US 20180041385A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2018/0041385 A1

HALLIVUORI et al. (43) Pub. Date: Feb. 8, 2018
(54) A METHOD AND AN APPLIANCE FOR (52) US.CL
MAINTAINING A CONFIGURATION DATA CPC ... HO4L 41/082 (2013.01); HO4L 41/085
STRUCTURE (2013.01); HO4L 41/0866 (2013.01)
(71) Applicant: CORIANT OY, Espoo (FI) (57) ABSTRACT

Disclosed is a device for maintaining a configuration data
structure expressing configuration of a device. The configu-
ration is maintained by an operative process making desired
changes to the configuration and adding, to the configuration
data structure, change descriptors indicative of the changes.

(72) Inventors: Ville HALLIVUORI, Espoo (FI);
Matti HALLIVUORI, Espoo (FI);
Juha HOPSU, Espoo (FI)

(21) Appl. No.: 15/550,524 When the configuration data structure is updated, an auxil-
(22) PCT Filed: Feb. 12. 2015 iary process is run in parallel with the operative process. The
’ e auxiliary process includes requesting functional entities of

(86) PCT No.: PCT/FI2015/050085 the device to report their configurations prevailing at an
update time instant, and constructing an auxiliary configu-

§ 371 (e)(D), ration data structure on the basis of the reported information.

(2) Date: Aug. 11, 2017 The configuration data structure is updated by replacing a

portion of the configuration data structure corresponding to

the update time instant with the auxiliary configuration data

structure. There is no need to freeze the configuration during

(51) Int. CL the update because the auxiliary process is run in parallel
HO4L 12/24 (2006.01) with the operative process.

!

YE
S A need to change NO
configuration?
v

3
0
A need to update a configuration

201
/ data structure ?
— N\

Publication Classification

b

Make a desired change to
the configuration.

Request functional entities to
report their configurations.

203

202 v |
Add a change descriptor
to the configuration data

structure.

— -
Construct an auxiliary
configuration data structure
based on the reported 204
information.)

Is there a new auxiliary NO
configuration data
structure?

YES ‘W

Update the configuration data structure with
the aid of the auxiliary configuration data
structure. 205

Patent Application Publication Feb. 8, 2018 Sheet 1 of 3 US 2018/0041385 A1

101

,.._L__:.{ii
\ gcg @
L___—@

NI

C1

\ c2
110 >\A | gg @
111
102 +C5

C2

_ 115} NE
’ o T

.
104a ‘ e
c2 (_._ﬁ..j :
\ C3
| & V
Cc5 (::
G D
\~_ -~ C3 @
—

FiQUre 1

Patent Application Publication Feb. 8, 2018 Sheet 2 of 3 US 2018/0041385 A1

YES

A need to change NO
canfiguration?

NO N YES
201 A need fo update a configuration
! f data structure ?

Make a desired change to
the configuration.

Request functional entities to
report their configurations.

203

202— ¥ J

Add a change descriptor
to the configuration data
structure.

— ¥
Construct an auxiliary
configuration data structure
based on the reported 204
information.)

Is there a new auxiliary \NO
configuration data
structure?

YES w

Update the configuration data structure with
the aid of the auxiliary configuration data
structure. 205

Figure 2

Patent Application Publication

Feb. 8,2018 Sheet 3 of 3 US 2018/0041385 Al

300
F

(o0
Q
>

CPU

301

RAM

&
>

NP |y

g

Figure 3

US 2018/0041385 Al

A METHOD AND AN APPLIANCE FOR
MAINTAINING A CONFIGURATION DATA
STRUCTURE

FIELD OF THE DISCLOSURE

[0001] The disclosure relates to a method and to an
appliance for maintaining a configuration data structure
expressing configuration of a device that can be, for example
but not necessarily, a network element of a data transfer
network. Furthermore, the disclosure relates to a computer
program for maintaining a configuration data structure and
to a network element.

BACKGROUND

[0002] In conjunction with many devices, such as e.g.
network elements of a data transfer network, there is a need
to maintain a configuration data structure which expresses
an up-to-date configuration the device. In a case where the
device is a network element, the configuration data structure
may express for example the configurations of e.g. shapers,
schedulers, egress ports, ingress ports, forwarding tables,
access control lists, routing protocol parameters, border
gateway protocol “BGP” peers, software implemented pro-
cesses, and/or other physical entities and/or immaterial
entities of the network element. The network element can be
for example an Internet Protocol “IP” router, an Ethernet
switch, a multiprotocol label switching “MPLS” switch, a
network element for a software defined network “SDN”, an
Asynchronous Transfer Mode “ATM” switch, and/or a
packet optical switch.

