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SURGICAL WORKFLOW AND ACTIVITY
DETECTION BASED ON SURGICAL VIDEOS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/736,467, filed Jan. 7, 2020, which
claims priority to U.S. Provisional Patent Application No.
62/790,747, titled “Surgical Workflow and Activity Detec-
tion Based on Surgical Videos,” filed Jan. 10, 2019, the
entireties of which are hereby incorporated by reference.

FIELD

[0002] The present application generally relates to robotic
surgery and video processing, and more particularly relates
to detecting surgery workflow phases and activities in sur-
gical videos using video processing techniques.

BACKGROUND

[0003] As robotic surgeries become more and more popu-
lar, a large volume of surgical videos are being recorded
every day, especially for laparoscopic surgeries. These vid-
eos contain valuable information and are important
resources for tasks such as surgery analysis and new surgeon
training. However, due to the large volume of surgical
videos, it is not feasible to have highly skilled medical
professionals, which are a rare resource, to examine the long
surgery videos to identify various phases of a surgery and
mark all meaningful events during the surgery. In addition,
it is beneficial to recognize the surgery phases and unusual
activities during the surgery procedure so that information
and alert can be provided to the surgeon in real time or near
real time.

SUMMARY

[0004] Various examples are described for detecting sur-
gery workflow phases and activities via video processing.
One example method includes accessing a video of a sur-
gical procedure, the surgical procedure comprising a plural-
ity of phases; dividing the video into one or more blocks,
each of the one or more blocks comprising one or more
video frames; for each block: applying a prediction model
on the one or more video frames of the respective block to
obtain a phase prediction for each of the one or more video
frames, the prediction model configured to predict, for an
input video frame, one of the plurality of phases of the
surgical procedure; generating an aggregated phase predic-
tion for the respective block by aggregating the phase
predictions for the one or more video frames; and moditying
the video of the surgical procedure to include an indication
of a predicted phase of the respective block based on the
aggregated phase prediction.

[0005] Another method includes accessing a video of a
surgical procedure, the surgical procedure comprising a
plurality of phases; dividing the video into one or more
blocks, each of the one or more blocks comprising one or
more video frames; for each block: generating a feature
vector for the one or more video frames in the respective
block; applying a prediction model on the feature vector to
generate a phase prediction for the respective block, the
phase prediction indicating a phase of the surgical proce-
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dure; and modifying the video of the surgical procedure to
include an indication of the phase prediction for the respec-
tive block.

[0006] Another method includes accessing, during a sur-
gical procedure, a plurality of surgical images of the surgical
procedure; generating a first feature vector from the plurality
of surgical images; generating a second feature vector from
optical flows derived from the plurality of surgical images;
determining an identified activity for the plurality of surgical
images based on the first feature vector and the second
feature vector; and causing a user interface to be modified to
present the identified activity in the user interface.

[0007] One example computing device includes a proces-
sor; and a non-transitory computer-readable medium having
processor-executable instructions stored thereupon, which,
when executed by the processor, cause the processor to:
divide a video of a surgical procedure into one or more
blocks, the surgical procedure comprising a plurality of
phases and each of the one or more blocks comprising one
or more surgical images; for each block: apply a prediction
model on the one or more surgical images of the respective
block to obtain a phase prediction for each of the one or
more surgical images, the prediction model configured to
predict, for an input surgical image, one of the plurality of
phases of the surgical procedure; generate an aggregated
phase prediction for the respective block by aggregating the
phase predictions for the one or more surgical images; and
modify the video of the surgical procedure to include an
indication of a predicted phase of the respective block based
on the aggregated phase prediction.

[0008] One example non-transitory computer-readable
medium comprising processor-executable instructions to
cause a processor to: divide a video of a surgical procedure
into one or more blocks, the surgical procedure comprising
a plurality of phases and each of the one or more blocks
comprising one or more surgical images; for each block:
apply a prediction model on the one or more surgical images
of the respective block to obtain a phase prediction for each
of the one or more surgical images, the prediction model
configured to predict, for an input surgical image, one of the
plurality of phases of the surgical procedure; generate an
aggregated phase prediction for the respective block by
aggregating the phase predictions for the one or more
surgical images; and modify the video of the surgical
procedure to include an indication of a predicted phase of the
respective block based on the aggregated phase prediction.
[0009] These illustrative examples are mentioned not to
limit or define the scope of this disclosure, but rather to
provide examples to aid understanding thereof. Illustrative
examples are discussed in the Detailed Description, which
provides further description. Advantages offered by various
examples may be further understood by examining this
specification.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The accompanying drawings, which are incorpo-
rated into and constitute a part of this specification, illustrate
one or more certain examples and, together with the descrip-
tion of the example, serve to explain the principles and
implementations of the certain examples.

[0011] FIG. 1A shows an example of a robotic surgery
system where surgical workflow and activity detection
described herein can be performed and utilized to provide
feedback to a surgeon during a surgical procedure;
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[0012] FIG. 1B shows an example of a surgical video
analysis system where surgical workflow and activity detec-
tion described herein can be performed and utilized to
provide analysis results for one or more robotic surgical
systems;

[0013] FIG. 2 is a block diagram illustrating aspects of a
video analysis module configured to detect surgical work-
flow and activities based on surgical videos;

[0014] FIG. 3A illustrates the relationship between a sur-
gical video, video blocks, and video frames contained in the
surgical video;

[0015] FIG. 3B shows an example of a method for pre-
dicting workflow phases for a video block;

[0016] FIG. 3C shows an example of another method for
predicting workflow phases for a video block;

[0017] FIG. 3D shows an example of a method for
improving the phase prediction of the surgical video;
[0018] FIG. 3E shows an example of a directed graph used
in a method for improving the phase prediction of the
surgical video;

[0019] FIG. 4 shows an example of a method for identi-
fying surgical activities for a surgical video;

[0020] FIG. 5A shows an example of the output of the
surgical workflow phase prediction;

[0021] FIG. 5B shows an example of the output of the
surgical workflow phase prediction and activity identifica-
tion;

[0022] FIG. 6 shows an example of a process for detecting
surgical workflow phases in a surgical video;

[0023] FIG. 7A shows an example of a process for pre-
dicting workflow phases for a video block;

[0024] FIG. 7B shows another example of a process for
predicting workflow phases for a video block;

[0025] FIG. 8 shows an example of a process for detecting
surgical activities in a surgical video; and

[0026] FIG. 9 shows an example of a computing device
suitable for implementing aspects of the techniques and
technologies presented herein.

DETAILED DESCRIPTION

[0027] Examples are described herein in the context of
detecting surgical workflow phases and activities in surgical
videos. Those of ordinary skill in the art will realize that the
following description is illustrative only and is not intended
to be in any way limiting. Reference will now be made in
detail to implementations of examples as illustrated in the
accompanying drawings. The same reference indicators will
be used throughout the drawings and the following descrip-
tion to refer to the same or like items.

[0028] In the interest of clarity, not all of the routine
features of the examples described herein are shown and
described. It will, of course, be appreciated that in the
development of any such actual implementation, numerous
implementation-specific decisions must be made in order to
achieve the developer’s specific goals, such as compliance
with application- and business-related constraints, and that
these specific goals will vary from one implementation to
another and from one developer to another.

[0029] In an illustrative example of detecting surgical
workflow phases and activities in surgical videos, a video of
a surgical procedure is obtained. The surgical procedure
includes different phases. In order to detect the different
phases in the surgical video, the video is divided into several
blocks, each blocks containing multiple video frames. The
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frames, or a subset of the frames, in a block is extracted and
applied to a phase prediction model to predict the phase of
the block. The predicted phase of the block is generated by
predicting the phase for each of the frames and combining
the predicted phases for the individual frames. The phase
prediction model includes a machine learning model, such
as a neural network model.

[0030] The predicted phases for the blocks is then exam-
ined and adjusted to eliminate predictions having low con-
fidence level and/or violating inherent logic of the surgical
procedure. The predicted phases is then utilized to annotate
the surgical video, such as by attaching metadata or through
modifying the visual content of the surgical video. In
addition, the predicted phases is utilized to index the surgical
videos.

[0031] In addition to detecting the surgical phases, activi-
ties are also detected in the surgical video, such as surgical
tasks or events. To detect activities, a group of video frames
are analyzed together to generate a feature vector. The group
of video frames are also analyzed to estimate or extract
optical flows and another feature vector is generated based
on the optical flows. Each of the two feature vectors, or the
combination of the two, is sent to an activity identification
model to identify activities in the frames. The activity
identification model also includes a machine learning model,
such as a neural network model. The activity identification
is performed during the surgical procedure in real time or
near real time. Warnings are provided to the surgeon who is
performing the surgery to alert him or her about unusual
activities.

