
THIRUTTUULLULITUR US009990206B2

(12) United States Patent
Wang et al .

(10) Patent No . :
(45) Date of Patent :

US 9 , 990 , 206 B2
* Jun . 5 , 2018

(51) Int . CI .
G06F 9 / 46 (2006 . 01)
G06F 9 / 38 (2018 . 01)

(Continued)
(52) U . S . CI .

CPC G06F 9 / 3867 (2013 . 01) ; G06F 9 / 30003
(2013 . 01) ; G06F 9 / 3005 (2013 . 01) ;
(Continued)

(58) Field of Classification Search
CPC G06F 9 / 30003 ; G06F 9 / 30043 ; G06F

9 / 3005 ; GO6F 9 / 3009 ; G06F 9 / 3017 ;
(Continued)

(56) References Cited
U . S . PATENT DOCUMENTS

5 , 930 , 504 A
6 , 105 , 105 A

(54) MECHANISM FOR INSTRUCTION SET
BASED THREAD EXECUTION OF A
PLURALITY OF INSTRUCTION
SEQUENCERS

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

(72) Inventors : Hong Wang , Sanfta Clara , CA (US) ;
John Shen , San Jose , CA (US) ;
Edward Grochowski , San Jose , CA
(US) ; Richard Hankins , Santa Clara ,
CA (US) ; Gautham Chinya , Hillsboro ,
OR (US) ; Bryant Bigbee , Scottsdale ,
AZ (US) ; Shivnandan Kaushik ,
Portland , OR (US) ; Xiang Chris Zou ,
Hillsboro , OR (US) ; Per Hammarlund ,
Hillsboro , OR (US) ; Scott Dion
Rodgers , Hillsboro , OR (US) ; Xinmin
Tian , Union City , CA (US) ; Anil
Aggawal , Portland , OR (US) ; Prashant
Sethi , Folsom , CA (US) ; Baiju Patel ,
Portland , OR (US) ; James Held ,
Portland , OR (US)

(73) Assignee : INTEL CORPORATION , Santa Clara ,
CA (US)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 77 days .
This patent is subject to a terminal dis
claimer .

(21) Appl . No . : 13 / 843 , 164
(22) Filed : Mar . 15 , 2013
(65) Prior Publication Data

US 2013 / 0219399 A1 Aug . 22 , 2013

7 / 1999 Gabel
8 / 2000 Trimberger

(Continued)

FOREIGN PATENT DOCUMENTS
2000 - 207202 A
2002 - 73331 A

7 / 2000
3 / 2002

OTHER PUBLICATIONS

Tu et al . , “ SMTA : Next - Generation High - Performance Multi
Threaded Processor ” , IEE Proceedings E . Computers & Digital
Techniques , Institution of Electrial Engineers . Stevenage , GB , vol .
149 , No . 5 , Sep . 27 , 2002 , pp . 213 - 218 , CP 006018769 , ISSN :
0143 - 7062 . *

(Continued)

Primary Examiner — Meng An
Assistant Examiner — Willy W Huaracha
(74) Attorney , Agent , or Firm — Nicholson De Vos
Webster & Elliott LLP

(57) Related U . S . Application Data
(63) Continuation of application No . 13 / 608 , 970 , filed on

Sep . 10 , 2012 , which is a continuation of application
(Continued)

ABSTRACT
In an embodiment , a method is provided . The method
includes managing user - level threads on a first instruction
sequencer in response to executing user - level instructions on

(Continued)

JOOA

MEMORY
7 102

THREAD API 10 USER - LEVEL
PROGRAM
SCHEDULER OPERATING

SYSTEM 24112

108

, 114 , 104 MULTI - SEQUENCER HARDWARE
THREAD MANAGEMENT LOGIC

SIDO
SID3

SID2
SERVANT SID1

CLIENT

US 9 , 990 , 206 B2
Page 2

a second instruction sequencer that is under control of an
application level program . A first user - level thread is run on
the second instruction sequencer and contains one or more
user level instructions . A first user level instruction has at
least 1) a field that makes reference to one or more instruc
tion sequencers or 2) implicitly references with a pointer to
code that specifically addresses one or more instruction
sequencers when the code is executed .

2005 / 0240925 A1 * 10 / 2005 Ault . GO6F 9 / 5044
718 / 100

2006 / 0075404 A1 * 4 / 2006 Rosu et al 718 / 100
2006 / 0095908 A1 * 5 / 2006 Norton . . G06F 9 / 4881

718 / 100
2006 / 0155973 AL 7 / 2006 Soltis , Jr .
2006 / 0161762 A1 * 7 / 2006 Eisen GO6F 9 / 3844

712 / 233
2006 / 0271932 A1 11 / 2006 Chinya et al .
2007 / 0074217 AL 3 / 2007 Rakvic et al .
2007 / 0079301 A1 4 / 2007 Chinya et al .

18 Claims , 16 Drawing Sheets
OTHER PUBLICATIONS

Related U . S . Application Data
No . 11 / 173 , 326 , filed on Jun . 30 , 2005 , now Pat . No .
8 , 719 , 819 .

(51) Int . Ci .
GO6F 9 / 30 (2018 . 01)
G06F 9 / 48 (2006 . 01)

(52) U . S . CI .
CPC G06F 9 / 3009 (2013 . 01) ; G06F 9 / 3017

(2013 . 01) ; G06F 9 / 30043 (2013 . 01) ; G06F
9 / 30145 (2013 . 01) ; G06F 9 / 30174 (2013 . 01) ;

GO6F 9 / 3851 (2013 . 01) ; G06F 9 / 4843
(2013 . 01) ; G06F 9 / 4881 (2013 . 01)

(58) Field of Classification Search
CPC . GO6F 9 / 30174 ; GO6F 9 / 3851 ; G06F 9 / 4843 ;

GO6F 9 / 4881 ; G06F 9 / 30145 ; GO6F
9 / 3867

USPC . 718 / 100 , 108 ; 712 / 205
See application file for complete search history .

(56) References Cited
U . S . PATENT DOCUMENTS

6 , 105 , 127 A 8 / 2000 Kimura et al .
6 , 301 , 650 B1 10 / 2001 Satou
6 , 389 , 446 B1 * 5 / 2002 Torii 718 / 100
6 , 549 , 930 B14 / 2003 Chrysos et al .
6 , 574 , 725 B16 / 2003 Kranich et al .
6 , 651 , 163 B1 * 11 / 2003 Kranich et al . 712 / 244
6 , 668 , 308 B2 * 12 / 2003 Barroso GO6F 12 / 0826

365 / 230 . 03
7 , 024 , 671 B2 * 4 / 2006 Yamashita G06F 9 / 4862

718 / 102
7 , 093 , 147 B2 * 8 / 2006 Farkas G06F 1 / 3203

713 / 320
7 , 401 , 206 B2 7 / 2008 Hetherington
7 , 418 , 585 B2 8 / 2008 Kissell
7 , 437 , 581 B2 * 10 / 2008 Grochowski G06F 1 / 206

712 / E9 . 053
7 , 676 , 655 B2 3 / 2010 Jordan
7 , 735 , 088 B1 6 / 2010 Klausler
7 , 996 , 839 B2 * 8 / 2011 Farkas GO6F 9 / 5088

702 / 182
8 , 443 , 377 B2 * 5 / 2013 Inoue et al 719 / 313
8 , 479 , 217 B2 * 7 / 2013 Chinya et al 718 / 108

2002 / 0029330 A1 * 3 / 2002 Kamano et al 712 / 34
2002 / 0199179 AL 12 / 2002 Lavery et al .
2003 / 0088610 Al 5 / 2003 Kohn et al .
2003 / 0174354 AL 9 / 2003 Oteki
2004 / 0154011 AL 8 / 2004 Wang et al .
2004 / 0163083 AL 8 / 2004 Wang et al .
2004 / 0215932 Al 10 / 2004 Burky et al .
2004 / 0215987 Al 10 / 2004 Farkas et al .
2004 / 0216120 Al 10 / 2004 Burky et al .
2005 / 0223199 A1 * 10 / 2005 Grochowski et al 712 / 235
2005 / 0229184 Al 10 / 2005 Inoue et al .

Final Office Action for U . S . Appl . No . 13 / 608 , 970 , dated Jun . 16 ,
2016 , 15 pages .
Kumar et al . , “ Heterogeneous chip multiprocessors ” , IEEE Com
puter (vol . 38 , Issue 11) , Nov . 2005 , pp . 32 - 38 .
Final Office Action for U . S . Appl . No . 14 / 866 , 875 , dated Jun . 30 ,
2016 , 21 pages .
Anderson et al . , “ Scheduler Activations : Effective Kernel Support
for the User - Level Management of Parallelism ” , ACM Transactions
on Computer Systems , vol . 10 , No . 1 , Feb . 1992 , pp . 53 - 79 .
Kumar et al . , “ Single - ISA Heterogeneous Multi - core Architectures
for Multithreaded Workload Peformance ” , Computer Architecture ,
2004 Proceedings , 31 Annual International Symposium on Muchen ,
Germany , Jun . 19 - 23 , 2004 , IEEE , pp . 64 - 75 .
International Search Report for PCT / US2005 / 047328 , dated Mar . 8 ,
2006 , 7 pages .
Written Opinion of the International Searching Authority for PCT /
US2005 / 047328 , dated Mar . 8 , 2006 , 9 pages .
First Office Action from foreign counterpart China Patent Applica
tion No . 200580044896 . 2 , dated Dec . 12 , 2008 , 17 pages .
Second Office Action from foreign counterpart China Patent Appli
cation No . 200580044896 . 2 , dated May 6 , 2010 , 8 pages .
Third Office Action from foreign counterpart China Patent Appli
cation No . 200580044896 . 2 , dated Nov . 18 , 2010 , 8 pages .
Notification to Grant Patent Right for Invention from foreign
counterpart China Patent Application No . 200580044896 . 2 , dated
May 26 , 2011 , 4 pages .
International Preliminary Report on Patentability for International
Application No . PCT / US2005 / 047328 , dated Jul . 3 , 2007 , 11 pages .
Office Action from foreign counterpart German Patent Application
No . 11 2005 003 343 . 0 - 53 , dated Oct . 30 , 2008 , 4 pages .
Office Action from foreign counterpart German Patent Application
No . 11 2005 003 343 . 0 - 53 , dated May 28 , 2009 , 8 pages .
Tyson , G . et al . , “ Misc : A Multiple Instruction Stream Computer ” ,
Proceedings of the 25th Annual International Symposium of
Microarchitecture , IEEE , 1992 , 5 pages .
Summons to Attend Oral Proceedings from foreign counterpart
German Patent Application No . 11 2005 003 343 . 0 - 53 , dated Feb .
8 , 2010 , 5 pages .
Issued Patent from foreign counterpart German Patent Application
No . 11 2005 003 343 . 0 - 53 , dated May 19 , 2011 , 5 pages .
Office Action from foreign counterpart Japan Patent Application No .
2007 - 549602 , dated Jun . 15 , 2010 , 5 pages .
Office Action from foreign counterpart Japan Patent Application No .
2007 - 549602 , dated Oct . 26 , 2010 , 4 pages .
Office Action from foreign counterpart Japan Patent Application No .
2007 - 549602 , dated Feb . 7 , 2012 , 10 pages .
Final Office Action from foreign counterpart Japan Patent Applica
tion No . 2007 - 549602 , dated Sep . 18 , 2012 , 7 pages .
Certificate of Patent from foreign counterpart Japan Patent Appli
cation No . 2007 - 549602 , dated May 2 , 2013 , 5 pages .
Office Action from foreign counterpart Japan Patent Application No .
2010 - 204922 , dated Jul . 17 , 2012 , 5 pages .
Certificate of Patent from foreign counterpart Japan Patent Appli
cation No . 2010 - 204922 , dated Apr . 12 , 2013 , 5 pages .
Office Action from U . S . Appl . No . 11 / 173 , 326 , dated Nov . 3 , 2009 ,
18 pages .
Final Office Action from U . S . Appl . No . 11 / 173 , 326 , dated Apr . 26 ,
2010 , 15 pages .

