US 20170046207A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0046207 A1

Krauss 43) Pub. Date: Feb. 16, 2017
(54) DYNAMIC SYNCHRONIZATION OBJECT 57 ABSTRACT

POOL MANAGEMENT A number of synchronization objects simultaneously usable

) during runtime by a group of threads within a multi-threaded

(71) Applicant: International Business Machines execution environment is predicted by a processor that

Corporation, Armonk, NY (US) manages synchronization object allocations within the

multi-threaded execution environment. A synchronization

(72) Inventor: Kirk J. Krauss, Los Gatos, CA (US) object pool is allocated with the predicted number of syn-

chronization objects, each initialized with a deployment

(21) Appl. No.: 14/826,100 state of undeployed and an acquisition state of unlocked.

Over time, the deployment state is changed between

(22) Filed: Aug. 13, 2015 deployed and undeployed in response to requests by threads

to deploy and undeploy the synchronization objects. The

Publication Classification agqui.sition state is indepepdently controlled as the synchro-

nization objects are acquired and released by the threads.

(51) Int. CL The allocated number of synchronization objects within the

GOGF 9/52 (2006.01) synchronization object pool is adjusted during the runtime in

(52) US. CL response to determined deployment rates of the allocated
CPC e, GOG6F 9/52 (2013.01) number of synchronization objects.

PREDICT, BY A PROCESSOR THAT MANAGES
SYNCHRONIZATION OBJECT ALLOCATIONS
WITHIN A MULTI-THREADED EXECUTION
ENVIRONMENT, A NUMBER OF
SYNCHRONIZATION OBJECTS
SIMULTANEOUSLY USABLE DURING RUNTIME
BY A GROUP OF THREADS WITHIN THE MULTI-
THREADED EXECUTION ENVIRONMENT

302
|~

v

ALLOCATE A SYNCHRONIZATION OBJECT
POOL COMPRISING THE PREDICTED NUMBER
OF SYNCHRONIZATION OBJECTS, EACH
INITIALIZED WITH A DEPLOYMENT STATE OF
UNDEPLOYED AND AN ACQUISITION STATE OF
UNLOCKED

304
|

Y

CHANGE OVER TIME THE DEPLOYMENT STATE
BETWEEN DEPLOYED AND UNDEPLOYED IN
RESPONSE TO REQUESTS BY THREADS TO

DEPLOY AND UNDEPLOY THE
SYNCHRONIZATION OBJECTS, WHERE THE
ACQUISITION STATE IS INDEPENDENTLY
CONTROLLED AS THE SYNCHRONIZATION
OBJECTS ARE ACQUIRED AND RELEASED BY
THE THREADS

306

v

ADJUST DURING THE RUNTIME THE
ALLOCATED NUMBER OF SYNCHRONIZATION
OBJECTS WITHIN THE SYNCHRONIZATION
OBJECT POOL IN RESPONSE TO DETERMINED
DEPLOYMENT RATES OF THE ALLOCATED
NUMBER OF SYNCHRONIZATION OBJECTS

308

Patent Application Publication Feb. 16,2017 Sheet 1 of 5 US 2017/0046207 A1

SERVER_M
110
COMPUTING
DEVICE_N
104

FIG. 1

102

SERVER _1
108
106

COMPUTING
DEVICE_1

(&

US 2017/0046207 Al

Feb. 16,2017 Sheet 2 of 5

Patent Application Publication

¢ 9l4
81z
™~ M0010/M3INIL
\ 80¢
NOILYOINNNINOD
ININIOVNYI
9lc—_] 100d 103rgo
NOILVZINOYHONAS | 902
SINYNAC 321A3A LNdNI
b1z 0T
™ NOILLYOI1ddY AV1dSIa L
¢te~J | 100d L03rgo 4o _—¢0¢
NOILVZINOYHONAS
Ol ~—__ AYOWAN "~ 2z

O
N

Patent Application Publication Feb. 16,2017 Sheet 3 of 5 US 2017/0046207 A1

(O8]
o
o

PREDICT, BY A PROCESSOR THAT MANAGES
SYNCHRONIZATION OBJECT ALLOCATIONS
WITHIN A MULTI-THREADED EXECUTION

ENVIRONMENT, A NUMBER OF |~ 302
SYNCHRONIZATION OBJECTS
SIMULTANEOUSLY USABLE DURING RUNTIME
BY A GROUP OF THREADS WITHIN THE MULTI-
THREADED EXEGUTION ENVIRONMENT

v

ALLOCATE A SYNCHRONIZATION OBJECT
POOL COMPRISING THE PREDICTED NUMBER
OF SYNCHRONIZATION OBJECTS, EACH ~ |_—304
INITIALIZED WITH A DEPLOYMENT STATE OF
UNDEPLOYED AND AN ACQUISITION STATE OF
UNLOCKED

Y

CHANGE OVER TIME THE DEPLOYMENT STATE
BETWEEN DEPLOYED AND UNDEPLOYED IN
RESPONSE TO REQUESTS BY THREADS TO

DEPLOY AND UNDEPLOY THE 306
SYNCHRONIZATION OBJECTS, WHERE THE —
ACQUISITION STATE IS INDEPENDENTLY
CONTROLLED AS THE SYNCHRONIZATION
OBJECTS ARE ACQUIRED AND RELEASED BY
THE THREADS

v

ADJUST DURING THE RUNTIME THE
ALLOCATED NUMBER OF SYNCHRONIZATION
OBJECTS WITHIN THE SYNCHRONIZATION | _— 308
OBJECT POOL IN RESPONSE TO DETERMINED
DEPLOYMENT RATES OF THE ALLOCATED
NUMBER OF SYNCHRONIZATION OBJECTS

FIG. 3

Patent Application Publication Feb. 16,2017 Sheet 4 of 5 US 2017/0046207 A1

400

DETERMINE NUMBER OF OBJECTS | 402
HELD SIMULTANEOUSLY BY A ~
THREAD

!

DETERMINE NUMBER OF | 404
SIMULTANEOUS OBJECTS P~
TO PROTECT

!

ASSIGN NUMBER OF LOCKS TO 406
CREATE ACCORDING TO MAXIMUM |~
SIMULTANEOUS OBJECTS

!

ALLOCATE DETERMINED NUMBER | 408
OF LOCKS WITHIN A ~
SYNCHRONIZATION OBJECT POOL

!

ALLOCATE POOL 410
MANAGEMENT DATA }~
STRUCTURES

FIG. 4

Patent Application Publication Feb. 16,2017 Sheet 5 of 5 US 2017/0046207 A1

200

RECEIVE REQUEST TO USE OR RETURN | 502

A SYNCHRONIZATION OBJECT
UPDATE DEPLOYMENT STATE OF | 204
SYNCHRONIZATION OBJECT
FIG. 5

600

4

60

DETERMINE POOL
ALLOCATION SIZE
ADJUSTMENT

l /606

ADJUST DURING RUNTIME THE NUMBER
OF SYNCHRONIZATION OBJECTS AND
DEPLOYMENT STATE INDICATORS IN
SYNCHRONIZATION OBJECT POOL

FIG. 6

US 2017/0046207 Al

DYNAMIC SYNCHRONIZATION OBJECT
POOL MANAGEMENT

BACKGROUND

[0001] The present invention relates to synchronization of
executing threads. More particularly, the present invention
relates to dynamic synchronization object pool management.

[0002] Computing applications may be written as unipro-
cessor applications or may be written as multi-threaded
applications. FEach thread of a multi-threaded application
may be executed by a different processor or may be allocated
different intervals of time for sequential execution on a
single processor.