[0003] A traditional way to maintain the above-mentioned
configuration data structure is to add incremental change
descriptors indicative of changes of the configuration to the
configuration data structure and to update the whole con-
figuration data structure to correspond to the prevailing
configuration in response to a need to update the configu-
ration data structure. The need to update the configuration
data structure may take place for example when the amount
of the change descriptors reaches a pre-determined limit, i.e.
the list of the change descriptors becomes inconveniently
long. The configuration data structure can be updated by
requesting functional entities of the device to report their
configurations and by re-constructing the configuration data
structure on the basis of the information reported by the
functional entities. An inconvenience related to this
approach is that changes cannot be made to the configuration
during the above-described update process, and thus the
configuration has to be frozen during the update process.
[0004] Another known way to maintain the above-men-
tioned configuration data structure is to maintain a model of
the device so that the configuration of the model is all the
time an exact copy of the configuration of the device. In this
case, an auxiliary configuration data structure that corre-
sponds to a desired time instant can be constructed off-line
with the aid of the model and the configuration data structure
can be updated on the basis of the auxiliary configuration
data structure and the change descriptors related to changes
made to the configuration after the above-mentioned time
instant. An inconvenience related to this approach is that
maintaining the model consumes resources of the device
because in many cases the model is quite complex since the
functional entities of the device have to be modelled in a
sufficiently detailed way.

Feb. §, 2018

SUMMARY

[0005] The following presents a simplified summary in
order to provide a basic understanding of some aspects of
various invention embodiments. The summary is not an
extensive overview of the invention. It is neither intended to
identify key or critical elements of the invention nor to
delineate the scope of the invention. The following summary
merely presents some concepts of the invention in a sim-
plified form as a prelude to a more detailed description of
exemplifying embodiments of the invention.

[0006] In accordance with the invention, there is provided
a new appliance for maintaining a configuration data struc-
ture expressing configuration of a device, e.g. a network
element.

[0007] An appliance according to the invention comprises
a processing system for running an operative process that
comprises making desired changes to the configuration of
the device and adding, to the configuration data structure,
change descriptors indicative of the changes. The processing
system is further configured to:

[0008] run, in response to a need to update the configu-
ration data structure, an auxiliary process in parallel
with the operative process, and

[0009] wupdate the configuration data structure by
replacing a portion of the configuration data structure
corresponding to an update time instant with an auxil-
iary configuration data structure constructed by the
auxiliary process, the updated configuration data struc-
ture comprising the auxiliary configuration data struc-
ture and the change descriptors indicative of the
changes made after the update time instant.

[0010] The above-mentioned auxiliary process comprises:

[0011] requesting one or more functional entities of the
device to report configurations of the functional entities
prevailing at the update time instant, each change made
after the update time instant to the configuration being
implemented by the operative process so that data
defining the configuration prevailing at the update time
instant remains available to the auxiliary process, and

[0012] constructing the auxiliary configuration data
structure at least partly on the basis of the information
reported by the functional entities.

[0013] As the auxiliary process is run in parallel with the
above-mentioned operative process, there is no need to
freeze the configuration when the update is done. On the
other hand, there is no need to maintain a detailed model of
the functional entities of the device because the initial state
of the auxiliary process can be for example a snap-shot copy
of the state of the operative process.

[0014] In accordance with the invention, there is provided
also a new network element than can be for example an
Internet Protocol “IP” router, an Ethernet switch, a multi-
protocol label switching “MPLS” switch, a network element
of a software defined network “SDN”, a packet optical
switch, and/or an Asynchronous Transfer Mode “ATM”
switch. A network element according to the invention com-
prises:

[0015] one or more functional entities for controlling
and carrying out data transfer between the network
element and a data transfer network, and

[0016] a processing system communicatively connected
to the one or more functional entities.

[0017] The processing system of the network element is
configured to constitute an appliance according to the inven-

US 2018/0041385 Al

tion for maintaining a configuration data structure express-
ing configuration of the network element.

[0018] In accordance with the invention, there is provided
also a new method for maintaining a configuration data
structure expressing configuration of a device. A method
according to the invention comprises:

[0019] running an operative process that comprises
making desired changes to the configuration of the
device and adding, to the configuration data structure,
change descriptors indicative of the changes,

[0020] running, in response to a need to update the
configuration data structure, the above-described aux-
iliary process in parallel with the operative process, and

[0021] wupdating the configuration data structure by
replacing a portion of the configuration data structure
corresponding to an update time instant with the aux-
iliary configuration data structure constructed by the
auxiliary process.

[0022] In accordance with the invention, there is provided
also a new computer program for maintaining a configura-
tion data structure expressing configuration of a device. A
computer program according to the invention comprises
computer executable instructions for controlling a program-
mable processing system to:

[0023] run an operative process that comprises making
changes to the configuration of the device and adding,
to the configuration data structure, change descriptors
indicative of the changes,

[0024] run, in response to a need to update the configu-
ration data structure, the above-described auxiliary
process in parallel with the operative process, and

[0025] wupdate the configuration data structure by
replacing a portion of the configuration data structure
corresponding to the update time instant with the
auxiliary configuration data structure constructed by
the auxiliary process.

