
I. BASIC THEORY 

Consider Sound radiation from a finite object immersed in 
an unbounded fluid medium with density p, and Sound 
Speed c. ASSume that the object vibrates at a constant 
frequency (), So an acoustic quantity can be written as a 
complex amplitude multiplied by a time dependence of 
e'. In this way, the complex amplitude of the radiated 

-> -> 
acoustic pressure f(X) at any point X can be written as 

where G and 6G/an are the free-space Green's function and 
its normal derivative given, respectively, by 

---> 7) 
kiR 6G. Fir- kiR ( G(xxs) =- and (xxs) (KR - 1)e 6R 
R Öns R2 Öns 

where ns Stands for the outward unit normal on the Surface 
-> --> -> -> 

S and R=X-Xs, here X and Xs represent the receiver and 
Source position vectors, respectively. 

Equation (6) is an integral representation of the Helmholtz 
equation in the frequency domain. The normal derivative of 
the acoustic pressure on the right side of Eq. (6) is related to 
the normal component of the particle Velocity v.(xs), which 
is equal to that of the Surface Velocity at the interface. For 
an acoustic radiation problem, the normal component of the 
Surface Velocity is specified. Hence, one must Solve an 
integral equation obtained by letting the field point x in Eq. 
(6) approach the Surface to determine the Surface acoustic 
preSSure p(xs) 

where R is replaced by R.-|x's-x, here both x's and 
x. are on the Surface S. For an arbitrary Surface, there is no 
closed-form Solution to Eq. (8) and p(x) must be solved 
numerically by using BEM. Once p(x) and v,(x) are all 
Specified, the radiated acoustic pressure p(x) can be calcu 
lated by Eq.(6). 
II. AN ALTERNATE FORMULATION 
A formulation according to the present invention predicts 

the radiated acoustic preSSure directly once the particle 
Velocity at the interface is Specified by a non-intrusive laser 
Doppler Velocimeter. For completeness, we give formula 
tions for both exterior and interior regions, respectively. 
A. Exterior problems 

Derivations of the alternate formulation start from the 
Euler equation, 

Vp(x)=iopov (x) (9) 

Integrating both sides of Eq. (9) along a line which 
connects one field point x to another x yields 
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p(xs), which when substituted back into Eq. (13) gives a 
-> (10) -> 

? Vp(x) edit=? . . dp(x) = icopo? (x) ed Solution for p(x). 
(x' -> x (x' -> x) (x' -> x 

— . 5 p(x) = (14) 
where e is a unit vector in the direction of the line integral S 
from X" to X. -> aG(x'ss) s.?k)d 

Obviously, the integral of dip(x) on the left side of Eq. iopo ? S Öns ? (as -> xs) V(xs)dn - 
(10) is determined by its upper and lower limits, but inde 
pendent of the choice of the integration path. Hence, we 10 --> --> -1 
obtain v(xs)G('sks) dS } X 2. i? aG(x'sys) dS -- 

S Öns 
(11) 

p(x) -po) ion? () eal a. 
(x-x) 15 iop? --> --> v(xs)dn 

Equation (11) shows that the complex amplitude of the (x's -> xs) 
-> 

acoustic pressure at any point X can be expressed as the Sum 
of the complex amplitude of the acoustic pressure at another 
point x plus a line integral of the apparent force per unit 20 Substituting Eq. (14) into Eq.(6), we obtain the following 
Volume over any path that connects these two points. Since integral formulation 
there is no restriction on the Selection of the integral path, we 
choose to let it lie on the control Surface S. Accordingly, we 
can Write p(x)=s,(v)+(v.) (15) 

25 
-> (12) 

p(s)-f(t)+iop? (5.6 in ti?sil (xs. Xs) where g, represent integral operators operating, 
where v, and v, represent the normal and tangential com- respectively, on the normal and tangential components of the 
ponents of the particle Velocity at the Surface S, particle Velocity 

(16a) 

-1 

-1 
---> --> --> (16b) 

a. 6G a --> --> --> 6G a --> --> g2(V) = - I J. { -- ? S' v(xs)G(xsss)dS' X 2J i? ce. S' } dS - E. S v(xs)G(xxs)dS 

respectively, and dn and dm are the increments in the normal Equation (15) is the main result of this invention. The 
and tangential directions on S., respectively. In the Special 45 
case where the control Surface coincides with the real 
Surface, the normal component of the particle Velocity 

radiated acoustic pressure p(x) is shown to be expressible in 
terms of the particle velocity only. This alternative formu 
lation is in contrast with the classical Kirchhoff integral 

v. (xs) is equal to that of the Surface Velocity, but its formulation. There is no need to solve an integral equation 
tangential component v. may be different. for the Surface acoustic preSSure, given the normal compo 

50 nent of the surface velocity. Instead, the radiated acoustic 
preSSure can be calculated directly once the particle Velocity 
at the Surface is specified. Since the Surface integrals in Eq. 