[0032] The technology presented herein improves the con-
tent management of the large volume of surgical videos.
Using the technology presented herein, surgical videos can
be annotated with the detected phases and activities, thus
allowing a better indexing and organization of the surgical
videos and a more efficient retrieval of relevant content. As
a result, the response speed to search queries involving
surgical phases or activities can be increased, and the
retrieval time of the relevant portion of the surgical video
can be reduced. In addition, the activity detection can also
improve the safety of the robotic surgery system by provid-
ing real time or near real time warnings to the surgeon about
unusual activities. Other technical advantages other than
those mentioned herein can also be realized from imple-
mentations of the technologies disclosed herein.

[0033] This illustrative example is given to introduce the
reader to the general subject matter discussed herein and the
disclosure is not limited to this example. The following
sections describe various additional non-limiting and non-
exhaustive examples of detecting surgical workflow phases
and activities from surgical videos.

[0034] Referring now to FIG. 1A, FIG. 1A shows an
example of a robotic surgical system 100A configured with
surgical workflow phase and activity detection capability.
This example robotic surgical system 100A includes a
robotic surgical device 114 configured to operate on a patient
130, and a central controller 112 to control the robotic
surgical device 114. The robotic surgical system 100A also
includes a surgeon console 104 connected to the central
controller 112 and the robotic surgical device 114. The
surgeon console 104 is operated by a surgeon 102 to control
and monitor the surgeries performed using the robotic sur-
gical device 114. In addition to these components, the
robotic surgical system 100A might include additional sta-
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tions (not shown in FIG. 1A) that can be used by other
personnel in the operating room, for example, to view
surgery information, video, etc., sent from the robotic sur-
gical device 114. In this example, the robotic surgical device
114, the central controller 112, the surgeon console 104 and
other stations are connected directly to each other, though in
some examples they may be connected using a network,
such as a local-area network (“LAN™), a wide-area network
(“WAN?”), or any other networking topology known in the
art that connects the various stations in the robotic surgical
system 100A.

[0035] The robotic surgical device 114 can be any suitable
robotic system utilized to perform surgical procedures on a
patient. For example, the robotic surgical device 114 may
have one or more robotic arms connected to a base. The
robotic arms may be manipulated by a tool controller 116,
which may include one or more user interface devices, such
as joysticks, knobs, handles, or other rotatable or translat-
able devices to effect movement of one or more of the
robotic arms. The robotic arms may be equipped with one or
more surgical tools to perform aspects of a surgical proce-
dure. For example, the robotic arms may be equipped with
surgical tools 126A-126C. Each of the surgical tools can be
controlled by the surgeon 102 through the surgeon console
104 and the tool controller 116.

[0036] In addition, the robotic surgical device 114 is
equipped with one or more cameras 128, such as an endo-
scope camera, configured to provide a view of the operating
site to guide the surgeon 102 during the surgery. In some
examples, the camera 128 can be attached to one of the
robotic arms of the robotic surgical device 114 controlled by
the tool controller 116 as shown in FIG. 1A. In other
examples, the camera 128 can be attached to a mechanical
structure of the robotic surgical device 114 that is separate
from the robotic arms, such as a dedicated arm for carrying
the camera 128.

[0037] Different robotic surgical devices 114 may be con-
figured for particular types of surgeries, such as cardiovas-
cular surgeries, gastrointestinal surgeries, gynecological sur-
geries, transplant surgeries, neurosurgeries, musculoskeletal
surgeries, etc., while some may have multiple different uses.
As a result, different types of surgical robots, including those
without robotic arms, such as for endoscopy procedures,
may be employed according to different examples. It should
be understood that while only one robotic surgical device
114 is depicted, any suitable number of robotic surgical
devices may be employed within a robotic surgical system
100A.

[0038] In some examples, robotic surgical devices (or a
respective controller) may be configured to record data
during a surgical procedure. For example, images and videos
of the surgical procedures performed by the robotic surgical
device 114 can also be recorded and stored for further use.
For instance, a storage server 124 can be employed by the
robotic surgical device 114 to store surgical videos 132 of
surgical procedures captured by the camera 128.

[0039] In the example shown in FIG. 1A, surgical videos
132 of a robotic surgical procedure captured by the camera
128 can also be transmitted to the surgeon console 104 and
be displayed on a video monitor 108 in real time so that the
surgeon 102 can view the procedure while the surgical tools
126 are being used to operate on the patient 130. In this
example, the surgeon 102 uses the surgeon console 104 to
control the surgical tools 126 and the camera 128, and uses
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controls 106 on the surgeon console 104 to maneuver the
surgical tools 126 and camera 128 by sending corresponding
control signals 110 to the tool controller 116.

[0040] As shown in FIG. 1A, the central controller 112
also includes a video analysis module 120 to process the
surgical videos 132 captured during the surgery procedure.
The video analysis module 120 analyzes the surgical videos
132 to predict workflow phases 118 of the ongoing surgical
procedure or to identify various activities 122 occurring
during the procedure. If the identified activities 122 include
unusual events, such as bleeding, the central controller 112
generates one or more activity warnings 136 which are
presented on the video monitor 108 of the surgeon console
104 to notitfy the surgeon 102 about the unusual activity. The
phase prediction 118 (also referred to herein as “predicted
phase 118”) and the identified activities 122 are stored in the
storage server 124, in this example, along with the surgical
videos 132 for future uses, such as archiving, indexing,
post-surgery analysis, training of new surgeons, and so on.
[0041] It should be appreciated that although FIG. 1A
illustrates the presented technique of surgical workflow
phase and activity detection in the context of a robotic
surgical system 100A, it can be implemented in other types
of systems and settings. For example, this technique can be
implemented in a computing device separate from a robotic
surgical system 100A and/or be performed offline after the
surgical procedure is completed. FIG. 1B illustrates an
example of a computing environment 100B where a surgical
video analysis system 140 is configured to perform surgical
workflow and activity detection described herein to provide
analysis results for one or more robotic surgical systems.
[0042] In the example shown in FIG. 1B, the surgical
video analysis system 140 includes a video processing
model 120 as described above with respect to FIG. 1A. The
video analysis module 120 is configured to perform surgical
workflow and activity detection for one or more robotic
surgical systems 146A-146C (which may be referred to
herein individually as a robotic surgical system 146 or
collectively as the robotic surgical systems 146). In one
example, the robotic surgical system 146 is configured in a
way similar to the robotic surgical system 100A as discussed
above with respect to FIG. 1A except that the robotic
surgical system 146 does not include a video analysis
module 120. Instead, the robotic surgical systems 146 sends
the recorded surgical videos 132 to the surgical video
analysis system 140 for analysis. In some examples, the
surgical videos 132 are sent through a network 148, such as
a LAN, a WAN, or any other networking topology known in
the art that connects the robotic surgical systems 146 to the
surgical video analysis system 140.

[0043] The video analysis module 120 receives the surgi-
cal videos 132 and performs surgical workflow and activity
detection as described briefly above and in more detail
below. In the example shown in FIG. 1B, the identified
activities 122 or the phase predictions 118 are utilized to
annotate the surgical videos 132 to generate annotated
surgical videos 144. As will be discussed in detail below, the
annotation can be performed by generating and attaching
metadata indicating the phases and activities to the surgical
videos. Alternatively, or additionally, the annotation can be
performed by modifying the content of the video to mark the
detected phases and activities, such as by inserting texts,
images, icons or logos indicating the phases and activities
into the video frames. The annotated surgical videos 144 are
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stored in a datastore 142 that is local to the surgical video
analysis system 140. In another example, the annotated
surgical videos 144 can be stored in a repository that are
accessible by the surgical video analysis system 140, the
robotic surgical systems 146, or any other authorized sys-
tems through a network.

[0044] FIG. 2 shows a block diagram illustrating aspects
of the video analysis module 120 configured to detect
surgical workflow and activities based on a surgical video
132. As shown in FIG. 2, the surgical workflow and activity
detection performed by the video analysis module 120 can
include several stages: a prediction model training stage
202, a workflow phase prediction stage 204 and an activity
identification stage 206. The prediction model training stage
202 builds and trains various prediction models 210A-210C
to be used in the other two stages (which may be referred to
herein individually as a prediction model 210 or collectively
as the prediction models 210). For example, the prediction
models 210 can include a model for predicting workflow
phases for a specific surgery procedure, such as a cholecys-
tectomy, a nephrectomy, a colectomy, etc. The prediction
models 210 can also include a model for recognizing or
identifying a specific activity from a surgical video 132,
such as a surgical task like suturing, dissection, cauterizing,
cutting, irrigation and suction, or an event of interest like
bleeding, bile leaking, etc. Still other types of prediction
models may be employed in other examples according to
this disclosure.