[0026] In accordance with the invention, there is provided
also a new computer program product. The computer pro-
gram product comprises a non-volatile computer readable
medium, e.g. a compact disc “CD”, encoded with a com-
puter program according to the invention.

[0027] A number of exemplifying and non-limiting
embodiments of the invention are described in accompanied
dependent claims.

[0028] Various exemplifying and non-limiting embodi-
ments of the invention both as to constructions and to
methods of operation, together with additional objects and
advantages thereof, will be best understood from the fol-
lowing description of specific exemplifying embodiments
when read in connection with the accompanying drawings.
[0029] The verbs “to comprise” and “to include” are used
in this document as open limitations that neither exclude nor
require the existence of also un-recited features. The features
recited in the accompanied dependent claims are mutually
freely combinable unless otherwise explicitly stated. Fur-
thermore, it is to be understood that the use of “a” or “an”,
ie. a singular form, throughout this document does not
exclude a plurality.

BRIEF DESCRIPTION OF THE FIGURES

[0030] Exemplifying and non-limiting embodiments of
the invention and their advantages are explained in greater
detail below with reference to the accompanying drawings,
in which:

Feb. §, 2018

[0031] FIG. 1 illustrates an update process of an exempli-
fying configuration data structure, the update process being
a part of a method according to an exemplifying and
non-limiting embodiment of the invention,

[0032] FIG. 2 shows a flowchart of a method according to
an exemplifying and non-limiting embodiment of the inven-
tion for maintaining a configuration data structure, and

[0033] FIG. 3 shows a schematic illustration of a network
element comprising an appliance according to an exempli-
fying and non-limiting embodiment of the invention for
maintaining a configuration data structure of the network
element.

DESCRIPTION OF EXEMPLIFYING
EMBODIMENTS

[0034] FIG. 1 illustrates an update process of an exempli-
fying configuration data structure 101. The configuration
data structure 101 expresses an up-to-date configuration of
one or more functional entities of a device that can be, for
example but not necessarily, a network element of a data
transfer network. Each functional entity can be a physical
entity or an immaterial entity such as e.g. a software
implemented process. In FIG. 1, the configuration of the
device in different situations is depicted with blocks denoted
with reference numbers 105 and 105a. For example, the
configuration 105 is “C2, C3, C4, C5”. The configuration
data structure 101 comprises a base portion 104 and one or
more change descriptors 102 which express how the con-
figuration has been changed with respect to the configuration
corresponding to the base portion. The data entity consti-
tuted by the change descriptors 102 is sometimes called “a
journal” or “a delta log”. Each of the change descriptors
expresses a change made to the configuration. For example,
the configuration 105 “C2, C3, C4, C5” is expressed by the
base portion 104 and the change descriptors 102 so that the
base portion 104 corresponds to configuration “C1, C2, C3,
C4” and the change descriptor +C5 expresses that a con-
figuration item C5 has been added to the configuration
expressed by the base portion 104 and the change descriptor
-C1 expresses that a configuration item C1 has been
removed from the configuration expressed by the base
portion 104.

[0035] It is to be noted that the above-described example
is a strongly simplified case for merely illustrating the
principled relationships between the configuration 105, the
base portion 104, and the change descriptors 102. The
above-presented simplified example case could lead to an
impression that it is straightforward to modify the base
portion so that the modified base portion alone corresponds
to the prevailing configuration but in practice it is, however,
cumbersome or even impossible to modify the base portion
merely on the basis of the prevailing base portion and the
change descriptors so that the modified base portion alone
corresponds to the prevailing configuration. Therefore, there
is typically a need to request the functional entities to report
their prevailing configurations in order to be able to update
the configuration data structure 101 so that the base portion
is modified to correspond to the earlier base portion and the
change descriptors. A need to update the configuration data
structure 101 in the way described above may take place for
example when the amount of the change descriptors 102
reaches a pre-determined limit, i.e. the list of the change
descriptors 102 becomes inconveniently long.

US 2018/0041385 Al

[0036] When there is a need to update the configuration
data structure 101 in the way described above, an auxiliary
process can be started by forming a copy 114, or a sufficient
partial copy, of a momentary state of an operative process
which, if needed, modifies the configuration 105 and adds
corresponding change descriptors to the configuration data
structure 101. In many cases, the operative process is
controlled for example by a network management system
“NMS”. The operative process is actually forked into two
branches so that one of the branches represents continuation
of the operative process controlled e.g. by the network
management system and the other one of the branches
represents the auxiliary process. In FIG. 1, the forking of the
operative process is depicted with an arrow 111 and the
progress of the operative process after the forking action is
depicted with an arrow 110. In the exemplifying case
illustrated in FIG. 1, the operative process comprises chang-
ing the configuration 105 so that a configuration item C6 is
added and a configuration item C3 is removed in accordance
e.g. control messages received from the network manage-
ment system. Correspondingly, change descriptors +C6 and
—-C3 are added to the list of the change descriptors. The
changed configuration is denoted with a reference number
105a, the changed configuration data structure is denoted
with a reference number 101a¢ and the changed list of the
change descriptors is denoted with a reference number 102a.

