a9y United States

Tomatsuri et al.

US 20170046262A1

a2y Patent Application Publication (o) Pub. No.: US 2017/0046262 A1l

43) Pub. Date: Feb. 16, 2017

(54) ARITHMETIC PROCESSING DEVICE AND Publication Classification
METHOD FOR CONTROLLING (51) Int. Cl
ARITHMETIC PROCESSING DEVICE G0-6 F 1 2/0804 (2006.01)
GO6F 12/0815 2006.01
(71) Applicant: FUJITSU LIMITED, Kawasaki-shi (52) US. CL ()
(P) CPC ... GO6F 12/0804 (2013.01); GOGF 12/0815
R . . .) (2013.01); GOGF 2212/1041 (2013.01); GO6F
(72) Inventors: Hideaki Tomatsurl, Narashino (JP), 22712/283 (201301), GO6F 2212/62 (201301)
NAOYA ISHIMURA, Tama (JP);
Hiroyuki Kojima, Kawasaki (JP) (57 ABSTRACT
An arithmetic processing device includes a plurality of core
units, each including a plurality of cores each having a
(73) Assignee: FUJITSU LIMITED, Kawasaki-shi arithmetic and logic unit, and a cache memory shared by the
IP) plurality of cores; a home agent connected to the cache
memories provided respectively in the core units; and a
memory access controller connected to the home agent and
(21) Appl. No.: 15/213,737 controls access to a main memory. The cache memories each
includes a data memory having cache blocks, and a first tag
which stores a first state indicating a MESI state, for each of
(22) Filed: Jul. 19, 2016 the cache blocks, and the home agent includes a second tag
which stores a second state including at least a shared
(30) Foreign Application Priority Data modify state in which dirty data is shared by cache memo-
ries, for each of the cache blocks in the cache memories
Aug. 12,2015 (JP) cooecccceee 2015-159301 provided respectively in each of the core units.
CPUO Cpru1 CPU2 CPU3
16(core+L) 16(core+L) 16(core+L) 16(core+L)
COREICOREICORE| |CORE| ICORE/ICORECORE| |CORE| |COREICOREICORE| ICORE, [COREICOREICORE| ICORE
Lzl L { L1 L1 LII Li | L1 L1 I_Il L1 [L1 L1 LII L1 | L1 L1
LLC LLC LLC LLC
HA HA HA HA
MAC natF| [MAC na e | |AC NaTF| |G NA_IF
PCI PCI t PCI PCI
RT RT RT RT
..T,J AL \ L_..T..J !
! +
\

US 2017/0046262 Al

Feb. 16,2017 Sheet 1 of 29

Patent Application Publication

snd
~

4] /// A
N |
T J 19k / J 1k U
Dd Dd Dd Dd
4I°YN R REAL — 4IYN " RREAL S
VH VH YH VH
5T M o83 T
] [T 1 1] TTT T] [T ”xj] 1] T T T
EvTon M on N en o IO BRER SR e o s o B EL o 0 Ml ET o R Eren e 00 BET o8 BB ET RN O R E o)
ﬁ ._+®.~00v©ﬂ A ._+®LOUv©.m A ._+®._0Uv®.ﬁ A._+®‘_O..uv©.m
€Ndd ZNdd Ndd ondd
MIE!

US 2017/0046262 Al

Feb. 16, 2017 Sheet 2 of 29

Patent Application Publication

SS300V A4OW3N AIHILSIOTY ues)p

SS300V AHOW3N

nx

HS-TI

NdO-d Ndo-H Ndo-1

¢ Old

US 2017/0046262 Al

Feb. 16,2017 Sheet 3 of 29

Patent Application Publication

AJOWIW AdOWINW
IV (111 OV
o1 1 107 oMo € 2o i1} o1
211 VH 9135 VH 9115 YH 3)e1s vH 21015 VH 91818 VH 91215 VH 93815 YH
vH VH
e K]
i 1y) _ I , .]
] snd -]
oM oM 4IWN oM M 5T oM 41N om oT
ooty | t e R 1 Ll
21 21 |4 Z1 1 AN KA 1 1 a1 | 1 Z A4 21
11 11| 11 11 il {1 11 T RS Ti T -{ 1 1 T1
T900| [3W0D| [FW0D] [FW0D 3W00| [3W0D| (FW0D| [FWOD 3900| [FW0D| [FW0D| [TW0D F900] (3900 [FH0D| U0
Tl | @ | PAId v || e Mz | T e || d | T || Gz
+81009) +21009) +21009) +24009) +21029) +31059) +21039) +81029)
(€apou)end (zepou)znd (tepou)TndT (03POw)onD | | (g9pou)endy (zepou)zndi (1epou)1n (0@POU)ONDT

NdD

€Ol

0Ndd

US 2017/0046262 Al

Feb. 16, 2017 Sheet 4 of 29

Patent Application Publication

VI
v A
¥4
NdD 8430 Jo/pue D ‘OT1 LINA TOULNOD vivd NdD 230 Jo/pue Dy DT
(S VH)
OVL
T
J LINN fe LINA e
2dId NOLLD313S e NOLLAFDIY k-
b 1sandad [Lsandad [S
Z J, ~ -
LINN LNdLNO 1S3ND3Y [44
> 7 a4
VH T¢ 0¢
y A
PR— 1
sng vy 4 v 1 v N VR
_m|a|En Jo&zom mwn_zH viva T Tt ToJpue Vi
viva oviel k] 1ovim
V2 2 LINN | 1NNk
€T 21— 3did NOLLDFT3S f{NOLLdIDTY f&-
T 153n03y M 1sanbay M
YOI tnaino tsanoaa 7
o1renot | | oreno | | oo TN Hﬂ H\

US 2017/0046262 Al

Feb. 16,2017 Sheet 5 of 29

Patent Application Publication

NdD NI ST NIIMLIQ QIUVHS ST VIVA (PRUIPOIW) W :Z
NdD NI SOT1 NI3MLIE GIUVHS ST viva (SAIsnpx3) 3 1y

pijeauj 3
paJeys :s
AISNIXT 3
POUIPOW I
W W 8
W W L
W 3 9
3 3 g
W paleys ‘ payipol :Z b
3 paleys ‘aAIsnpx3 iy £
S S 4
I I 1
NdD Y3IHLO IHL WO (57835 JuBbe dwoy) (21235 Byoed [9AS) 158Y) 1IVLS
Q3IMIIA SY NdD IHL 40 3LVIS S VH ST
G oOld

1DVL T €N

=

@

@

= i I9VL™T1 201

= Zno

>

7]

R |

il Xapuf
= - -u
SVH lssauaay owili-u xepur ST _|ss3uaav ov T-U Xop

a ,

cm - a Xopu

- S VH |Ss3uaay ovil T xepur g STT1 |SS3Yaav Ovi T xepul
- J Xopu

2 e SvH |Ss3daav ovil| 0 xepur T Aem STT1 |SS3WAqQv OVl 0 Xepul

r~ -~

2 0 Aem i 0 Aem I9VLT1 10T

=) _

= _

= S™VH |SsTuaav ov.L|T-u xepur _

: S™T1 |SSTUAQY OV T-u Xepu]