US 9 , 990 , 206 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Office Action from U . S . Appl . No . 11 / 173 , 326 , dated Feb . 16 , 2011 ,
16 pages .
Final Office Action from U . S . Appl . No . 11 / 173 , 326 , dated Oct . 12 ,
2011 , 16 pages .
Final Office Action from U . S . Appl . No . 11 / 173 , 326 , dated May 13 ,
2013 , 17 pages .
Notice of Allowance from U . S . Appl . No . 11 / 173 , 326 , dated Dec .
17 , 2013 , 10 pages .
Office Action from U . S . Appl . No . 13 / 608 , 970 , dated Sep . 11 , 2014 ,
8 pages .
Final Office Action from U . S . Appl . No . 13 / 608 , 970 , dated Mar . 27 ,
2015 , 17 pages .
Non - Final Office Action for U . S . Appl . No . 13 / 608 , 970 , dated Dec .
3 , 2015 , 21 pages .
Kalla et al . . “ IBM Power5 chip : a dual - core multithreaded proces
sor ” , Mar . - Apr . 2004 , Micro , IEEE , vol . 24 , Issue : 2 , pp . 40 - 47 .
Final Office Action for U . S . Appl . No . 14 / 866 , 875 , dated Jan . 13 ,
2017 , 22 pages .
Notice of Allowance for U . S . Appl . No . 13 / 608 , 970 , dated Apr . 7 ,
2017 , 17 pages .
Non - Final Office Action for U . S . Appl . No . 15 / 276 , 290 , dated May
5 , 2017 , 38 pages .
Final Office Action from U . S . Appl . No . 15 / 276 , 290 , dated Nov . 13 ,
2017 , 20 pages .
Non - Final Office Action from U . S . Appl . No . 14 / 866 , 875 , dated
Nov . 7 , 2017 , 28 pages .
Notice of Allowance from U . S . Appl . No . 13 / 608 , 970 , dated Apr .
28 , 2017 , 7 pages .

* cited by examiner

U . S . Patent Jun . 5 , 2018 Sheet 1 of 16 US 9 , 990 , 206 B2

100A

MEMORY
106

USER - LEVEL
PROGRAM THREAD API

SCHEDULER OPERATING
SYSTEM

108

104
4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . - - - - - - - - - - - - - 114 MULTI - SEQUENCER HARDWARE

THREAD MANAGEMENT LOGIC

SIDO SID3 2015
SID1 II

SERVANT I

.

.

.

CLIENT
.

-

.
.

-

-

-

ITTY ,
-

FIG . 1A

U . S . Patent Jun . 5 , 2018 Sheet 2 of 16 US 9 , 990 , 206 B2

100B

MEMORY
106 102

USER - LEVEL
PROGRAM THREAD API Low 110

DRIVER API DRIVERS OPERATING
SYSTEM
Tri L LLLLLLLLLL

116

MULTI - SEQUENCER HARDWARE

THREAD MANAGEMENT LOGIC
w ww wwwwwwwwwwww 141

SIDO SID3 SD2
SID1 nrcrrrrrrrrrrrrrrrrrrrrrrr SERVANT
CLIENT

FIG . 1B

| . . … . … . … … U . S . Patent Jun . 5 , 2018 Sheet 3 of 16 US 9 , 990 , 206 B2

11? 11

?? : 88 | 15 . … 15 can H

| 111a115

As | As .
| | [20]

HL -

109
120 120) - - - - - - - - - - - - FG -

u

FFFFFFFFFFFFFFFFFFFFF . 2 … 103 2 … . 103
“ ? ! ”

SMT SoeMT

150 Multi - core of single - threaded cores
| Pilly IF II 1 * 1 uuuu : y www . t y a us 1 45 … ? ! ! - - - - - - - - - - - - * * *

Answeat
¢ £ ¥ - rrrrrre restrrrrrrrrrrrr . Sifn : ins Bus " : thr : try mmm

32 : 34 1 123m
May www . rrrrrr . like

- - - - ” - - - - - - - - - - | 11 AT Is I , IE II L u yunya + y # sky A rt * - - - - - * - * - * - - - tv

Multicore of SMT cores
Fash n * m " wu # hk he rethy he us ? M N … - - - - - u re ? HP ret " s tuuuuu v et u v * * * ?????? ? m All m is has , . * - * u + A4 o

rthster ii A ?
ust turth Hsit ;

… …
.

X * *
?? 111111

rustrfttttti (vit rift EEE Eth 13 : 103 09
An ??? nager ?? ???nynthynn # shis at his le u . … . … … ? A , a " . . … … … * * * * re ' re in l uv … ?????? ,

Fic

U . S . Patent Jun . 5 , 2018 Sheet 4 of 16 US 9 , 990 , 206 B2

200
LOGICAL VIEW OF MULTI - SEQUENCER HARDWARE

_ _ _ _ _ _ _ _

_ _ S20 S1 SID2 SID3 _ _ _ _

- : . . - - - . . . - - : - - : - _

. 75

4
-

-

11 . 744 . 771 . - -

FIG . 2

U . S . Patent Jun . 5 , 2018 Sheet 5 of 16 US 9 , 990 , 206 B2

ISA (LOGICAL VIEW OF COMPUTER) 300

-

T72 www 302

LOGICAL STORAGE

304 INSTRUCTION SET

SEMONITOR

SXFR
SMMM

FIG . 3A

U . S . Patent Jun . 5 , 2018 Sheet 6 of 16 US 9 , 990 , 206 B2

-

- 336
- -

334 - Decoder -

335 -

-

Signal - Instr .
Exec Unit -

- 338 10 -

-

344 7 . - - 342 -

- OOO -

-

OOO N 3 Doo 350 -

-

-

-

-

-

-

-

-

- -

Built - in
instruction set

including
user - level

monitor and
control
transfer

instructions
as well as
sequencer
aware save
and restore
instructions

Memory
Seq 1

saved Contxt
Seq 2

saved Contxt

-

-

-

-

-

- Seq - -

-

-

-

saved Contxt
Seq -

saved Contxt
-

- - 332
Processor

-

- -

+ - - - - + -

Cont . Xfer
instruction
Seq ID

Memory
Handler
code

Control
transfer
scenerios A

Monitor
instruction
Seq ID

Instruction
pointer to
location of

handler code
Control
transfer
scenerios

352 348
346

Table
Control
transfer

scenerios

354
Figure 3b

400A

402A

404A

406A

408A

410A

IEEE
U . S . Patent

OPCODE
DESTINATION SEQUENCER

SCENARIO
CONDITIONAL PARAMETER

PAYLOAD
ROUTING METHOD

Jun . 5 , 2018

FIG . 4A

Sheet 7 of 16

OPCODE

SCENARIO

SIDEIP

CONTROL PARAMETER
L 404B

400B

402B

404B

406B

US 9 , 990 , 206 B2

FIG . 4B

U . S . Patent Jun . 5 , 2018 Sheet 8 of 16 US 9 , 990 , 206 B2

500 - 502

AVA NOWAI Fowy
MEMORY

SEQ1
SAVED CNTXT 512

www

HANDLER
CODE

- - SAVED
CNTXT - - - -

-

-

THREAD
516 SAVED

CNTXT
AFTER

THREAD EXEC

FIG . 5

U . S . Patent Jun . 5 , 2018 Sheet 9 of 16 US 9 , 990 , 206 B2

Scenario Table
Scenario ID Description

???? ?? |

Scenario
BEGIN PROXY
END PROXY
INIT
FORK / EXEC

FIG . 6A

Scenario Yield Event
Instruction Pointer

BEGIN PROXY
END PROXY
INIT
FORK / EXEC

FIG . 6B

U . S . Patent Jun . 5 , 2018 Sheet 10 of 16 US 9 , 990 , 206 B2

THREAD MANAGEMENT LOGIC

SEQUENCER SEQUESTER
MECHANISM

702
- • - W YYYY YYY

700 PROXY MECHANISM

- - - - - - - - - - - - - - - - - sy

FIG . 7

U . S . Patent Jun . 5 , 2018 Sheet 11 of 16 US 9 , 990 , 206 B2

Thread 1

Block of
Instructions 1

Block of
Instructions 2

| - I I

- Il 1
1 1 | 1 IL l | . . | | - - - I I 1 |

1

Block of
Instructions 3

| Ili Il il . 1 1 1 . - - - I I

- t3
- - - - - - - - - 14

Block of
Instructions 4

31 S2

B A

Time

FIG . 8

S . Patent Jun . 5 , 2018 Sheet 12 of 16 US 9 , 990 , 206 B2

OS VISIBLE
SEQUENCERS

OS INVISIBLE
SEQUENCERS

900

Myyn

902

rrrrrrrrrrrrrrrrrrrrrrrr ??????????????????

FIG . 9

U . S . Patent Jun . 5 , 2018 Sheet 13 of 16 US 9 , 990 , 206 B2

OS VISIBLE
SEQUENCERS

OS INVISIBLE
SEQUENCERS

- 1000
?????????

rin

FIG . 10

U . S . Patent Jun . 5 , 2018 Sheet 14 of 16 US 9 , 990 , 206 B2

OPERATIONS ON OS INVISIBLE
SEQUENCER (SID = 1) ON ENCOUNTERING
A PAGE FAULT

1100
SSAVE (1 , ST _ 1 _ 0) OPERATIONS ON OS INVISIBLE

SEQUENCER (SID = 0)
1102

SXFR { 0 , BEGIN PROXY . WAIT) - 1104
W YIELD ON BEGIN _ PROXY

- 1106 SSAVE (O , ST 00)
1108 SET PROXY _ BIT TO 1

SRSTOR (0 , ST 10)
1112 PAGE FAULT IMPERSONATED

1114 SWITCH CONTROL TO OS TROL TO OS
1115

SWITCH CONTROL FROM OS

SSAVE (O , ST _ 1 _ 1) creme ? 710

min 1 118 mwemmen SET PROXY BIT TOO BITTOO

SXFR (1 . END PROXY NOWAITA
1122

SRSTOR (0 , ST 0 0)

1124
YIÈLD ON END _ PROXY

WWW * 11 merremi SRSTOR { 1 , ST 1 1) samom

FIG . 11

U . S . Patent Jun . 5 , 2018 Sheet 15 of 16 US 9 , 990 , 206 B2

1200

PROCESSING COMPONENT 1202
w 1214

SEQUENCER
SEQUESTER
MECHANISM 1206A

1206B CONTROL TRANSFER MECHANISM 1208
INSTRUCTION
SEQUENCER INSTRUCTION

SEQUENCER
1210 SIGNALING

MECHANISM
1212

ttttttttttt t
1

. 14 MONITORING
MECHANISM . 2 . 11

1204

STORAGE DEVICE
wwwwwwwwwwwww

ww wwwwwwwww

FIG . 12

U . S . Patent

songen er det
MAIN MEMORY 1304

NON VOLATILE MEMORY 1306

CHIP SET 1336
om er

MAIN PROCESSING UNIT 1312

FIRMWARE 1303

Jun . 5 , 2018

BUS 1311

POWER SUPPLY 428

Sheet 16 of 16

home

here DISPLAY DEVICE 1321
KEYBOARD 1322 are more

CURSOR CONTROL DEVICE 1323
than

HARD COPY DEVICE 1324

1300

WIRED / WIRELESS TELEPHONY INTERFACE 1325

FIGURE 13

US 9 , 990 , 206 B2

US 9 , 990 , 206 B2

MECHANISM FOR INSTRUCTION SET buses are shared . For SMT , the instructions from multiple
BASED THREAD EXECUTION OF A software threads thus execute concurrently on each logical
PLURALITY OF INSTRUCTION processor .