[0037] The starting point of the auxiliary process is the
copy 114, or a sufficient partial copy, of the momentary state
of the operative process. The auxiliary process comprises
requesting the functional entities of the device to report their
configurations prevailing at the update time instant, i.e. at
the time instant corresponding to the copy 114. The auxiliary
process comprises constructing an auxiliary configuration
data structure 1015 at least partly on the basis of the
information reported by the functional entities. In the exem-
plifying case illustrated in FIG. 1, the auxiliary configuration
data structure 1015 comprises a base portion 104a that
corresponds to the base portion 104 and the change descrip-
tors 102. In FIG. 1, the constructing the auxiliary configu-
ration data structure 1015 is depicted with an arrow 112. The
configuration data structure 101a, which is the most recent
form of the configuration data structure in the operative
process, is updated by replacing a portion 103 corresponding
to the update time instant with the auxiliary configuration
data structure 1015. In FIG. 1, the updating the configuration
data structure 101a is depicted with arrows 113 and 115. The
updated configuration data structure 101c¢ comprises the
base portion 104a of the auxiliary configuration data struc-
ture 1015 and the change descriptors +C6 and -C3 indica-
tive of the changes made after the update time instant. After
the configuration data structure has been updated, the aux-
iliary process is terminated. The termination of the auxiliary
process is depicted with an arrow 116.

[0038] FIG. 2 shows a flowchart of a method according to
an exemplifying and non-limiting embodiment of the inven-
tion for maintaining a configuration data structure of a
device, e.g. a network element. The method comprises
running an operative process that comprises making 201
desired changes to the configuration of the device and
adding 202, to the configuration data structure, change
descriptors indicative of the changes. The method further
comprises:

Feb. §, 2018

[0039] running, in response to a need to update the
configuration data structure, an auxiliary process in
parallel with the operative process, and

[0040] updating 205 the configuration data structure by
replacing a portion of the configuration data structure
corresponding to an update time instant with an auxil-
iary configuration data structure constructed by the
auxiliary process, the updated configuration data struc-
ture comprising the auxiliary configuration data struc-
ture and the change descriptors indicative of the
changes made after the update time instant.

[0041] The auxiliary process comprises the following
actions:
[0042] action 203: requesting one or more functional

entities of the device to report configurations of the

functional entities prevailing at the update time instant,

and

[0043] action 204: constructing the auxiliary configu-

ration data structure at least partly on the basis of the

information reported by the functional entities.
[0044] A method according to an exemplifying and non-
limiting embodiment of the invention comprises starting the
auxiliary process in response to a situation in which the
amount of the change descriptors exceeds a pre-determined
limit, i.e. the list of the change descriptors has become
inconveniently long.
[0045] As illustrated in FIG. 1, the auxiliary process is
initialized so that the data used in the auxiliary process and
defining at least the configurations of the functional entities
prevailing at the update time instant equals to the corre-
sponding data used in the operative process.
[0046] In a method according to an exemplifying and
non-limiting embodiment of the invention, the auxiliary
process is initialized so that the method comprises copying,
from first memory areas of the device to second memory
areas of the device, the data defining at least the configu-
rations of the functional entities prevailing at the above-
mentioned update time instant. The data contained by the
first memory areas is used in the operative process, and
changes needed by the operative process are written to these
first memory areas. Correspondingly, the data contained by
the second memory areas is used in the auxiliary process,
and changes needed by the auxiliary process are written to
these second memory areas. An inherent drawback of this
approach where the whole data needed for the auxiliary
process is copied from the above-mentioned first memory
areas to the second memory areas is that the required
memory capacity for the auxiliary process is about the same
as the memory capacity needed for the operative process.
[0047] In a method according to an exemplifying and
non-limiting embodiment of the invention, the auxiliary
process is initialized to use the same data that is used by the
operative process and that is contained by first memory areas
of the device. In a case where one of the operational and
auxiliary processes needs a given piece of the data in a first
form and the other one of the operational and auxiliary
processes needs this piece of the data in a second form
different from the first form, the method comprises storing
the first form of the piece of the data in one of the first
memory areas and the second form of the piece of the data
in one of second memory areas that are different from the
first memory areas. The first form of the piece of the data can
be e.g. the original piece of the data and the second form of
the piece of the data can be a modification of the piece of the

US 2018/0041385 Al

data, or the first form of the piece of the data can be a
modification of the piece of the data and the second form of
the piece of the data can be the original piece of the data, or
the first and second forms can be mutually different modi-
fications of the piece of the data. In this approach, the
forking of the operative process into the mutually parallel
operative and auxiliary processes does not usually require
significant memory capacity because the second memory
areas are needed only when the mutually parallel operative
and auxiliary processes need pieces of the data in mutually
different forms. This principle is known as the Copy-on-
write “COW” approach.