Without loss of generality, we will omit the Subscript c on 
S in the following. Since the integration path remains c 

perpendicular to the unit normal in at all times, dn=0. Hence (16) can be readily implemented by the standard Gaussian 
the first term in the Square brackets on the right Side of Eq. quadratures, the efficiently of numerical computations may 
(12) is identically Zero, 55 be significantly enhanced. 

B. Interior Problems 
(13) Following the same procedures as outlined above and 

p(s) = p(s) + iopo? . . .(s)dn changing the Sign of the unit normal derivative d/dn, we 
(x's -> xs) obtain 

60 

Substitute p(x) into Eq. (8) and notice that p(x,) -> M M 
represents the acoustic preSSure at a fixed Surface point p(X)=g, in{v}+gin{v} (17) 
xs, which is independent of the integration with respect to A 
the unprimed Surface coordinates and therefore can be where f(X) represents the acoustic pressure at an interior 

65 
factored out of the integral Sign. Combining the coefficients point X enclosed by the Surface S, and ge," 
of p(x,) on both sides of Eq. (8) yields a solution for by 

are defined 
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Öns 

Öns 

iopo 

C. Scattering problems 
In a similar manner, we can extend this alternate formu 

lation to the acoustic pressure field Scattered from a finite 
object in free or half space. For an object in free Space, the 
Solution for the Scattered acoustic pressure taken the form of 

pic(x)-g, (votal}+g, viola) M (19) 
where g, are defined by Eq. (16), v," and v," 
represent the components of the total particle Velocity nor 
mal and tangential to the Surface of the object, respectively, 

15 

v total-(vscavin) oe m m (20a) 
25 

voial-(vscovinc)oe, (20c) 

where v" and v' are the scattered and incident compo 
nents of the particle Velocity, respectively, and e and e, 
represent the unit vectors in the tangential and normal 
directions at the Surface of the object, respectively. 

For an object in half space bounded by an infinite baffle 
of certain surface acoustic impedance, the effect of the 
acoustic pressure reflected from the baffle and that Scattered 
from the object due to this reflected wave must all be taken 
into account. One way of Solving the Scattered acoustic 
preSSure in the presence of an infinite baffle is to use the 
image Source method. The resulting formulation can be 
written as 

35 

40 
pic(x)=9, (votal}+g, viola) (21) 

where gs are given by 

iopo 
ga(s) :: - 

where G is the Green's function that accounts for the effect 
of the image Source. For a Surface with arbitrary acoustic 
impedance, there is no closed-form Solution for this Green's 

-> 

function. However, for an observer at a point x which is at 
least one half wavelength away from the Surface, G can be 
approximated by 

eikRi (23a) 65 ikiR 01 - B G(xx)=- ( f ) 

-- aG(xxs) 
? (i. -> x.) v(Xs)dn dS X 2. ? - a - dS 

10 

-1 (18a) 

, , (xs)dnds J. Jr.-, n( s) n 
-1 (18b) 

s }s. I ? .x G(xxods 

aG(xxs) 
Öns 

and its normal derivative is given by 

27th) - (ikR-1)e oR (23b) 
on R2 on 

cos01 - B (ikR-1)eikRI 8Rf 
cos01 + B R2 on 

where R and R are the distances measured from the 
observer to the Source and to the image, respectively, coS 0= 
-> -> -> 

in Oe, here n is the unit normal vector on the baffle and 
-> 

e is the unit vector in the direction of wave propagation 
from the image to the observer, B is the acoustic admittance 
of the baffle surface defined by 

B (24) 

where Z (co) is the Surface acoustic impedance. For a rigid 
surface, Z (co)->oo, so B->0 and G=e'/R+e'/R. On the 
other hand, for a pressure-release Surface, Z (co)->0, so 
B-soo and G=e'/R-e/R. 
III. UNIQUENESS OF SOLUTION 

It is well known that in carrying out the numerical 
computations for the radiated acoustic pressure in the eXte 
rior region, the Surface Kirchhoff integral equation (8) may 
fail to yield a unique Solution whenever the excitation 
frequency is close to one of the eigenfrequencies of the 
interior boundary value problem. This is because Eq. (8) 

--> --> -1 (22a) 
a --> dG(xsys) 
v'(xsdin dS' x 21- - dS' dS + ''. - ...)" 6ns. (x, -> x's.) S 

shares the Same eigenfrequencies as those of the correspond 
ing integral equation in the interior region, and further, the 
Solution to the adjoint homogeneous equation Satisfies the 
compatibility condition for any velocity distribution 
v,(x). Since the alternate formulation (14) is derived from 
the Kirchhoff integral theory, an examination of its unique 
ness seems to be in order. In what follows, we follow the 
procedures outlined by Scheneck to examine the uniqueness 
of Eq. (14). For brevity, the theorems regarding the charac 
teristic values of an integration kernel, as those regarding 
trivial and non-trivial Solutions to homogeneous and inho 
mogeneous equations as well as their adjoints are omitted. 
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The integral formulation governing the acoustic pressure To check if fit also satisfies the compatibility condition 
in an interior region is given by given by 

---> -- (25) (31) 
-- 1. aG(XXs) op(Xs) -- - - - 

p(X) = - 4J, J. Öns p(Xs) - G(XXs) Öns dS 5 | p(x) ? S' v(Xs)G(XSXS)dS' dS = 0 

Taking a normal derivative of Eq. (25) at an interior point we return to the integral formulation (25) for the interior 
X and then lettering X->X's from the inside, we obtain region. 