SEQUENCERS For a system that supports concurrent execution of soft
5 ware threads , such as SMT , SMP , and / or CMP systems , an

CLAIM TO PRIORITY operating system may control scheduling and execution of
the software threads .

This patent application is a continuation of U . S . patent Alternatively , it is possible that some applications may
application Ser . No . 13 / 608 , 970 , entitled “ Mechanism For directly manage and schedule multiple threads for execution
Instruction Set Based Thread Execution On A Plurality Of " within a processing system . Such application - scheduled
Instructions Sequencers ” filed on Sep . 10 , 2012 which is a threads are generally invisible to the operating system (OS)
continuation of U . S . patent application Ser . No . 11 / 173 , 326 , and are known as user - level threads .
entitled “ Mechanism For Instruction Set Based Thread Commonly , user - level threads can merely be scheduled
Execution On A Plurality Of Instructions Sequencers ” filed 16 for execution by an application running on a processing
on Jun . 30 , 2005 , all of which are hereby incorporated by resource that is managed by an OS . Accordingly , in the
reference in their entirety into this application . typical processing system with multiple processors there is

no mechanism to schedule a user - level thread to run on a
FIELD OF THE INVENTION processor that is not directly managed by the OS .

og 20 Embodiments of the invention relate to methods and BRIEF DESCRIPTION OF THE DRAWINGS
apparatus for processing instructions .

FIGS . 1A and 1B show high - level block diagrams of a
BACKGROUND multi - sequencer system , in accordance with one embodi

25 ment of the invention ;
In order to increase performance of information process . FIG . 1C is a block diagram illustrating selected features

ing systems , such as those that include microprocessors , of embodiments of a multi - sequencer system that supports
both hardware and software techniques have been control of threads by user - level instructions ;
employed . On the hardware side , microprocessor design FIG . 2 shows a logical view of multi - sequencer hardware
approaches to improve microprocessor performance have 30 forming a part of the multi - sequencer system of FIGS .
included increased clock speeds , pipelining , branch predic 1A - 1C ;
tion , super - scalar execution , out - of - order execution , and FIG 2 che FIG . 3a shows a view of an instruction set architecture for caches . Many such approaches have led to increased tran the systems of FIGS . 1A - 1C ;
sistor count , and have even , in some instances , resulted in FIG . 3b illustrates a logical diagram of an embodiment of transistor count increasing at a rate greater than the rate of 35 a processor with two or more instruction sequencers that improved performance .

include a user - level control - transfer instruction and a user Rather than seek to increase performance strictly through
level monitor instruction in their instruction sets . additional transistors , other performance enhancements FIGS . 4A and 4B shows the format of the SXFR and involve software techniques . One software approach that has

been emploved to improve processor performance is known 40 SEMONITOR instructions , respectively , in accordance to
as “ multithreading . ” In software multithreading , an instruc ultithreading " În software multithreading an instruc one embodiment of the invention ;
tion stream may be divided into multiple instruction streams FIG . 5 illustrates how the SXFR instruction can be used
that can be executed in parallel . Alternatively , multiple to implement inter - sequencer control transfer , in accordance
independent software streams may be executed in parallel with one embodiment of the invention ;

In one approach , known as time - slice multithreading or 45 FIGS . 6A - 6B illustrate tables , in accordance with one
time - multiplex (“ TMUX ”) multithreading , a single proces - embodiment of the invention , that may be used to program
sor switches between threads after a fixed period of time . In a service channel ;
still another approach , a single processor switches between FIG . 7 shows a functional block diagram of the compo
threads upon occurrence of a trigger event , such as a long nents that make up the thread management logic of the
latency cache miss . In this latter approach , known as switch - 50 systems of FIGS . 1A - 1C , in accordance with one embodi
on - event multithreading (“ SoEMT ”) , only one thread , atm ent of the invention :
most , is active at a given time . FIG . 8 illustrate the operation of a proxy execution Increasingly , multithreading is supported in hardware . For mechanism , in accordance with one embodiment of the instance , in one approach , processors in a multi - processor invention ; system , such as chip multiprocessor (“ CMP ') systems (mul - 55 FIGS . 9 and 10 show examples of logical processors , in tiple processors on single chip package) and symmetric accordance with one embodiment of the invention ; multi - processor (“ SMP ”) systems (multiple processors on FIG . 11 shows how the SXFR and SEMONITOR instruc multiple chips) , may each act on one of the multiple soft
ware threads concurrently . In another approach , referred to tions may be used to support proxy execution upon a
as simultaneous multithreading (“ SMT a single physical 60 page - fault handling by the OS , in accordance with one
processor core is made to appear as multiple logical pro embodiment of the invention ; and
cessors to operating systems and user programs . For SMT , FIG . 12 shows a processing system in accordance with
multiple software threads can be active and execute simul - one embodiment of the invention .
taneously on a single processor core . That is , each logical FIG . 13 illustrates a block diagram of an example com
processor maintains a complete set of the architecture state , 65 puter system that may use an embodiment of a processor
but many other resources of the physical processor , such as component , such as a Central Processing Unit (CPU) or
caches , execution units , branch predictors , control logic and chipset , that includes one or more instruction sequencers

US 9 , 990 , 206 B2

tively

configured to execute one or more user - level threads that nism to allow a client instruction sequencer to trigger a
contain sequencer aware user - level instructions . proxy thread to execute on the servant instruction sequencer

on behalf of the client instruction sequencer in response to
DETAILED DESCRIPTION certain triggering conditions encountered during instruction

5 execution on the client sequencer and without intervention
In the following description , for purposes of explanation of the operating system .

numerous specific details are set forth in order to provide a Turning now to FIG . 1A of the drawings , reference
thorough understanding of the invention . It will be apparent , numeral 100A indicates a multi - sequencer system , in accor
however , to one skilled in the art that the invention can be dance to one embodiment of the invention . The multi
practiced without these specific details . In other instances , 10 sequencer system 100A includes a memory 102 and multi
structures and devices are shown in block diagram form in sequencer hardware 104 . The memory 102 comprises a
order to avoid obscuring the invention . user - level program 106 , which includes a scheduler 108 to

Reference in this specification to " one embodiment or schedule instructions for execution on the multi - sequencer
" an embodiment ” means that a particular feature , structure , hardware 104 . To express multiple threads of execution , the
or characteristic described in connection with the embodi - 15 user - level program 106 makes use of a thread API 110 to a
ment is included in at least one embodiment of the invention . thread library that provides thread creation , control , and
The appearance of the phrase " in an embodiment ” in various synchronization primitives to the user - level program 106 .
places in the specification are not necessarily all referring to Also located within the memory 102 is an operating system
the same embodiment , nor are separate or alternative 112 . The multi - sequencer hardware 104 includes a plurality
embodiments mutually exclusive of other embodiments . 20 of sequencers , only four of which have been shown in FIG .
Moreover , various features are described which may be 1A . The four shown sequencers are designated SIDO , SIDI ,
exhibited by some embodiments and not by others . Simi - SID2 , and SID3 , respectively .
larly , various requirements are described which may be As used herein , a " sequencer ” , may be a distinct thread
requirements for some embodiments but not other embodi - execution resource and may be any physical or logical unit
ments . 25 capable of executing a thread . An instruction sequencer may

The following description describes embodiments of an include a next instruction pointer logic to determine the next
architectural mechanism to create and control threads of instruction to be executed for the given thread . A sequencer
execution on sequencers of a multiple sequencer system that may be a logical thread unit or a physical thread unit . In an
are sequestered away from OS control . embodiment , multiple instruction sequencers may be within
As used herein , the term “ instruction sequencer ” or sim - 30 a same processor core . In an embodiment , each instruction

ply “ sequencer ” includes next instruction pointer logic and sequencers may be within a different processor core .
at least some processor state . For example , an instruction Included in a given processor core , is an instruction set
sequencer may comprise a logical processor , or a physical architecture . The instruction set architecture (ISA) may be
processor core . an abstract model of the processor core that consists of state

In an embodiment , the architectural mechanism may 35 elements (registers) and instructions that operate on those
comprise just two instructions that together define a signal state elements . The instruction set architecture serves as a
ing mechanism to send and receive a signal between any two boundary between software and hardware by providing an
sequencers without using an OS Application Program Inter - abstract specification of the processor core ' s behavior to
face . The signal may comprise an architecturally defined both the programmer and the microprocessor designer . The
event or scenario , which is mapped to handler - code . Upon 40 instruction set may define the set of instructions that the
re receipt of the signal at a sequencer , the scenario in the signal processor core is capable of decoding and executing .
acts as a trigger to cause the sequencer to vector to the While the Chip Multiprocessing (CMP) embodiments of
handler - code . Using the two instructions , it is possible to the multi - sequencer hardware 104 discussed herein refers to
implement thread creation , thread control , and thread syn - only a single thread per sequencer SIDO - SID3 , it should not
chronization software primitives provided by existing thread 45 be assumed that the disclosures herein are limited to single
libraries . threaded processors . The techniques discussed herein may

Further , the two instructions may be used to create a proxy be employed in any Chip Multiprocessing (CMP) or Simul
execution mechanism to cause a servant sequencer to taneous Multithreading Processor (SMT) system , including
execute code on behalf of a client sequencer , as will be in a hybrid system with CMP processors and SMT proces
explained in greater detail below . 50 sors where each core of a CMP processor is a SMT processor

Accordingly , example processor systems are described or a Switch - On - Event Multiprocessor (SoeMT) . For
that include two or more instruction sequencers to execute example , the techniques disclosed herein may be used in
different threads . At least some of the two or more instruc - system that includes multiple multi - threaded processor cores
tion sequencers include sequencer - aware user - level instruc - in a single chip package 104 .
tions in their instruction sets that allow for inter sequencer 55 The sequencers SIDO - SID3 are not necessarily uniform
control by a thread management operation on a specified and may be asymmetrical respect to any factor that affects
instruction sequencer without intervention from an operat computation quality such as processing speed , processing
ing system . The sequencer - aware user - level instructions capability , and power consumption . For example , the
may include an instruction sequencer control transfer sequencer SIDO may be “ heavy weight ” in that it is designed
instruction , an instruction sequencer monitoring instruction , 60 to process all instructions of a given instruction set archi
a context save instruction , and a context restore instruction . tecture (e . g . IA32 the Instruction Set Architecture) .
The processor system may also have thread management Whereas , the sequencer SID1 may be “ light weight ” in that
logic to respond to a user - level instruction to allow a it can only process a selected subset of those instructions . In
non - sequestered instruction sequencer to create parallel another embodiment , a heavyweight processor may be one
threads of execution on the associated sequestered instruc - 65 that processes instructions at a faster rate than a lightweight
tion sequencers without an operating system scheduler . Also , processor . The sequencer SIDO is Operating System (OS)
the processor system may have a proxy execution mecha - visible , whereas the sequencers SID1 to SID3 are OS