E :

g SVH |ssadaav ovi| T xepu] _

= e = 0 XopUI \ STT1 |SSFuaav ovy T XePul

= e VH |Ss3waav ov. _

w k || > > o T Aem ST11 |SS3daav ovl 0 xspul

(=]

E 0 Aem 0N -

[

2 0 Aem TOVL™T1 0N

= VH Ul 29V T

£ 9'Old

=W

US 2017/0046262 Al

Feb. 16,2017 Sheet 7 of 29

Patent Application Publication

czs Lo 12S aNg ang |
\ 1 S i 1
WIa 3Lvadn 1A 3Lvadn YH NI STVH 3Lvadn
YH NI STVH 3Lvadn VH NI STVH 31vadn 1S3N0IY ONLLYNIOTIO
153n03d ONLLYNIOIHO 153N0TY ONLLYNIORIO JOTINIS Ti3Lvadn ang
JTINIS T13dLlvddn IJTINIS T13alvddn 153N0TY ONLLYNIOTMO T
153N03d ONLLYNIDTHO 153n03d ONLLYNIOTIO 1 0L V1VQ Y34SNVIL
7101 V1VQ Y34SNVL 7101 VY1VQ Y34SNYHL 15INOTY
V.AVA SIAIEDTY 153n0IY | | v.Lva SIAIZDIY 1S3n0OIY ONLIVNIOTIOI LS3NDIY ONLLYNIOIHO
ONLLYNIOIJO D71 ONLLYNIOTHO DT OTIOLNdD NI|| 2701 VLiVQ ¥3dSNvEL
Y.Lva ONICTOH JT1 ¥3HI0 «
1 1 = WO VLVQ W34Sy L vvd wzaﬂox il
NdD sWoH OL 1S3N03d IV OL 1S3n03d r 3 N
an3
—— < 8TS vis (9
275 0ZS NdD NI V.iva
. ONIQTOH OT1 43H10 OL 1Sand3d
¢NOIS3Y [e20] Y34SNVYL V1IVA 1S3ND3Y ONLLYNIORIO 21 OL
= SS300V < V1VQ UIASNVIL
STVH HOUvd
$viva 1S 5

QIOH NdD NI

JT1 43H10
S30d

S VH HOYV3S

\\ F 3
GIS

\\
€1s

L OI4

US 2017/0046262 Al

Feb. 16,2017 Sheet 8 of 29

Patent Application Publication

anto

arndto

(Tavom atnd o
o arnoto
X3 arnoto k\ al
33 .\ S
s ¢ S / 4
f ponny e b
q arndd w o
| X3 a1 ndd o
In
9
(EQVOT) _
arnmTo| | X3 al
1S7340)
- _ Y
(zavom (A aranndd o

0@ ar'annmto

Q (SVH)S (S™TN)S
(43gWNN 31IVIS)T

X3 arndro

US 2017/0046262 Al

Feb. 16,2017 Sheet 9 of 29

Patent Application Publication

T-TITTTLTTIITTTI=[0:STINdD HS-4=YIq »aQy
0-100000000000T0=[0:511NdD HS-d=¥Id £aay
0-00000000000000=[0:5T1NdD 1=4Id zaay
0-00000000000001=[0:511NdD X3-4=y1d 1aay
(NdD NDIVL VLVA 40 NOLLYIWYOANI) VLS (SLINN Y2079 IHOVD NI)
¢(3AON HOIHM ANY) NdD HOIHM ss3yaayv
AdOLOTIIa
6'9l4

O4NI ¥IQ 31vadn

US 2017/0046262 Al

— MR .
SSAVDV — \ v
L N ST sfi]1]s

(=)

i) A~

= O<INI ¥IQ LNO Qv

2 N

3111

& G— _

Q SSEADV \fglr{1f1}) s

& AUOWIW alli]1]1

v

5 AHOWIW AHOWIW ~_ 7

& £-0N01 £-0N07

Nd2-1

- Ndo-1

S

3 }

2 s STVH ANV ST

[~ "

=

S

Z

e :

2 0L ©ld

g

-

="

S WH

ST

S VH
Viva avol
ST

US 2017/0046262 Al

Feb. 16,2017 Sheet 11 of 29

Patent Application Publication

... (NdD dwoH)
AOWIW
3IVLS 3 NI VAV STTOH NdD ™ NdD 3HL
FUVLS 3 NI VAVA STTOH €N 40 DT "
8¢S (vI-1-v)s vHavadn [P A, L
LES NOLLYDIJLLON SELISNVAL VIV
NOLLTTdIWOD Y34SNVL YLva 1y
SRRV S 2N I)
GES (S+3)S 11 31vadn @) 571 OT1 €D
YI4SNVAL VLVa
9¢S (S—1)S™T1 31vadn (T4 - 1€6 ssw oy 1) S 11 2T10M01 3 Ndd 1
ISNOSTY Y1V
e avay IHOWD 71

ARIE

US 2017/0046262 Al

—meee e ————— e (ndD BWOH)
(€'0n07 ‘HS-W) (end1 ‘x3-u) § AOWIN
¥1a 31vadn dIQ HOYY3S
Y 8¢S vV £€S
(=)
S LES NOLWOMLON RISNIL WG
~ NOLLI1dWOD
= YIISNVHL VIVA
i e 25 IS U 14
~ —
= vV €S
(g\]
= \
S meesmmeemeeson e e N e BREREr T LT re D11 €N
c GES (S—3)s 71 31vadn @ s T
UIISNVUL VIVa -
.......... et = 2=z OT10NDTH Nd ™
9¢S (S—Ds 11 3alvadn T 1€S ssiw oy {D ST
SNOd53d viva 0£S153NDIY avOT
,,, -3HOVD 1
Tid avad J

¢l Old

Patent Application Publication

US 2017/0046262 Al

Feb. 16,2017 Sheet 13 of 29

Patent Application Publication

O4NI ¥WIA 31vadn
viva 31vadn

Wmmuu,q IfII3) s M
AGOW3NW

iy

O4NI ¥IQ 1NO av3d

O4NI
- Ga—)
SS300V W S™

AdOWINW
AHOWIN © C

€-0NJ1
NdO-1

ST

€194

I

I T WNSWH

i)

ST

_mH I INSVH

W

I

I

I

AdOWAW

SVYHANVS T1

€-0No1
Ndo-1

V1iva avol
ST

US 2017/0046262 Al

.. (ndD stioH)
AUOWIW
J1VLS 3 NI VLVA SATOH NdD ™1 NdD 3HL
2 31VIS 3 NI V.va SAT0H €ND140 DM h
N —— e e
3 81/S (I--I-W)S™VH 3Lvadn 153nd f(31-1D) SWH
= YIISNVIL Viva
g /bS NOLIVDI4LION b
= NOLLITdWOD HIISNVYL VIvd
B e e e ¥ e 1
r~
y—
>
o
&
y—
m e e 1 8 51010
GHS QuvISIa ‘(I < W) ST 3lvadn W) s
YIASNVUL Viva
::: 771 0NO1 \ NdD ™1