10 Taking the limit as X-Xs from the inside leads to 
-- . . aG(xsix) (26) 

2J v(X's) i? v(Xs) - H dS= -> --> (32) 
S Öns -- aG(X'sXs) 

p(X's) 2 i? - ds - S fis 

Substituting p(X.) on the right side of Eq. (26) by p -> --> 
(X's) plus a line integral as given by Eq. (13) yields 2O iopo? G(x'sKs) ( ? 

S Öns 

(27) 
i.e.- ... is a M --> 2J v(X's) -? S v(X)- S + Since v(X)=0, the second term on the right side of Eq. 

25 (32) vanishes identically. Therefore, for the interior homo 
6 aG(xsix) -- geneous Dirichlet problem for which p(Xs)=0 and co-co we ? o ? , , v(Xs)dn dS 

S X's. --> on's Öns Xs : have 

(33) 

Because of the equivalence of v,(Xs) and pt(X), WC Ca 
For the homogeneous Dirichlet problem p(X.)=0. Hence rewrite Eq. (33) as 
Eq. (27) reduces to 

35 
(34) 

fis 

Interchanging the order of integrations in Eq. (31) yields 

Since the Square-bracket term in Eq. (35) is identically Zero 
see Eq. (34), the compatibility condition (31) is satisfied. 

-> Consequently, for a dilating sphere Eq. (14) may fail to yield 
Xs) and take the complex conjugate of this homogeneous a unique Solution for the Surface acoustic preSSure whenever 
equation, we obtain the excitation frequency is close to one of the corresponding 

interior Dirichlet eigenfrequencies. However, the ill 

The integral equation governing the Surface acoustic 
pressure in the exterior region is given by Eq. (14). If we as 
consider the homogeneous Neumann problem in which v( 

-- aG(xsix) (29) 50 conditioning in the numerical computation of Eq. (14) is 
pf(Xs) 2 -? - dS = 0 much less severe than that in the BEM-based Kirchhoff 

S integral equation, as shown below. 
Obviously, Eq. (29) is different from Eq. (28), so they do For a dilating Sphere, the Solution for the Surface acoustic 

not share the same eigenfrequencies. Consequently, Eq. (14) pressure given by Eq. (14) takes the following form 
has a unique Solution for the radiated acoustic pressure in the 55 
exterior region. However, this uniqueness may break down (36) 
for the special case of a dilating sphere in which and v=v, p = -iopov,? s dS x 
-> M M 

e, and v=0. Since v, is a constant, it can be factored out S ISS 
of the integral sign and Eq. (28) reduces to -1 

60 2. (KRs - De" oRs 
aG(xsix) (30) ? S' Öns' 

in? - Y - so S Öns 
The corresponding interior Dirichlet eigenfrequencies are 

which is identical in form to Eq. (29) for the exterior 65 determined by the roots of the first kind of the spherical 
problem. Therefore fit and v, share the same eigenfrequen- Bessel function of order Zero, T(ka)=0, which yields 
cies (of. ka=mat, where m is an integer and a is the radius of the 
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Sphere. Using the Spherical coordinates, it is easy to Show 
that Rs=2a cos (0/2), 6R/ons=cos (0/2), and dS=a sin 
0d0dcp, where 0 and p vary from 0 to t and 0 to 21, 
respectively. 

Substituting Rs, dR/dns, and dS into Eq. (36), we obtain 

... ipocs,ka - ai2ka (37) p-- - x -(e) 
(1 -ika) (1 - ei2ka) 

When ka=mit, Eq. (37) reduces to p=-ivoco, mTO1-mat)'x 
(0/0). However, the computer cannot take the limit to (0/0). 
Hence any round-off error in the numerical computation 
may lead to an erroneous result. 

In using the BEM-based Kirchhoff integral equation, the 
Surface acoustic preSSure is obtained by Solving a Set of 
Simultaneous integral equations. When the excitation fre 
quency is close to one of the interior eigenfrequencies, the 
diagonal terms become very Small and the matrix becomes 
ill-conditioned. Table 1 exhibits this trend in detail for a 
dilating Sphere around ka=TL and 27t. Here numerical com 
putations are carried out by a general BEM code with the 
Spherical Surface discretized into 48 quadratic quadrilaterals 
and 130 nodes. The results thus obtained are compared with 
those of Eq. (14). 