US 9 , 990 , 206 B2

sequestered . However , this does not mean that every heavy - TC - TCn share most other resources of the physical proces
weight sequencer is OS - visible or that all lightweight sor 103 , such as caches , execution units , branch predictors ,
sequencers are sequestered . As used herein , the term “ OS control logic and buses .
sequestered ” denotes a sequencer that has transitioned to a Although such features may be shared , each thread con
sequestered state or condition . A characteristic of such a 5 text in the multithreading system 109 can independently
sequestered state or condition is that the OS does not generate the next instruction address (and perform , for
schedule instructions for a sequencer in such a state . instance , a fetch from an instruction cache , an execution

As will be seen , the multi - sequencer hardware or firm instruction cache , or trace cache) . Thus , the processor 103
includes logically independent next - instruction - pointer and ware (e . g . microcode) also includes thread management

logic 114 . In an embodiment , the thread management logic 10 fetch logic 120 to fetch instructions for each thread context ,
114 virtualizes the sequencers SIDO - SID3 so that they even though the multiple logical sequencers may be imple

mented in a single physical fetch / decode unit 122 . For an appear to the user - level program 106 , as uniform . In other SMT embodiment , the term “ sequencer ” may encompass at words , the thread management logic 114 masks the asym least the next - instruction - pointer and fetch logic 120 for a metry of the sequencers SIDO - SID3 so that from a logical 15 thread context , along with at least some of the associated point of view as seen by an assembly language programmer , architecture state , AS , for that thread context . It should be
the sequencers SIDO - SID3 appear uniform , as is depicted in noted that the sequencers of an SMT system 109 need not be
the view 200 shown in FIG . 2 of the drawings . symmetric . For example , two SMT sequencers of the same

In the system 100A , shown in FIG . 1A of the drawings , IG . 1A of the drawings , physical processor may differ in the amount of architectural
the user - level program 106 is tightly coupled to the multi - 20 state information that they each maintain .
sequencer hardware 104 . In an embodiment , the user - level Thus , for at least one embodiment , the multi - sequencer
program 106 may be loosely coupled to the multi - sequencer system 109 is a single - core processor 103 that supports
hardware 104 through intermediate drivers . Such a system is concurrent multithreading . For such embodiment , each
depicted by reference numeral 100B , in FIG . 1B of the sequencer is a logical processor having its own instruction
drawings . The system 100B is basically the same as the 25 next - instruction - pointer and fetch logic and its own archi
system 100A , except that instead of using scheduler 108 , the tectural state information , although the same physical pro
user - level program makes use of a kernel level software such cessor core 103 executes all thread instructions . For such
as a device driver 116 , such as a driver , a hardware abstrac embodiment , the logical processor maintains its own version

tion layer , etc , to communicate with kernel level API 118 in of the architecture state , although execution resources of the
order to schedule instructions for execution on the multi - 30 single processor core 103 may be shared among concur

rently - executing threads . sequencer hardware 104 . FIG . 1c also illustrates an alternative embodiment of a FIG . 1c is a block diagram illustrating selected features of multi - sequencer system 115 that is capable of executing embodiments 109 , 115 , 150 , 170 of a multi - sequencer sys multi - threaded code . The embodiment 115 is labeled as a tem that supports control of threads by user - level instruc - 35 Switch - on - Event Multithreading (“ SOEMT ”) embodiment . tions . FIG . 1c illustrates selected features of an SMT multi For such embodiment 115 , each sequencer is similar to the sequencer multithreading system 109 , where each sequencer sequencers of the previous embodiment 109 , in that each is a logical processor that may execute a thread concurrently sequencer is a logical processor having its architectural state
with execution of other threads on other logical processors . information and own instruction next - instruction - pointer .
FIG . 1 also illustrates at least one embodiment of a multi - 40 However , the system 115 differs from that 109 discussed
sequencer system 115 that supports multiple logical above in that the sequencers each share with the other
sequencers via a switch - on - event (SoeMT) mechanism , such sequencers the same physical fetch logic 120 in a single
as a time - multiplexing type of switching mechanism , such fetch / decode unit 122 in the physical processor core 103 .
that each of the logical processors takes turns running its The fetch logic 120 may be switched to fetch for different
thread - merely one thread executes at a time on such 45 sequencers of the system 115 based on a variety of switch
system 115 . on - event policies . The switch - on - event triggers may be

FIG . 1c also illustrates selected features of multiple - core passage of a specific amount of time or machine cycles , such
multithreading systems 150 , 170 . The physical cores for a as time - multiplexing (TMUX) . For other embodiments , the
multi - core multithreading system may be either single - SOEMT triggers may other events , such as cache - miss
sequencer cores (see , e . g . , system 150) or may be multi - 50 events , page faults , long - latency instructions , etc .
sequencer cores (see , e . g . , system 170) . Such multi - core FIG . 1c also illustrates at least two embodiments of
multithreading embodiments are discussed later , below , multi - core multithreading systems 150 , 170 . For at least
while the single - core multi - sequencer systems 109 , 115 are some embodiments of the multi - core system 150 , 170 illus
discussed immediately below . trated in FIG . 1c , the system may use a processor 103 as a

In the SMT system 109 , a single physical processor 103 55 building block . Each of the sequencers may be a processor
is made to appear as multiple thread contexts , referred to core 103 , with the multiple cores 103 , - 103n , 103 , - 103 m
herein as TC , through TC , (not shown) . Each of the n thread residing in a single chip package 160 , 180 , respectively . For
contexts is effectively a sequencer . When at least some of system 150 illustrated in FIG . 1c , each core 103 ; (i = 0 to n)
these thread contexts (e . g . m out of n) are made visible to the may be a single - threaded sequencer . For the system 170
operating system and / or user programs , these thread con - 60 illustrated in FIG . 1c , each core 103j (= 1 to m) may be a
texts are sometimes referred to as logical processors (not multi - sequencer processor core .
shown) , and are referred to herein as LP , through LP . Each The chip packages 160 , 180 are denoted with broken lines
thread context TC , through TCn maintains a set of the in FIG . 1c to indicate that the illustrated single - chip embodi
architecture state AS , - AS , respectively . The architecture ments of multi - core systems 150 , 170 are illustrative merely .
state includes , for at least one embodiment , data registers , 65 For other embodiments , processor cores of a multi - core
segment registers , control registers , debug registers , and system may reside on separate chips , or may be organized as
most of the model specific registers . The thread contexts an SOEMT multi - sequencer system .

US 9 , 990 , 206 B2

A first multi - core multithreading system 150 illustrated in eters . For example , a sequencer - aware instruction may
FIG . 1c may include two or more separate physical proces include as a parameter an aggregate of multiple logical
sors 103 - - 103 , , that is each capable of executing a different sequencer addresses . Such approach may be utilized for
thread such that execution of at least portions of the different multicasting or broadcasting inter - sequencer signals from
threads may be ongoing at the same time . Each processor 5 one sequencer to multiple other sequencers . In order to
103 , through 103 , includes a physically independent fetch simplify the following discussion , examples set forth below
unit 122 to fetch instruction information for its respective may refer , unless otherwise specified , to the unicasting case :
thread . In an embodiment where each processor 103 , - 103 , a first sequencer executes a sequencer - aware instruction that
executes a single thread , the fetch / decode unit 122 imple - specifies a single other logical sequencer address . Such
ments a single next - instruction - pointer and fetch logic 120 . 10 approach is made for descriptive convenience and illustra

FIG . 1c also illustrates a multi - core multithreading system tive purposes merely , and should not be taken to be limiting .
170 that includes multiple SMT systems 109 . For such One of skill in the art will realize that embodiments of the
embodiment 170 , each of the core processors 103 , - 103 mechanisms discussed herein may be applied to broadcast
supports multiple thread contexts . For example , each of the ing and multicasting sequencer - aware instructions as well .
core processors 103 , - 103m is an SMT core processor that 15 FIG . 3a shows a view of an instruction set architecture for
supports k sequencers such that the system 170 effectively the systems of FIGS . 1A - 1C . Referring now to FIG . 3a of
implements m * k sequencers . In addition , the fetch / decode the drawings , there is shown an Instruction Set Architecture
unit 122 for the system 170 implements distinct next - (ISA) view 300 of the systems 100A , and 100B . An ISA
instruction - pointer and fetch logic 120 for each supported defines a logical view of a system , as seen by an assembly
thread context . 20 language programmer , binary translator , assembler , or the

For ease of illustration , the following discussion focuses like . In terms of its ISA , the systems 100A , and 100B
on embodiments of the multi - core system 150 . However , include a logical storage 302 and an instruction set 304 . The
this focus should not be taken to be limiting , in that the logical storage 302 defines a visible memory hierarchy ,
mechanisms described below may be performed in either a addressing scheme , register set , etc . for the systems 100A ,
multi - core or single - core multi - sequencer system . Also , 25 and 100B , whereas the instruction set 304 defines the
either single - core or multi - core systems may be imple instructions and the format of the instructions that the
mented with single - sequencer cores or multi - sequencer systems 100A , and 100B support . In an embodiment , the
cores . For each multi - sequencer core , one or more multi - instruction set 304 may comprise the instruction set known
threading techniques may be utilized , including SMT and / or as the IA32 instruction set and its extensions , although other
SoeMT . It will be understood that the systems 109 , 115 , 150 , 30 instruction sets are possible . Additionally , in an embodi
170 shown in FIG . 1c may include additional features , such ment , the instruction set 304 includes two instructions
as a memory system , execution units , and the like , that are known as a user - level control - transfer instruction , and a
not shown in FIG . 1c . user - level monitoring instruction . An example of a user

Each sequencer , 103 , for the system embodiments 109 , level control - transfer instruction may be a SXFR instruction .
115 , 150 , 170 illustrated in FIG . 1c may be associated with 35 An example of a user - level monitoring instruction may be a
a unique identifier (discussed below in connection with FIG . SEMONITOR instruction . An example SXFR instruction
3) . Various embodiments of the systems 109 , 150 may and SEMONITOR instruction will be discussed to assist in
include a different number , N , of total sequencers . understanding of a user - level control - transfer instruction and

Embodiments of the systems 109 , 115 , 150 , 170 illus - a user - level monitoring instruction .
trated in FIG . lc may each support signaling among 40 Broadly , the SXFR instruction is used to send a signal
sequencers . As used herein , the term “ sequencer arithmetic ” from a first sequencer to a second sequencer , and the
is used to refer to inter - sequencer signaling for service SEMONITOR instruction is used to configure the second
between two sequencers . Architectural support for sequencer to monitor for the signal from the first sequencer .
sequencer arithmetic may include extensions to an instruc Further , these control transfer and monitoring instructions
tion set architecture such that one or more instructions are 45 are sequencer aware , as will be discussed later , and can
provided to allow a user direct manipulation of control and compose more sequencer aware composite instructions .
state transfers between sequencers . A user - level instruction FIG . 36 illustrates a logical diagram of an embodiment of
is said to be “ sequencer aware ” if it is a sequencer arithmetic a processor with two or more instruction sequencers that
instruction or any other type of instruction that includes a include a user - level control - transfer instruction and a user
logical sequencer address as a parameter , which can be 50 level monitor instruction in their instruction sets . The pro
encoded as an instruction operand and / or implicitly refer cessor 332 may include one or more instruction sequencers
enced upon instruction execution . Such instructions may 338 - 342 to execute different threads . In an embodiment ,
include sequencer arithmetic instructions that either provide multiple instruction sequencers can share a decoder unit
for signaling another sequencer (referred to herein as a “ user and / or instruction execution unit . Likewise , each instruction
level control transfer instruction ”) or provide for setting up 55 sequencer can have its own dedicated process instruction
a client sequencer to monitor for such a signal (referred to pipeline that includes a decoder unit , such as a first decoder
herein as a " user level monitor instruction) . " unit 334 , an instruction execution unit such as a first

Sequencer aware instructions may also include other instruction execution unit 335 , etc . At least some of the
instructions that include a logical sequencer address as a multiple instruction sequencers 338 - 342 include instruction
parameter , such as sequencer aware state save and restore 60 sets 344 that at least include a user - level monitoring instruc
instruction . Upon execution of such a state save instruction , tion (such as a SEMONITOR instruction) , a user - level
a first sequencer can create a snapshot copy of the architec control - transfer instruction (such as a SXFR instruction) , a
tural states of a second sequencer . The sequencer aware sequencer - aware store instruction (such as a SSAVE instruc
restore instruction may designate that the save architectural tion) , and a sequencer - aware restore instruction (such as a
states be loaded to a specified sequencer . 65 SRSTOR instruction) . Alternatively , the sequencer - aware

Each sequencer aware instruction may also optionally store and restore instructions may not be part of the instruc
include more than one logical sequencer addresses as param - tion set 344 . Rather , the user - level control - transfer and

US 9 , 990 , 206 B2
10

monitoring instructions may be part of the instruction set include the sequencer - aware SXFR , SEMONITOR , SSAVE ,
and then used in conjunction with a scenario and a pointer and SRSTR instructions described in more detail below .
to handler code to compose the sequencer - aware store and In an embodiment , the SXFR instruction includes the
restore instructions . Types of scenarios , which may be instruction format shown in FIG . 4A of the drawings .
architecturally defined composite triggering conditions 5 Referring to FIG . 4A , it will be seen that the SXFR instruc
based on micro architectural events , will be described later . tion includes an opcode 400A , and operands 402A to 410A .