[0045] A prediction model 306 can be a machine-learning
(“ML”) model, such as a convolutional neural network
(“CNN”), e.g. an inception neural network, a residual neural
network (“Resnet”) or NASNET provided by GOOGLE
LLC from MOUNTAIN VIEW, CALIFORNIA, or a recur-
rent neural network, e.g. long short-term memory (“LSTM”)
models or gated recurrent units (“GRUs”) models. The
prediction model 306 can also be any other suitable ML
model may be trained to predict phases or activities for video
frames, such as a three-dimensional CNN (“3DCNN”), a
dynamic time warping (“DTW”) technique, a hidden
Markov model (“HMM”), etc., or combinations of one or
more of such techniques—e.g., CNN-HMM or MCNN
(Multi-Scale Convolutional Neural Network). The video
analysis module 120 may employ the same type of predic-
tion model or different types of prediction models for the
surgical phase and activity detection.

[0046] To train the various prediction models 210 in this
example, training samples 212 for each prediction model
210 are generated. The training samples 212 for a specific
prediction model 210 can include input video frame(s) (or
input features of video frames) and labels corresponding to
the input video frames (or input features). For example, for
a prediction model 210 to be utilized to identify a bleeding
event based on an input video frame, the input can be the
video frame itself or features extracted from the frame and
the label can include a flag showing whether a bleeding has
occurred in the input frame or not. Similarly, for a prediction
model 210 to be utilized to predict a workflow phase for a
video frame, the input can include the video frame or
features extracted from the video frame, and the label can
include a number indicating the phase the input video frame
belongs to or a vector indicating probabilities the video
frame belonging to different phases.

[0047] The training process includes iterative operations
to find a set of parameters for the prediction model 210 that
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minimizes a loss function for the prediction models 210.
Each iteration can involve finding a set of parameters for the
prediction model 210 so that the value of the loss function
using the set of parameters is smaller than the value of the
loss function using another set of parameters in a previous
iteration. The loss function can be constructed to measure
the difference between the outputs predicted using the
prediction models 210 and the labels contained in the
training samples 212. Once the set of parameters are iden-
tified, the prediction model 210 has been trained and can be
utilized for prediction as designed.

[0048] In addition to the training samples 212, other
information can also be employed to refine the training
process of the prediction models 210. For example, in a
surgical video, some video frames are representative frames
of the surgical procedure, such as frames containing repre-
sentative actions or events during the surgical procedure.
These video frames, once identified, can provide clues for
the surgical phase of the video frames close to the repre-
sentative frames. For instance, in cholecystectomy, dissect-
ing can be performed either in the calot triangle area or
between the gallbladder and the liver. Video frames describ-
ing activities in these areas can indicate that a dissecting
phase of the cholecystectomy is occurring in the video. In
another example, video frames describing the complete
detachment of the gallbladder from the liver bed can be
representative frames indicating the end of a surgical pro-
cedure. In yet another example, the presence of certain
surgical tools can also be an indicator of the surgical
workflow phases. For example, a stapler surgical tool
detected from the video frames can indicate that the video
frames describe a sleeve gastrectomy stomach stapling
phase of the surgery.

[0049] These representative frames can be marked with
additional labels indicating their representativeness. During
the training of a phase prediction model 210, a higher weight
can be assigned to a term of the loss function that corre-
sponds to these representative frames. As a result, the trained
prediction models 210 can give more weights to input
frames that are similar to the representative frames when
predicting the workflow phases.

[0050] In addition, surgical phase logic 214 can be incor-
porated into the prediction model training stage 202 to
ensure that the phase predicted by a phase prediction model
210 does not violate the surgical phase logic 214. A surgical
procedure generally has inherent logic among the different
phases of the procedure. For example, gallbladder packaging
can only happen after gallbladder dissection in cholecystec-
tomy, and gastrojejunal anastomosiscan only happen after
dividing the jejunum in gastric bypass. The inherent logical
relationship between the phases of a surgical procedure can
be exploited to facilitate the phase prediction.

[0051] According to some aspects of the disclosure pre-
sented herein, the logical relationship between the workflow
phases of a surgical procedure can be formulated as one or
more constraints to the optimization problem discussed
above for training the prediction models 210. A training loss
function that penalizes the violation of the constraints can be
built so that the training can take into account the workflow
phase logic constraints. Alternatively, or additionally, struc-
tures, such as a directed graph, that describe the current
features and the temporal dependencies of the prediction
output can be used to adjust or refine the features and
predictions of the prediction models 210. In an example
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implementation, features are extracted from a current video
frame and combined with features from previous frames and
later frames as indicated in the directed graph. Features
generated in this way can inherently incorporate the tempo-
ral, and thus the logical, relationship between the frames in
the training samples 212. Accordingly, the prediction models
210 trained using these features can capture the logical
relationships between the various phases of the surgical
workflow.

[0052] As discussed above, surgical videos are typically
long and can last several hours or more. Obtaining the labels
in the training samples 212 requires the expertise of medical
professionals manually reviewing these videos, and is there-
fore a time consuming task. As a result, it is impractical for
medical professionals to label all the surgical videos and
thus a large number of surgical videos remain unlabeled.
These unlabeled surgical videos, which may be cheaper to
acquire than the labelled surgical videos, can also be
employed to train the prediction models 210. For example,
for an unlabeled training video, the prediction model 210
can be applied to predict its phase. If the predicted phase
violates the inherent logic of the surgical procedure, this
unlabeled video can be penalized by introducing a term in
the loss function. That is, those unlabeled training videos
whose predicted phase violates the inherent logic of the
surgical procedure can be utilized to redefine the training
loss function. As a result, the training loss function can be a
combination of labelled video loss, as discussed above, and
surgical step logic losses based on the unlabeled videos.
[0053] If, on the other hand, the predicted phase for an
unlabeled training video using the prediction model 210
does not violate the inherent logic of the surgical procedure,
the loss function can remain unchanged. As a result, the
unlabeled training videos can have impact on the loss
function only when the inherent logic of the surgical pro-
cedure is violated. By contrast, labeled videos can have
impact on the loss function regardless of their violation of
the inherent logic of the surgical procedure.

[0054] It should be understood that the above example is
merely illustrative. The unlabeled videos can be utilized in
various other ways during the prediction model training
stage 202. For instance, the unlabeled videos can be utilized
as training samples 212, for example, to include unsuper-
vised losses such as smoothness of the prediction, as well as
for enforcing the inherent logic of the surgical procedure. In
this way, an unlabeled video can have a corresponding term
in the loss function even if its predicted phase does not
violate the inherent logic of the surgical procedure.

[0055] Similarly, auxiliary information can be utilized
during the training of activity identification models 210.
Preparing training samples 212 can involve manually label-
ling the input videos for the types of activities to be
identified. It is challenging and laborious to label every
single occurrence of surgical activities in the hour-long
surgical videos. For example, a grasping action typically
lasts a few seconds at once, but occurs multiple times in a
surgical procedure. The training mechanism described
herein allows a medical professional to label a manageable
number of occurrences of these types of actions and mark
the rest as “unknown.” During training of the prediction
models 210, the “unknown” labels are not used and excluded
as part of the training loss function for these specific labels.
This can prevent the unlabeled video frames from being
treated as negative examples, i.e. target activities being
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identified as absent from the input video frames, though
these “unknown” labels may later be determined by provid-
ing the video to a trained model for analysis. Alternatively,
or additionally, selected sets of positive examples and nega-
tive examples can be generated and the model can be
fine-tuned using these positive and negative examples.
[0056] In addition, the training mechanism described
herein also allows hierarchical or multiple labeling. Surgical
tasks and more fine-grained subtasks can overlap, and one
task can contain multiple subtasks. As a result, multiple
labels can be marked for the same video frame. For example,
multiple anatomical structures and multiple surgical instru-
ments can appear in the same video frame. As such, multiple
surgical actions or tasks can happen concurrently in the same
video, with possible accompanying events. By allowing
multiple labels in a given frame, potential knowledge con-
tained in a training video frame can be fully exploited by the
video analysis module to train the activity identification
models 210.

[0057] Although the training mechanisms described above
mainly focus on training a prediction model 210. These
training mechanisms can also be utilized to fine tune existing
prediction models 210 trained from other datasets. For
example, in some cases, a prediction model 210 might have
been pre-trained using non-surgical video frames or images.
In those cases, the prediction models 210 can be retrained
using the training samples 212 containing surgical videos
and other auxiliary information as discussed above.

[0058] The prediction model training stage 202 outputs
trained prediction models 210 including the trained phase
prediction models 218 and trained activity identification
models 220. The trained phase prediction models 218 can be
utilized in the workflow phase prediction stage 204 to
generate phase predictions 188 for an input surgical video
132. The trained activity identification models 220 can be
utilized to identify activities in a surgical video 132 to
generate identified activities 122 in the activity identification
stage 206.