SUMMARY

[0003] A computer-implemented method includes predict-
ing, by a processor that manages synchronization object
allocations within a multi-threaded execution environment,
a number of synchronization objects simultaneously usable
during runtime by a group of threads within the multi-
threaded execution environment; allocating a synchroniza-
tion object pool of the predicted number of synchronization
objects, each initialized with a deployment state of unde-
ployed and an acquisition state of unlocked; changing over
time the deployment state between deployed and unde-
ployed in response to requests by threads to deploy and
undeploy the synchronization objects, where the acquisition
state is independently controlled as the synchronization
objects are acquired and released by the threads; and adjust-
ing during the runtime the allocated number of synchroni-
zation objects within the synchronization object pool in
response to determined deployment rates of the allocated
number of synchronization objects.

[0004] A system that performs the method and a computer
program product that causes a computer to perform the
method are also described.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a block diagram of an example of an
implementation of a system for dynamic synchronization
object pool management according to an embodiment of the
present subject matter;

[0006] FIG. 2 is a block diagram of an example of an
implementation of a core processing module capable of
performing dynamic synchronization object pool manage-
ment according to an embodiment of the present subject
matter;

[0007] FIG. 3 is a flow chart of an example of an imple-
mentation of a process for dynamic synchronization object
pool management according to an embodiment of the pres-
ent subject matter;

[0008] FIG. 4 is a flow chart of an example of an imple-
mentation of a process for dynamic synchronization object
pool allocation according to an embodiment of the present
subject matter;

[0009] FIG. 5 is a flow chart of an example of an imple-
mentation of a process for updating deployment states of
synchronization objects within a synchronization object
pool according to an embodiment of the present subject
matter; and

Feb. 16, 2017

[0010] FIG. 6 is a flow chart of an example of an imple-
mentation of a process for dynamic synchronization object
pool size adjustment according to an embodiment of the
present subject matter.

DETAILED DESCRIPTION

[0011] The examples set forth below represent the neces-
sary information to enable those skilled in the art to practice
the invention and illustrate the best mode of practicing the
invention. Upon reading the following description in light of
the accompanying drawing figures, those skilled in the art
will understand the concepts of the invention and will
recognize applications of these concepts not particularly
addressed herein. It should be understood that these con-
cepts and applications fall within the scope of the disclosure
and the accompanying claims.

[0012] The subject matter described herein provides
dynamic synchronization object pool management. The
present technology solves a recognized problem with prior
technologies related to synchronization objects (i.e., locks)
that resulted in either synchronization-induced bottlenecks
or unsafe parallelism involving resource management within
multi-threaded computing environments. The present tech-
nology operates by providing a new approach to synchro-
nization that removes synchronization-induced bottlenecks
and that improves safety and granularity of parallel process-
ing within multi-threaded computing environments by use
of predictive analysis and demand-driven synchronization
object quantity adjustments. The improved granularity may
be achieved with the present technology because the tech-
nology described herein provides for the management of
synchronization objects in sufficient quantities to protect
many individual resources, such as individual objects of a
class, without incurring wasted overhead of significant num-
bers of unnecessary synchronization objects. In a conven-
tional execution environment that lacks the present technol-
ogy, where a synchronization object protects a less fine-
grained data structure, for example all objects of a class
simultaneously, any thread’s access to one object of the class
may delay other threads in their attempts to access other
objects of the same class. These delays in conventional
technologies impose inefficiency in thread performance, and
the present technology solves this recognized problem. The
technology described herein adjusts synchronization object
allocations over time to provide more effective utilization of
available system resources (e.g., memory, processor occu-
pancy, etc.), in view of varying resource demands over time,
than may otherwise be possible. As such, the technology
described herein improves computing performance within
complex computing environments by solving several issues
that were recognized to exist in prior technologies.

[0013] The present technology operates by programmati-
cally predicting, by a processor that manages synchroniza-
tion object allocations within a multi-threaded execution
environment, a number of synchronization objects simulta-
neously usable during runtime by a group of threads within
the multi-threaded execution environment. A synchroniza-
tion object pool is allocated with the predicted number of
synchronization objects, with each synchronization object
initialized with a deployment state of undeployed and an
acquisition state of unlocked. Over time, the deployment
state is changed between deployed and undeployed in
response to requests by threads to deploy and undeploy the
synchronization objects. The acquisition state is indepen-

US 2017/0046207 Al

dently controlled as the synchronization objects are acquired
and released by the threads. The allocated number of syn-
chronization objects within the synchronization object pool
is adjusted during the runtime in response to determined
deployment rates of the allocated number of synchronization
objects.

[0014] For purposes of the description herein, a multi-
threaded execution environment is understood to include a
processing platform that supports execution of multiple
concurrent application-level threads, such as one or more of
a cloud or grid computing system, or any other system,
subsystem, or system component that provides execution
support for multiple threads that may be executed within one
or more of an operating system, an executing process a
computer program, a software component, a service, a
device driver, a firmware component, an application, or any
other form of executable programmatic component that may
be executed by one or more hardware processors. A multi-
threaded execution environment may further include a vir-
tual machine environment provided by one or more hard-
ware processors, where software runs on a virtual machine
that supports multi-threaded execution. Further, a multi-
threaded execution environment may include a physical
hardware environment, where software runs on the physical
hardware that supports multi-threaded execution. A number
of' synchronization objects simultaneously usable during
runtime by threads within a multi-threaded execution envi-
ronment may include a set of synchronization objects usable
to ensure thread safety for the threads that may execute
within such a multi-threaded execution environment as
defined herein.

[0015] Deployment rates may include time-varying mea-
sures related to runtime utilization or real-time demand for
synchronization objects, such as demand above or below a
threshold percentage of locks in a pool, or demand relative
to one or more baseline values or other metric values.
Demand above a percentage, baseline, or other metric may
provide an indication to increase the pool size. Demand
below a percentage, baseline, or other metric may provide an
indication to decrease the pool size. Any change in synchro-
nization object demand over time, with respect to a defined
rate, percentage, baseline, or other metric, may provide an
indication to increase or decrease the pool size according to
the particular demand. Determination of synchronization
object deployment rates may include determination of syn-
chronization object deployment or utilization at one or more
instants during a run, for comparison with one or more
percentages, baselines, or other metrics, and may utilize
information other than a determination based on a literal rate
calculation.

[0016] The technology described herein involves two pri-
mary aspects: predictive deployment and management of a
synchronization object pool; and dynamic demand-based
size adjustment of the synchronization object pool. First, the
present technology predictively manages a pool of synchro-
nization objects (e.g., critical sections, semaphores,
mutexes, spin locks, etc.) such that each may be dynamically
deployed for use in protecting one or more objects, and such
that each may be subsequently undeployed by being
returned to the pool. Secondly, the present technology tracks
a deployment state of each synchronization object (e.g.,
undeployed and deployed) and in certain implementations
tracks an associated acquisition state of each synchroniza-
tion object (e.g., unlocked and locked). The present tech-

Feb. 16, 2017

nology utilizes this information to dynamically adjust the
size of (e.g., number of synchronization objects in) the
synchronization object pool. Once an initial predictively-
sized synchronization object pool has been established, the
number of allocated synchronization objects in the pool may
be dynamically increased or decreased, over time, as system
demands change over time. The adjustments may occur at
runtime as applications or services start and stop sharing
resources, as software components load and unload, and/or
as inbound workload changes.