9vS (3—1)S™T1 Advadn [TH
JSNOJSTY VIVQ ObS LSANOTE QVOT

T avad

1 Old

Patent Application Publication

THSssiw oyl {(D ST

-3JHOVO T
J

US 2017/0046262 Al

Feb. 16,2017 Sheet 15 of 29

Patent Application Publication

31VLS 3 NI VIva SATOH NdD 1 NdD 3HL

MOVE-ILTHM ViIVa 31VLS I NI VLVQ STI0H £N2140 DT
Y 8PS (0nD1 ‘X3-¥) (€nD1 ‘x3-d)
WIA 2LVadn I HOYYIS
YV EHS

1s3n03y
YI4SNVHL ViIva

142°)

V' LbS
43ISNVYL VIVA

SHS QUVOSIA ‘(1 < W) S 11 A4vadn
YIISNVYL VIVa

9S (3<1)S 11 31vadn
JISNOJSTY Vivda

TbS sswoyy | (DS
0bS 153n03Y avol

e (ndDawoH)
AYOWIW

::::::::::::::: 14

3
;;;;;;;;;;;;;; 11 ENDT

....... 2T10N31 > NdI ™1

-3HOVO 1
avay /

US 2017/0046262 Al

Feb. 16,2017 Sheet 16 of 29

Patent Application Publication

O4NI ¥IA 31vddn
Viva 31vadn

. SS300V
Eozm.z

HEBEEN

O-NI ¥Ia ._.DO av3ay
mmm_uu< ST
AdOW3NW
AHOW3IW €-0M
Ndo-1
ST

91'9l4

N

Z 1 1 ZNSVH

S|{I|1}Sys™

ih

AHOWIAN

W I I INSWVH
+ | viva avotl
Iy s
£€-0NJ1
Ndd-1
STYHANV S T

US 2017/0046262 Al

Feb. 16,2017 Sheet 17 of 29

Patent Application Publication

e, DD BLWoH)
AHOWIW
31VIS W NI VLVA SATOH NdD ™1 NdD 3HL
V.LVA ALYIA STTOH €N 40 DT "
9GS (z-1-1-2)S"VH 31vadn 1$3N0 f(W-1-1-D m;m:
YIISNVUL VIVQ S
/GS NOLLVDIJLLON »GS
NOLLTTdWOD Y34SNVIL Viva .
oM m:u,_j
565 (S—3)5 T 31vadn B @sm
YIHSNVYL VIVa
................... mmm——ee e - - = ===-= JT] 0ND1
94S (S—DS™ 11 3lvadn i 166 ssiw oyL 1) ST
JISNOJSIY Viva
SNOAS3 ViIv 0SS 1S3IndO3Y avol
.. - 3HOVD 21
T avad
L1'9Old

\ NdD ™

US 2017/0046262 Al

Feb. 16,2017 Sheet 18 of 29

Patent Application Publication

.iw_w%m.mbmg <.~<..o§§l-------..i---.i . {(ndD awoOH)
(0nD1 x3-) (enD1 'x3-d) 1} AOWIW
dIq 31vadn dIa HOYv3asS

YV 8SS vV €GS
1s3anday
YIASNVYL VIva
YIASNVIL VIVa
YV /SS
... 1
YV ¢SS
vV GSS)
auvISIa ‘(0 < W) S 11 31vadn ..--::N__\.,awvnmu._.ﬁ eno1
Y34SNVYL Viva
... 2711 0N

O e - . ——— W " .- - - M .

81 '9Old

TSSssiwoyr]l s
06S 153nN0O3d avo1

Y Ndo ™1

US 2017/0046262 Al

O4NI ¥IQ 31v¥adn PN
1 I 1 3N\SVH
o — v
& ssV \T[1][1][3] sn 1113y s
N AdOWIW
m O4NI dIg 1NO avay D N
= }< Vv I INSWH
K AH v.iva avol
= ssov \SHSIIJIV s slislfili1V s
c AOWIW AYOWINW AHOWIW
€-0NDT £-0nD1

= NdD-1 Ndo-1
2
e - _
= ST STYHANV ST
=1
=W
=
2
E .
= 61 9ld
£
=
=W

US 2017/0046262 Al

Feb. 16,2017 Sheet 20 of 29

Patent Application Publication

e, (DD PWIoH)
AJOWAW
J1VIS 3 NI VAVA SAI0H NdD ™1 NdD 3HL
JIVIS S NI VLVA SAT0H €£/2nD140 0T vH
695 (I-I-1-3) STVH 31vadn 153034 QuvIsIa _
NOLLYOIJLLON % WIJISNVL viva [[(v-¥-ID mmmm
NOILLITdWOD QuvISIa $#9S
........ B Y34SNYIL Viva S e 1
89S i
...................... ————— S e 1 B enot)
G9S (I « S) S™1131vadn (9)s™m
AQUvISIA Vivd
Sy To R S R gUI K. JSyEpEpRpIyEV VI pUpSPRSU UV E 11 2N
995 (1< S)S™T131vadn 295 @sH I
.......... QUYOSIA B ¥I4SNVYL VIVa — N
®sT =l
.................. mmmm——— e e e e 3T ONDT
/9S 3<Ds 11 3avadn {14 T9S ssiwt oYL
ISNOJSaY Viva
09S 1S3nD3Y avol

....... -3HOYD 71

av3ad

US 2017/0046262 Al

Feb. 16,2017 Sheet 21 of 29

Patent Application Publication

(£/2nD1 'X3-d)

dId HOWVES

d1a F1vddn

1S3N03Y QYvDSIA
B Y34SNVYL VIvVd

$9S

NOLLVOI4LLON
NOLLTTdIWOD QuvOSId
8 YIAASNVUL Vivd
89S

G9S (1< S) S 113lvadn
QYvISIa viva

99S (1 < S) S T131lvadn
QUVOSIA B d34SNVIL Vivd

£9S (3<DS 11 3vadn 4
ISNOJSTY Viva

Lo . A .. e e

RRIE

- - .