With Eq. (14) one can carry out Surface integrals using 
Gaussian quadratures directly, without the need of Solving a 
Set of Simultaneous equations. In evaluating these 
integrations, we make use of the axisymmetry of the acous 
tic preSSure distribution and discretize the Spherical Surface 
into twelve rings along the generator. The integrations with 
respect to the polar angle 0 within each ring are carried out 
by the Gaussian quadrature formula with three interior 
points. The integration over the azimuthal angle p can be 
done independently, yielding a factor of 27t. 

Numerical results in Table 1 show that both BEM and Eq. 
(14) fail to yield unique solutions at the interior Dirichlet 
eigenfrequencies. However, the BEM results show the sign 
of ill-conditioning over a large frequency range around the 
interior Dirichlet eigenfrequencies, whereas the results 
obtained by Eq. (14) are more or less correct until ka hits the 
eigenfrequencies almost directly. 
AS a Second example, we calculate the dimensionless 

acoustic pressures on the Surface of an oscillating Sphere. 
The corresponding interior eigenfrequencies are determined 
by the roots of the first kind of the spherical Bessel function 
of order one, T(ka)=0, which yields ka=4.493409, 
7.725233, . . . . Since in this case the tangential component 
of the particle Velocity is not Zero and the normal component 
of the Velocity is not constant, the complex conjugate of the 
homogeneous equation (29) for the exterior region does not 
share the Same eigenfrequencies as those of the homoge 
neous equation (28) for the interior problem. Hence, the 
Solution given by Eq. (14) is unique, while those obtained by 
the BEM-based Kirchhoff integral formulation are not as 
ka-ska. 

Table 2 lists the dimensionless acoustic pressures 
obtained by BEM and Eq. (14), respectively, on the surface 
of an oscillating sphere at 0=45. In using Eq. (14) we divide 
the Spherical Surface into eighteen rings along its generator 
in order to compare the Surface acoustic preSSure at the same 
location as those of BEM with 130 nodes. Numerical results 
demonstrate that the BEM results show the sign of ill 
conditioning over a large frequency range around the inte 
rior eigenfrequencies, whereas the results of Eq. (14) are 
accurate and unique. 

15 

25 

35 

40 

45 

50 

55 

60 

14 
In the last example, we use Eq. (14) to calculate the 

acoustic preSSure on the Surface of a right cylinder of finite 
length. The aspect ratio of the cylinder is bfa=1, where a and 
b are the radius and half length of the cylindrical wall, 
respectively. The eigenfrequencies of the corresponding 
boundary value problem in the interior region are give by 

2 

3. -- Ong 
2 

where m is a positive integer and C, is the qth root of the 
nth Bessel function 

(38) 

J,(C)=0 n=0,1,2, (39) 

Thus, for a=b=1 (m) the first two eigenfrequencies are 
koa-2.8724 . . . and koa=3.9563 . . . . 

In the following, we examine the uniqueness of the 
numerical Solutions given by Eq. (14) around ka=2.8724 and 
3.9563, respectively. Since there exists no analytical solu 
tion for a finite cylinder, comparisons of the numerical result 
of Eq. (14) are made with respect to the radiated acoustic 
pressures from a point Source of radius a (a-0.001a) 
located at the center of the cylinder. The procedures are 
described as follows. First, we calculate the acoustic pres 
Sure distribution on a cylindrical Surface due to a point 

-> 

Source. Next, we determine the particle Velocity w (Xs) on 
the cylindrical surface via Eq. (9). Once w (xs) is specified, 
the Surface acoustic pressure is recalculated using Eq. (14). 
The results thus obtained are compared with the surface 
acoustic pressure due to the point Source. 

In carrying out the numerical integrations in Eq. (14), we 
uniformly divide the Surface into 48 rings along its 
generator, i.e., 12 rings on each of the two flat ends and 24 
rings on the Side wall. Each of these 48 rings is further 
divided into 48 equal Segments along the circumference. 
Numerical integrations over each Segment are carried out by 
Gaussian quadratures with nine interior points. Table 3 lists 
the maximum relative errors of the magnitudes and phases 
of the dimensionless Surface acoustic pressures given by Eq. 
(14) as compared with those from a point Source around 
ka=2.8724 and 3.9563. It is seen that Eq. (14) shows no 
Signs of the nonuniqueness difficulties around these charac 
teristic frequencies. The relative error in the magnitude of 
the dimensionless Surface acoustic pressure increases mono 
tonically with ka, which is to be expected for a fixed grid 
size. The relative error in the phase of the Surface acoustic 
preSSure remains essentially the same however. 

FIG. 3 displays the magnitude of the dimensionless Sur 
face acoustic pressure evaluated at the center of a flat end of 
the cylinder using Eq. (14) with ka varying from 0 to 10 at 
an increment at Aka=0.1. Within this frequency range, there 
could be many characteristic frequencies for the correspond 
ing interior boundary value problem see Eq. (39). 
Nevertheless, the numerical Solution given by Eq. (14) is 
always unique. 