[0059] The workflow phase prediction stage 204 and
activity identification stage 206 can proceed independently
in some examples with separate models. For example, the
workflow phase prediction stage 204 can apply the trained
phase prediction models 218 on a surgical video 132 to
generate phase predictions 118 without identifying surgical
activities. Similarly, the activity identification stage 206 can
apply the trained activity identification models 220 to a
surgical video 132 or a portion of the surgical video 132 to
identify activities occurred in the input video without iden-
tifying the workflow phases.

[0060] Alternatively, the workflow phase prediction stage
204 and the activity identification stage 206 can be con-
ducted sequentially with one stage using the outputs of the
other as inputs. For instance, for a given surgical video 132,
the video analysis module 120 can perform the workflow
phase prediction stage 204 first to generate phase predictions
for the frames in the surgical video 132. Then for a specific
phase, the video analysis module 120 can enter into the
activity identification stage 206 using the video frames that
are predicted to be in that specific phase to identify activities
122 occurred during that phase. In another implementation,
the video analysis module 120 can enter into the activity
identification stage 206 first to generate the identified activi-
ties 122 for the surgical video 132 or a portion of the surgical
video 132. The identified activities 122 can then be utilized
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during the workflow phase prediction stage 204 to facilitate
the prediction of the phase for the surgical video 132.
Additional details regarding the workflow phase prediction
stage 204 and the activity identification stage 206 will be
provided below with respect to FIGS. 3-8.

[0061] FIGS. 3A-3C show examples of methods for pre-
dicting workflow phases for a surgical video 132 in the
workflow phase prediction stage 204. FIGS. 3A-3C will be
presented in conjunction with FIG. 5A where a surgical
video 132 with generated phase predictions 118 is illus-
trated. FIG. 3A illustrates a surgical video 132. To generate
phase predictions 118 for the surgical video 132, the surgical
video 132 can be divided into multiple video blocks 302A-
302N (which may be referred to herein individually as a
video block 302 or collectively as the video blocks 302).
Each of the video blocks 302 can include multiple video
frames or images 304A-304D (which may be referred to
herein individually as a video frame or image 304 or
collectively as the video frames or images 304). The size of
the video blocks 302, i.e. the number of video frames 304
contained in a video block 302, can be the same or different
for different video blocks 302.

[0062] FIG. 3B illustrates one example of a method for
predicting workflow phases for a video block 302. In FIG.
3B, multiple video frames 304 can be extracted from a video
block 302, such as by selecting one or two frames for every
second of the video block 302. Each of the video frames 304
can be input into a phase prediction model 306, which may
be a CNN, such as an inception neural network, a “Resnet”
or NASNET.

[0063] The phase prediction model 306 can generate a
phase prediction 308 for each of the video frames 304. The
phase prediction 308 can include a single value indicating
the workflow phase of the video frame 304 predicted by the
phase prediction model 306. In some implementations, the
phase prediction 308 can include a vector containing prob-
abilities of different phases predicted for the input video
frame 304. For example, the phase prediction 308 can
include a vector p=[p;, p,. pPs. pal for a 4-phase surgical
procedure, where p, represents the probability that the input
video frame 304 is in phase i.

[0064] By feeding multiple video frames 304 into the
phase prediction model 306, multiple phase predictions 308
can be generated. These phase predictions 308 can be
utilized as the phase predictions for the respective frames.
Alternatively, these phase prediction 308 can be aggregated
to generate an aggregated phase prediction for the video
block 302. The aggregation can help to reduce the impact of
noises, such as prediction errors, on the phase prediction for
the video block 302. In one implementation, the aggregation
can be performed by temporally averaging the phase pre-
dictions 308 for the input video frames 304, that is:

1 68}
Dok = M;pm

where p,,.=[DP,.1> Pmzs Prss - - - Pzl 18 the prediction vector
for the m” input video frame 304 in a T-phase surgical
procedure; M is the number of video frames that is fed into
the phase prediction model 306; and p,,, is the aggregated
prediction vector for the video block 302.
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[0065] The aggregated phase prediction 310 can then be
analyzed to determine if a confidence level associated with
the aggregated phase prediction 310 is high enough so that
the prediction result can be trusted. In the above example,
the prediction vector p,,, contains probabilities of the input
video block 302 belonging to respective workflow phases.
The highest probability in the prediction vector p,, can be
utilized to indicate the confidence level of the prediction.
The workflow phase corresponding to the highest probabil-
ity can be selected the predicted phase for the video block
302.

[0066] For example, three video frames 304 can be
selected for a video block 302 and each can be fed into the
phase prediction model 306 to generate three phase predic-
tions 308 for a 4-phase surgical procedure: p,=[0.1, 0.5, 0.2,
0.2], p,=[0.1, 0.4, 0.3, 0.2] and p;=[0.1, 0.8, 0.1, 0]. This
means that the probabilities for a first video frame 304
belonging to the first to the fourth phase of the surgical
procedure are 0.1, 0.5, 0.2 and 0.2, respectively. Similarly,
the probabilities for a second video frame 304 belonging to
the first to the fourth phase of the surgical procedure are 0.1,
0.4, 0.3 and 0.2, respectively, and the probabilities for a third
video frame 304 belonging to the first to the fourth phase of
the surgical procedure are 0.1, 0.8, 0.1 and 0, respectively.
[0067] The aggregated phase prediction 310 can be gen-
erated to be the average of the three phase predictions 308
as discussed above in Equation (1), i.e. p,,=[0.1, 0.57, 0.2,
0.13]. In this case, the highest probability is 0.57 and the
corresponding phase prediction for the current block is thus
phase 2. Before selecting phase 2 as the final phase predic-
tion for the current block, the highest probability 0.57 can be
utilized as the confidence level of the phase prediction and
be compared with a threshold value to determine if the phase
prediction is reliable or not. If the threshold is set to be 0.55,
then the phase prediction, i.e. phase 2 in the above example,
can be selected as the phase prediction for the block. If, on
the other hand, the threshold is set to be 0.7, the confidence
level of the current phase prediction is not reliable enough
and cannot be utilized as the phase prediction of the block.
In the latter case, the phase prediction of a previous block
can be utilized as the phase prediction for the current block.
This is illustrated in FIG. SA where the phase predictions
generated for each of the video blocks 302 are shown. In this
figure, the third video block of the surgical video 132 has a
confidence level below the confidence threshold, and thus
the aggregated phase prediction for that block is assigned to
be the phase prediction of the second block.

[0068] It should be appreciated that the aggregation
described above is for illustration only and should not be
construed as limiting. Various other ways of aggregating the
phase predictions for multiple frames of a video block can
be utilized. For example, the phase predictions 308 can be
aggregated by applying various linear or nonlinear func-
tions. In scenarios where the phase prediction 308 include a
single value indicating the predicted workflow phase for the
frame, the aggregation of the phase predictions 308 can be
performed by a majority voting among the multiple phase
predictions 308.

[0069] Furthermore, the aggregated phase prediction 310
can be generated for each video frame 304, rather than each
video block 302. For example, a sliding window of size M
can be employed and applied to the phase predictions 308.
For each frame video frame 304, its phase prediction 308
can be updated to be the average of the phase predictions
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308 of its neighboring M frames as shown in Equation (1).
As a result, the aggregated phase prediction 310 for a video
frame 304 becomes a smoothed version of the phase pre-
diction 308 using its neighboring video frames 304, thereby
eliminating random noises in the phase prediction 308 and
increasing its reliability. Similar to the aggregated phase
prediction 310 for a video block 302, the confidence level of
an aggregated phase prediction 310 for a frame is compared
with a confidence threshold. If the confidence level is higher
than the confidence threshold, the aggregated phase predic-
tion 310 is utilized to determine the predicted phase for the
video frame 304. If the confidence level is lower than the
confidence threshold, the predicted phase for a previous
video frame can be utilized as the predicted phase for the
current video frame.

[0070] FIG. 3C illustrates an example of another overview
of a method for predicting workflow phases for a video
block 302. Similar to the method shown in FIG. 3B, multiple
video frames 304 can be extracted from a video block 302,
e.g. by selecting one or two frames for every second of the
video block 302. Each of the selected video frame 304 can
be analyzed to extract a feature vector 312. The feature
vectors for the video frames 304 can then be aggregated to
generate an aggregated feature vector, which is then sent to
a phase prediction model 314 to generate the phase predic-
tion for the video block 302.

[0071] The feature extraction for the video frames 304 can
be performed in various ways. In some implementations, the
feature vectors 312 can be extracted by applying a convo-
lutional neural network on the video frame 304. For
example, the feature vectors 312 can be generated as the
phase prediction vectors by using the phase prediction
model 306 in FIG. 3B. Similarly, the feature vectors 312 can
be aggregated in a way similar to the phase prediction
aggregation as described above regarding FIG. 3B. Alter-
natively, the aggregated feature vector can be aggregated by
concatenating the feature vectors 312 to form a vector
having a higher dimension than an individual feature vector.
The aggregation of the feature vectors 312 can help to
reduce the impact of noises in the feature extraction, as well
as reducing the size of the input to the phase prediction
model 314.