>NdD 1

.................... (Ndo dwioH)
<!mwm), AJOWINW
......... nd
SRR PRI) « F~1'o) B
S)s
e e 1 1 K41 0} |
v 29S (s
. B e 1 1 R (10}
s
................... ---= 2371 0N
19S ssiw oyL (D ST
09S 1sandad avol
,,,,,,,,,,,,,,,,,,,,,,, -JHOVD T
avayd J

US 2017/0046262 Al

Feb. 16,2017 Sheet 22 of 29

Patent Application Publication

mmmuu< .
adowaw YSII]I] s
<

OdNI
d1Q 31vadn

S\ st o

AdOW3IW

<r
O4NI

d1d 3ivadn

 G—
SS300V EHEH ST

AdOWIW
iy

O=NI
dIa 31vadn

mmmuu< ST

AUOWIIW AJOWAW

€-0N01
NdO-1

ST

SVYHANVS T1

FOoVid3d
£no1

JOV1d3Y
o1

I0V1d3d
Nt

FOV1d3Y
ona1

US 2017/0046262 Al

Feb. 16,2017 Sheet 23 of 29

Patent Application Publication

o e (ndD BWoH)
AOWAW
............... WH
@D (z-11D) (z-1-2-1) (z-z-z-D (zZz22) SVH
S VH 31vadn STVH 31vadn \ $ vH alvadn | S vH 31vadn
18S 8.S G/S LS
.............................. IR
LLS vLS T/S
\
(I~S) S 11 DV1d S)s
64S
(1<S) S™11 VI (8)s™
€/S
.................................. R e T e L DTTINDT
(I~S) S 11 IOV1d3d (8)s™) 0
o JT1 0ND1
(I=S) S™11 VIR (S)S T
04S
... AHOVD 21
A =

*NdD ™1

US 2017/0046262 Al

Feb. 16,2017 Sheet 24 of 29

Patent Application Publication

......... T S = XY) B SR (VX L S (V20
(AND Ia Zivadn | ¥Ia3lvadn | wiadivadn | ¥ia 3ivadn
v 18S vV 8LS VeS| Vs

085 £LS bLS 148

B R e R L L L

- o - G e M - W e e e e ol

- - - . - - bt A M W W W A e e e R R WA R e G e e N e M A S e e B G A G G e W A e e e Ve A e

.

TAS

- -

A Ly ———

- -

(I~S) S11 FDVIdA

945

Bk I R R

04S

- - . - -~

. e ma s we w hes ew me e me e b e e

cmmmmmmmmme e e DT ENOT

(s)sm

8)s

-

(I1<S)S ™11 IOvidId () s T

(ndD swoH)
AYOWINW

\

;;;;;;;;;;;;;;;;;;;; 11 ZNDT

211 1001

311 0ND7

AHOVO 71)

>NdD

Patent Application Publication Feb. 16,2017 Sheet 25 of 29 US 2017/0046262 A1

x
@)
=
i
=
o w t = i
O <3
LL] ot | e] |]
n 9 v Y%
_|| <C J <
| T -l T

STATES(E/E)
STATE6(M/E)

Patent Application Publication Feb. 16,2017 Sheet 26 of 29 US 2017/0046262 A1

MEMORY

© T ="

N >0 - I I

\ oD

O, 2ol [=] |- ~1 |-

LL. " s - s
v Y v Y
Jl <t .|I <
- T -t €I

STATE7(E/M)
STATE8(M/M)

Patent Application Publication Feb. 16,2017 Sheet 27 of 29 US 2017/0046262 A1

MEMORY

- Pooet (31]
N~ =
N 22 ([~ |- =] |-
O %3
L = s = |
v 9 v Y
_J' < ..Jl <
- T - I

STATE8(M/M)
STATE7(E/M)

Patent Application Publication Feb. 16,2017 Sheet 28 of 29 US 2017/0046262 A1

MEMORY

(75 N — [
0 0] - ™
AN A o n N - =
. Q2D
@) g\ [-] |- = |-
wn U')l 17p) U)I
_.II <C ._ll <
| T ~d I

STATEA(S/Z)
STATE7(E/M)

Patent Application Publication

(o)) > 0
N &S
o i
LL

Feb. 16,2017 Sheet 29 of 29

US 2017/0046262 Al

.
o
=
Ll
=
/
) o
Jrooe
— oot -
w w 7))
= |- =
L~
9 9 9
<
| T o

HA_S

STATES(E/E)
STATE2(S/S)

US 2017/0046262 Al

ARITHMETIC PROCESSING DEVICE AND
METHOD FOR CONTROLLING
ARITHMETIC PROCESSING DEVICE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the
benefit of priority of the prior Japanese Patent Application
No. 2015-159301, filed on Aug. 12, 2015, the entire contents
of which are incorporated herein by reference.

FIELD

[0002] The present invention relates to an arithmetic pro-
cessing device, and a control method for an arithmetic
processing device.

BACKGROUND

[0003] An arithmetic processing device (CPU: central
processing unit or processor) has a plurality of cores, a last
level cache (hereinafter, LL.C) which is nearest to the main
memory in the memory hierarchy and which is shared by the
plurality of cores, and a memory controller. The memory
hierarchy includes, for example, a level 1 cache (L1 cache)
which is provided inside the core, and a level 2 cache (.2
cache) which is provided outside the core, is shared by the
plurality of cores, and is connected to the main memory
outside the processor. In this case, the .2 cache which is
nearest to the main memory corresponds to the LLC. Alter-
natively, if the memory hierarchy has an [.1 cache and an .2
cache in the cores, and outside the cores, a level 3 cache (L3
cache) which is connected to the main memory outside the
processor and which is shared by the plurality of cores, then
the L3 cache nearest to the main memory corresponds to the
LLC.

[0004] In any hierarchical structure, if a cache miss occurs
in the LLC, then the LLC issues a fetch request to the
memory controller of the processor managing the data, and
the memory controller accesses the main memory, reads out
the data, and provides a data response to the LLC originating
the request. The LLC originating the request registers the
read out data in the cache (cache fill), and also sends a data
response to the core.

[0005] The volume of caches is tending to increase. In
other words, the number of cores integrated into a CPU chip
is increasing with process miniaturization. Furthermore,
with the increase in the number of cores (number of threads),
the associativity (number of ways) in a set associative cache
rises. Along with this, the volume of the LLC which is
shared by the plurality of cores also increases. Consequently,
high-end processor chips are tending to increase in size with
improvements in performance, despite the reduction in sur-
face area achieved by the miniaturization.

[0006] In the midst of these circumstances, if an LLC
configuration is adopted which enables a many-core proces-
sor equal access from each of the cores, then the data access
path to the LL.C becomes longer, due to the large chip size
and the large-capacity LLC, and the hit latency of the LL.C
increases.

[0007] Therefore, rather than a single LLC configuration
which is shared by all of the cores, a configuration has been
proposed in which the LLC is divided into a plurality of
caches, and a plurality of core groups respectively share
each of'the divided LL.Cs. In a configuration of this kind, the

Feb. 16, 2017

LLC shared by each core group has a smaller capacity, the
physical distance from the core to the LL.C in the core group
is shorter, the control is also simplified, and high-speed
access becomes possible. In other words, compared to a
single large-capacity LLC configuration which permits
equal access from all of the cores, adopting a configuration
which includes a plurality of core groups in which a limited
number of cores share LL.C of small capacity enables faster
hit latency of the LLCs.

SUMMARY

[0008] However, when a configuration is adopted in which
a plurality of LLCs are provided in a single arithmetic
processing device, then in the course of coherency control
between the plurality of LLCs, there is frequent occurrence
of access to the directory in the main memory, and write-
back access to the main memory on the basis of the MESI
protocol, and so on. This kind of increase in the frequency
of access to the main memory leads to a decrease in
performance which slows the memory latency.