The flow of the control transfer operation may occur as The operand 402A corresponds to a sequencer ID (SID) for
follows . a destination / target sequencer to which the signal is sent .

The operand 404A comprises a scenario or control message , A first instance of the user - level monitoring instruction
346 may specify one of the instructions sequencers , a pointer 10 which may be an architecturally defined identifier code

representing a condition or anticipated event . A scenario to a location of handler code , and one of a number of may be used to effect asynchronous control transfer as will control - transfer scenarios . The monitoring instruction 346 be described . Referring to FIG . 6A of the drawings , there is may cause the executing instruction sequencer , such as a first shown a table of scenarios in accordance with one embodi instruction sequencer 338 , to setup the specified instruction 15 ment of the invention . Broadly , the scenarios may be divided sequencer to invoke the handler - code at the specified into intra - sequencer scenarios , and inter - sequencer sce
memory location upon observing or receiving signaling of narios . In an embodiment , the intra - sequencers scenarios fall
the specified control - transfer scenario . The first memory into the category of resource not available (RNA) , which is
location 348 storing the handler code may be a register , a a category for events generated during execution on a
cache , or other similar storage device . The user - level moni - 20 sequencer due to access to a resource not being available on
toring instruction 346 may be executed first to set up a the sequencer . In an embodiment , scenarios that fall into the
specified target instruction sequencer to receive a control - category of RNA include a page fault , a system call on
transfer signal before the source instruction sequencer sends OS - sequestered sequencer that is incapable of directly acti
this control - transfer signal . vating OS service , or a deprecated operation fault . A dep

The executing instruction sequencer , such as the first 25 recated operation fault is a fault caused by a limited or
instruction sequencer 338 , may execute a sequencer - aware deprecated subset of ISA features implemented on the
save instruction in order to save the context state of target sequencer . For example , a deprecated operation fault may
instruction sequencer . The context state of the destination occur when attempting to execute an instruction that
instruction sequencer may be stored in a second memory requires a floating point adder , on a sequencer that does not
location 350 . The second memory location may be a differ - 30 physically implement a floating point adder . To those famil
ent location within a shared memory array or in a discrete iar with the arts , the mechanism described here can be
memory area than the first memory location . implemented at different level abstractions , in application

A first instance of the control - transfer instruction 352 may software , system level software , or firmware like microcode ,
specify one of the instruction sequencers and one of the or in hardware .
many control - transfer scenarios . The specified control - trans - 35 Examples of inter - sequencer scenarios include an initial
fer scenario may be stored in , for example , a table 354 . The ize scenario referenced as an “ INIT ” scenario , a “ FORK /
control - transfer instruction 352 causes the executing instruc - EXEC ” scenario , and a " PROXY " scenario . The INIT
tion sequencer to generate a control - transfer signal to be scenario causes a sequencer whose SID is specified in a
received by the specified target instruction sequencer , such S XFR instruction to cause a set of sequencer - specific archi
as a second instruction sequencer 340 . 40 tectural states (such as general purpose registers or machine

The specified target instruction sequencer 340 detects the specific control registers) to be respectively initialized to a
control - transfer signal generated in response to the execu - set of initial values , whereas the FORK / EXEC scenario
tion of the control - transfer instruction 352 that specifies that causes a thread executing on a sequencer that executes a
instruction sequencer . The specified target instruction SXFR instruction to fork or start a parallel thread of execu
sequencer 340 then executes the handler code specified by 45 tion on a sequencer identified by the destination SID in a
the monitoring instruction 346 that specified that instruction SXFR instruction , by set particular values to the destination
sequencer . sequencer states that include at least instruction pointer

After the execution of the handler code has finished , the (EIP) and / or stack pointer (ESP) . The PROXY scenario is
first instruction sequencer 338 (i . e . the source instruction used to cause a sequencer identified by the SID in a SXFR
sequencer) may execute a sequencer - aware restore instruc - 50 instruction to operate in a proxy execution mode , for
tion to restore the context state of target instruction example , in order to process instructions on behalf of the
sequencer from its location in the second memory location sequencer that executed the SXFR instruction . For example ,
350 . in an embodiment , the sequencer that operates in a proxy

In an embodiment , a processor may include multi execution mode may be used to process instructions that
sequencer hardware . Each instruction sequencer is capable 55 cannot be processed on a sequencer that supports only a
of executing different threads . At least some of the multiple deprecated set of ISA features . In an embodiment , the
instruction sequencers are capable of executing user - level PROXY scenario may be divided into a BEGIN PROXY
instructions . The user - level instructions may be sequencer - scenario , and an END _ PROXY scenario . The BEGIN _
aware . Each of the user - level instructions may contain PROXY scenario causes an instruction sequencer to operate
information that specifies at least one of the multiple instruc - 60 in proxy execution mode , as described , whereas the END _
tions sequencers . Execution of the instructions on an execut - PROXY scenario terminates operation of the proxy execu
ing sequencer causes the executing instruction sequencer to tion mode .
perform a thread management operation on the specified one Referring again to FIG . 4A of the drawings , in an embodi
of the multiple instruction sequencers without operating ment , the operand 406A comprises a conditional parameter
system intervention . The thread management operation may 65 that conditions execution of instructions on a sequencer that
be a thread creation , a thread control , or a thread synchro - executes a SXFR instruction . Examples of conditional
nization operation . Examples of the user - level instructions parameters include a “ WAIT ” and a “ NOWAIT ” parameter .

US 9 , 990 , 206 B2
11

For example , when SXFR is used with the PROXY scenario , from the yield event handler back to the original code whose
the WAIT conditional parameter causes the execution of execution generated the yield event .
instructions on a sequencer that executes a SXFR instruction Based on the above description it will be appreciated that
to stop while waiting for completion of proxy execution on both the SXFR and SEMONITOR are “ sequencer - aware ” in
another sequencer . The NOWAIT conditional parameter 5 that they include operands that identify particular sequenc
specifies that execution on a sequencer that executes a SXFR ers . Further , the SSAVE and SRSTOR instructions ,
instruction may continue in parallel with proxy execution on described later , are also “ sequencer - aware ” in that they
another instruction sequencer . include operands that identify particular sequencers . Also ,

In an embodiment , the operand 408A comprises a sce these user - level instructions may be " sequencer - aware ” in
nario specific payload or data message . For example in the 10 that they have a pointer to instructions in handler code . The
case of the FORK / EXEC scenario , the payload may com - handler code when executed by an instruction execution unit
prise an instruction pointer at which execution on the references one or more specific instruction sequencers when
sequencer identified by the operand 402A is to commence that handler code is executed . The handler code is associated
According to different embodiments , the payload may com - with the user level instruction because the user level instruc
prise an instruction pointer , a stack pointer , etc . Addresses 15 tion directs the instruction pointer to the start of the handler
contained in the payload may be expressed in a variety of code and the user level instruction directs the operations of
addressing modes such as literal , register indirect , and the thread after the handler code is finished executing . Thus ,
base / offset addressing . the user level instructions may be sequencer aware if the

The operand 410A specifies a routing function on the SID user level instructions have either 1) a field that makes a
contained in the operand 402A . The routing function con - 20 specific reference to one or more instruction sequencers or
trols whether the signal generated as a result of executing a 2) implicitly references with a pointer to handler code that
SXFR instruction is sent as a broadcast , a unicast , or a specifically addresses one or more instruction sequencers
multicast signal . The routing function can also encode when the handler code is executed .
topology - specific hint information that can be used to assist In an embodiment , the instructions SXFR and SEMONI
an underlying inter - sequencer interconnect in routing to 25 TOR may be used to implement inter - sequencer control
deliver the signal . transfer as will be described , with reference to FIG . 5 of the

Referring now to FIG . 4B of the drawings , there is shown drawings .
the format of a SEMONITOR instruction , in accordance Referring to FIG . 5 , a sequencer 500 , upon encountering
with one embodiment of the invention . As can be seen , the an SXFR instruction at an instruction pointer " I " transfers
SEMONITOR instruction includes an opcode 400B , and 30 control to sequencer 502 , to cause the sequencer 502 to start
operands 402B to 406B . The operand 402B specifies a executing handler instructions starting at an instruction
scenario , which may , for example , be expressed in terms of pointer “ J ” . In an embodiment , a SXFR instruction in the
a scenario ID . The operand 404B specifies a tuple compris - format : SXFR (SID , SCENARIO _ ID , CONDITIONAL _
ing a sequencer ID (SID) and an instruction pointer (EIP) . PARAMETER) , for example , SXFR (502 , BEGIN _
For descriptive convenience , the tuple is referred to as a 35 PROXY , NOWAIT) may be used to affect the control
“ SIDEIP ” . transfer . Taking a closer look at the format of the SXFR

The SEMONITOR instruction maps a scenario specified instruction , the “ SID ” appearing in the instruction , is a
in the operand 402B to a SIDEIP specified in the operand reference to the sequencer identifier (SID) for the sequencer
404B . Thus , the SEMONITOR instruction may be used to 502 . The “ SCENARIO _ ID " part of the instruction is a
create a mapping table , such as is shown in FIG . 6B of the 40 reference to a scenario which , as described above , can be
drawings , which maps each scenario to a specific SIDEIP programmed into the system 100A , and 100B to cause
Each mapping of a scenario to a specific SIDEIP is termed asynchronous control transfer . As noted above , in an
a “ service channel ” . The operand 406B allows a program - embodiment , the system 100A , and 100B supports the
mer to input one or more control parameters to control how scenarios shown in the scenario table in FIG . 6A of the
a particular service channel is serviced , as will be explained 45 drawings . Each scenario is encoded to a scenario identifier
in greater detail below . A programmer may use the (ID) . In an embodiment , values corresponding to a particular
SEMONITOR instruction to program the service channels scenario ID may be programmed into a register , from which
that a particular sequencer uses to monitor for a given it may be read when the SXFR instruction is executed .
scenario . In an embodiment , when the anticipated condition In an embodiment , in order to resolve the instruction
corresponding to a scenario is observed , a sequencer incurs 50 pointer associated with the " SCENARIO ID ” part of the
a yield event to cause asynchronous control transfer to a SXFR instruction , the mapping table of FIG . 6B , which
yield event handler starting at the SIDEIP mapped to the maps each scenario to a SIDEIP , is used .
scenario . For example , in the case of the anticipated condi - As described above , in order to populate the table of FIG .
tion corresponding to a fault , once a control yield event is 6B with the service channels , the SEMONITOR instruction
incurred , the current (return) instruction pointer is pushed 55 is used . For example , the instruction SEMONITOR (1 ,
onto the current stack and control is transferred to the (502 , J)) which is of the format : SEMONITOR (SCE
SIDEIP mapped to the observed scenario . In the case of the NARIO _ ID , SIDEIP) , maps the instruction pointer “ J ” on
anticipated condition corresponding to trap , then the next sequencer 502 to the scenario indicated by SCENARIO _
instruction pointer is pushed onto the current stack and ID = 1 , i . e . the BEGIN _ PROXY scenario . Execution of the
control is transferred to the SIDEIP mapped to the observed 60 instruction SXFR (502 , 1) , on the sequencer 500 causes a
scenario . A fault may dispose of an instruction before that signal including a SCENARIO _ ID of 1 to be delivered to the
instruction is executed . A trap may dispose of an instruction sequencer 502 .
after the instruction is executed . In response to the signal , the sequencer 502 incurs a yield