In Summary, Solutions given by Eq. (14) are unique, 
except for the Special case of a dilating sphere. Even under 
this circumstance, the ill-conditioning in the numerical 
computation is much less severe than that of the BEM-based 
Kirchhoff integral formulation. 
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TABLE 3-continued 

18 

Maximum relative errors of the magnitudes and phases of the dimensionless 
acoustic pressures on the surface of a finite cylinder by using Eq. (14) around ka 

2.8724 and 3.9563. 

Errors Exact 
ka Exact Mag. Eq. (14) (%) Phase Eq. (14) 

3.956 O.3953E-05 O.4OO7E-05 1381 136.86 136.86 
3.9563 O.3953E-05 O.4OO7E-05 1381 136.88 136.89 
3.9564 O.3953E-05 O.40O8E-05 1381 136.88 136.90 
3.957 O.3954E-05 O.40O8E-05 1381 136.92 136.93 
3.96 0.3957E-05 0.4011E-05 1.38O 137.09 137.11 
4.0 O.3997E-05 O.4051E-05 1.359 139.38 139.42 

15 

IV. ANALYTIC VALIDATIONS 
In this Section, we demonstrate the validations of the 

alternate formulation derived in this invention on Sound 
radiation from Vibrating spheres whose analytic Solutions 
are well-known. 
A. A dilating Sphere 

In the first example, we consider acoustic radiation from 
a Sphere of radius a vibrating radially at a constant frequency 
() in a free field. Since the sphere dilates uniformly in all 

--> 25 

direction, the particle velocity v=v, e, where v, is a con 
stant. Substituting v, into (15) yields 

(40) 
iopov, 3O 

4J, 
eikRs' 
Rs. 

ikR-1)eikiR 
R2 6 J. 

(ikRs - 1)eiRS 2 -? o 
S' R. 

L. 
S' dS - 

35 

iopov, 
4J, 

The Surface integrals in the Square brackets on the right 
Side of Eq. (40) can be evaluated independently and the 
results are 

dS 

40 

(41a and 41b) 45 
eikiRS' i2. dS' = 1 - ei2ka ? Rs -(1-era) 

ikRS - 1)eikFS 6RS 2 -? (KRs - 1)e" dS --- (1 -ika)(1-eik) 
S' R; Öns' ka 50 

Substituting Eq. (41) into (40) leads to 

a --> 6R 
on -1 

where 

R= . + al 

60 

(43a) 

2ar(sinecos(psinescosps + sinesin(psinessings + cos0cos0s 65 

eikR 

Errors 

(%) 

-continued 
- E- = -R (rsinecosp - asinescosps)sinescosps + (43b) 

(risinesinop - asin0ssincps)sinessincps + (rcos0 - acos0s)cosés 

where r is the distance from the center of the sphere to the 
observation point in the filed, 0 and (p are the polar and 
azimuthal angles of the field point, and 0s and (ps are the 
polar and azimuthal angles of a Surface point. 

Since the radiated acoustic pressure is spherically 
Symmetric, we can Set the field point to lie on any axis, Say, 
0=TL and (p=0. Thus, R and 8R/on can be simplified to 

(44) 
R = W r2+ a2+2arcos0s 

and 

R a + 'cos6s 
an 

r2+a+2arcos0s 

Substituting Eq. (44) into (42), we obtain 

(45) 1 + ika)e"? - (1 -ika)e"' - 
(1 -ika) 

poca 
-- 

eik(r-a) - eikoria) } 

:: - ipocs,ka ( )eto 
(1 -ika) r 

which agrees exactly with the analytic Solution. 
B. An oscillating sphere 
The Second example concerns Sound radiation from a 

Sphere oscillating back and forth along the Z axis at a 
constant frequency, () in an unbounded fluid medium. To 
check the validity of the alternate formulation, we substitute 

the analytic Solution for the particle Velocity 

v.(1 -ika)sine (46) 

into the alternate formulation and then compare the resulting 
acoustic pressure with that of the analytic Solution. In Eq. 
(46), 0 is the angle between the unit outward normal and the 
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Z-axis direction, v. is the magnitude of the Velocity at the 
center of the Sphere. 

Because of the presence of vo. evaluation of the integrals 
in Eq. (15) become a bit lengthy. Without loss of generality, 
we demonstrate the evaluation of the Surface acoustic pres 
Sure given by Eq. (14). To this end, we first carry out the line 
integral involved in Eq. (14). Using the axisymmetry, we can 
Set x's at (a, JU,0) and x's at (a, 0, (p). Substituting Eq. (46) 
into the line integral on the right side of Eq. (14) then yields 

0. (47) 0 (1 -ika)sine' 

av.(1 – ika) (1 + cos0) 
(2 - k2a2-i2ka) 