[0009] According to the first aspect of the disclosure, an
arithmetic processing device, includes a plurality of core
units, each provided with a plurality of cores each having a
arithmetic and logic unit, and a cache memory which is
shared by the plurality of cores; a home agent operatively
connected to the cache memories provided respectively in
the plurality of core units; and a memory access controller
operatively connected to the home agent and controls access
to a main memory, wherein the cache memories each
includes a data memory having a plurality of cache blocks,
and a first tag which stores a first state indicating a MESI
state, for each of the plurality of cache blocks, and the home
agent includes a second tag which stores a second state
including at least a shared modify state in which dirty data
is shared by a plurality of cache memories, for each of the
plurality of cache blocks in the cache memories provided
respectively in each of the plurality of core units.

[0010] According to the first aspect of the disclosure, it is
possible to suppress the frequency of access to the memory.
[0011] The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

[0012] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory and are not restrictive of the
invention.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a diagram illustrating an example of a
configuration in which each arithmetic processing device
has a single LLC;

[0014] FIG. 2 is a diagram illustrating an example of the
processing of a load request in the arithmetic processing
devices in FIG. 1;

[0015] FIG. 3 is a diagram illustrating the configuration of
arithmetic processing devices according to the present
embodiment;

[0016] FIG. 4 is a diagram illustrating an example of the
configuration of a last-level cache LL.C and a home agent
HA;

[0017] FIG. 5 is a diagram illustrating a combination of
the first state and the second state in the present embodi-
ment;

US 2017/0046262 Al

[0018] FIG. 6 is a diagram illustrating an example of the
configuration of a first tag in a LLC and a second tag in a
home agent HA according to the present embodiment;
[0019] FIG. 7 is a flowchart diagram of a memory access
process according to the present embodiment;

[0020] FIG. 8 is a diagram of transitions between the states
1 to 8 in FIG. 5;

[0021] FIG. 9 is a diagram illustrating an example of a
directory stored in the main memory;

[0022] FIG. 10 is a diagram illustrating a load 1 operation
in which a core in LCUO in the local CPU (L-CPU) loads
data in the E state in the LLC of LCU3, to the LLC of LCUO;
[0023] FIG. 11 is a diagram illustrating a load 1 operation
based on a cache protocol using the first state LL._S and the
second state HA_S according to the present embodiment;
[0024] FIG. 12 is a diagram illustrating a load 1 operation
based on a cache protocol using the first state LI_S (com-
parative example);

[0025] FIG. 13 is a diagram illustrating a load 2 operation
in which a core in LCUO in the local CPU (L-CPU) loads
data in the M state located in the LL.C of LCU3, to the LLC
of LCUO;

[0026] FIG. 14 is a diagram illustrating a load 2 operation
based on a cache protocol using the first state LL._S and the
second state HA_S according to the present embodiment;
[0027] FIG. 15 is a diagram illustrating a load 2 operation
based on a cache protocol using the first state LI_S (com-
parative example);

[0028] FIG. 16 is a diagram illustrating a load 3 operation
in which a core in LCUO in the local CPU (L-CPU) loads
data in the E state located in the LLC of LCU3;

[0029] FIG. 17 is a diagram illustrating a load 3 operation
based on a cache protocol using the first state LL._S and the
second state HA_S according to the present embodiment;
[0030] FIG. 18 is a diagram illustrating a load 3 operation
based on a cache protocol using the first state LI_S (com-
parative example);

[0031] FIG. 19 is a diagram illustrating a store-premised
load 4 operation in which a core in LCUO in the local CPU
(L-CPU) exclusively loads data in the S state located in the
LLCs of LCU2 and LCU3, to the LLC of LCUO;

[0032] FIG. 20 is a diagram illustrating a store-premised
load 4 operation based on a cache protocol using the first
state LL._S and the second state HA_S according to the
present embodiment;

[0033] FIG. 21 is a diagram illustrating a store-premised
load 4 operation based on a cache protocol using the first
state LL_S (comparative example);

[0034] FIG. 22 is a diagram illustrating an operation in
which the LLCs of the core units LCUO to LCU3 in the local
CPU (L-CPU) are replaced sequentially, in a case where the
first state of the LLCs of the LCUO0 to LCU3 is LL_S=S;
[0035] FIG. 23 is a diagram illustrating a replace operation
based on a cache protocol using the first and second states
according to the present embodiment;

[0036] FIG. 24 is a diagram illustrating a replacement
operation based on a cache protocol using the first state
LL_S (comparative example);

[0037] FIG. 25 is a diagram illustrating a state transition
from state 5 (E/E) to state 6 (M/E);

[0038] FIG. 26 is a diagram illustrating a state transition
from state 7 (E/M) to state 8 (M/M);

[0039] FIG. 27 is a diagram illustrating a state transition
from state 8 (M/M) to state 7 (E/M);

Feb. 16, 2017

[0040] FIG. 28 is a diagram illustrating a state transition
from state 4 (S/Z) to state 7 (E/M); and

[0041] FIG. 29 is a diagram illustrating a state transition
from state 5 (E/E) to state 2 (S/S).

DESCRIPTION OF EMBODIMENTS

[0042] FIG. 1 is a diagram illustrating an example of a
configuration in which each arithmetic processing device
(CPU or processor) has a single LL.C. FIG. 1 illustrates four
arithmetic processing devices CPUO to CPU3. Each arith-
metic processing device CPU has sixteen cores, CORE, for
example. Each core, CORE, has a arithmetic and logic unit
(not illustrated) and an [.1 cache. Each arithmetic processing
device CPU has a single last-level cache LLC (hereinafter,
simply “LLC”) which is shared by the sixteen cores, and
also a home agent HA, a memory access controller MAC, a
router RT which transfers data between arithmetic process-
ing devices, etc., an interface for non-cache access NA_IF,
and a PCI bus, etc. The memory access controllers MAC
each control access to a main memory, which is not illus-
trated. The router RT in each CPU is connected to the routers
RT of the other CPUs via a bus, BUS, between the CPUs.
[0043] Here, the last-level cache means the cache memory
which is nearest to the main memory in the memory hier-
archy, and is a cache memory which is connected to the main
memory outside the processor via the memory access con-
troller MAC.