[0072] The phase prediction model 314 used in this
example method can take the aggregated feature vector as
input and output the phase prediction for the current block
along with the confidence level. Considering the sequential
nature of the workflow phases of a surgical procedure, a
recurrent neural network can be utilized as the phase pre-
diction model 314, such as LSTM models or GRUs models.
In a recurrent neural network, connections between nodes
form a directed graph along a sequence, which allows the
neural network to exhibit temporal dynamic behavior for a
time sequence. Similar to the example shown in FIG. 3B, the
phase prediction generated by the phase prediction model
314 can include a vector of probabilities indicating the
probabilities of the current block belonging to the respective
phases. The phase prediction can also be associated with a
confidence level, such as the highest probability in the
probability vector. The confidence level can then be com-
pared with the confidence threshold to determine whether
the phase prediction generated by the phase prediction
model 314 or the phase prediction of the previous block
should be used for the current block as discussed above with
respect to FIG. 3B.
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[0073] The phase prediction method discussed above in
FIG. 3B or FIG. 3C can be applied to each of the video
blocks 302 of the surgical video 132. The output of the
workflow phase prediction stage 204 is illustrated in FIG.
5A, where each video block 302 of the surgical video 132
can be predicted to be associated with one of the worktlow
phases of the surgical procedure.

[0074] In addition to the methods described above, other
information can be utilized to refine or correct the phase
prediction for a video block 302. For example, as discussed
above, a surgical procedure has an inherent logical relation-
ship among the various workflow phases. For instance,
gallbladder packaging can only happen after gallbladder
dissection in cholecystectomy. In other words, a video block
302 cannot have a phase prediction that is later than the
phase prediction of a subsequent video block 302. FIG. 5A
illustrates an example of the scenario. In FIG. 5A, the 5%
video block of the surgical video 132 is predicted to be in
phase 3, but the following block, i.e. the 67 video block, is
predicted to be in phase 2. As such, the phase prediction of
the 5 video block violates the inherent logic of the surgical
procedure. To correct the inconsistency in the phase predic-
tion, the phase prediction of a previous video block 302, i.e.
4™ video block in this example, can be utilized to replace the
prediction of the current block. Similarly, if a video block
302 is predicted to be in a phase prior to the phase of its
previous video block 302, the phase prediction of the current
video block 302 can be replaced with the phase prediction of
its previous video block 302. It should be understood that
this example is for illustration only and should not construed
as limiting. Various other ways of utilizing the inherent logic
of the surgical procedure can be employed to modify the
phase prediction.

[0075] The phase prediction for the video can be further
refined or improved by using the inherent logic of the
workflow. FIGS. 3D and 3E show an example of a method
for improving the phase prediction of the surgical video. In
the example shown in FIG. 3D, the video analysis module
120 divides the surgical video 132 into multiple regions
322A-322E, which may be referred to herein individually as
a region 322 or collectively as the regions 322. In one
example, one region includes frames or video blocks that are
predicted to be in a same phase. For example, video frames
predicted to be in phase 1, as shown in FIG. SA, can be
included in region 1 322A; video frames predicted to be in
phase 2 can be included in region 2 322B, and so on.
[0076] Region feature vectors 324A-324E (which may be
referred to herein individually as a region feature vector 324
or collectively as the region feature vectors 324) are gener-
ated for the respective regions 322. In one example, the
video analysis module 120 generates the region feature
vector 324 by combining the phase predictions 308 of the
frames, as shown in FIG. 3B, in the corresponding region
322 or by combining the feature vectors 312 of the frames,
as shown in FIG. 3C, in the corresponding region 322. The
combination can be performed by averaging the feature
vectors 312 or the phase predictions 308 of the frames in a
region 322. Alternatively, the combination can be performed
by utilizing a machine learning model, such as a LSTM that
is configured to accept a sequence of feature vectors 312 or
phase predictions 308 and output a region feature vector
324.

[0077] It should be understood that the method of gener-
ating region feature vectors 324 described above is for
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illustration only and should not be construed as limiting.
Various ways can be employed to generate the region feature
vectors 324, For example, features other than the feature
vectors 312 or phase predictions 308 can be extracted from
the frames of a region 322, and these features can be
combined to generate the region feature vector 324 using
various linear and non-linear functions.
[0078] Based on the regions 322, the video analysis mod-
ule 120 builds a directed graph to model the temporal
relationship between the regions 322. The video analysis
module 120 builds the directed graph based on various rules,
such as rules reflecting the logical relationship among the
phases of the workflow. An example of a directed graph 300
is shown in FIG. 3E. The directed graph 300 includes
multiple nodes 326A-326F representing the regions 322A-
322E shown in FIG. 3D, respectively. The arrows 328A-
328F of the directed graph 300 indicate the temporal rela-
tionship among the nodes 326 and thus the regions 322. For
example, the arrow 328A indicates that node 326B follows
node 326A and the arrow 328D indicates that node 326D
follows node 326B. The temporal relationship identified by
the directed graph 300 also indicates the neighboring rela-
tionship among the nodes 326 and therefore the regions 322.
For example, based on the directed graph 300, it can be
determined that node 326C has three neighbors: node 326A,
node 326B and node 326D, and thus the region 322C has
three neighbors: region 322A, region 322B and region
322D.
[0079] Based on the neighboring relationship, the video
analysis module 120 refines the phase prediction for the
surgical video 132. In one example, the video analysis
module 120 updates a region feature vector 324 associated
with a region 322 by combining the region feature vector
324 of the region 322 with the region feature vectors 324 of
its neighboring regions. In the above example, the region
feature vector 324C is updated by combining it with the
region feature vectors 324 A, 324B and 324D. Denote the
region feature vector of the current region as f. and the
region feature vectors of its neighboring regions as f,;, f ,,
.» £,a» where N is the number of neighboring regions of
the current region. The updated region feature vector of the
current regions, f',, can formulated as:

fe=eluih - - - S ()]

where g( ) is a combination function used to combine these
region feature vectors. In one implementation, the g( )
represents a weighted summation of these region feature
vectors and a weight assigned to £, is higher than that of |,
f.5, ..., L, In other implementations, the combination
function go can be a machine learning model configured to
accept multiple region feature vectors as inputs and output
a combined regions feature vector, such as a graph neural
network.

[0080] In further implementations, the updated region
feature vectors can be updated again using the updated
region feature vectors based on the directed graph 300 as
described above. That is,

S ol il o2 - - o) 3

In this way, the updated region feature vector can be
impacted by its immediate neighbors, as well as the neigh-
bors of the immediate neighbors. The updated region feature
vectors are then sent to a machine learning model configured
to predict the phase for an input region feature vector. In one
example, the machine learning model is a fully-connected
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neural network where the input layer of the network has a
dimension that is the same as the dimension of the updated
region feature vector, and the output layer having a dimen-
sion equal to the number of the phases of the workflow. For
a given input feature vector, the fully-connected neural
network can predict one of the output phases as the corre-
sponding phase for the input. Other types of machine
learning models can also be utilized to predict the phase
given the updated region feature vectors, such as a machine
learning model similar to the phase prediction model 306 or
the phase prediction model 314.

[0081] Another refinement on the phase prediction of the
surgical video 132 involves boundary refinement of the
predicted phases. In some implementations, such as the
block-based method described above with respect to FIG.
3A-3C, the boundary of a predicted phase might deviate
from the actual boundary of the phase due to the use of a
video block as a unit for phase prediction. In other words, a
video block may contain video frames from two adjacent
phases, and the actual boundary of the phase might be in the
middle of the block, rather than the border of the block. To
correct the predicted phase boundary, the video analysis
module 120 combines the feature vectors of two adjacent
phases and feed the combined feature into a machine learn-
ing model configured to predict the boundary between the
two adjacent phases.

[0082] For example, the video analysis module 120 can
use the region feature vectors of the regions discussed above
with respect to FIG. 3D as the features of the phases or use
the feature vectors of the frames in the adjacent regions as
discussed above regarding FIG. 3B. The combination of the
region feature vectors of two adjacent phases can be per-
formed by applying a recursive neural network as such a
LSTM on the region feature vectors or on the frame feature
vectors, or by applying a one-dimension convolutional neu-
ral network on these feature vectors. The combined feature
vector is then input to a machine learning model trained to
predict the boundary of the two adjacent phases. The
machine learning model can be a neural network, such as a
fully-connected neural network, or any other type of prop-
erly training machine learning model.