In an embodiment , an architecturally defined blocking bit event that causes a control transfer to the instruction pointer
may be set to prevent recursive triggering of a yield event 65 “ J ” at which with handler - code associated with the BEGIN _
until the blocking bit is reset . A special return instruction PROXY scenario begins . In an embodiment , instead of
may atomically reset the blocking bit and return control immediately executing the handler - code starting at the

US 9 , 990 , 206 B2
14

instruction pointer “ J ” in response to receiving the signal , thread . While the service thread is executing , the options for
the sequencer 502 may queue a number of received signals , the sequencer 500 include waiting for the service thread to
and once the number of the signals exceeds a threshold , the complete execution , or to switching to execute a second
sequencer 502 serving the signals by executing handler - code thread . Once the service thread completes execution on the
associated with the various signals . In an embodiment , the 5 sequencer 502 , the sequencer 502 executes a SXFR instruc
particular manner in which the sequencer 502 is to process tion to send a signal to sequencer 500 to indicate that the a signal , i . e . whether by immediate processing , or by execution of the service thread has completed . Prior to delayed processing using a queue , and the value of the sending the signal to the sequencer 500 to indicate that threshold , is controlled or configured by the control param execution of the service thread has completed , the sequencer eter 406B in the SEMONITOR instruction . This queuing of 10 502 executes a SSAVE instruction to save an updated requests can also be done in software as well . execution context for the first thread after completion of the In an embodiment , the handler - code may contain instruc service thread in a first memory location 516 . tions to cause a service thread to start executing on the
instruction sequencer 502 . Basically , a service thread is any In the case where sequencer 500 is waiting for service
thread that aids or assists in the execution of a first thread 15 thread to complete execution , the service thread on
executing on another sequencer , i . e . sequencer 500 in the sequencer 502 can then perform SRSTOR indicating the
case of FIG . 5 . In order for the service thread to execute on third memory location 516 to update the execution context
the sequencer 502 , there should be some form of state for the first thread on sequencer 500 , prior to executing
transfer between the sequencers 500 and 502 . In an embodi - SXFR to notify sequencer 500 to resume code execution .
ment , a sequencer - specific context save instruction and a 20 After notifying sequencer 500 of completion of service
sequencer - specific context restore instruction is provided in thread
addition to the SXFR and SEMONITOR instructions . The Alternatively , upon receipt of the signal to indicate
sequencer context save instruction is denoted as SSAVE and completion of the service thread from the sequencer 502 , the
the sequencer context restore operation is denoted as sequencer 500 executes a SRSTOR (500 , POINTER
SRSTOR . Both SSAVE and SRSTOR are sequencer - aware 25 TO _ SAVE _ AREA _ B) instruction to change the execution
instructions . Alternatively , a minimal canonical instruction context of the sequencer 500 to that of the first thread upon
set may merely include the SXFR and SEMONITOR completion of the service thread .
instructions . For example , in an embodiment , scenarios for In an embodiment , the saving and restoring of an instruc
sequencer context save and / or restore are defined . When the tion sequencer ' s context state can be performed remotely on
SXFR and SEMONITOR instructions are used in conjunc - 30 a target sequencer . The source sequencer sends a message
tion with a scenario and a pointer to handler code . The for the target instruction sequencer to save and / or restore its
corresponding handler code on the target sequencer can sequencer ' s context state . This could be implemented as a
perform the respective sequencer context save and / or restore SXFR instruction with a particular scenario .
operation , achieving the same effects of the dedicated In an embodiment , the thread management logic 114
SRSTOR and SSAVE instructions . 35 includes a proxy execution mechanism 700 , and a sequencer

In another embodiment , a sequencer - aware context save sequester mechanism 702 as can be seen in FIG . 7 of the
instruction may be synthesized by having a scenario that drawings .
maps to a code block to perform a sequencer - aware context To illustrate the operation of the proxy execution mecha
save . Likewise , it is possible to synthesize a sequencer - nism 700 , consider the system 800 shown in FIG . 8 of the
aware context restore operation using a scenario . 40 drawings , which includes two sequencers designated S1 , and

In an embodiment , both the SSAVE and SRSTOR instruc - S2 respectively . The sequencers Si , and S2 may be sym
tions include an operand corresponding to a SID , and metrical or asymmetrical with respect to each other . In this
operand comprising an address for a “ save area ” at which the example the sequencers are asymmetrical , with the
state for the sequencer identified by the SID operand is to be sequencer S1 including only processing resources A and B ,
saved . In the example of FIG . 5 , in order for the sequencer 45 whereas the sequencer S2 includes processing resources A ,
502 to be able to execute a service thread to facilitate or help D , and C . The processing resources of the sequencer S1 must
execution of a first thread running on the sequencer 500 , it be able to support the execution of the instruction blocks 1
is necessary for the sequencer 502 to have access to the and 2 .
execution context for the first thread . To make the execution Time (T1) is located at the end arrow of the block of
context for the first thread available to the sequencer 502 , the 50 instructions 2 . T1 shows the monitor detects an event that
instruction SSAVE , is first executed on the sequencer 502 to causes the migration of the single thread from the client
save the execution context for the first thread executing on instruction sequencer S1 to the servant instruction sequencer
the sequencer 500 in a first memory location 512 . In order S2 . At time T1 , a third block of instructions is scheduled to
to preserve the existing work done on sequencer 502 prior to execute on the sequencer S1 , however the third block of
performing service thread computation on behalf of 55 instructions requires the use of a processing resource not
sequencer 500 , the currently running code (hereinafter available on the sequencer Si , say , the processing resource
" prior code ”) on 502 may perform SSAVE to save the D , which is available on the sequencer S2 . At this point , the
execution context of the prior code to a second memory sequencer Si , at least in an embodiment incurs a resource
location 514 . The save areas , the first memory location 512 not - available fault and a resource - not - available handler
and the second memory location 514 are not overlapping . 60 which may be defined in user - level software (or in thread
Once the execution context of the prior code is saved in management logic hardware or firmware) invokes the proxy

the second memory location 514 , the sequencer 502 execution mechanism 700 to cause the third block of instruc
executes a SRSTOR instruction indicating the first memory tions to be migrated to the sequencer S2 for execution
location 512 to change the sequencer states of the sequencer thereon .
502 to the execution context / state associated with the pro - 65 Time (T2) is located at the beginning of the line to the
cessing of the first thread on the sequencer 500 . Thereafter , arrow of the third block of instructions . T2 shows the start
the sequencer 502 may commence execution of the service of the execution of a block of instructions from the single

US 9 , 990 , 206 B2
15 16

thread on the servant instruction sequencer S2 on behalf of sequencer but present on the servant sequencer . The ingress
the client instruction sequencer S1 . service scenarios are defined and configured into the service

Time (T3) is located at the end arrow of the third block of channel and mapped to the local service handlers (handler
instructions . T3 shows the completion of the execution of a code) that perform the proxy execution on behalf of the
block of instructions from the single thread on the servant 5 client sequencers . A list of sample egress and ingress service
instruction sequencer S2 . At time t3 , after execution of the scenarios is provided in the table of FIG . 6A .
third block of instructions on the sequencer S2 using the In one sense , an egress service scenario corresponds to a
processing resource D , the sequencer S2 uses the proxy trap or fault operation that incurs a " miss ” at a client
execution mechanism 700 to signal to the sequencer S1 that sequencer due to required access to a processing resource
execution of the third block of instructions has completed . 10 not available on the client sequencer yet available on a

Time (T4) is located at the beginning of the line to the servant sequencer . Conversely , an ingress service scenario
arrow of a fourth block of instructions . T4 shows the corresponds to asynchronous interrupt condition indicating
completion of the proxy execution of a block of instructions the arrival of a request to access a local processing resource ,
from the single thread on the servant instruction sequencer available on the servant sequencer , on behalf of a client
S2 and the transfer back to the client instruction sequencer 15 sequencer that does not possess the local processing
S1 . The sequencer S1 can then proceed to execute , a fourth resource . The proxy execution mechanism defines a veneer
block of instructions , which merely requires processing or layer of abstraction associated with each sequencer in a
resources available on the sequencer S1 . multi - sequencer so that the client and servant sequencers

Since , in above example , the sequencer S1 is using the work in concert to perform proxy resource access . In at least
sequencer S2 to execute an instruction block on its behalf , 20 one embodiment where the proxy execution is implemented
the sequencer Si is called a “ client ” sequencer . The in firmware or directly in hardware , the proxy resource
sequencer S2 , which operates in a proxy execution mode to access is transparent to user - level software and to an OS .
execute an instruction block on behalf a client sequencer , is Each service scenario plays a similar role to that of an
known as a “ servant ” sequencer . The resource D may opcode in a traditional ISA , except that a service scenario
comprise a highly specialized functional unit for a limited 25 triggers a special handler - code flow . Thus , it is possible to
set of applications . The functional unit may be relatively synthesize new composite instructions using the SXFR
power hungry , costly , and complex . Thus , in order to save instruction as meta - instruction and an egress service sce
costs , in a particular implementation the resource D is only nario mapped to handler - code for the instruction being
implemented on the sequencer S2 , and not on the sequencer synthesized . In an embodiment , the relationship between a
S1 . However , as noted above , the proxy execution mecha - 30 service scenario ID , and its handler - code flow is akin to the
nism 700 masks the asymmetry between the sequencers in a relationship between a Complex Instruction Set Computer
multi - sequencer system by mapping the processing (CISC) opcode and its corresponding microcode flow . The
resources available on the various sequencers in a multi - CISC can be composed by using the user - level sequencer
sequencer system so that a client sequencer can use the aware monitor and control transfer instructions as the
proxy execution mechanism to migrate a thread to execute 35 canonical instruction basis to build the microcode flow . As
on a sequencer that has a processing resource required , or described above , the mapping between a service scenario
optimized to execute the thread . The proxy execution and its handler - code is achieved via SEMONITOR , while
mechanism 700 , may also be used to migrate an instruction SXFR provides a mechanism for sending control messages
block executing on a OS - sequestered sequencer , to an OS between sequencers . The communication of the control
visible sequencer , e . g . in order to perform an OS service , 40 messages act as a trigger for the execution of handler - code
such as the handling of a page fault or a syscall , as will be mapped to the service scenarios .
explained in greater detail below with reference to FIG . 11 In an embodiment , the sequencer sequester mechanism
of the drawings . 702 may be used to map or group a particular combination