[0044] FIG. 2 is a diagram illustrating an example of the
processing of a load request in the arithmetic processing
devices in FIG. 1. FIG. 2 illustrates processing in a case
where, for example, the arithmetic processing device CPUO
has requested data from the memory area of the CPU1 (a
load request or read request). The CPU that has issued the
request is called the “local CPU (L-CPU)”, the CPU which
manages the memory holding the requested data is called the
“home CPU (H-CPU)”, the CPU which takes out the
requested data from the home H-CPU is called the “remote
CPU (R-CPU)”. The home CPU stores, in a directory DIR,
information indicating whether or not data in the memory
managed by the home CPU has been taken out by another
CPU. The states of the directory are, for example, a state
where no CPU has taken out data (L: Local), a state where
one CPU has taken out data (R-EX: Remote Exclusive), and
a state where two or more CPUs have taken out data (R-SH:
Remote Share). The directory is stored in the main memory.
[0045] The cache protocol in the LL.C generally uses a
MESI protocol. According to the MESI protocol, the state
(State) of the data in each cache block in a cache memory is
one of the following four states. Firstly, the M (Modity) state
is a “dirty” state in which the data read out from the main
memory has been changed, and when another CPU reads
data from a cache block in an M state, the other CPU has to
write-back the data of this cache block, to the main memory.
The E (Exclusive) state is a “clean” state in which the data
read out from the main memory has not been changed, and
matches the values in the main memory. The S (Share) state
is a state in which the same data is also stored in another
cache memory, and the values also match those in the main
memory. The I (Invalid) state is a state in which the cache
block is invalid. The combinations of states that can be
adopted by cache blocks corresponding to two cache memo-
ries are: M/1, E/1, S/S, S/1, /1.

[0046] The MESI state is stored as a state code (State) in
a cache tag in the cache. One example of a state transfer is

US 2017/0046262 Al

where a cache block in the I state changes to the E state upon
having data filled (registered) therein by a read request, and
changes to the M state when that data is rewritten by a write
request. The data of a cache block in the E state changes to
the S state when read by another cache. When a read request
is made for data corresponding to a cache block in the M
state, the data in the cache block in the M state is written
back to the main memory, and the cache block in the cache
that made the read request changes the state to the E state.
[0047] Returning to FIG. 2, firstly, the LLC of the local
CPU (L-CPU), in the event of a cache miss, sends a data
location confirmation request MI-SH to the home CPU
(H-CPU). In response to this confirmation request, the home
agent of the home CPU executes memory access to the main
memory, and checks the directory DIR information in the
memory. Here, the directory DIR indicates that a remote
CPU has taken out the data (R-EX).

[0048] Thereupon, the home agent HA of the home CPU
sends a request (MB-SH) for eviction and transfer of data,
to the LL.C of the remote CPU (R-CPU). In this example,
since the LLC of the remote CPU (R-CPU) holds data in the
M (Modify) state, then the home agent of the home CPU
transfers (DT) the received data to the local CPU (L-CPU)
originating the request, and simultaneously writes back the
data to the main memory (WRBK). The states of LL.Cs and
the directory after this processing are as follows: the LLC of
the local CPU (L-CPU) is in the E (Exclusive) state, the LL.C
of the remote CPU (R-CPU) is in the I (Invalid) state, and
the directory DIR of the home CPU is again in the R-EX
state (a state in which a remote CPU has taken out data).
[0049] According to FIG. 2, during the process of trans-
ferring data from the remote CPU (R-CPU) to the local CPU
(L-CPU) via the home CPU (H-CPU), two memory accesses
occur.

[0050] In the case of CPUs having the configuration in
FIG. 1, it is envisaged that virtually all memory access
operations are directed by a CPU to the memory managed by
that CPU, and therefore the frequency of access to a memory
managed by another CPU is low. Therefore, delay occurring
due to access to the memory of another CPU has a limited
effect on the average memory latency. Access by a CPU to
the memory managed by that CPU also serves as access to
the directory in order to check whether or not another CPU
has taken out data. Therefore, the number of steps to be
taken so as to access the directory does not involve addi-
tional steps.

[0051] However, in the CPUs illustrated in FIG. 1, when
the number of cores increases due to the advance in minia-
turization and the enlargement of the chip size, the capacity
of the LLCs increases, the LL.C circuit area becomes larger,
and furthermore, the operating frequency becomes faster,
the cache latency also tends to become longer. In accordance
with this, in order to improve the processing performance of
the CPU, the cache latency has to be shortened.

[0052] Shortening the physical distance of the cache is an
effective way to shorten the cache latency, and as described
above, a configuration in which the LL.Cs in the CPU chips
are divided up and each of the divided LLCs is shared by a
smaller number of cores is effective in achieving this.
[0053] [Example of Configuration of CPU, LLC and HA
in the Present Embodiment]

[0054] FIG. 3 is a diagram illustrating the configuration of
arithmetic processing devices (CPUs) according to the pres-
ent embodiment. FIG. 3 illustrates two CPUs having the

Feb. 16, 2017

same configuration, by way of an example. For example,
CPUO has a plurality of core units LCUO to LCU3, each
provided with a plurality of cores CORE, and a last-level
cache LL.C which is shared by the plurality of cores. CPU0
has four core units, for example. Furthermore, each core unit
LCU has six cores, CORE, for example. The core units
LCUO0 to LCU3 are also called “nodes”, node0 to node 3.
Each core, CORE, has a arithmetic and logic unit (not
illustrated), an L1 cache, and an .2 cache. The core CORE
may also have only the L1 cache.

[0055] Moreover, the CPUO has a home agent HA in
common for the plurality of core units LCUO to LCU3,
which is connected to the LL.Cs in the respective core units
LCUO to LCU3 via a router circuit RT. Furthermore the
CPUO0 has a memory access controller MAC which controls
memory access to the main memory, a non-cache access
interface NA-IF, which is an access interface for access
other than to the cache, and a PCI bus switch. The CPU0 and
CPU1 are interconnected by a CPU bus, BUS, via the
respective routers RT. The CPU1 also has the same con-
figuration.

[0056] The LLC in each core unit LCU has a cache tag of
a first tag (not illustrated), similarly to a normal cache, which
stores a first state having a MESI state. The home agent HA
has a second tag (indicated as HA state LCU# (where #is 0
to 3) in the drawing) which stores a second state of the LL.Cs
in the four core units. The second state is called the “HA
State” (or HA_S). The second state is described in detail
below.

[0057] FIG. 4 is a diagram illustrating an example of the
configuration of a last-level cache LL.C and a home agent
HA. The LLC has a request reception circuit (request port)
10 which receives requests from the 1.2 cache, home agent
HA and other CPUs, etc., and a request selection circuit 11
which selects the received requests according to a prescribed
priority order. Moreover, the LL.C has a pipeline circuit 12
to which the request selected by the request selection circuit
11 is introduced (input), and which executes prescribed
cache control. Furthermore, the LLC has an LLC cache tag
LL_TAG1, a copy of the .2 cache tag L2TAG2, a data
memory 13 which stores data, a request output unit 14 which
outputs requests to the .2 cache and HA, etc., and a data
input control unit 15 which inputs data from the HA and/or
another CPU and registers (fills) the data into the data
memory.

[0058] The pipeline circuit 12, in the course of processing
of the input request, refers to the cache tag LI._TAGI1 to
determine a cache hit or miss, refers to the L2 tag copy
L2TAG2 to carry out other processing, and updates the
cache tag LI._TAG1 and/or data memory 13 and outputs
requests and/or data to the .2 cache and the HA.