Substituting Eqs. (41) and (47) into (14) leads to 

pocs.(ka) 
21 (1 -ika) (1 - eioka) ’? S 

ipocska(1-ika) (1 + cos0) 

ipocska(1-ika) (1 + cos0) 
(2 - k2a2-i2ka) 

ipocve 

ka(1-ika) (1 - eioka) (2 - k2a2-i2ka) 

ipocska(1-ka-i2ka) 
(1 -ika) (2 - k2a2-i2ka) 
ipocska(1-ika)cos0 

(2 - k2a2-i2ka) 

ipocska(1 - ika) (1 + cos0) 
(2 - k2a2-i2ka) 

which agrees perfectly with the analytic Solution. 
C. A partially vibrating sphere 
The third example deals with acoustic radiation from a 

Sphere on which only part of the Surface is vibrating at a 
constant frequency () AS before, we Substitute the analytical 
Solution for the particle Velocity into Eq.S. (14) and (15), and 
then compare the acoustic preSSures thus obtained with the 
known values. For Simplicity, we assume that the particle 

--> poc(ka) aRs (ikRs - 1)eiRS p(xs) = - x? o 
21 (1 -ika) (1 - eioka) S. dns Rs.2 

a --> poc(ka) (ikRs - 1)eiR 6R p(x) = - - - x? o 
8712(1-ika) (1 - eioka) S R2 on 

0. 

J. 6R 
on 

ipoc(ka) (ikR-1)e" 
4J, S R2 ( 

Velocity is axisymmetric, and that the normal component of 
the particle Velocity is equal to that of the Surface Velocity, 
which is limited to the portion described by the half-vertex 
angle 0. 

5,(0) = H(0-0) 0s 0 sat (49a) 

a. o (49b) 
6) = X Pm-1 0n) - 5 ve(0) i2ka io' m-1 (cos00) 

hn (ka) dP(cos0) 
P1(cos00) ka - 

B(ka)eron' ) 
1O 

where H(0-0) is the Heaviside step function, which is unity 
when 0s 0 and Zero when 0>0, v, is the magnitude of the 
Surface Velocity, P., and h, represent the Legendre and the 
spherical Hankel functions of order m, respectively, and B, 
and Ö, Stand for the amplitudes and phase angles of acoustic 
radiation of order m, respectively. 

15 

Substituting Eq. (49) into (14) and (15), we obtain 

(48) 
1 + cos0) (ikRs - 1 8Rs ikiR (1 + cos0) (KRs - 1)) (ikRs - 1) + cos0 S dS - 

Rs Öns S 

i4ka + 2) 
- 1 + k2a2+ ei2k(k2a2+ i2ka - 1) - 

40 

45 

a. (50a) . . . . .(0)e" . . . . . r. (? 3. vo(0)de ) -- dS + ince? 3. vo(0)de 
(50b) 

(ikRs - 1)eiRs' 8Rs 0. 
o (9) S S ? S' R. Öns' (? 3. a(0) ) -- 
c(k2a Fi-R - 1Yaiki (0)eikRS poc(ka) ? (ikR - 1)e 6R ? (0) dS dS 

8712(1-ika) (1 - eioka) J S R on s. Rs 

io) (0)eikR Po (0)e dS 
4J, S R 

5 Once again, we use the axisymmetry of the acoustic 
6 

pressure distribution to set (p=0 and replace R and dR/dn in 
Eq. (50), respectively, by 
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(51c) 
R+ \ r2 + a - 2ar(sin0sinescosps + cos0cos0s) 

6R a - r(sinosinescosps + cos0cos0s) (51b) 
an R 

In this case, however, an exact Solution cannot be found. 
Hence p(x) and p(x) are Solved numerically. Here, we 

1O 

22 
the radius and half length of the cylindrical wall, respec 
tively. Since there are no analytic Solutions available, we 
compare the acoustic pressures given by Eq.S. (14) and (15) 
with those of a monopole and a dipole Sources, respectively, 
located at the center of the cylinder. The radii of the 
monopole and the dipole are a=0.001a, where a=1(m). The 
procedures involved in these comparisons are the Same as 
those described in Section III. 

TABLE 4 

Dimensionless acoustic pressure on the surface of a partially vibrating sphere with 
6 = 45 and ka = 0.1. 

7.5° 
37.5° 
67.5° 
97.5° 
127.5° 
157.5° 
172.5° 

p/poevo Eq. (50a) Errors Phase Eq. (50a) Errors 

5.1455E-02 S.O672E-O2 1.52% -88.375 -88.350 O.O.3% 
4.0547E-O2 3.7969E-O2 6.36% -87.940 -87.8OO O.16% 
13494E-O2 1328OE-02 1.59% -83.816 -83.716 O.12% 
7.7O16E-O3 7.8862E-03 2.40% -79.158 -79.414 O.32% 
5.7574E-O3 5.6945E-03 1.09% -75.472 -75.3O8. O.22% 
S.O.335E-03 4.9149E-03 2.36% -73.361 -72.948 O.56% 
4.8551E-O3 4.7616E-03 1.93% -72.738 -72.388 O.48% 

TABLE 5 

Dimensionless acoustic pressures evaluated at kr = 1 from a partially vibrating 
Sphere with On = 45 and ka = 0.1. 