[0017] It should be noted that the description below uses
the term “lock” in certain locations as a synonym for
“synchronization object” for ease of description. However, it
should be understood that use of the term “lock” as a
synonym for “synchronization object” is not limiting the
description to a particular style of implementation of a
synchronization object, and that as a result the term lock
refers to any form of “synchronization object” within the
scope of the present description, such as but not limited to
those described by example above.

[0018] At the beginning of a system run, or during a
system run, locks may be allocated, initialized, and desig-
nated to be undeployed members of a synchronization object
pool (alternatively “pool” hereinafter). The locks may be
provided by the operating system (OS-provided) or may be
implemented by developers of applications, services, device
drivers, and other components. Alternatively, the locks may
be a combination of OS-provided locks and component
developer-implemented locks, as appropriate for a given
implementation.

[0019] Regarding predictive initial determination and sub-
sequent adjustment of the number of locks to be allocated
within a pool to optimize memory requirements, the number
of locks in the pool may be set to be equal to a number of
objects of classes that may require protection via locks in the
pool. Alternatively, to improve memory utilization, a more
optimum number of locks in the pool may be determined by
performing predictive analytics based upon the characteris-
tics of the applications/threads that are intended to utilize or
are actually utilizing the pool.

[0020] For example, the following Equation (1) may be
applied to determine a maximum number of locks a thread
may acquire at one time (e.g., Maximum Locks Held Simul-
taneously by a Thread):

Maximum Locks Held Simultaneously by a Thread=
(Maximum Locks Acquirable Simultaneously

Per Routine)x(Maximum Call Chain Depth) Equation (1):

[0021] Within Equation (1), the term “Maximum Locks
Acquirable Simultaneously Per Routine” represents a maxi-
mum number of locks that may be simultaneously acquired
per routine within a given thread. Further, the term “Maxi-
mum Call Chain Depth” represents a maximum depth of a
call chain that may include such a routine. These values may
be determined by programmatic analysis of code produced
by a code build process, or otherwise as appropriate for a
given implementation.

[0022] Using the result from Equation (1) (e.g., Maximum
Locks Held Simultaneously by a Thread), Equation (2)
below may be applied to determine a maximum number of
objects that may require simultaneous protection (e.g.,
Maximum Simultaneous Objects):

Maximum Simultaneous Objects=(Number of
Threads)x(Maximum Locks Held Simultane-

ously by a Thread) Equation (2):

US 2017/0046207 Al

[0023] Within Equation (2), the term ‘“Number of
Threads” represents a number of threads that may be active
within an executing process (i.e., an instance of a computer
program loaded into an address space and associated with an
execution context). Further, the term “Maximum Locks
Held Simultaneously by a Thread” represents a maximum
number of locks that a thread may acquire at once. As with
the above parameters, these values may be determined by
programmatic analysis of code within a code build, or
otherwise as appropriate for a given implementation.
[0024] Using the result from Equation (2) (e.g., Maximum
Simultaneous Objects), the number of locks to create (e.g.,
Num_Locks, either initially or as adjusted over time) may be
identified programmatically to equate to the determined
maximum number of objects that may require simultaneous
lock protection.

[0025] It should be noted that the Equation (1) above may
result in an overestimation, and static analysis or other code
analysis techniques may be employed to refine/improve that
estimate of the maximum number of locks a thread may
acquire at one time. It should additionally be noted that the
above values may change over the course of the system run,
so that the pool may be updated to contain more or fewer
locks, as appropriate to improve runtime efficiency/perfor-
mance and resource utilization, as described above and in
more detail below. Changeable values may include each of
the number of threads (e.g., Number of Threads) value and
the maximum number of locks a thread may acquire at one
time (e.g., Maximum Locks Held Simultaneously by a
Thread) value. These values may change in response to the
changing resource requirements that result as software com-
ponents are loaded and unloaded within a process. As such,
the present technology may perform iterative determinations
of pool size and utilization over time, and may perform
appropriate dynamic (e.g., run-time) adjustments of the pool
size to accommodate real-time demand for pooled synchro-
nization objects.

[0026] Regarding tracking of utilization of synchroniza-
tion objects within a given pool, a data structure associated
with the pool, such as one or more pool management bit
vectors or structures of other forms may be created. In
certain implementations, a deployment state bit vector may
be used to track the deployment states of locks within a
given pool. As an alternative, a second data structure (e.g.,
a bit array or other structure) may be used, either separately
or as an additional field associated with each deployment
state bit, to indicate the acquisition state of any given lock
within a given pool. As an alternative, an additional acqui-
sition state bit vector or integer vector may be utilized to
track acquisition states of locks. As an alternative to tracking
the acquisition state of the locks at the pool level, the locks
themselves may be managed as locked or unlocked within
the memory space allocated to the respective locks.

[0027] From the pool management perspective, the
deployment states of locks within the pool may be one of
deployed and undeployed. The acquisition state of the locks
may be one of locked (potentially also with a recursion
count) and unlocked.

[0028] Regarding implementation of either of the state
data structures described above (e.g., deployment and acqui-
sition), as one possible example, if a pool is associated with
an object class, then a state data structure (e.g., bit) may be
associated with the object. The state data structure may be a
member of the object or a member of a set of state data

Feb. 16, 2017

structures (e.g., a bit vector) associated with the class. A pool
identifier may identify the respective pool associated with
the respective bit or bit vector. The set of state data structures
associated with the class may be of adjustable size, such that
the number of locks in the pool may be increased or
decreased over time based upon demand as objects of the
class are created and destroyed, respectively. To implement
the dynamic size adjustment, the data structure may be
implemented as a reallocatable array or other structure of
bits.

[0029] To improve readability of the remaining descrip-
tion, a bit vector or bit array will be utilized for purposes of
example, with the understanding that the description below
applies at least equally to other types of in-memory data
structures, as described above. As such, use of bit arrays/
vectors for purposes of the additional examples and descrip-
tion below does not limit the description herein to any
particular form of data structure.

[0030] For purposes of example, the reallocatable array of
bits may be implemented by allocating a new bit array of the
target adjusted size (e.g., larger or smaller), such as by use
of'a memory allocation or reallocation routine (e.g., malloc(
), realloc() or a similar routine), and the active contents of
the current bit array may be migrated to the new bit array. As
such, where a bit array is to be increased in size, the new bit
array may be allocated to be larger than the current bit array,
and the current locks represented within the bit array may be
likewise represented within the new bit array (e.g., without
any changes in bit positions, etc.). Alternatively, where the
bit array is to be decreased in size, the new bit array may be
allocated to be smaller than the current bit array, the current
locks represented within the bit array may be represented in
condensed form to remove unused lock bit positions, and the
condensed bit array may be moved to the new bit array. The
migration of the active contents of the current bit array to the
new bit array may be performed by mapping the deployed
state bits of the current bit array to new bits within the new
bit array, and setting the deployed state within the respective
bit positions (e.g., as deployed or as undeployed).

[0031] For a bit array size reduction, unused bit positions
may be omitted from the mapping. As such, where it is
determined that the currently-allocated number of synchro-
nization objects is in excess of what is being used, the
number of synchronization objects and the associated pool
management state bits may be reduced in number. A map-
ping between the bits in the array and the deployed locks
protecting objects associated with those bits may be main-
tained, for example, by maintaining bits indicating a
deployed state in ordinal positions in a bit array that are
identical to ordinal positions of protected objects in an array
of objects. Other mappings may serve for objects arranged
in other (non-array) data structures.