[0059] A tag address and first state, which is the MESI
state, is stored in the LL.C cache tag LL._TAGI, for each
cache block of the LLC.

[0060] On the other hand, the home agent HA similarly
has a request reception circuit 20 which receives requests
from the LLC and/or another CPU, a request selection
circuit 21 which selects a received request according to a
prescribed priority order, a pipeline circuit 22, a request
output unit 24 which outputs a request to the LLC, MAC or
another CPU, and a data control unit 25 which stores data
from the LL.C, MAC and/or other CPU, and outputs data to
the LLC, MAC and/or other CPU.

US 2017/0046262 Al

[0061] The home agent HA, as stated above, has a second
tag LI._TAG2 which stores the second state HA_S of the
LLCs in the four core units. The pipeline circuit 22 refers to
the second tag LI._TAG2 to process input requests in
accordance with this state, and outputs requests and/or data
to the LLC, MAC and other CPU, etc.

[0062] [Combination of First State LL_S and Second State
HA_S]
[0063] FIG. 5 is a diagram illustrating a combination of

the first state and the second state in the present embodi-
ment. In the configuration in FIG. 1, the home agent HA is
configured in a one-to-one correspondence with the LLC.
On the other hand, in the configuration in FIG. 3, the home
agent HA is connected to a plurality of LL.Cs via the router
RT. In the case of FIG. 1, the home agent HA principally
manages the directory information in the memory. On the
other hand, in the case of FIG. 3, the home agent HA, in
addition to managing the directory information, manages the
second states (HA State HA_S) of the plurality of LL.Cs, in
order to control the cache protocol between the plurality of
LLCs and the HA.

[0064] As illustrated in FIG. 5, the first state LL_S which
is held in the first tag LI._TAG1 of the LLC may take any
one of the MESI states. On the other hand, if the first state
LL_S is the S state, the second state HA_S which is held in
the second tag L.LI._TAG2 of the HA has an A state which
indicates that E (Exclusive) data is shared between LLCs in
the CPU, and a Z state which indicates that M (Modity) data
is shared between the LL.Cs in the CPU. This corresponds to
states 3 and 4 in FIG. 5.

[0065] In other words, the A state of the second state
HA_S is a state in which one CPU among the plurality of
CPUs is holding data independently, and in which any two
or more LL.Cs of the plurality of LL.Cs in that CPU are
sharing the data. Furthermore, the Z state of the second state
HA_S is a state in which one CPU among the plurality of
CPUs is holding the data independently in a rewritten state
(dirty data), and in which any two or more LLCs of the
plurality of LLCs in that CPU are sharing the data.

[0066] Moreover, the second state HA_S, in combination
with the first state LI_S, may take one of three states in
which data in the M state is held in the CPU (LL_S/HA_
S=M/E, E/M, M/M). These correspond to states 6, 7 and 8
in FIG. 5. These three states are described in detail herein-
after, but, for example, the data transitions to state 5 (LL_
S/HA_S=E/E) when data is filled into the LL.C in a certain
core unit LCU, to state 6 (LL._S/HA_S=M/E) when that data
is rewritten by a core in the same core unit, to state 7
(LL_S/HA_S=E/M) when data is transferred to an LLC of
another core unit, and to state 8 (LL_S/HA_S=M/M) when
the core in the core unit of the transfer destination is
rewritten.

[0067] Furthermore, state 2 (LL_2/HA_S=S/S) means a
state in which data is shared with another CPU, and if only
one CPU holds the data independently and shares the data
between a plurality of LLCs in that CPU, then there is a
clean data sharing state, which is state 3 (S/A), or a dirty data
sharing state, which is state 4 (S/7).

[0068] In FIG. 5, the column “state of the CPU as viewed
from the other CPU” means the state of the data in the CPU
having a plurality of LLCs, in terms of a MESI state. In other
words, this means a MESI state in a MESI protocol between
a plurality of CPUs. As illustrated in FIG. 5, between the
CPUs, state 1 (I/I) means an 1 state, state 2 (S/S) means an

Feb. 16, 2017

S state, state 3 (S/A) means an E state, state 4 (S/7) means
an M state, state 5 (E/E) means an E state, and states 6, 7 and
8 mean an M state.

[0069] The home agent HA determines the state of the
CPU as viewed from the other CPU, on the basis of the
combination of the first and second states of the first and
second tags, and controls the cache in relation to the other
CPU, by a normal MESI protocol. Consequently, even if the
CPUs illustrated in FIG. 1 and the CPUs illustrated in FIG.
3 are mixed, it is possible to carry out cache control suitably.
[0070] [Example of Configuration of First Tag LL._TAG1
and Second Tag LL._TAG2]

[0071] FIG. 6 is a diagram illustrating an example of the
configuration of a first tag in a LL.C and a second tag in a
home agent HA according to the present embodiment. It is
presumed that the cache memory in the LLC is a two-way
memory, and that each way has n cache blocks.

[0072] The left-hand side of FIG. 6 illustrates, by way of
an example, the first tags LI,_TAG1 in each of the LL.Cs of
the four core units LCUO to LCU3. In each of the first tags
LL_TAG1, the first way, way 0, stores a tag address and first
state LL_S, respectively for each of n cache blocks having
index numbers from O to n-1. The second way, way 1, also
has a similar configuration.

[0073] On the other hand, the right-hand side in FIG. 6
illustrates the second tag L.I._TAG2 in the home agent HA.
The second tag LI._TAG?2 is provided to correspond to each
LLC of'the front windscreen four core units LCUO to LCU3.
The second tag which corresponds to the LLC of the core
unit LCUO, among the second tags [.I._TAG2, has two ways
which store a tag address and a second state HA_S respec-
tively for each one of n cache blocks having index numbers
from O to n-1, similarly to the first tags LI._TAGI1. The
second tags corresponding to the LLCs of the remaining
three core units LCU1 to LCU3 are similar to this. More
specifically, the first tags LI._TAG1 and the second tags
LL_TAG2 corresponding to the LL.Cs of the core units each
have the same number of ways and the same number of
cache blocks, and the tag addresses stored respectively
therein are the same.

[0074] [Overall Image of Memory Access Process]
[0075] FIG. 7 is a flowchart diagram of a memory access
process according to the present embodiment. For example,
it is supposed that a core in the core unit LCUO in the CPU0
in FIG. 3 has issued a load request (read request). The
memory access process indicated below involves either: (1)
receiving data from the LLC in the same core unit LCUO as
the core originating the request (S1.2); (2) receiving data
from the LLC in a different core unit (S18); (3) receiving
data from the main memory which is managed by the CPU0
of the requesting core (S21); or (4) receiving data from the
main memory managed by a different CPU (S23). Further-
more, when the memory access process is a write-premised
load request, then if the data is shared by a plurality of LLCs,
the data is transferred, the data is discarded and the first state
is set to the I state by the LL.C that has shared the data, and
in the LLC that originated the request, the first state is set to
the E state, and the data is transferred to the L2 cache (S14).
[0076] Firstly, when a core in the core unit LCUO of the
CPUO issues a load request, the L1 cache and the L2 cache
in the core unit LCUOQ both produce a cache miss, and the
access request is input to the LL.C in the core unit LCUO.
This LLC searches the first tag L.I._TAG1 and if it produces
a cache hit (Y in S10), and if a condition in which the request

US 2017/0046262 Al

is write-premised and the first state LL_S is S is not true (N
in S11), then the LLC transfers the data in the data memory
producing the hit, to the L2 cache originating the request
(data response) (S12).