[0048] The above-described COW-approach can be imple-
mented in a virtual memory space so that the mutually
parallel operative and auxiliary processes refer to same
physical memory areas and the operating system “OS” can
use the memory management unit “MMU” for directing
write actions to different physical memory areas when
differences occurs between the operative and auxiliary pro-
cesses. In this case, the method comprises controlling the
operative process to use a first virtual memory space and
controlling the auxiliary process to use a second virtual
memory space. Both the first and second virtual memory
spaces are mapped, at the update time instant, to first
memory areas which contain the data defining at least the
configurations of the functional entities prevailing at the
update time instant. In a case where one of the operational
and auxiliary processes needs a given piece of the data in a
first form and the other one of the operational and auxiliary
processes needs this piece of the data in a second form, the
method comprises changing mapping of one of i) a virtual
memory area of the first virtual memory space and ii) a
virtual memory area of the second virtual memory space
from one of the first memory areas to one of second memory
areas. In other words, the mappings of mutually correspond-
ing virtual memory areas of the first and second virtual
memory spaces are diverged at least when the operational
and auxiliary processes need mutually different forms of a
piece of the data that is related to these virtual memory areas
according to the original mappings.

[0049] A computer program according to an exemplifying
and non-limiting embodiment of the invention comprises
computer executable instructions for controlling a program-
mable processing system to carry out actions related to a
method according to any of the above-described exempli-
fying embodiments of the invention.

[0050] A computer program according to an exemplifying
embodiment of the invention comprises software modules
for maintaining a configuration data structure expressing
configuration of a device. The software modules comprise
computer executable instructions for controlling a program-
mable processing system to:

[0051] run an operative process that comprises making
changes to the configuration of the device and adding,
to the configuration data structure, change descriptors
indicative of the changes,

[0052] run, in response to a need to update the configu-
ration data structure, an auxiliary process in parallel
with the operative process, and

[0053] update the configuration data structure by
replacing a portion of the configuration data structure
corresponding to an update time instant with an auxil-
iary configuration data structure constructed by the
auxiliary process, the updated configuration data struc-

Feb. §, 2018

ture comprising the auxiliary configuration data struc-
ture and the change descriptors indicative of the
changes made after the update time instant

[0054] The auxiliary process comprises:

[0055] requesting one or more functional entities of the
device to report configurations of the functional entities
prevailing at the update time instant, and

[0056] constructing the auxiliary configuration data
structure at least partly on the basis of the information
reported by the functional entities.

[0057] The software modules can be e.g. subroutines or
functions implemented with a suitable programming lan-
guage and with a compiler suitable for the programming
language and for the programmable processing system under
consideration. It is worth noting that also a source code
corresponding to a suitable programming language repre-
sents the computer executable software modules because the
source code contains the information needed for controlling
the programmable processing system to carry out the above-
presented actions and compiling changes only the format of
the information. Furthermore, it is also possible that the
programmable processing system is provided with an inter-
preter so that a source code implemented with a suitable
programming language does not need to be compiled prior
to running.

[0058] A computer program product according to an
exemplifying and non-limiting embodiment of the invention
comprises a computer readable medium, e.g. a compact disc
“CD”, encoded with a computer program according to an
exemplifying embodiment of invention.

[0059] A signal according to an exemplifying and non-
limiting embodiment of the invention is encoded to carry
information defining a computer program according to an
exemplifying embodiment of invention.

[0060] FIG. 3 shows a schematic illustration of a network
element 300 according to an exemplifying and non-limiting
embodiment of the invention. The network element can be
for example an Internet Protocol “IP” router, an Ethernet
switch, a multiprotocol label switching “MPLS” switch, a
network element for a software defined network “SDN”, an
Asynchronous Transfer Mode “ATM” switch, and/or a
packet optical switch. The network element comprises net-
work interfaces for transmitting data to a data transfer
network 390 and network interfaces for receiving data from
the data transfer network. In FIG. 3, two of the network
interfaces for transmitting data are denoted with reference
numbers 304 and 306, and one of the network interfaces for
receiving data is denoted with a reference number 305. In
this exemplifying and non-limiting case, the network ele-
ment comprises a network processor “NP” 303 for running
data transfer protocols being used, e.g. IP, the Transmission
Control Protocol “TCP”, Ethernet, ATM, and/or MPLS. It is
also possible that the data transfer protocols are run by one
or more programmable processor circuits provided with
appropriate software, and/or one or more dedicated hard-
ware processors such as for example an application specific
integrated circuit “ASIC”, and/or one or more configurable
hardware processors such as for example a field program-
mable gate array “FPGA”. The above-mentioned network
interfaces and the network processor represent functional
entities for controlling and carrying out data transfer
between the network element and the data transfer network
390. Furthermore, the functional entities may comprise
immaterial entities such as e.g. software implemented pro-