For a given physical implementation of the multi - se of OS - visible sequencers and OS - sequestered sequencers to
quencer system with asymmetric resource organization , the 45 form a logical processor . The mapping may be a one - to
proxy execution mechanism 700 may be constructed using many mapping comprising a single OS - visible sequencer
the SEMONITOR and SXFR instructions , as described mapped to many OS - sequestered sequencers , or a many - to
above , and include a mapping mechanism . In general , the many mapping comprising many OS - visible sequencers
proxy execution mechanism 700 may reside in hardware , in mapped to many OS - sequestered sequencers . For example ,
firmware (e . g . microcode) , or at a system software layer , or 50 FIG . 9 shows a multi - sequencer system comprising two
application software layer . In an embodiment , the proxy logical processors 900 and 902 , respectively . Each of the
execution mechanism 700 may use the SEMONITOR and logical processors 900 , and 902 comprise a one - to - many
SXFR instructions to handle two categories of proxy ser - mapping in which a single OS - visible sequencer is mapped
vices . The first category is known as an egress service to many OS - sequestered sequencers .
scenario , whereas the second category is known as the 55 Turning to FIG . 10 , an example multi - sequencer system
ingress service scenario . On a client sequencer , for a set of 1000 may include an ensemble of 18 sequencers in which
resources and the associated operations that are not available two OS - visible sequencers are mapped to 16 OS - sequestered
or physically not supported in the client sequencer , egress sequencers to define a many - to - many mapping . Within the
service scenarios are defined to trap or fault these operations . logical processor of the system 1000 , both of the OS - visible
Each egress scenario is mapped to a sequencer ID (and 60 sequencers can serve as a proxy for any of the OS - seques
instruction pointer (SIDEIP)) pointing to a servant tered sequencers .
sequencer . The mapping may be achieved in hardware , In an embodiment , the sequencer sequester mechanism
firmware or even in software . The proxy access of the 702 may selectively sequester sequencers away from OS
servant sequencer can then be achieved using inter - se - control . According to different embodiments of the inven
quencer signaling , as described above . 65 tion , the sequencers may be sequestered post boot or in some

A servant sequencer is responsible for supporting proxy cases even during boot time . In order to sequester a
access to the resources that are not present in a client sequencer under OS control , the sequencer sequester mecha

17

not

US 9 , 990 , 206 B2
18

nism 702 may set an indicator to the OS to specify that the user - level scheduling of threads on sequencers of the multi
sequencer is in an unavailable state . For example , the sequencer system that are not supported by the OS .
sequencer sequester mechanism 702 may impersonate a Accordingly , in an embodiment , the multiple instruction
sequencer ' s power or power / performance state to indicate to sequencers with the extended instruction set can also support
the OS that the sequencer has entered a special unavailable 5 a single image OS on larger number of processors than
state so that the OS will deem the sequencer as too over natively supported by the OS . For example , an OS capable
loaded or too hot to dispatch computation or schedule of supporting a 4 - way instruction sequencer could be imple
instructions for the sequencer . In an embodiment , for a mented as the OS for a hardware implementation that

sequencer that implements a power saving mechanism such actually has 32 - way instruction sequencer system . This
as Intel SpeedStep© technology , the sequencer sequester 10 allows applications to use more processors than the number

of sequencers limit supported by the OS . The instruction mechanism 702 may turn a particular subset of OS - visible sequencers may be asymmetric sequencers or symmetric sequencers to the special power states to indicate that the sequencers .
subset of sequencers are in the non - available state so that the Now we describe one embodiment for proxy execution in OS will deem these subset of sequencers as overloaded and 15 a multisequencer system where some sequencers are OS
thus not dispatch computation to the subset of sequencers . In visible while others are OS - invisible . In general , when code
a manner transparent to the OS , the SXFR and SEMONI running on the OS - invisible sequencers incurs a page fault
TOR instructions may be used to schedule computations or or a system call that requires OS services , proxy execution
threads for the sequestered sequencer . mechanism ensures proper handling . Referring now to FIG .

In an embodiment , once a sequestered sequencer has 20 11 of the drawings , there is shown a flowchart of operations
completed executing a thread , control of the sequestered performed in order to affect an OS service on an OS
sequencer may be surrendered back to the OS . This may be sequestered sequencer with sequencer ID SID1 , in response
achieved by a mechanism setting an indicator to indicate to to a trigger event for proxy execution . Upon encountering
the OS that the sequestered instruction sequencer is no the trigger event , the OS - sequestered sequencer SID1
longer in the non - available state . 25 executes the instruction SSAVE (1 , ST _ 1 _ 0) , at 1100 . The

In an embodiment , a privileged state of a sequestered trigger event may be a predefined condition of execution in
instruction sequencer is synchronized with a counterpart the architectural state requiring an OS service , such as a trap ,
privileged state of non - sequestered instruction sequencers a page fault , or a system call . This instruction saves the
that are still under OS control . execution context of a thread whose execution generated the

In general , in order to canonically support a general 30 trigger event . For descriptive convenience , the save area for
purpose M : N multi - threading package , i . e . one that maps M . the execution context of the thread is designated (ST _ 1 _ 0) ,
threads to N sequencers , where M > > N , the minimal building to which access will not cause page fault in at least one
block synchronization objects that are required are critical embodiment . At 1102 , a SXFR instruction is executed in
section and event . With these synchronization objects , order to pass the egress service scenario “ BEGIN _ PROXY ”
higher level synchronization objects like mutexes , condi - 35 to an OS - visible sequencer SIDO . Note that because the
tional variables , and semaphores can be constructed . A SXFR instruction executed at 1102 included the conditional
critical section can be implemented via hardware lock parameter “ WAIT ” , processing of instructions on sequencer
primitives . The sequestered sequencers can inherit state SID1 is to be blocked pending completion of the proxy
from the non - sequestered sequencers such that the view of execution thread on the sequencer SIDO . At 1104 , the
virtual memory is the same for both sequestered sequencers 40 sequencer SIDO detects the signal from the sequencer SIDI ,
and non - sequestered sequencers . An event can be supported and yields or “ temporarily suspends ” , execution of the
by an event - driven multi - sequencer scheduler (centralized current thread . At 1106 , a SSAVE instruction is executed to
or distributed) synthesized with the SXFR and SEMONI - save the execution context or state associated with sequencer
TOR instructions . For example , a simple POSIX compliant SIDO . The execution context save area is labeled “ ST O 0 . ”
or compatible distributed scheduler that has a global task 45 which does not overlap with ST _ 1 _ 0 . At 1108 , a proxy bit
queue protected by a critical section may be created . Each is set to 1 to indicate that the sequencer SIDO is operating in
sequencer effectively runs one copy of the scheduler and proxy execution mode . At 1110 , a context restore operation
attempts to contend access to the head of the task queue to (SRSTOR) is executed in order to copy the state “ ST _ 1 _ 0 " ,
grab the next ready task thread to run on the sequencer . which is the execution context associated with the page fault
Should one task on a sequencer be waiting for a synchro - 50 on SID1 . At 1112 , the page fault is replicated or imperson
nization variable such as mutex , a conditional variable , or a ated on the sequencer SIDO . At 1114 , a ring transition is
semaphore , the task will be de - scheduled via yield and put performed to switch control to the OS . The OS services the
at the tail of the global task queue after entering the page fault . When OS service completes , upon the privilege
corresponding critical section . level switch (i . e . a ring transition) from OS to user - level and
Due to the widespread adoption of thread primitives in 55 if the proxy - bit is ON , the END _ PROXY scenario is

most modern OSes ' thread libraries , it is possible that a vast incurred as an intra - sequencer yield event . In the yield event
number of existing threaded code built on top of these handler due to END _ PROXY scenario , at 1116 , a context
POSIX compliant or compatible thread libraries can be save is performed to save an execution context “ ST _ 1 , 3 1 ” .
ported to the multi - sequencer environment . Naturally , the At 1118 , the proxy bit is set to 0 . At 1120 , a SXFR
header files in the threads may have to be remapped and the 60 instruction is executed to pass the service scenario “ END _
legacy threaded code recompiled . PROXY ” to the sequencer SID1 . At 1122 , the sequencer
By using the SFXR and SEMONITOR instructions and SIDO restores state ST O 0 . At 1124 , the sequencer SID1

the INIT scenario , it is possible to schedule threads of yields on receiving the “ END _ PROXY " scenario to restore ,
execution on OS - sequestered sequencers , without using an at 1126 , the context “ ST _ 1 _ 1 ” so that execution of the thread
OS . Thus , by virtue of the techniques disclosed herein it is 65 that encountered the trigger event may recommence .
possible to build a multi - sequencer system with more In an embodiment , proxy execution may be the migration
sequencers than an OS has the ability to support and to allow of a user level thread in response to detecting an asymmetric

US 9 , 990 , 206 B2
20

condition between an OS - visible instruction sequencer and 1202 that is coupled to a storage device 1204 . In an
an instruction sequencer under the control of an application embodiment , the processing component 1202 includes a
level program when executing the user level thread . plurality of instruction sequencers , only two of which have
An asymmetric condition between the instruction been shown in FIG . 12 of the drawings where they are

sequencers may include at least the following conditions 5 designation as 1206A , and 1206B , respectively . The pro
such as the need for a ring / privilege level transition ; which cessing component 1202 also includes a control transfer
includes a page fault or system call , a lack of instruction mechanism 1208 that includes a signaling mechanism 1210 ,
capability by the instruction sequencer executing the user and a monitoring mechanism 1212 . The signaling mecha
level thread (e . g . , deprecation of certain instruction on one nism 1210 may be used to send scenarios / control - transfer
sequencer and resulting invalid op code fault) , a difference 10 messages between the sequencers of the processing compo
in instruction execution performance between the two nent 1202 . As such , in an embodiment , the signaling mecha
instruction sequencers . nism 1210 includes logic to execute the SXFR instruction

States migration during proxy execution may be heavy described above . The monitoring mechanism 1212 may be
weight or light weight . Heavy weight migration is a full used to set up any of the instruction sequencers of the
register state that is saved from a transferring sequencer and 15 processing component 1202 to monitor for a signal that
restored onto the receiving sequencer . Heavy weight migra - includes a particular control message / scenario . In an
tion has at least one instruction from the user level thread embodiment , the monitoring mechanism includes logic to
executed on the receiving sequencer for the benefit of the decode the SEMONITOR instruction described above .
transferring sequencer . Heavy weight migration allows for The processing component 1202 also includes a
user level thread being executed to stay at the receiving 20 sequencer sequester mechanism 1214 , as described above .
sequencer or to return to the transferring sequencer after The storage device 1204 may include an operating sys
executing one or more instruction on behalf of the transfer - tem . In an embodiment , the operating system may perform
ring instruction sequencer . context switching by storing a previous task ' s entire register

Light weight migration has many varieties — the idea state and restoring the next task ' s entire register state .
being to streamline for specific situations . Light weight 25 Within the processing component 1202 , various tech
migration may include transferring some small amount of niques may be used to set up , for example , the sequencer
state so that some small task may be handled . In some light 1206B to monitor for particular signals from the sequencer
weight migration scenarios , an instruction from the user 1206A . In an embodiment , the sequencer 1206B may be
level thread is not actually executede . g . , in the page fault pre - configured (i . e . , without requiring any user configura
situation . The instruction sequencer under the control of an 30 tion step) to monitor for signals that carry certain control
application level program just transfers over the address that messages / scenarios . Thus , in an embodiment , the sequencer
causes the page fault . The receiving sequencer just performs 1206B may be pre - configured to monitor for a signal that
a probe load to cause the page to be loaded , and then carries the INIT scenario . It will appreciated , that a user
conveys that this desired task has been accomplished back to level instruction such as SXFR may be used to trigger
the instruction sequencer under the control of the application 35 execution of initialization code on the sequencer 1206B . The
level program . Thus , migration may not mean that an initialization code itself may comprise a SEMONITOR
instruction from the migrating user level thread is actually instruction that may be used set up the sequencer 1206B to
executed . monitor for particular signals (scenarios) from the sequencer