[0032] For a bit array size increase, all bits of the current
bit array may be directly mapped into identical bit positions
within the new bit array to expedite processing. The respec-
tive bit states may also be directly copied into identical bit
positions within the new bit array to further reduce real-time
processing.

[0033] Regarding logic preference for bit values, it should
be noted that either active-high or active-low logic values
may be used, as appropriate for a given implementation.
Using active-high logic, the default value may be cleared
(e.g., zero (0)). Alternatively, using active-low logic, the
default value may be set (e.g., one (1)), depending upon the

US 2017/0046207 Al

logic preference within the particular system, to indicate an
undeployed state of a lock. When a lock is deployed for use
in protecting an individual object of a class, then a specific
bit within a vector specifically corresponding to that class,
may be set to indicate that the lock is deployed (e.g., set to
one (1) for active-high logic, or alternatively cleared to zero
(0) using active-low logic, again respectively and with
respect to the logic preference within the particular system,
to indicate the deployed state for the lock).

[0034] In implementations that associate an acquisition
state bit with each deployment state bit, when an object
update is detected, the corresponding bit for that object
within the acquisition state bit vector may first be checked
via an atomic operation that may also then set the bit if the
check reveals it to be clear for acquisition of the lock. As
such, the atomic check/set represents an indivisible/uninter-
ruptible operation. The lock bit in the acquisition state bit
vector (or in the memory allocated for the lock itself) may
be subsequently cleared again when the update of the object
is completed. As such, within such an implementation, the
pool management data structure may also serve as at least a
portion of the underlying lock mechanism itself.

[0035] With further reference to the predictive determina-
tion and adjustment of the number of locks to be allocated
within a pool to optimize memory requirements, where
locks are created based on predictive programmatic compu-
tations and/or static analysis as described above, one or more
of the following processing variations may be utilized as
appropriate for a given implementation. For example, the
creation and use of a synchronization object pool (lock pool)
for the protection of objects of a class may eliminate
performance bottlenecks caused by conventional lock con-
tention that may occur when a single shared lock is used to
protect all of the objects of the class. The lock pool may be
originally sized, and/or resized, to fit with the number of
objects of the class for which simultaneous protection is
provided. Routines that implement the present technology
may thus be designed to reduce contention for locks and data
overhead required by the implementation.

[0036] All threads that attempt to access an object of a
class associated with a synchronization object pool may
collectively safely do so using routines designed for use with
the pool. These routines may include one or more routines
associated with each of lock deployment, acquisition,
release, and undeployment. A lock deployment routine may
accept as input a handle or pointer to a specified object of the
class and may set a state bit associated with that object, in
a bit vector associated with the pool, to indicate lock
deployment. A lock acquisition routine may ensure that a
lock is deployed for protection of a particular object, such as
a handle or pointer that may arrive as input to the routine
within some implementations, before attempting to acquire
the lock. As the thread that has invoked the lock acquisition
routine takes ownership of the lock, the routine may arrange
for an acquisition state bit and the related state data to be set
accordingly. A lock release routine may accept as input an
indication as to whether further protection of the object is
expected by any thread, for example if the lock is being held
at certain times only during processing performed within the
context of a component that is unloading or about to be
unloaded. If no further use of the lock is expected, then the
lock release routine may undeploy the lock by clearing the
bit associated with that object. A lock undeployment routine

Feb. 16, 2017

may determine whether the lock is held and, if not, may
undeploy the lock by clearing that bit.

[0037] A routine invoked to acquire a lock for protection
of an individual object may first determine whether a lock
has already been deployed to protect the object. If no lock
has been deployed to protect the object, the routine may
deploy a lock from a specified pool on demand and may
acquire/lock that deployed lock, so that lock-protected pro-
cessing may continue without additional delays that may
otherwise be imposed if the locks were conventionally
assigned to protect all objects of a class, as opposed to
protecting individual objects within a class as described
herein. The deployment and acquisition of the lock may be
performed together, again via an atomic operation or under
the protection of some other pool management lock specific
to the pool (and, in some implementations, the class). As
such, on systems that support multiple memory updates in an
atomic operation, two memory locations may be updated by
the atomic operation to deploy and acquire the lock: the
deployment state indicator designating the lock as deployed;
and the separate acquisition state indicator designating the
lock as locked. On systems that support only single-address
atomic operations, the bits representing the deployment and
acquisition state may be arranged to share a common
address, or other synchronization techniques may be applied
to ensure thread-safe access to those bits as appropriate for
a given implementation.

[0038] A routine invoked to acquire a lock for protection
of an individual object may determine that the lock has
already been deployed to protect the respective object, and
if so, the routine may further determine whether another
thread is holding the lock. If another thread is holding the
lock, the routine may wait for the lock to be released.
Alternatively, if the lock is deployed and available (e.g., not
locked), the routine may acquire/lock the lock, again so that
processing may continue under the lock’s protection.
Another routine may subsequently be invoked to release/
unlock the lock and to determine whether the lock may also
be undeployed (e.g., if no other usage of that lock by the
current thread is foreseen in the short term), such as by use
of a flag passed to a lock releasing routine.

[0039] It should be noted that the respective routines may
be implemented as procedure calls (e.g., methods), by
application programming interface (API) functions, or oth-
erwise as appropriate for a given implementation. The
routine(s) and/or API functions may be implemented at an
operating system (OS) level. The operating system may
provide API functionality to create locks as pool members
and/or to assign locks to pools, to deploy the locks in the
pool, to un-deploy those locks, and to perform other man-
agement functions (e.g., acquire lock after a prospective
wait, try-acquire with no wait, release, increment/decrement
recursion count, change owning thread, etc.).

[0040] Any number of pools may be created, again within
memory space limits. In some implementations, a single
pool may serve to provide thread-safe resource access
among all of the threads that execute in the context of a
single executing process. The resources protected by a single
pool may include resources utilized by an entire application,
a component of an application, or one or more specific
object classes or subclasses. As such, synchronization object
pools may be implemented granularly as appropriate for the
given implementation. A pool may be identified by a handle,
an ordinal value, or any other suitable identifier.

US 2017/0046207 Al

[0041] Inview of the description above, many possibilities
exist for tracking of locks and for dynamic size adjustment
of the data structures (e.g. bit vectors, etc.) used to manage
synchronization objects within a pool. All such possibilities
are considered to be within the scope of the present subject
matter.

[0042] It should be noted that conception of the present
subject matter resulted from recognition of certain limita-
tions associated with thread safety. For example, it was
observed that within complex highly-parallelized systems
synchronization objects, alternatively referred to as locks,
tend to be relatively few in number (e.g., a few thousand
operating-system-provided synchronization objects) in rela-
tion to the number of data structures the synchronization
objects protect (e.g., hundreds of thousands, millions, etc.).
It was further observed that as a result of the limited number
due to resource limitations, these synchronization objects
are typically applied to all of the data structures of a given
class. However, it was determined that if a thread (e.g.,
thread “A”) needs to update one member of the class, as a
consequence of the class-level granularity of synchroniza-
tion objects, a separate thread (e.g., thread “B”) cannot
update another member/object of the class type at the same
time, even in cases where there is no actual overlap of the
data owned by those individual class members/objects. For
example, if the thread “A” adds event-specific data struc-
tures, representing observations of entities, to lists and
queues, and the thread “B” cleans up the lists and those
queues as the events “expire,” it was observed that prior
technologies that locked all elements of all queues during an
update imposed unnecessary wait states involving the two
threads. These unnecessary wait states decrease application
performance and may even affect overall system perfor-
mance. It was further determined that for these reasons,
synchronization by use of prior technologies has become
increasingly limited, both as systems grow and as the
systems involve increased parallelism, with respect to uti-
lization of available system resources. From these several
observations and determinations, it was further determined
that a new form of synchronization was desirable that
provides for the runtime on-demand application of synchro-
nization objects to individual members/objects of a class,
rather than to a class as a whole, and that predictively and
on demand dynamically adjusts allocations of synchroniza-
tion objects over time to enhance utilization of available
system resources relative to synchronization object use. As
such, the present subject matter improves complex parallel
processing within complex systems by reducing synchroni-
zation-induced bottlenecks and unsafe parallelism, thereby
increasing granularity of object synchronization and safe
parallelism, each with dynamic resource allocations in
accordance with demand-driven behavior that may improve
both system performance and resource exploitation, as
described above and in more detail below. As such,
improved parallel processing may be obtained through use
of the present technology.