Oo 
45° 
90° 
135° 
180° 

discretize the Spherical Surface into twelve rings along 0 and 
twenty-four Segments along (p within each ring. Numerical 
integrations over each Segment are carried out using GauS 
sian quadratures with none interior points. For convenience, 
we set ka=0.1, kr=1, 0=45, and use sixteen expansion 
terms in Eq. (49b) to approximate the tangential component 
of the particle velocity vo. Table 4 compares the numerical 
results of Eq. (50a) at various polar angles 0 with the 
analytic Solutions. The maximum relative error in the mag 
nitude of the Surface acoustic preSSure is found to be about 
Six percent, while that in the corresponding phase angles is 
less than one percent. The magnitudes of the relative errors 
decay rapidly as the measurement point moves into the field. 
Table 5 shows the comparison of the numerical result of Eq. 
(50b) at the same polar angles at kr=1 with the analytic 
Solution. In this case, the maximum relative error in the 
magnitude of the Field acoustic pressure is less than one 
percent. 
V. NUMERICAL VALIDATIONS 

In the preceding Section, we demonstrate validations of 
the alternate formulation on Sound radiation from Vibrating 
objects whose analytic Solutions are well-known. In this 
Section, we consider cases for which there exist no analytic 
Solutions. 

In order for the vibrating objects to be of certain 
generality, we choose a slender cylinder with two flat ends. 
The aspect ratio of the cylinder is b/a=10, where a and b are 

p/poevo Eq. (50a) Errors Phase Eq. (50a) Errors 

15576E-03 16646E-03 0.17% -39.712 -39.436 0.70% 
1.598OE-03 1.5959E-03 O.13% -37.6O7 -37.357 O.66% 
14523E-03 1.4542E-03 O.13% -32.433 -32.381 O.16% 
1.3333E-03 13404E-03 O.53% -27.184 -27.523 1.25% 
1.2907E-03 1.2998E-O3 0.71% -25.OO1 -25.556 2.22% 

40 

45 

50 

55 

60 

65 

In what follows, we first consider the case in which the 
particle Velocity field on the cylindrical Surface is generated 
by a monopole located at the center of the cylinder. Substi 
tuting the velocity field into Eqs. (14) and (15) yields the 
Surface and field acoustic pressures, which are then com 
pared with those from the monopole Source, respectively. 
Excellent agreements are obtained for all the cases tested. 
For brevity, however, we only plot the comparisons of kb=1 
and 50 below. The surface integrals in Eqs. (14) and (15) are 
implemented with the cylindrical Surface discretized into 
480 rings on the Side wall and 24 rings on each end. These 
rings are further discretized into 48 Segments along the 
azimuth. Numerical integrations over each Segment are 
carried out using Gaussian quadratures with nine interior 
points. 

FIG. 4 demonstrates the comparisons of the real and 
imaginary parts of the dimensionless acoustic pressure 
obtained by using Eq. (14) with those of a monopole at kb=1 
along the generator of the cylindrical Surface. Here the 
abcisa represents a dimensionless distance S/a along the 
generator of the cylindrical Surface. In particular, S/a=0 
indicates the center of the Side wall, S/a=t.10 the edges that 
Separate the Side wall from the flat end, and S/a=t.11 the 
centers of the two ends. FIG. 5 shows the comparison of the 
radiation pattern of the dimensionless field acoustic preSSure 
given by Eq. (15) at a radial distance of r=20(m) with that 
of the monopole Source. 

In a similar manner, we calculate the Surface and field 
acoustic pressure by using Eq.S. (14) and (15) at kb=50, and 
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compare the results thus obtained with those of the mono 
pole source (see FIGS. 6 and 7). 

Next, we repeat the same procedures and compare the 
calculated Surface and field acoustic preSSures with those of 
a dipole at kb=10 and 100. Because of the increase in the 
excitation frequency, we double the number of discretization 
Segments. Specifically, we use 960 rings on the Side wall and 
48 rings on each end, and 96 segments along the azimuth 
within each of these rings. The comparisons of the real and 
imaginary parts of the Surface acoustic pressure for kb=10 
are depicted in FIG. 8, and those of the filed acoustic 
pressure are displayed in FIG. 9. FIGS. 10 and 11 demon 
Strate the comparisons of the Surface and field acoustic 
pressures for kb=100. 

In accordance with the provisions of the patent Statutes, 
the present invention has been described in what is consid 
ered to represent a preferred embodiment. However, it 
should be noted that the invention can be practiced other 
wise than as Specifically illustrated and described without 
departing from its Spirit or Scope. 
What is claimed is: 
1. A method for predicting Sound radiation from a vibrat 

ing object including the Steps of: 
a) defining a Surface of the vibrating object; 
b) determining the particle Velocity at the Surface of the 

Vibrating object; 

5 

15 

25 

24 
integrating the normal and tangential components of the 

particle Velocity over the Surface of the vibrating 
object. 