US 2018/0041385 Al

cesses. For further example, the functional entities may
comprise shapers, schedulers, physical or logical egress
ports, physical or logical ingress ports, forwarding tables,
access control lists, routing protocol parameters, border
gateway protocol “BGP” peers, etc. The network element
comprises a memory 307 for buffering data to be forwarded
and for storing other data. The memory 307 can be imple-
mented with one or more memory devices such as for
example one or more random access memory “RAM”
circuits. The network element comprises a processing sys-
tem 302 communicatively connected to the memory 307, to
the network processor 303, and to the network interfaces
304-306. The processing system 302 can be implemented
with one or more processor circuits, each of which can be a
programmable processor circuit provided with appropriate
software, a dedicated hardware processor such as for
example an application specific integrated circuit “ASIC”,
or a configurable hardware processor such as for example a
field programmable gate array “FPGA”.

[0061] The processing system 302 is configured to con-
stitute an appliance 301 for maintaining a configuration data
structure expressing configuration of the network element. It
is worth noting that the processing system 302 has typically
many other tasks in addition to the maintenance of the
above-mentioned configuration data structure. The process-
ing system 302 is configured to constitute the appliance 301
so that the appliance comprises means for running an
operative process that comprises making changes to the
configuration of the network element and adding, to the
configuration data structure, change descriptors indicative of
the changes. The appliance 301 further comprises:

[0062] means for running, in response to a need to
update the configuration data structure, an auxiliary
process in parallel with the operative process, and

[0063] means for updating the configuration data struc-
ture by replacing a portion of the configuration data
structure corresponding to an update time instant with
an auxiliary configuration data structure constructed by
the auxiliary process.

[0064] The means for running the auxiliary process com-
prise:
[0065] means for requesting the functional entities of

the network element to report configurations of the
functional entities prevailing at the update time instant,
and
[0066] means for constructing the auxiliary configura-
tion data structure at least partly on the basis of
information reported by the functional entities.
[0067] The updated configuration data structure comprises
the above-mentioned auxiliary configuration data structure
and the change descriptors indicative of changes made after
the above-mentioned update time instant.
[0068] Inanetwork element according to an exemplifying
and non-limiting embodiment of the invention, the process-
ing system 302 is configured to initialize the auxiliary
process so that data used in the auxiliary process and
defining at least the configurations of the functional entities
prevailing at the update time instant equals to the corre-
sponding data used in the operative process.
[0069] Inanetwork element according to an exemplifying
and non-limiting embodiment of the invention, the process-
ing system 302 is configured to:
[0070] copy, from first memory areas of the memory
307 to second memory areas of the memory, the data

Feb. §, 2018

defining at least the configurations of the functional
entities prevailing at the update time instant,

[0071] use, for the operative process, the data contained
by the first memory arcas and change the data in
accordance with the operative process, and

[0072] wuse, for the auxiliary processes, the copied data
contained by the second memory areas and change the
copied data in accordance with the auxiliary process.

[0073] Inanetwork element according to an exemplifying
and non-limiting embodiment of the invention, the process-
ing system 302 is configured to:

[0074] wuse, for both the operational and auxiliary pro-
cesses, the data contained by first memory areas of the
memory 307 and defining at least the configurations of
the functional entities prevailing at the update time
instant,

[0075] store a first form of a piece of the data in one of
the first memory areas and a second form of the piece
of the data in one of second memory areas different
from the first memory areas in response to a situation
in which a) at least one of the first and second forms of
the piece of the data is a modification of the piece of the
data so that the first and second forms of the piece of
the data are mutually different, b) one of the operational
and auxiliary processes needs the first form of the piece
of the data, and c¢) another one of the operational and
auxiliary processes needs the second form of the piece
of the data.

[0076] Inanetwork element according to an exemplifying
and non-limiting embodiment of the invention, the process-
ing system 302 is configured to control the operative process
to use a first virtual memory space and to control the
auxiliary process to use a second virtual memory space.
Both the first and second virtual memory spaces are mapped,
at the update time instant, to the above-mentioned first
memory areas.

[0077] Inanetwork element according to an exemplifying
and non-limiting embodiment of the invention, the process-
ing system 302 is configured to change mapping of one of
i) a virtual memory area of the first virtual memory space
and ii) a virtual memory area of the second virtual memory
space from the one of the first memory areas to the one of
the second memory areas in response to the above-men-
tioned situation in which a) the at least one of the first and
second forms of the piece of the data is the modification of
the piece of the data so that the first and second forms of the
piece of the data are mutually different, b) the one of the
operational and auxiliary processes needs the first form of
the piece of the data, and c) the other one of the operational
and auxiliary processes needs the second form of the piece
of the data.