[0043] The dynamic synchronization object pool manage-
ment described herein may be performed in real time to
allow prompt determinations of changes to the allocated
number of synchronization objects within a pool and to
perform pool management over time using predictive ana-
Iytics and demand-driven synchronization object allocation
and deployment. For purposes of the present description, the
term “real time” shall include any time frame of sufficiently

Feb. 16, 2017

short duration as to provide reasonable response time for
information processing acceptable to a user of the subject
matter described. Additionally, the term “real time” shall
include what is commonly termed “near real time”—gener-
ally meaning any time frame of sufficiently short duration as
to provide reasonable response time for on-demand infor-
mation processing acceptable to a user of the subject matter
described (e.g., within a portion of a second or within a few
seconds). These terms, while difficult to precisely define, are
well understood by those skilled in the art.

[0044] FIG. 1 is a block diagram of an example of an
implementation of a system 100 for dynamic synchroniza-
tion object pool management. A computing device_1 102
through a computing device_N 104 communicate via a
network 106 with several other devices. The other devices
include a server_1 108 through a server_M 110.

[0045] As will be described in more detail below in
association with FIG. 2 through FIG. 6, the computing
device_1 102 through the computing device_N 104 may
each provide automated dynamic synchronization object
pool management. The automated dynamic synchronization
object pool management is based upon predictive analysis of
synchronization object utilization, with dynamic adjust-
ments of synchronization object pool sizes to improve
execution efficiency and to reduce memory/processor utili-
zation. The present technology may be implemented at a
user computing device or server device, or in hardware,
firmware, application software, service software, or operat-
ing system software on one or more of these devices, in any
combination thereof, as appropriate for a given implemen-
tation. A variety of possibilities exist for implementation of
the present subject matter, and all such possibilities are
considered within the scope of the present subject matter.
[0046] The network 106 may include any form of inter-
connection suitable for the intended purpose, including a
private or public network such as an intranet or the Internet,
respectively, direct inter-module interconnection, dial-up,
wireless, or any other interconnection mechanism capable of
interconnecting the respective devices.

[0047] The server_1 108 through the server_M 110 may
include any device capable of providing data for consump-
tion by a device, such as the computing device 1 102
through the computing device_N 104, via a network, such as
the network 106. As such, the server_1 108 through the
server_M 110 may each include a web server, application
server, or other data server device.

[0048] FIG. 2 is a block diagram of an example of an
implementation of a core processing module 200 capable of
performing dynamic synchronization object pool manage-
ment. The core processing module 200 may be associated
with either the computing device_1 102 through the com-
puting device_N 104 or with the server_1 108 through the
server_M 110, as appropriate for a given implementation. As
such, the core processing module 200 is described generally
herein, though it is understood that many variations on
implementation of the components within the core process-
ing module 200 are possible and that all such variations are
within the scope of the present subject matter.

[0049] Further, the core processing module 200 may pro-
vide different and complementary processing of synchroni-
zation objects and synchronization object pools in associa-
tion with each implementation. As such, for any of the
examples below, it is understood that any aspect of described
functionality with respect to any one device in conjunction

US 2017/0046207 Al

with another device (e.g., sends/sending, etc.) is to be
understood to concurrently describe the functionality of the
other respective device (e.g., receives/receiving, etc.).
[0050] A central processing unit (CPU) 202 (“processor’)
provides hardware that performs computer instruction
execution, computation, and other capabilities within the
core processing module 200. A display 204 provides visual
information to a user of the core processing module 200 and
an input device 206 provides input capabilities for the user.
[0051] The display 204 may include any display device,
such as a cathode ray tube (CRT), liquid crystal display
(LCD), light emitting diode (LED), electronic ink displays,
projection, touchscreen, or other display element or panel.
The input device 206 may include a computer keyboard, a
keypad, a mouse, a pen, a joystick, touchscreen, voice
command processing unit, or any other type of input device
by which the user may interact with and respond to infor-
mation on the display 204.

[0052] It should be noted that the display 204 and the input
device 206 may be optional components for the core pro-
cessing module 200 for certain implementations/devices, or
may be located remotely from the respective devices and
hosted by another computing device that is in communica-
tion with the respective devices. Accordingly, the core
processing module 200 may operate as a completely auto-
mated embedded device without direct user configurability
or feedback. However, the core processing module 200 may
also provide user feedback and configurability via the dis-
play 204 and the input device 206, respectively, as appro-
priate for a given implementation.

[0053] A communication module 208 provides hardware,
protocol stack processing, and interconnection capabilities
that allow the core processing module 200 to communicate
with other modules within the system 100. The communi-
cation module 208 may include any electrical, protocol, and
protocol conversion capabilities useable to provide intercon-
nection capabilities, as appropriate for a given implementa-
tion. As such, the communication module 208 represents a
communication device capable of carrying out communica-
tions with other devices.

[0054] A memory 210 includes a synchronization object
pool storage area 212 that stores one or more dynamically-
managed synchronization object pools in association with
the core processing module 200. The memory 210 also
includes an application area 214 that provides storage and
execution space for one or more multi-threaded applications,
and storage and execution space for one or more objects
instantiated by the respective multi-threaded application(s).
The objects instantiated by the respective multi-threaded
application(s) within the application area 214 may be pro-
tected using locks provided and managed within the syn-
chronization object pool storage area 212. One or more
dynamically-managed synchronization object pools may be
implemented as part of one or more multi-threaded appli-
cations themselves, or they may be implemented via sepa-
rate services, operating system-provided features, or load-
able components or modules.

[0055] It is understood that the memory 210 may include
any combination of volatile and non-volatile memory suit-
able for the intended purpose, distributed or localized as
appropriate, and may include other memory segments not
illustrated within the present example for ease of illustration
purposes. For example, the memory 210 may include a code
storage area, an operating system storage area, a code

Feb. 16, 2017

execution area, and a data area without departure from the
scope of the present subject matter.