[0083] Referring now to FIG. 4, FIG. 4 shows an example
of a method for identifying surgical activities, such as
surgical tasks or events, from a surgical video 132 in the
activity identification stage 206. FI1G. 4 will be discussed in
conjunction with FIG. 5B where an example of an output of
the activity identification stage 206 is illustrated. In the
example shown in FIG. 4, a group of video frames 304 that
are extracted from a video block 302 can be utilized to
extract a feature vector 408 by a feature extraction model
402. In one implementation, the feature extraction model
402 can include a 3D convolutional neural network
(“3DCNN”) trained to generate feature vectors based on a
group of input video frames. In addition, optical flows 406
can be extracted from the group of video frames 304. An
optical flow is the pattern of apparent motion of objects,
surfaces, and edges in the video frames 304. The optical
flows 406 can be extracted from the video frames 304 using
any optical flow extraction method known in the art. The
extracted optical flows 406 are fed into an optical flow
feature extraction model 404 to generate a feature vector
410. Similarly, the optical flow feature extraction model 404
can also include a 3DCNN trained to generate feature
vectors based on optical flow inputs.
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[0084] In some implementations, the feature vectors 408
and 410 can each include a probability vector containing
probabilities of the group of video frames 304 having
different activities. For example, a feature vector 408 or 410
can include a vector q=[q;, 9, 93, 94> 95> Ysl» Where q;
represents the probability of the group of video frames 304
containing an activity i. The feature vectors 408 and 410 can
then be combined and be utilized by an activity identifica-
tion model 412 that is trained during the prediction model
training stage 202 to generate the identified activities 122.
The combination of the feature vectors 408 and 410 can
include, but is not limited to, averaging of the two feature
vectors, concatenating the two feature vectors, selecting a
larger value of the two values for each vector element, or
selecting a smaller value of the two values for each vector
element. The activity identification model 412 can include a
neural network model, such as a recurrent neural network,
trained to identify surgical activities based on feature vectors
generated from video frames and optical flows.

[0085] It should be understood that while FIG. 4 shows
that an activity identification model 412 is utilized to output
the identified activities 122, the identified activities 122 can
be generated by combining the feature vectors 408 and 410
without using the activity identification model 412. The
combined feature vector can be compared with a threshold
value and the activities corresponding to the probabilities
that are higher than the threshold can be output as the
identified activities 122.

[0086] It should be further appreciated that while the
example method shown in FIG. 4 utilizes a feature extrac-
tion model 402 and an optical flow feature extraction model
404, the video analysis module 120 can utilize other types of
models and methods in the activity identification stage 206.
For example, a prediction model similar to the phase pre-
diction model 306 can be employed to identify activities 122
on a frame-by-frame basis similar to the methods shown in
FIGS. 3B and 3C.

[0087] Based on the events or tasks detected during the
surgical procedure, alerts can be generated and be presented
to the surgeon 102 to notify him or her about the detected
events or tasks. For example, if the prediction models used
in the activity identification stage 206 is trained to identify
bleeding events, similar bleeding events can be identified
from a surgical video 132 captured during a surgical pro-
cedure. A warning message or other type of feedback can be
provided by the video analysis module 120 to notify the
surgeon 102 about the occurrence of the bleeding. Likewise,
if the prediction models are further trained to identify
different types of bleeding, such as a minor bleeding versus
a major bleeding, the video analysis module 120 can identify
these different types of bleeding and notify the surgeon 102
accordingly.

[0088] FIG. 5B shows an example output of the worktlow
phase prediction stage 204 and the activity identification
stage 206. As shown in FIG. 5B, in addition to the phase
prediction for each block 302, the identified activities 122,
including surgical tasks and events, can also be utilized to
annotate the corresponding portions of the surgical videos
132. The identified activities 122 can also be further refined
with respect to the start and end points of the respective
activities. In one example, the video analysis module 120
performs the refinement of an identified activity by taking
into account the neighboring video frames of the activity.
For example, the start and end points of event C in phase 3
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shown in FIG. 5B can be refined by considering the video
frames before and after the event C, such as the video frames
in the previous block 510 and the subsequent block 512. It
should be understood that the neighboring frames can be
selected by various ways other than based on the video
blocks, such as by selecting a pre-determined number of
frames before and after the activities regardless of the video
blocks.

[0089] Similar to the boundary refinement for detected
workflow phases discussed above, the video analysis mod-
ule combines the feature vectors of the frames containing the
detected activity and the neighboring frames by applying a
recursive neural network as such a LSTM or a one-dimen-
sion convolutional neural network to generate a combined
feature vector. The combined feature vector is then fed into
a machine learning model configured to predict the start and
end points of the activity, such as a fully-connected neural
network or any other type of properly training machine
learning model, to predict the start and end points of the
detected activity. Similar process can be applied to other
detected activities to refine the start and end points of the
respective activities.

[0090] As can be seen from FIG. 5B and the above
discussion, the surgical workflow phase prediction and
activity identification presented herein can automatically
annotate a long surgical video so that the video can be
indexed and archived for various purposes such as post-
surgery analysis, educating new surgeons or for safety
check. The annotation can be performed by generating and
attaching metadata indicating the phases and activities to the
surgical video. Alternatively, or additionally, the annotation
can be performed by moditying the content of the video to
mark the detected phases and activities, such as by inserting
texts, images, icons or logos indicating the phases and
activities into the video frames.

[0091] It should be understood that while FIG. 5B illus-
trates the results of both the phase prediction and activity
identification, it is not necessary to perform both analyses
for a given surgical video 132. In other words, for a surgical
video 132, phase prediction can be performed without
activity identification. Similarly, a portion of a surgical
videos 132 can be utilized to identify activities 122 without
performing phase prediction on the portion of the surgical
video 132.

[0092] Referring now to FIG. 6, where an example of a
process 600 for detecting surgical workflow phases in a
surgical video is presented. The example process 600 will be
discussed with respect to the example system 100A shown
in FIG. 1A and the example system 100B shown in FIG. 1B,
but may be employed according to any suitable system
according to this disclosure. The process 600 includes two
stages: a training stage, including operations 602 and 604,
and a prediction stage including the rest of the process 600.
[0093] At operation 602, the video analysis module 120 in
the surgical system 100A or the surgical video analysis
system 140 selects prediction models 210 to be utilized in
workflow phase prediction. The prediction models 210 can
include a phase prediction model for predicting worktflow
phases for a specific surgery procedure, such as a cholecys-
tectomy, a nephrectomy, a colectomy, etc. The prediction
models 210 can also include an activity identification model
for recognizing or identifying a specific activity from a
surgical video 132, such as a surgical task like suturing,
dissection, cauterizing, cutting, irrigation and suction, or an
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event of interest like bleeding, bile leaking, etc. In some
implementations, the phase prediction model 306 can be a
convolutional neural network, such as an inception neural
network, a Resnet or NASNET, or a recurrent neural net-
work, such as LSTM models, GRUs models, or ConvLSTM.
The prediction models for activity detection can include a
3DCNN, and/or a recurrent neural network with CNN.
[0094] At operation 604, the video analysis module 120
trains the selected prediction models. Training samples are
collected and generated for respective prediction models.
Each training sample can include a set of input frames, such
as the frames in a video block or the entire video, or features
and a corresponding label. As discussed above, training a
prediction model can include iterative operations to find a
set of parameters for the prediction model that minimize a
loss function of the prediction models. Each iteration can
involve finding a set of parameters for the prediction model
so that the value of the loss function using the set of
parameters is smaller than the value of the loss function
using another set of parameters in a previous iteration. The
loss function can be constructed to measure the difference
between the outputs predicted using the prediction model on
the input features and the corresponding labels contained in
the training samples. Once the set of parameters are iden-
tified, the prediction model has been trained and can be
utilized for prediction as designed.

[0095] It should be understood that while the above
describes that the video analysis module 120 performs the
operations in the training stage, other modules in the surgical
system 100A or the surgical video analysis system 140, or
systems other than the surgical system 100A or the surgical
video analysis system 140 can be implemented to select and
train the prediction models. For example, one or more
computing devices independent of the surgical system 100A
or the surgical video analysis system 140, such as a cluster
of' machines in a data center, can be implemented to train the
prediction models during the training stage. The trained
models can then be deployed to the surgical system 100A to
perform the operations in the prediction stage.

[0096] At operation 606 of the prediction stage, the pro-
cess 600 involves obtaining a surgical video 132 for which
the phase prediction is to be performed. Obtaining the
surgical video 132 can occur in real-time while a robotic
surgery is in process, or the surgical video 132 could be
obtained from a data store, either locally or from a remote
data store, e.g., accessible from a cloud server over a
network.