Thus a proxy execution occurs essentially , anytime a 1206A .
second instruction sequencer performs an action ‘ on behalf 40 In another embodiment , the sequencer - aware SEMONI
of ' or ' derived from a first instruction sequencer that is TOR instruction may be executed on the sequencer 1206A
executing a user level thread . to cause the sequencer 1206B to monitor for particular

In an embodiment for the light - weight handling of page signals / scenarios from the sequencer 1206A . In another
fault , one aspect of proxy execution includes the suspension embodiment , a pointer to a memory location that store
of execution of instructions in a user - level thread in a first 45 bootstrap / initialization code may be saved as part of a
instruction sequencer that is under the control of the appli - context for the sequencer 1206A using the SSAVE instruc
cation level program . The transferring an address pointer tion described above . For this embodiment , it is possible to
from the first instruction sequencer that is under the control execute a SRSTOR instruction on the sequencer 1206B to
of the application level program to an OS - visible instruction restore the context / state for the sequencer 1206A so that the
sequencer . The loading of the contents at the address pointer 50 bootstrap / initialization code may be executed . The boot
with the OS - visible instruction sequencer . Finally , the strap / initialization code by itself contains at least one
resuming of execution of the first user - level thread in the SEMONITOR instruction to set up the sequencer 1206B to
instruction sequencer that is under the control of the appli - monitor for particular signals / scenarios from the sequencer
cation level program after the contents at the address pointer 1206A .
have been loaded . 55 FIG . 13 illustrates a block diagram of an example com

Another aspect of proxy execution includes the transfer - puter system that may use an embodiment of a processor
ring of control and state information from an OS sequestered component , such as a CPU or chipset , that includes one or
instruction sequencer to an OS - visible instruction sequencer . more instruction sequencers configured to execute one or
Also , the migrating of execution of at least one instruction more user - level threads that contain sequencer aware user
from the first user - level thread on the OS sequestered 60 level instructions . In one embodiment , computer system
instruction sequencer to the OS - visible instruction 1300 comprises a communication mechanism or bus 1311
sequencer so that the OS - visible instruction sequencer may for communicating information , and an integrated circuit
trigger an operating system to perform an OS operation on component such as a main processing unit 1312 coupled
behalf of the OS sequestered instruction sequencer . with bus 1311 for processing information . One or more of

FIG . 12 of the drawings shows a processing system 1200 , 65 the components or devices in the computer system 1300
in accordance with one embodiment of the invention . As will such as the main processing unit 1312 or a chip set 1336 may
be seen , the system 1200 includes a processing component use an embodiment of the instruction sequencers configured

US 9 , 990 , 206 B2
21 22

to execute one or more user - level threads . The main pro or functional description language . Additionally , a circuit
cessing unit 1312 may consist of one or more processor level model with logic / or transistor gates may be produced
cores working together as a unit . at some stages of the design process . Furthermore , most
Computer system 1300 further comprises a random access designs , at some stage , reach a level of data representing the

memory (RAM) or other dynamic storage device 1304 5 physical placement of various devices in the hardware
(referred to as main memory) coupled to bus 1311 for storing model . In the case where conventional semiconductor fab
information and instructions to be executed by main pro rication techniques are used , the data representing the hard
cessing unit 1312 . Main memory 1304 also may be used for ware model may be the data specifying the presence or
storing temporary variables or other intermediate informa - absence of various features on different mask layers for
tion during execution of instructions by main processing unit 10 masks used to produce the integrated circuit . In any repre
1312 . sentation of the design , the data may be stored in any form

Firmware 1303 may be a combination of software and of a machine - readable medium . Any optical or electrical
hardware , such as Electronically Programmable Read - Only wave modulated or otherwise generated to transform such
Memory (EPROM) that has the operations for the routine information , a memory , or a magnetic or optical storage such
recorded on the EPROM . The firmware 1303 may embed 15 as a disc may be the machine - readable medium . Any of these
foundation code , basic input / output system code (BIOS) , or mediums may " carry ” or “ indicate ” the design or software
other similar code . The firmware 1303 may make it possible information . When an electrical carrier wave indicating or
for the computer system 1300 to boot itself . carrying the code or design is transmitted , to the extent that
Computer system 1300 also comprises a read - only copying , buffering or retransmission of the electrical signal

memory (ROM) and / or other static storage device 1306 20 is performed , a new copy is made . Thus , a communication
coupled to bus 1311 for storing static information and provider or a network provider may make copies of an
instructions for main processing unit 1312 . The static stor article (carrier wave) embodying techniques of the present
age device 1306 may store OS level and application level invention .
software . While certain exemplary embodiments have been

Computer system 1300 may further be coupled to a 25 described and shown in the accompanying drawings , it is to
display device 1321 , such as a cathode ray tube (CRT) or be understood that such embodiments are merely illustrative
liquid crystal display (LCD) , coupled to bus 1311 for and not restrictive of the broad invention and that this
displaying information to a computer user . A chipset may invention is not limited to the specific constructions and
interface with the display device 1321 . arrangements shown and described , since various other

An alphanumeric input device (keyboard) 1322 , including 30 modifications may occur to those ordinarily skilled in the art
alphanumeric and other keys , may also be coupled to bus upon studying this disclosure . In an area of technology such
1311 for communicating information and command selec - as this , where growth is fast and further advancements are
tions to main processing unit 1312 . An additional user input not easily foreseen , the disclosed embodiments may be
device is cursor control device 1323 , such as a mouse , readily modifiable in arrangement and detail as facilitated by
trackball , trackpad , stylus , or cursor direction keys , coupled 35 enabling technological advancements without departing
to bus 1311 for communicating direction information and from the principals of the present disclosure or the scope of
command selections to main processing unit 1312 , and for the accompanying claims .
controlling cursor movement on a display device 1321 . A We claim :
chipset may interface with the input output devices . 1 . A processor , comprising :

Another device that may be coupled to bus 1311 is a hard 40 an instruction cache to store instructions ;
copy device 1324 , which may be used for printing instruc one or more processing resources that are shared among
tions , data , or other information on a medium such as paper , multiple threads ;
film , or similar types of media . Furthermore , a sound record a plurality of processing cores , wherein each processing
ing and playback device , such as a speaker and / or micro core , of the plurality of processing cores , is to support
phone (not shown) may optionally be coupled to bus 1311 45 simultaneous multithreading and comprises :
for audio interfacing with computer system 1300 . Another logically independent next - instruction - pointer and
device that may be coupled to bus 1311 is a wired / wireless fetch logic to fetch one or more threads of instruc
communication capability 1325 . tions ;

In one embodiment , the software used to facilitate the an instruction decode logic to decode the one or more
routine can be embedded onto a machine - readable medium . 50 fetched threads of instructions ;
A machine - readable medium includes any mechanism that a first logic to :
provides (i . e . , stores and / or transmits) information in a form cause the plurality of processing cores to appear to a
accessible by a machine (e . g . , a computer , network device , user - level program as multiple logical processors
personal digital assistant , manufacturing tool , any device by masking the asymmetry between processing
with a set of one or more processors , etc .) . For example , a 55 cores , and identify a first set of logical processors
machine - readable medium includes recordable / non - record of the multiple logical processors to execute each
able media (e . g . , read only memory (ROM) including firm fetched thread without considering physical con
ware ; random access memory (RAM) ; magnetic disk storage figuration of the plurality of processing cores ; and
media ; optical storage media ; flash memory devices , etc .) , as a second logic to , when a thread of instructions is
well as electrical , optical , acoustical or other form of propa - 60 scheduled to be executed on the first set of logical
gated signals (e . g . , carrier waves , infrared signals , digital processors and requires use of a specific resource ,
signals , etc .) ; etc . transfer the processing of the entire thread of instruc

During development , a design may go through various tions from the first set of the logical processors to a
stages , from creation to simulation to fabrication . Data second set of the logical processors responsive to
representing a design may represent the design in a number 65 receiving a control transfer instruction specifying a
of manners . First , as is useful in simulations , the hardware logical processor identifier , wherein the control
may be represented using a hardware description language transfer instruction is used to send a signal from the

US 9 , 990 , 206 B2
23

first set of logical processors to be received by the identify a first set of logical processors of the
second set of logical processors , and wherein the multiple logical processors to execute each
logical processor specified by the control transfer fetched thread without considering physical
instruction processes the thread of instructions . configuration of the plurality of processing

2 . The processor of claim 1 , wherein each core is a part 5 cores ; and of a sequencer .
3 . The processor of claim 1 , wherein at least one thread of a second logic to , when a thread of instructions is

instructions is visible to an operating system . schedule to be executed on the first set of logical
4 . The processor of claim 1 , wherein at least one thread of processors and requires use of a specific resource ,

instructions is operating system sequestered . transfer the processing of the entire thread of
5 . The processor of claim 1 , wherein the control transfer instructions from the first set of the logical pro

instruction is user - level accessible . cessors to a second set of the logical processors
6 . The processor of claim 1 , wherein the control transfer responsive to receiving a control transfer instruc

instruction includes an opcode , an operand for a sequencer tion specifying a logical processor identifier ,
identifier for a destination logical processor , and an operand wherein the control transfer instruction is used to for one of a plurality of architecturally defined scenarios . 15 send a signal from the first set of logical proces 7 . The processor of claim 6 , wherein the one of the
plurality of architecturally defined scenario is a begin proxy sors to be received by the second set of logical
scenario . processors , and wherein the logical processor

8 . The processor of claim 1 , wherein the processing core specified by the control transfer instruction pro
to save a context of an executing thread in response to the 20 cesses the thread of instructions .
control transfer instruction . 11 . The system of claim 10 , wherein each core is a part of

9 . The processor of claim 8 , wherein the context is to be a sequencer .
saved in by an execution of a context save instruction . 12 . The system of claim 10 , wherein at least one thread of 10 . A system comprising : instructions is visible to the operating system . a memory to store an operating system ; 25 13 . The system of claim 10 , wherein at least one thread of a processor coupled to the memory , the processor com instructions is operating system sequestered . prising :

an instruction cache to store instructions ; 14 . The system of claim 10 , wherein the control transfer
one or more processing resources that are shared instruction is user - level accessible .
among multiple threads ; 15 . The system of claim 10 , wherein the control transfer

a plurality of processing cores , wherein each process - instruction includes an opcode , an operand for a sequencer
ing core , of the plurality of processing cores , is to identifier for a destination logical processor , and an operand
support simultaneous multithreading and comprises : for one of a plurality of architecturally defined scenarios .
logically independent next - instruction - pointer and 16 . The system of claim 15 , wherein the one of the

fetch logic to fetch one or more threads of instruc as plurality of architecturally defined scenario is a begin proxy tions ;
an instruction decode logic to decode the one or scenario .

17 . The system of claim 10 , wherein the processing core more fetched threads of instructions ;
a first logic to : to save a context of an executing thread in response to the

control transfer instruction . cause the plurality of processing cores to appear to
a user - level program as multiple logical proces - 40 40 18 . The system of claim 17 , wherein the context is to be
sors by masking the asymmetry between pro saved in by an execution of a context save instruction .
cessing cores , and * * * *