[0056] A dynamic synchronization object pool manage-
ment module 216 is also illustrated. The dynamic synchro-
nization object pool management module 216 provides
analytical processing for predictive creation of appropri-
ately-sized synchronization object pools according to pre-
dicted utilization of locks, and also provides ongoing
demand-driven pooled synchronization object adjustments
for the core processing module 200, as described above and
in more detail below. The dynamic synchronization object
pool management module 216 may include a prediction
engine component that may execute independently of, and in
some cases prior to, a process that will use a synchronization
object pool of a predicted size, along with a dynamic
synchronization object pool management runtime compo-
nent that may execute as part of such a process. The dynamic
synchronization object pool management module 216
implements the automated dynamic synchronization object
pool management of the core processing module 200.
[0057] It should also be noted that the dynamic synchro-
nization object pool management module 216 may form a
portion of other circuitry described without departure from
the scope of the present subject matter. Further, the dynamic
synchronization object pool management module 216 may
alternatively be implemented as an application, service, or
operating system provided feature stored within the memory
210. In such an implementation, the dynamic synchroniza-
tion object pool management module 216 may include
instructions executed by the CPU 202 for performing the
functionality described herein. The CPU 202 may execute
these instructions to provide the processing capabilities
described above and in more detail below for the core
processing module 200. The dynamic synchronization
object pool management module 216 may form a portion of
an interrupt service routine (ISR), a portion of an operating
system, a portion of a web server or browser application, or
a portion of any application or system software without
departure from the scope of the present subject matter.
[0058] A timer/clock module 218 is illustrated and used to
determine timing and date information, such as wait times
for releases of locks, as described above and in more detail
below. As such, the dynamic synchronization object pool
management module 216 may utilize information derived
from the timer/clock module 218 for information processing
activities associated with the dynamic synchronization
object pool management described herein.

[0059] The CPU 202, the display 204, the input device
206, the communication module 208, the memory 210, the
dynamic synchronization object pool management module
216, and the timer/clock module 218, are interconnected via
an interconnection 220. The interconnection 220 may
include a system bus, a network, or any other interconnec-
tion capable of providing the respective components with
suitable interconnection for the respective purpose.

[0060] Though the different modules illustrated within
FIG. 2 are illustrated as component-level modules for ease
of illustration and description purposes, it should be noted
that these modules may include any hardware, programmed
processor(s), and memory used to carry out the functions of
the respective modules as described above and in more
detail below. For example, the modules may include addi-
tional controller circuitry in the form of application-specific
integrated circuits (ASICs), processors, antennas, and/or

US 2017/0046207 Al

discrete integrated circuits and components for performing
communication and electrical control activities associated
with the respective modules. Additionally, the modules may
include system level, interrupt service routine level (ISR-
level), and application-level modules as appropriate. Fur-
thermore, the modules may include any memory compo-
nents used for storage, execution, and data processing for
performing processing activities associated with the respec-
tive modules. The modules may also form a portion of other
circuitry described or may be combined without departure
from the scope of the present subject matter.

[0061] Additionally, while the core processing module
200 is illustrated with and has certain components described,
other modules and components may be associated with the
core processing module 200 without departure from the
scope of the present subject matter. Additionally, it should be
noted that, while the core processing module 200 is
described as a single device for ease of illustration purposes,
the components within the core processing module 200 may
be co-located or distributed and interconnected via a net-
work without departure from the scope of the present subject
matter. Many other possible arrangements for components
of the core processing module 200 are possible and all are
considered within the scope of the present subject matter.
Accordingly, the core processing module 200 may take
many forms and may be associated with many platforms.

[0062] FIG. 3 through FIG. 6 described below represent
example processes that may be implemented by devices,
such as the core processing module 200, to perform the
automated dynamic synchronization object pool manage-
ment associated with the present subject matter. It should be
understood that the example processes described below are
different from “executing process” as described above, and
instead represent higher-level processing methodologies. As
such, while the term “process” is overloaded (e.g., used
differently within different contexts) within the present
application, a person of ordinary skill may readily distin-
guish the different uses of the term herein based upon the
clarification provided above. Many other variations on the
example processes are possible and all are considered within
the scope of the present subject matter. The example pro-
cesses may be performed by modules, such as the dynamic
synchronization object pool management module 216 and/or
executed by the CPU 202, associated with such devices. It
should be noted that, for ease of illustration, time out
procedures and other error control procedures are not illus-
trated within the example processes described below. How-
ever, it is understood that all such procedures are considered
to be within the scope of the present subject matter. Further,
the described processes may be combined, sequences of the
processing described may be changed, and additional pro-
cessing may be added or removed without departure from
the scope of the present subject matter.

[0063] FIG. 3 is a flow chart of an example of an imple-
mentation of a process 300 for dynamic synchronization
object pool management. The process 300 represents a
computer-implemented method of practicing the technology
described herein. At block 302, the process 300 predicts, by
a processor that manages synchronization object allocations
within a multi-threaded execution environment, a number of
synchronization objects simultaneously usable during run-
time by a group of threads within the multi-threaded execu-
tion environment. At block 304, the process 300 allocates a
synchronization object pool comprising the predicted num-

Feb. 16, 2017

ber of synchronization objects, each initialized with a
deployment state of undeployed and an acquisition state of
unlocked. At block 306, the process 300 changes over time
the deployment state between deployed and undeployed in
response to requests by threads to deploy and undeploy the
synchronization objects, where the acquisition state is inde-
pendently controlled as the synchronization objects are
acquired and released by the threads. At block 308, the
process 300 adjusts during the runtime the allocated number
of synchronization objects within the synchronization object
pool in response to determined deployment rates of the
allocated number of synchronization objects.

[0064] FIG. 4 is a flow chart of an example of an imple-
mentation of a process 400 for dynamic synchronization
object pool allocation. The process 400 represents a com-
puter-implemented method of performing the subject matter
described herein. The process 400 may be invoked respon-
sive to a system start up, on demand, or otherwise as
appropriate for a given implementation. In response to being
invoked, the process 400 begins processing to analyze code
of at least one application that executes within a multi-
threaded execution environment. At block 402, the process
400 determines a number of objects that may be held
simultaneously by a thread. The determination of the num-
ber of objects that may be held simultaneously by the thread
allows the process 400 to determine a maximum number of
synchronization objects per thread in accordance with an
identified maximum number of synchronization objects per
routine and a maximum depth of a call chain comprising
each routine within the at least one application. At block
404, the process 400 determines a maximum number of
simultaneous objects to protect. Determining the maximum
number of simultaneous objects to protect may involve
predicting the number of synchronization objects in accor-
dance with the determined maximum number of synchro-
nization objects per thread and a determined number of
threads simultaneously executable within the at least one
application. At block 406, the process 400 assigns a number
of locks to create according to the maximum number of
simultaneous objects to protect. Some implementations may
employ alternate techniques to determine the maximum
number of simultaneous objects to protect. For example,
some implementations may perform code analysis to obtain
a predicted count of a number of objects to protect and may
thus ensure that the synchronization object pool size is
sufficient to allow protection of those objects by all threads
simultaneously executable within the at least one applica-
tion.

[0065] At block 408, the process 400 allocates the deter-
mined number of locks within a synchronization object pool.
As described above, the acquisition state indicators may be
allocated within a separate data structure or as a paired
indicator associated with each deployment state indicator
used to manage deployment of each synchronization object,
or alternatively, the acquisition state indicators may be
implemented within the locks themselves. At block 410, the
process 400 allocates one or more pool management data
structure(s) (e.g., a deployment state bit vector), and allo-
cates the additional acquisition state data structure (and
acquisition state bit vector) if appropriate for the given
implementation. As such, the process 400 maintains a pool
management data structure comprising, for each allocated
synchronization object within the synchronization object
pool, a deployment state indicator that identifies the deploy-

US 2017/0046207 Al

ment state of the respective allocated synchronization object
as one of deployed and undeployed. The process 400 may
further maintain within the pool management data structure,
for each allocated synchronization object within the syn-
chronization object pool, an acquisition state indicator that
identifies the acquisition state of the respective allocated
synchronization object as one of locked and unlocked, as
appropriate for the given implementation. It should be noted
that, as described above, the acquisition state data structure/
indicators may alternatively be provided at an operating
system (OS) level or otherwise as appropriate for a given
implementation. As described in more detail below, the
allocated number of synchronization objects and the allo-
cated number of data structure indicators may be adjusted
over time in accordance with changes in demand for the
pooled synchronization objects.