[0097] At operation 608, the video analysis module 120
divides the surgical video 132 into multiple video blocks
302, each block containing one or more video frames 304.
The video analysis module 120 processes or predicts phases
of the surgical video 132 on a block-by-block basis. At
operation 610, the video analysis module 120 predicts the
workflow phase for one of the blocks 302. The prediction
can be performed using either the process shown in FIG. 7A
or the process shown in FIG. 7B that will be described in
detail later. At operation 610, the video analysis module 120
generates a phase prediction for the current block and a
confidence level associated with the phase prediction, as
discussed above with respect to FIGS. 3B and 3C.

[0098] At operation 612, the video analysis module 120
determines whether the confidence level associated with the
phase prediction for the current video block is higher than a
threshold value. If so, the video analysis module 120, at
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operation 614, annotates the surgical video 132 using the
predicted phase of the current video block; otherwise, the
video analysis module 120 uses the phase prediction of a
previous block as the predicted phase for the current block
at operation 616. At operation 618, the video analysis
module 120 determines whether there are more video blocks
to process. If so, the video analysis module 120 processes
the next video block at operation 610 as described above;
otherwise, the process 600 ends at operation 620.

[0099] Referring now to FIG. 7A, where an example
process 700A for predicting the workflow phase for a video
block is illustrated. The example process 700A will be
discussed with respect to the example system 100A shown
in FIG. 1A or the surgical video analysis system 140 shown
in FIG. 1B, but may be employed according to any suitable
system according to this disclosure. At operation 702, the
video analysis module 120 obtains video frames in the video
block 302 for processing. Because consecutive frames are
typically similar to each other, it is generally less efficient to
process all the frames in the block 302. As such, a subset of
the frames in the block 302 can be selected for phase
prediction. For example, one frame can be selected for each
second of video. As a result, if a block contains 5 seconds of
video, 5 frames will be selected for this block, such as one
frame from every 24 frames for a video having a frame rate
of 24 frames per second.

[0100] At operation 704, the video analysis module 120
generates a phase prediction for each of the selected frames.
For example, the method discussed above with regard to
FIG. 3B can be employed to generate the phase prediction
for each frame. At operation 706, the video analysis module
120 aggregates the phase predictions for the selected frames.
The aggregation method discussed above with regard to
FIG. 3B can be utilized to perform the aggregation, such as
averaging the phase predictions for the frames, or using
other linear or non-linear functions to combine the phase
predictions.

[0101] At operation 708, the video analysis module 120
generates the aggregated phase prediction for the video
block along with a confidence level of the prediction. The
confidence value can be calculated based on the aggregation
of the phase predictions. For example, if the phase predic-
tion for a video frame includes a prediction vector contains
probabilities of the video frame belonging to respective
workflow phases, the aggregated phase prediction can be
generated to also include a prediction vector indicating the
aggregated probability of the video block belonging to
respective workflow phases. In that case, the workflow
phase having the highest aggregated probability can be
identified as the phase prediction for the video block, and the
highest aggregated probability can be utilized to indicate the
confidence level of this prediction.

[0102] FIG. 7B illustrates another example process 700B
for predicting the workflow phase for a video block. Similar
to operation 702 of process 700 A, the video analysis module
120 obtains video frames in the video block for processing
at operation 722. At operation 724, the video analysis
module 120 generates feature vectors for each of the
selected video frames. The feature vectors can be generated
using the method discussed above with respect to FIG. 3C,
such as via a convolutional neural network. These feature
vectors can then be aggregated at operation 726 through, for
example, averaging, concatenating, or applying other func-
tions to the feature vectors.
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[0103] At operation 728, the video analysis module 120
generates phase prediction for the video block based on the
aggregated feature vector. The phase prediction can be
generated using a phase prediction model trained to take the
aggregated feature vector as input and to output the phase
prediction for the current block. The phase prediction model
used here can be a recurrent neural network, such as a LSTM
model or a GRUs model. In addition to the phase prediction,
the phase prediction model can also be trained and utilized
to generate a confidence level associated with the prediction.
Alternatively, or additionally, the prediction itself can
include a vector of probabilities indicating the probabilities
of the current block belonging to the respective phases. The
predicted phase can be determined to be the phase associated
with highest probability and the confidence level of such a
prediction can be determined to be the highest probability
itself.

[0104] FIG. 8 shows an example of a process 800 for
detecting surgical activities in a surgical video. The example
process 800 will be discussed with respect to the example
system 100A shown in FIG. 1A or the surgical video analysis
system 140 shown in FIG. 1B, but may be employed
according to any suitable system according to this disclo-
sure. At operation 802, the video analysis module 120
obtains surgical video frames from a surgical video 132. In
some implementations, the video frames are obtained from
a video block 302 of the surgical video 132. In other
implementations, the surgical video 132 used here does not
need to be divided into video blocks, and if the surgical
video 132 has been divided into blocks, the video frames
obtained at operation 802 are not necessarily obtained from
the same video block. In other words, the video frames
obtained at operation 802 can be independent of the video
block divisions of the surgical video 132.

[0105] At operation 804, the video analysis module 120
generates a first feature vector from the obtained video
frames using a feature extraction model as discussed above
with regard to FIG. 4. The feature extraction model can be,
for example, a 3DCNN trained to generate feature vectors
based on a group of input video frames. At operation 806,
the video analysis module 120 extracts or estimates optical
flows from the video frames. The optical flows can be
extracted using any optical flow method known in the art,
such as the phase correlation based methods, block-based
methods, differential methods, or deep learning methods.

[0106] At operation 808, the video analysis module 120
can then generate a second feature vector using an optical
flow feature extraction model based on the estimated optical
flows. Similar to the feature extraction model used at opera-
tion 804, the optical flow feature extraction model 404 can
also include a 3DCNN, or other suitable model, trained to
generate feature vectors based on optical flow inputs. At
operation 810, the video analysis module 120 combines the
first and second feature vectors. The combination of the two
feature vectors can include, but is not limited to, averaging
the two feature vectors, concatenating the two feature vec-
tors, or selecting a larger value of the two values for each
vector element. At operation 812, the video analysis module
120 determines an activity prediction for the video frames
using the combined feature vector. The prediction can be
made by using an activity identification model, such as a ML,
model trained to identity surgical activities based on feature
vectors generated from video frames and optical flows. As
discussed above, the identified activities can be utilized to
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annotate the video for indexing purposes, or be transmitted
to the surgeon to provide feedback during the surgery
procedure.

[0107] Referring now to FIG. 9, FIG. 9 shows an example
computing device 900 suitable for use in example systems or
methods for detecting surgery workflow phases and activi-
ties via video processing. The example computing device
900 includes a processor 910 which is in communication
with the memory 920 and other components of the comput-
ing device 900 using one or more communications buses
902. The processor 910 is configured to execute processor-
executable instructions stored in the memory 920 to perform
surgery workflow phase and activity detection according to
different examples, such as part or all of the example
processes 600, 700A, 700B and 800 described above with
respect to FIGS. 6-8. The computing device, in this example,
also includes one or more user input devices 970, such as a
keyboard, mouse, touchscreen, microphone, etc., to accept
user input. The computing device 900 also includes a display
960 to provide visual output to a user.

[0108] The computing device 900 can include or be con-
nected to one or more storage devices 930 that provides
non-volatile storage for the computing device 900. The
storage devices 930 can store system or application pro-
grams and data utilized by the computing device 900, such
as modules implementing the functionalities provided by the
video analysis module 120. The storage devices 930 might
also store other programs and data not specifically identified
herein.

[0109] The computing device 900 also includes a com-
munications interface 940. In some examples, the commu-
nications interface 940 may enable communications using
one or more networks, including a local area network
(“LAN"); wide area network (“WAN”), such as the Internet;
metropolitan area network (“MAN”); point-to-point or peer-
to-peer connection; etc. Communication with other devices
may be accomplished using any suitable networking proto-
col. For example, one suitable networking protocol may
include the Internet Protocol (“IP”), Transmission Control
Protocol (“TCP”), User Datagram Protocol (“UDP”), or
combinations thereof, such as TCP/IP or UDP/IP.