[0078] Inanetwork element according to an exemplifying
and non-limiting embodiment of the invention, the process-
ing system 302 is configured to start the auxiliary process in
response to a situation in which amount of the change
descriptors exceeds a pre-determined limit.

[0079] The specific examples provided in the description
given above should not be construed as limiting the scope
and/or the applicability of the appended claims. Lists and
groups of examples provided in the description given above
are not exhaustive unless otherwise explicitly stated.

1-19. (canceled)

20. An appliance for maintaining a configuration data

structure expressing configuration of a device, the appliance

US 2018/0041385 Al

comprising a processing system for running an operative
process comprising making changes to the configuration of
the device and for adding, to the configuration data structure,
change descriptors indicative of the changes, wherein the
processing system is configured to:

run, in response to a need to update the configuration data

structure, an auxiliary process in parallel with the
operative process, and
update the configuration data structure by replacing a
portion of the configuration data structure correspond-
ing to an update time instant with an auxiliary configu-
ration data structure constructed by the auxiliary pro-
cess, the updated configuration data structure
comprising the auxiliary configuration data structure
and the change descriptors indicative of changes made
after the update time instant,
wherein the auxiliary process comprises:

requesting one or more functional entities of the device to
report configurations of the functional entities prevail-
ing at the update time instant, and

constructing the auxiliary configuration data structure at

least partly on the basis of information reported by the
functional entities.

21. An appliance according to claim 20, wherein the
processing system is configured to initialize the auxiliary
process so that data used for the auxiliary process and
defining at least the configurations of the functional entities
prevailing at the update time instant equals to data used for
the operative process and defining at least the configurations
of the functional entities prevailing at the update time
instant.

22. An appliance according to claim 20, wherein the
processing system is configured to:

copy, from first memory areas of the device to second

memory areas of the device, data defining at least the
configurations of the functional entities prevailing at
the update time instant,

use, for the operative process, the data contained by the

first memory areas and change the data in accordance
with the operative process, and

use, for the auxiliary processes, the copied data contained

by the second memory areas and change the copied
data in accordance with the auxiliary process.
23. An appliance according to claim 20, wherein the
processing system is configured to:
use, for both the operational and auxiliary processes, data
contained by first memory areas of the device and
defining at least the configurations of the functional
entities prevailing at the update time instant, and

store a first form of a piece of the data in one of the first
memory areas and a second form of the piece of the
data in one of second memory areas different from the
first memory areas in response to a situation in which
a) at least one of the first and second forms of the piece
of the data is a modification of the piece of the data so
that the first and second forms of the piece of the data
are mutually different, b) one of the operational and
auxiliary processes needs the first form of the piece of
the data, and c¢) another one of the operational and
auxiliary processes needs the second form of the piece
of the data.

24. An appliance according to claim 23, wherein the
processing system is configured to control the operative
process to use a first virtual memory space and to control the

Feb. §, 2018

auxiliary process to use a second virtual memory space, both
the first and second virtual memory spaces being mapped, at
the update time instant, to the first memory areas.

25. An appliance according to claim 24, wherein the
processing system is configured to change mapping of one
of'1) a virtual memory area of the first virtual memory space
and ii) a virtual memory area of the second virtual memory
space from the one of the first memory areas to the one of
the second memory areas in response to the situation in
which a) the at least one of the first and second forms of the
piece of the data is the modification of the piece of the data
so that the first and second forms of the piece of the data are
mutually different, b) the one of the operational and auxil-
iary processes needs the first form of the piece of the data,
and c) the other one of the operational and auxiliary pro-
cesses needs the second form of the piece of the data.

26. An appliance according to claim 20, wherein the
processing system is configured to start the auxiliary process
in response to a situation in which amount of the change
descriptors exceeds a pre-determined limit.

27. A network element comprising:

one or more functional entities for controlling and carry-

ing out data transfer between the network element and
a data transfer network, and
a processing system communicatively connected to the
one or more functional entities,
wherein the processing system is configured to maintain a
configuration data structure expressing configuration of the
network element, to run an operative process comprising
making changes to the configuration of the network element,
and to add, to the configuration data structure, change
descriptors indicative of the changes, the processing system
being further configured to:
run, in response to a need to update the configuration data
structure, an auxiliary process in parallel with the
operative process, and

update the configuration data structure by replacing a

portion of the configuration data structure correspond-
ing to an update time instant with an auxiliary configu-
ration data structure constructed by the auxiliary pro-
cess, the wupdated configuration data structure
comprising the auxiliary configuration data structure
and the change descriptors indicative of changes made
after the update time instant, and the auxiliary process
comprising:
requesting one or more functional entities of the device
to report configurations of the functional entities
prevailing at the update time instant, and
constructing the auxiliary configuration data structure
at least partly on the basis of information reported by
the functional entities.