[0066] FIG. 5 is a flow chart of an example of an imple-
mentation of a process 500 for updating deployment states
of synchronization objects within a synchronization object
pool. The process 500 represents a computer-implemented
method of performing the subject matter described herein.
At block 502, the process 500 receives a request to use or
return a synchronization object from or back to a synchro-
nization object pool, respectively. At block 504, the process
500 updates a deployment state of a synchronization object
that is either deployed from the synchronization object pool
or returned to the synchronization object pool to deploy or
undeploy, respectively. It should be noted that the acquisi-
tion state of the synchronization object may be indepen-
dently changed between locked and unlocked as the thread
acquires and releases a deployed synchronization object.

[0067] FIG. 6 is a flow chart of an example of an imple-
mentation of a process 600 for dynamic synchronization
object pool size adjustment. The process 600 represents a
computer-implemented method of performing the subject
matter described herein. The process 600 may be invoked
routinely or otherwise as appropriate for a given implemen-
tation to adjust the allocated number of synchronization
objects within the synchronization object pool. It should also
be noted that the process 600 may iteratively adjust the
allocated number of synchronization objects within the
synchronization object pool over time to increase and
decrease, respectively, the allocated number of synchroni-
zation objects in accordance with a quantity of synchroni-
zation objects in use by the threads. At decision point 602,
the process 600 makes a determination whether to change
the allocated synchronization object pool size. As described
above, the pool size may be increased or decreased in
accordance with the runtime use of the allocated synchro-
nization objects. For example, where a set or percentage of
allocated synchronization objects are undeployed for
extended periods of time, the undeployed synchronization
objects may be removed from the pool to reduce memory
consumption of unutilized locks and state indicators. Alter-
natively, where it is determined that all or virtually all locks
remain deployed for large percentages of time, or where an
increased demand for locks is detected or expected, addi-
tional synchronization objects may be allocated as pool
members.

[0068] In response to determining at decision point 602 to
change the allocated synchronization object pool size, the
process 600 determines a pool allocation size adjustment at
block 604, which as described above may include a deter-
mination of an increased number or decreased number of

Feb. 16, 2017

synchronization objects. At block 606, the process 600
adjusts during runtime the number of synchronization
objects and deployment state indicators in the synchroniza-
tion object pool. The process 600 may dynamically adjust
the number of allocated synchronization objects, and may
dynamically adjust the number of deployment state indica-
tors within a pool management data structure during runtime
responsive to adjusting during the runtime the allocated
number of synchronization objects within the dynamic syn-
chronization object pool. The adjusted number of deploy-
ment state indicators within the pool management data
structure correlates with the adjusted number of synchroni-
zation objects within the dynamic synchronization object
pool. The process 600 returns to decision point 602 and
iterates responsive to determinations to adjust the allocated
pool size as described above.

[0069] As such, the process 600 performs an analysis,
which may include use of static analysis, control flow
analysis, synchronization object deployment rate analysis,
or probabilistic analysis, to predict a number of synchroni-
zation objects simultaneously usable during runtime by
threads within a multi-threaded execution environment, and
allocates the predicted number of synchronization objects
within a synchronization object pool along with pool-level
object management bits. The process 600 performs runtime
adjustment of the allocated number of synchronization
objects within the dynamic synchronization object pool
according to the runtime demand for the synchronization
objects within the pool.

[0070] As described above in association with FIG. 1
through FIG. 6, the example systems and processes provide
dynamic synchronization object pool management. Many
other variations and additional activities associated with
dynamic synchronization object pool management are pos-
sible and all are considered within the scope of the present
subject matter.

[0071] Those skilled in the art will recognize, upon con-
sideration of the above teachings, that certain of the above
examples are based upon use of a programmed processor,
such as the CPU 202. However, the invention is not limited
to such example embodiments, since other embodiments
could be implemented using hardware component equiva-
lents such as special purpose hardware and/or dedicated
processors. Similarly, general purpose computers, micropro-
cessor based computers, microcontrollers, optical comput-
ers, analog computers, dedicated processors, application
specific circuits and/or dedicated hard wired logic may be
used to construct alternative equivalent embodiments.
[0072] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0073] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a

US 2017/0046207 Al

random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0074] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0075] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0076] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of

Feb. 16, 2017

blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0077] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0078] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0079] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0080] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the invention. As used herein, the singular
forms “a,” “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises”
and/or “comprising,” when used in this specification, specify
the presence of stated features, integers, steps, operations,
elements, and/or components, but do not preclude the pres-
ence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.

[0081] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,

US 2017/0046207 Al

or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art based upon the teachings herein
without departing from the scope and spirit of the invention.
The subject matter was described to explain the principles of
the invention and the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. A computer-implemented method, comprising:

predicting, by a processor that manages synchronization

object allocations within a multi-threaded execution
environment, a number of synchronization objects
simultaneously usable during runtime by a plurality of
threads within the multi-threaded execution environ-
ment;

allocating a synchronization object pool comprising the

predicted number of synchronization objects, each ini-
tialized with a deployment state of undeployed and an
acquisition state of unlocked;

changing over time the deployment state between

deployed and undeployed in response to requests by
threads to deploy and undeploy the synchronization
objects, where the acquisition state is independently
controlled as the synchronization objects are acquired
and released by the threads; and

adjusting during the runtime the allocated number of

synchronization objects within the synchronization
object pool in response to determined deployment rates
of the allocated number of synchronization objects.
2. The computer-implemented method of claim 1, where
predicting, by the processor that manages the synchroniza-
tion object allocations within the multi-threaded execution
environment, the number of synchronization objects simul-
taneously usable during the runtime by the plurality of
threads within the multi-threaded execution environment
comprises:
analyzing code of at least one application;
determining a maximum number of synchronization
objects per thread in accordance with an identified
maximum number of synchronization objects per rou-
tine and a maximum depth of a call chain comprising
each routine within the at least one application; and

predicting the number of synchronization objects in
accordance with the determined maximum number of
synchronization objects per thread and a determined
number of threads simultaneously executable within
the at least one application.

3. The computer-implemented method of claim 1, where
changing over time the deployment state between deployed
and undeployed in response to requests by the threads to
deploy and undeploy the synchronization objects comprises,
for each deployment of a synchronization object from the
synchronization object pool:

receiving a request from a thread to use the synchroniza-

tion object from the synchronization object pool;
updating the deployment state of the synchronization
object to deployed; and

Feb. 16, 2017

independently changing the acquisition state of the syn-
chronization object between locked and unlocked as the
thread acquires and releases the synchronization object.

4. The computer-implemented method of claim 1, where
adjusting during the runtime the allocated number of syn-
chronization objects within the synchronization object pool
in response to the determined deployment rates of the
allocated number of synchronization objects comprises:

iteratively adjusting the allocated number of synchroni-

zation objects within the synchronization object pool
over time to increase and decrease, respectively, the
allocated number of synchronization objects in accor-
dance with a quantity of synchronization objects in use
by the threads.