5. The method for predicting sound radiation from a 
Vibrating object according to claim 3 further including the 
Step of using a non-intrusive laser Doppler Velocimeter. 

6. The method for predicting Sound radiation from a 
Vibrating object according to claim 1 further including the 
Step of utilizing Gaussian quadratures to Solve the integral of 
velocity distribution over said surface of said object. 

7. The method for predicting sound radiation from a 
vibrating object according to claim 1 wherein said step c) is 
performed according to the equation: 

where g, represent the integral operators operating on the 
tangential and normal components of the particle Velocity, 
respectively, 

c) integrating the particle Velocity over the Surface of the 
Vibrating object; 

d) determining the acoustic pressure at points other than 
at the Surface of the object based upon the integration 
of the particle velocity over the surface of the vibrating 
object. 

2. The method for predicting Sound radiation from a 
vibrating object according to claim 1 wherein said step a) 
further includes the Step of measuring the particle Velocity at 
the Surface of the vibrating object utilizing an accelerometer. 

3. The method for predicting sound radiation from a 
Vibrating object according to claim 1 further including the 
Steps of: 

determining the normal and tangential components of the 
particle Velocity at the Surface of the vibrating object. 

4. The method for predicting Sound radiation from a 
Vibrating object according to claim 3 further including the 
Step of 

aG(xxs) 
Öns 
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8. The method for predicting transient sound radiation 
from a vibrating object according to claim 1 further includ 
ing the Steps of: 

taking the inverse Fourier transform of the acoustic pres 
Sure, and 

calculating transient acoustic radiation from Said object. 
9. The method for predicting Sound radiation from a 

Vibrating object according to claim 1 further including the 
Step of calculating an acoustic pressure at a point enclosed 
by the surface of the vibrating object. 

10. The method for predicting sound radiation interior to 
a vibrating object according to claim 1 wherein said step c) 
is performed according to the equation: 

p(X)=g,"{v}+g."{v} (17) 
where g", represent the integral operatorS operating on 
the tangential and normal components of the particle 
Velocity, respectively, 

-1 
-> --> (18a) 

-> aG(XsXs) 
(Xs)dn ) dS X 2. ? S' - dS } dS - 

iopo aG(xxs) J. 
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11. The method for predicting sound radiation from a 
Vibrating object according to claim 1 wherein Said vibrating 
object is a finite object in free Space. 

12. The method for predicting Sound Scattering from an 
object according to claim 11 wherein said step c) is per 
formed according to the equation: 

pe(x)=g, (votal}+g.{votal} (19) 
where 9, represent the integral operators operating on the 
tangential and normal components of the particle Velocity, 
respectively, 

15. A System for predicting Sound radiation from a vibrat 
ing object including: 

a) a computer having an input device for defining a 
Surface of the vibrating object; 

b) means for determining the particle Velocity at the 
Surface of the vibrating object; 

c) means for integrating the particle Velocity over the 
Surface of the vibrating object; 

aG(xxs) aG(xxs) (16a) a. () a --> g()- E -- (?ician) as: 4J, S on s' dins (x's -> xs) 
-1 

aG(xx aG(xx a --> 2 -? 99esks) as as +" ? aG(xxs) ? Vn(xs)din dS 
S' Öns' 4J, S on (x's -> xs) 

(xx (xx -1 (16b) 
a. iopo aG(xxs) . . \-7. I y ci dG(xsics) iopo a --> --> 

g2(V) = - 4J, ?: - J. v(xs)G(xsss)dS' x 21. i? - a - dS ds--- vice G(thods 

vioral and v," represent the components of the total so d) means for determining the acoustic pressure at points 
particle Velocity normal and tangential to the Surface of the 
object, respectively, 

total-i?sca incyal violet-(ve-vine)oe (20A) 

voial-(vscovinc)oe, (20C) 

where v" and v" are the scattered and incident compo 
nents of the particle Velocity, respectively, and e and e, 
represent the unit vectors in the tangential and normal 
directions at the Surface of the object, respectively. 

13. The method for predicting Sound Scattering from an 
object according to claim 1 wherein Said vibrating object is 
a finite object in half space bounded by a baffle. 

14. The method for predicting sound radiation from a 
vibrating object according to claim 13 wherein said step c) 
is performed according to the equation: 

pic (x)= g, voia- g, voial 
where gs are given by 

(21) 
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other than at the Surface of the object based upon the 
integration of the particle Velocity over the Surface of 
the vibrating object. 

16. The System for predicting Sound radiation from a 
Vibrating object according to claim 15 further including a 
Sensor generating a Signal indicative of Said particle Velocity. 

17. The system for predicting sound radiation from a 
Vibrating object according to claim 15 wherein Said Sensor 
is a non-intrusive laser Doppler Velocimeter. 

18. The system for predicting sound radiation from a 
Vibrating object according to claim 15 wherein Said means 
for integrating integrates the particle Velocity over the 
Surface of the object according to: 

where g, represent the integral operators operating on the 
tangential and normal components of the particle Velocity, 
respectively, 
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