[0110] While some examples of methods and systems
herein are described in terms of software executing on
various machines, the methods and systems may also be
implemented as specifically configured hardware, such as
field-programmable gate array (FPGA) specifically to
execute the various methods. For example, examples can be
implemented in digital electronic circuitry, or in computer
hardware, firmware, software, or in a combination thereof.
In one example, a device may include a processor or
processors. The processor comprises a computer-readable
medium, such as a random access memory (RAM) coupled
to the processor. The processor executes computer-execut-
able program instructions stored in memory, such as execut-
ing one or more computer programs. Such processors may
comprise a microprocessor, a digital signal processor (DSP),
an application-specific integrated circuit (ASIC), field pro-
grammable gate arrays (FPGAs), and state machines. Such
processors may further comprise programmable electronic
devices such as PL.Cs, programmable interrupt controllers
(PICs), programmable logic devices (PLDs), programmable
read-only memories (PROMs), electronically programmable
read-only memories (EPROMs or EEPROMs), or other
similar devices.
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[0111] Such processors may comprise, or may be in com-
munication with, media, for example non-transitory com-
puter-readable storage media, that may store instructions
that, when executed by the processor, can cause the proces-
sor to perform the steps described herein as carried out, or
assisted, by a processor. Examples of non-transitory com-
puter-readable media may include, but are not limited to, an
electronic, optical, magnetic, or other storage device capable
of providing a processor, such as the processor in a web
server, with computer-readable instructions. Other examples
of media comprise, but are not limited to, a floppy disk,
CD-ROM, magnetic disk, memory chip, ROM, RAM,
ASIC, configured processor, all optical media, all magnetic
tape or other magnetic media, or any other medium from
which a computer processor can read. The processor, and the
processing, described may be in one or more structures, and
may be dispersed through one or more structures. The
processor may comprise code for carrying out one or more
of the methods (or parts of methods) described herein.
[0112] The foregoing description of some examples has
been presented only for the purpose of illustration and
description and is not intended to be exhaustive or to limit
the disclosure to the precise forms disclosed. Numerous
modifications and adaptations thereof will be apparent to
those skilled in the art without departing from the spirit and
scope of the disclosure.
[0113] Reference herein to an example or implementation
means that a particular feature, structure, operation, or other
characteristic described in connection with the example may
be included in at least one implementation of the disclosure.
The disclosure is not restricted to the particular examples or
implementations described as such. The appearance of the
phrases “in one example,” “in an example,” “in one imple-
mentation,” or “in an implementation,” or variations of the
same in various places in the specification does not neces-
sarily refer to the same example or implementation. Any
particular feature, structure, operation, or other characteris-
tic described in this specification in relation to one example
or implementation may be combined with other features,
structures, operations, or other characteristics described in
respect of any other example or implementation.
[0114] Use herein of the word “or” is intended to cover
inclusive and exclusive OR conditions. In other words, A or
B or C includes any or all of the following alternative
combinations as appropriate for a particular usage: A alone;
B alone; C alone; A and B only; A and C only; B and C only;
and A and B and C.
That which is claimed is:
1. A method comprising:
accessing a video of a surgical procedure, the surgical
procedure comprising a plurality of phases;
dividing the video into one or more blocks, each of the
one or more blocks comprising one or more video
frames;
for at least one of the one or more blocks:
applying a prediction model on the one or more video
frames of the block to obtain a phase prediction for
each of the one or more video frames, the prediction
model configured to accept an input video frame and
predict, for the input video frame, one of the plurality
of phases of the surgical procedure;
generating an aggregated phase prediction for the block
by aggregating the phase predictions for the one or
more video frames;
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in response to determining that a confidence level of the
aggregated phase prediction is lower than a threshold,
determining a predicted phase of the block to be a
predicted phase of a previous block; and

providing an indication of the predicted phase of the block

based on the aggregated phase prediction.

2. The method of claim 1, wherein the phase prediction
for a video frame comprises a probability vector comprising
probabilities of the video frame belonging to respective
phases of the surgical procedure.

3. The method of claim 2, wherein generating the aggre-
gated phase prediction for the block comprises:

averaging the probability vectors for the one or more

video frames to generate an averaged probability vector
for the block;

generating the aggregated phase prediction for the block

as a phase corresponding to the highest probability in
the averaged probability vector; and

determining a confidence level of the aggregated phase

prediction as the highest probability in the averaged
probability vector.

4. The method of claim 1, further comprising:

in response to determining that the confidence level of the

aggregated phase prediction is higher than the thresh-
old; and

determining the predicted phase of the block as the

aggregated phase prediction.

5. The method of claim 1, further comprising:

in response to determining that the predicted phase of the

block comprises a phase earlier than the predicted
phase of a previous block or a phase later than a
predicted phase of a subsequent block, modifying the
predicted phase of the block to be the phase prediction
of the previous block.

6. The method of claim 1, further comprising training the
prediction model to find a set of parameters for the predic-
tion model so that a value of a loss function using the set of
parameters is smaller than the value of the loss function
using another set of parameters, wherein the training is
performed based on a plurality of training frames and
respective labels of the training frames.

7. The method of claim 6, wherein training the prediction
model comprises:

receiving an indication that one of the plurality of training

frames is a representative frame; and

assigning a higher weight to a term associated with the

representative frame in the loss function.

8. The method of claim 6, wherein training the prediction
model comprises training the prediction model under a
constraint that a logical relationship between the plurality of
phases cannot be violated.

9. The method of claim 6, wherein training the prediction
model is further performed based on a plurality of unlabeled
training videos.

10. A method comprising:

accessing a video of a surgical procedure, the surgical

procedure comprising a plurality of phases;

dividing the video into one or more blocks, each of the

one or more blocks comprising one or more video
frames;

for at least one of the one or more blocks:

generating a feature vector using the one or more video

frames in the block;
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applying a prediction model on the feature vector to
generate a phase prediction for the block, the phase
prediction indicating a phase of the surgical procedure;

in response to determining that a confidence level of the
phase prediction is lower than a threshold, generating
the phase prediction for the block to be a phase pre-
diction of a previous block; and

providing an indication of the phase prediction for the

block.

11. The method of claim 10, wherein generating the
feature vector for the one or more video frames in the block
comprises:

applying a second prediction model to the one or more

video frames to generate a prediction vector for each of
the video frames; and

aggregating the prediction vectors for the one or more

video frames to generate the feature vector.

12. The method of claim 11, wherein aggregating the
prediction vectors is performed by averaging the prediction
vectors for the one or more video frames.

13. The method of claim 10, wherein the prediction model
comprises one or more of a gated recurrent units (“GRU”)
neural network or a long short-term memory (“LSTM”)
neural network.

14. The method of claim 10, further comprising:

refining the phase predictions of the video of the surgical

procedure; and

modifying the video of the surgical procedure using the

refined phase predictions.

15. The method of claim 14, wherein refining the phase
predictions comprise:

dividing the video into a plurality of regions;

generating region feature vectors for the plurality of

regions;

building a directed graph based on rules describing logical

relationship among the plurality of phases of the video
of the surgical procedure;

for each region:

identifying one or more neighbor regions of the region

based on the directed graph;

combining region feature vectors of the region and the

one or more neighboring regions to generate a com-
bined region feature vector; and

generating a refined predicted phase for the region based

on the combined region feature vector.

16. The method of claim 15, wherein refining the phase
predictions comprises refining a boundary between two
adjacent predicted phases of the video based on a combined
feature vector of the two adjacent predicted phases.

17. A computing device comprising:

a processor; and

a non-transitory computer-readable medium having pro-

cessor-executable instructions stored thereupon, which,
when executed by the processor, cause the processor to:
divide a video of a surgical procedure into one or more
blocks, the surgical procedure comprising a plurality of
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phases and each of the one or more blocks comprising
one or more surgical images;

for at least one of the one or more blocks:

apply a prediction model on the one or more surgical

images of the block to obtain a phase prediction for
each of the one or more surgical images, the prediction
model configured to accept an input surgical image and
predict, for the input surgical image, one of the plurality
of phases of the surgical procedure;

generate an aggregated phase prediction for the block by

aggregating the phase predictions for the one or more
surgical images;

in response to determining that a confidence level of the

aggregated phase prediction is lower than a threshold,
determining a predicted phase of the block to be a
predicted phase of a previous block; and

provide an indication of the predicted phase of the block

based on the aggregated phase prediction.

18. The computing device of claim 17, wherein the phase
prediction for a video frame comprises a probability vector
comprising probabilities of the video frame belonging to
respective phases of the surgical procedure.

19. A non-transitory computer-readable medium compris-
ing processor-executable instructions to cause a processor
to:

divide a video of a surgical procedure into one or more

blocks, the surgical procedure comprising a plurality of
phases and each of the one or more blocks comprising
one or more surgical images;

for at least one of the one or more blocks:

apply a prediction model on the one or more surgical

images of the block to obtain a phase prediction for
each of the one or more surgical images, the prediction
model configured to accept an input surgical image and
predict, for the input surgical image, one of the plurality
of phases of the surgical procedure;

generate an aggregated phase prediction for the block by

aggregating the phase predictions for the one or more
surgical images;

in response to determining that a confidence level of the

aggregated phase prediction is lower than a threshold,
determining a predicted phase of the block to be a phase
prediction of a previous block; and

provide an indication of the predicted phase of the block

based on the aggregated phase prediction.

20. The non-transitory computer-readable medium of
claim 19, comprising further processor-executable instruc-
tions to cause the processor to:

in response to determining that the confidence level of the

aggregated phase prediction is higher than the thresh-
old; and

determining the predicted phase of the block as the

aggregated phase prediction.
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