5. The computer-implemented method of claim 1, further
comprising maintaining a pool management data structure
comprising, for each allocated synchronization object within
the synchronization object pool, a deployment state indica-
tor that identifies the deployment state of the respective
allocated synchronization object as one of deployed and
undeployed.

6. The computer-implemented method of claim 5, further
comprising maintaining within the pool management data
structure, for each allocated synchronization object within
the synchronization object pool, an acquisition state indica-
tor that identifies the acquisition state of the respective
allocated synchronization object as one of locked and
unlocked.

7. The computer-implemented method of claim 1, further
comprising dynamically adjusting a number of deployment
state indicators within a pool management data structure
during the runtime responsive to adjusting during the run-
time the allocated number of synchronization objects within
the synchronization object pool, where the adjusted number
of deployment state indicators within the pool management
data structure correlates with the adjusted number of syn-
chronization objects within the synchronization object pool.

8. A system, comprising:

a memory; and

a processor that manages synchronization object alloca-

tions within a multi-threaded execution environment

programmed to:

predict a number of synchronization objects simulta-
neously usable during runtime by a plurality of
threads within the multi-threaded execution environ-
ment;

allocate a synchronization object pool comprising the
predicted number of synchronization objects, each
initialized with a deployment state of undeployed
and an acquisition state of unlocked;

change over time the deployment state between
deployed and undeployed in response to requests by
threads to deploy and undeploy the synchronization
objects, where the acquisition state is independently
controlled as the synchronization objects are
acquired and released by the threads; and

adjust during the runtime the allocated number of
synchronization objects within the synchronization
object pool in response to determined deployment
rates of the allocated number of synchronization
objects.

9. The system of claim 8, where, in being programmed to
predict the number of synchronization objects simultane-

US 2017/0046207 Al

ously usable during the runtime by the plurality of threads
within the multi-threaded execution environment, the pro-
cessor is programmed to:

analyze code of at least one application;

determine a maximum number of synchronization objects
per thread in accordance with an identified maximum
number of synchronization objects per routine and a
maximum depth of a call chain comprising each routine
within the at least one application; and

predict the number of synchronization objects in accor-
dance with the determined maximum number of syn-
chronization objects per thread and a determined num-
ber of threads simultaneously executable within the at
least one application.

10. The system of claim 8, where, in being programmed
to change over time the deployment state between deployed
and undeployed in response to requests by the threads to
deploy and undeploy the synchronization objects, the pro-
cessor is programmed to, for each deployment of a synchro-
nization object from the synchronization object pool:

receive a request from a thread to use the synchronization
object from the synchronization object pool;

update the deployment state of the synchronization object
to deployed; and

independently change the acquisition state of the synchro-
nization object between locked and unlocked as the
thread acquires and releases the synchronization object.

11. The system of claim 8, where, in being programmed
to adjust during the runtime the allocated number of syn-
chronization objects within the synchronization object pool
in response to the determined deployment rates of the
allocated number of synchronization objects, the processor
is programmed to:

iteratively adjust the allocated number of synchronization
objects within the synchronization object pool over
time to increase and decrease, respectively, the allo-
cated number of synchronization objects in accordance
with a quantity of synchronization objects in use by the
threads.

12. The system of claim 8, where the processor is further
programmed to maintain a pool management data structure
comprising, for each allocated synchronization object within
the synchronization object pool:

a deployment state indicator that identifies the deploy-
ment state of the respective allocated synchronization
object as one of deployed and undeployed; and

an acquisition state indicator that identifies the acquisition
state of the respective allocated synchronization object
as one of locked and unlocked.

13. The system of claim 8, where the processor is further
programmed to dynamically adjust a number of deployment
state indicators within a pool management data structure
during the runtime responsive to adjusting during the run-
time the allocated number of synchronization objects within
the synchronization object pool, where the adjusted number
of deployment state indicators within the pool management
data structure correlates with the adjusted number of syn-
chronization objects within the synchronization object pool.

14. A computer program product, comprising:

a computer readable storage medium having computer
readable program code for managing synchronization
object allocations within a multi-threaded execution
environment embodied therewith, where the computer
readable storage medium is not a transitory signal per

11

Feb. 16, 2017

se and where the computer readable program code

when executed on a computer causes the computer to:

predict a number of synchronization objects simulta-
neously usable during runtime by a plurality of
threads within the multi-threaded execution environ-
ment;

allocate a synchronization object pool comprising the
predicted number of synchronization objects, each
initialized with a deployment state of undeployed
and an acquisition state of unlocked;

change over time the deployment state between
deployed and undeployed in response to requests by
threads to deploy and undeploy the synchronization
objects, where the acquisition state is independently
controlled as the synchronization objects are
acquired and released by the threads; and

adjust during the runtime the allocated number of
synchronization objects within the synchronization
object pool in response to determined deployment
rates of the allocated number of synchronization
objects.

15. The computer program product of claim 14, where, in
causing the computer to predict the number of synchroni-
zation objects simultaneously usable during the runtime by
the plurality of threads within the multi-threaded execution
environment, the computer readable program code when
executed on the computer causes the computer to:

analyze code of at least one application;

determine a maximum number of synchronization objects

per thread in accordance with an identified maximum
number of synchronization objects per routine and a
maximum depth of a call chain comprising each routine
within the at least one application; and

predict the number of synchronization objects in accor-

dance with the determined maximum number of syn-
chronization objects per thread and a determined num-
ber of threads simultaneously executable within the at
least one application.

16. The computer program product of claim 14, where, in
causing the computer to change over time the deployment
state between deployed and undeployed in response to
requests by the threads to deploy and undeploy the synchro-
nization objects, the computer readable program code when
executed on the computer causes the computer to, for each
deployment of a synchronization object from the synchro-
nization object pool:

receive a request from a thread to use the synchronization

object from the synchronization object pool;

update the deployment state of the synchronization object

to deployed; and

independently change the acquisition state of the synchro-

nization object between locked and unlocked as the
thread acquires and releases the synchronization object.

17. The computer program product of claim 14, where, in
causing the computer to adjust during the runtime the
allocated number of synchronization objects within the
synchronization object pool in response to the determined
deployment rates of the allocated number of synchronization
objects, the computer readable program code when executed
on the computer causes the computer to:

iteratively adjust the allocated number of synchronization

objects within the synchronization object pool over
time to increase and decrease, respectively, the allo-

US 2017/0046207 Al Feb. 16, 2017
12

cated number of synchronization objects in accordance
with a quantity of synchronization objects in use by the
threads.

18. The computer program product of claim 14, where the
computer readable program code when executed on the
computer further causes the computer to maintain a pool
management data structure comprising, for each allocated
synchronization object within the synchronization object
pool, a deployment state indicator that identifies the deploy-
ment state of the respective allocated synchronization object
as one of deployed and undeployed.

19. The computer program product of claim 18, where the
computer readable program code when executed on the
computer further causes the computer to maintain within the
pool management data structure, for each allocated synchro-
nization object within the synchronization object pool, an
acquisition state indicator that identifies the acquisition state
of the respective allocated synchronization object as one of
locked and unlocked.

20. The computer program product of claim 14, where the
computer readable program code when executed on the
computer further causes the computer to dynamically adjust
a number of deployment state indicators within a pool
management data structure during the runtime responsive to
adjusting during the runtime the allocated number of syn-
chronization objects within the synchronization object pool,
where the adjusted number of deployment state indicators
within the pool management data structure correlates with
the adjusted number of synchronization objects within the
synchronization object pool.

#* #* #* #* #*