28. A network element according to claim 27, wherein
each of the functional entities is one of the following: a
shaper, a scheduler, an egress port, an ingress port, a
forwarding table, an access control list, a software imple-
mented process, routing protocol parameters, border gate-
way protocol “BGP” peers.

29. A network element according to claim 27, wherein the
network element is at least one of the following: an Internet
Protocol (IP) router, an Ethernet switch, a multiprotocol
label switching (MPLS) switch, a network element for a
software defined network (SDN), an Asynchronous Transfer
Mode (ATM) switch, a packet optical switch.

US 2018/0041385 Al

30. A method for maintaining a configuration data struc-
ture expressing configuration of a device, the method com-
prising:

running an operative process comprising: making changes

to the configuration of the device and adding, to the
configuration data structure, change descriptors indica-
tive of the changes,

running, in response to a need to update the configuration

data structure, an auxiliary process in parallel with the
operative process, and
updating the configuration data structure by replacing a
portion of the configuration data structure correspond-
ing to an update time instant with an auxiliary configu-
ration data structure constructed by the auxiliary pro-
cess, the updated configuration data structure
comprising the auxiliary configuration data structure
and the change descriptors indicative of changes made
after the update time instant,
wherein the auxiliary process comprises:

requesting one or more functional entities of the device to
report configurations of the functional entities prevail-
ing at the update time instant, and

constructing the auxiliary configuration data structure at

least partly on the basis of information reported by the
functional entities.

31. A method according to claim 30, wherein the method
comprises initializing the auxiliary process so that data used
for the auxiliary process and defining at least the configu-
rations of the functional entities prevailing at the update time
instant equals to data used for the operative process and
defining at least the configurations of the functional entities
prevailing at the update time instant.

32. A method according to claim 30, wherein the method
comprises:

copying, from first memory areas of the device to second

memory areas of the device, data defining at least the
configurations of the functional entities prevailing at
the update time instant,

using, for the operative process, the data contained by the

first memory areas and changing the data in accordance
with the operative process, and

using, for the auxiliary processes, the copied data con-

tained by the second memory areas and changing the
copied data in accordance with the auxiliary process.

33. A method according to claim 30, wherein the method
comprises:

using, for both the operational and auxiliary processes,

data contained by first memory areas of the device and
defining at least the configurations of the functional
entities prevailing at the update time instant, and
storing a first form of a piece of the data in one of the first
memory areas and a second form of the piece of the
data in one of second memory areas different from the
first memory areas in response to a situation in which
a) at least one of the first and second forms of the piece
of the data is a modification of the piece of the data so
that the first and second forms of the piece of the data
are mutually different, b) one of the operational and

Feb. §, 2018

auxiliary processes needs the first form of the piece of
the data, and c¢) another one of the operational and
auxiliary processes needs the second form of the piece
of the data.

34. A method according to claim 33, wherein the method
comprises controlling the operative process to use a first
virtual memory space and controlling the auxiliary process
to use a second virtual memory space, both the first and
second virtual memory spaces being mapped, at the update
time instant, to the first memory areas.

35. A method according to claim 34, wherein the method
comprises changing mapping of one of i) a virtual memory
area of the first virtual memory space and ii) a virtual
memory area of the second virtual memory space from the
one of the first memory areas to the one of the second
memory areas in response to the situation in which a) the at
least one of the first and second forms of the piece of the data
is the modification of the piece of the data so that the first
and second forms of the piece of the data are mutually
different, b) the one of the operational and auxiliary pro-
cesses needs the first form of the piece of the data, and ¢) the
other one of the operational and auxiliary processes needs
the second form of the piece of the data.

36. A method according to claim 30, wherein the method
comprises starting the auxiliary process in response to a
situation in which amount of the change descriptors exceeds
a pre-determined limit.

37. A non-transitory computer readable medium encoded
with a computer program for maintaining a configuration
data structure expressing configuration of a device, the
computer program comprising computer executable instruc-
tions for controlling a programmable processing system to
run an operative process comprising making changes to the
configuration of the device and adding, to the configuration
data structure, change descriptors indicative of the changes,
wherein the computer program comprises computer execut-
able instructions for controlling the programmable process-
ing system to:

run, in response to a need to update the configuration data

structure, an auxiliary process in parallel with the
operative process, and
update the configuration data structure by replacing a
portion of the configuration data structure correspond-
ing to an update time instant with an auxiliary configu-
ration data structure constructed by the auxiliary pro-
cess, the wupdated configuration data structure
comprising the auxiliary configuration data structure
and the change descriptors indicative of changes made
after the update time instant,
wherein the auxiliary process comprises:

requesting one or more functional entities of the device to
report configurations of the functional entities prevail-
ing at the update time instant, and

constructing the auxiliary configuration data structure at

least partly on the basis of information reported by the
functional entities.

#* #* #* #* #*