[0077] If the request producing a cache hit is a write-
premised load request and the first state LI_S is S (Y at
S11), then the HA searches the second tag LI._TAG2, and
checks the second state HA_S to check whether another
CPU is sharing the data in the core block producing the hit
(HA_S=S), or whether another LL.C is sharing that data
(HA_S=A, 7) (S13). The HA then causes the LLC of another
CPU or same CPU holding the data to discard the data, and
change the first state LL_S of that LL.C to the I state, and
furthermore, causes the LL.C of the LCUO originating the
request to transfer the data to the .2 cache originating the
request, and change the first state LL._S of that LLC to the
E state. Thereupon, the core in the LCU0 executes a write
process. Since there is a need to change the state in the cache
to the E state before writing, then a write-premised load
request is carried out. This process corresponds to the
write-premised load request (load request in E state)
described below.

[0078] Instep S10, if a cache miss occurs with the first tag
of the LLC of the LCUO (N at S10), then the LL.C sends a
request to the HA, causing the HA to search the second tag
LL_TAG2 and check the second state HA_S, to check
whether or not another LLC in the same CPUO is holding the
data, or whether or not another CPU is holding the data
(S15).

[0079] As aresult of the check in step S15, if another LL.C
inside the same CPUO is holding the data (Y in S16), then
the HA requests the other LL.C which is holding that data to
transfer the data to the LLC originating the request (S17). In
response to this, a data transfer is carried out from the other
LLC holding the data, to the LLC originating the request
(data response), and subsequently, the data is transterred to
the L2 cache originating the request, the first state LL_S of
the first tag of the LLC originating the request is updated,
and the second state HA_S of the second tag of the HA is
also updated (S18).

[0080] On the other hand, if, as a result of the check in step
S15, the other LLC in the same CPUO is not holding data (N
at S16), then access to the main memory is needed.

[0081] Therefore, if the access destination is a local region
(an address region of the main memory managed by the
CPUO that has issued the request) (Y in S19), then the HA
requests memory access to the memory access controller
MAC (S20), and finally, the data read out from the main
memory is sent from the memory access controller MAC to
the LLC originating the request, the LLC originating the
request receives the data, and subsequently, the data is
transferred to the L2 cache originating the request (data
response) (S21). Thereupon, the first state LL._S of the LL.C
originating the request and the second state HA_S of the HA
are updated, and if there is a need, the directory DIR in the
main memory is updated.

[0082] On the other hand, if the access destination is not
a local region (N in S19), then data is requested of the home
CPU which manages the main memory that is the access
destination (S22). When the data is eventually transferred
from the home CPU, the LL.C originating the request in the
CPUO receives this data and transfers the data to the L2
cache originating the request (data response) (S23). There-
upon, the first state LI,_S of the LL.C originating the request

Feb. 16, 2017

and the second state HA_S of the HA are updated, and the
directory DIR in the main memory of the home CPU is

updated.
[0083] [State Transitions]
[0084] FIG. 8 is a diagram of transitions between the states

1 to 8 in FIG. 5. In FIG. 8, the numbers in the squares
indicate the respective states 1 to 8, and an indication such
as “S S” represents the first state LL_S and the second state
HA_S, respectively. Furthermore, the abbreviations which
indicate the operational causes of the state transitions are as
follows.

LD: load (read)

ST: store (write)

RPL: replace (process for evicting data in cache)

LD_EX: store-premised load (write-premised read, exclu-
sive load)

O_CPU: processing by other CPU

O_LCU: processing by other core unit LCU

CORE: processing by core in same core unit LCU

[0085] Furthermore, the store-premised load by the other
CPU O_CPU_LD_EX is the same operation as replace RPL,
and transitions to the I state (State 1). The load O_CPU_LD
by another CPU from states 6, 7 and 8 is the same operation
as replace RPL, and transitions to the I state (State 1).
[0086] Of the states 1 to 8, the initial state is state 1 (I/T).
In state 1, if a load request LD or a store-premised load
LD_EX is executed and data is filled into a cache block in
state 1 (I/I), then the state transfers from state 1 to state 5
(E/E). State 5 does not transfer to another state even if a
store-premised load O_LCU_LD_EX is executed by another
core unit LCU.

[0087] Next, when a store by a core CORE_ST is executed
in a cache block in state 5 (E/E), the data is rewritten to
become dirty data, and the state transitions to state 6 (M/E).
State 6 does not transfer to another state even if a store by
a core CORE_ST is executed again.

[0088] In state 6 (M/E), if a load by another LCU
O_LCD_LD or a store-premised load by another LCU
O_LCU_LD_EX is executed, then the state transitions to
state 7 (E/M). This corresponds to load 2 described below.
State 7 does not transition to another state even if a store-
premised load by another LCU O_LCU_LD_EX is executed
again.

[0089] If store by a core CORE_ST is executed in state 7
(E/M), then state 7 transitions to state 8 (M/M). Conversely,
in state 8 (M/M), if a load or store-premised load by another
LCU is executed, then the state returns to state 7. State 8
does not transfer to another state even if a store by a core
CORE_ST is executed.

[0090] In state 7 (E/M), when a load is executed by
another LCU, the state transitions to state 4 (S/Z). This
corresponds to load 3 described below. State 4 does not
transition to another state, if a load O_LCU_LD is executed
by another LCU.

[0091] In state 5 (E/E), when a load by another LCU
O_LCU_LD is executed, the state transitions to state 3
(S/A). This corresponds to load 1 described below. There-
after, state 3 does not transition to another state even if a load
by another LCU is executed. In state 3, when a stored-
promised load LD_EX is executed, then the state transitions
to state 5. This corresponds to the store-premised load 4
described below.

[0092] In state 5 (E/E), when a load by another CPU
O_CPU_LD is executed, the state transitions to state 2 (S/S).

US 2017/0046262 Al

State 2 is maintained, even if the load is repeated. Con-
versely, if the store-premised load LD_EX is executed in
state 2 (S/S), the state transitions to state 5 (E/E).

[0093] In states 2 to 5, when a store-premised load by
another CPU O_CPU_LD_EX or replace RPL is executed,
then the state transitions to state 1. Furthermore, in states 6,
7 and 8, when a load by another CPU O_CPU_LD or
store-premised load by another CPU O_CPU_LD_EX or
replace RPL is executed, then the state transitions to state 1.
These transitions accompany the eviction of data in the
cache block, and when there is no longer any data in the
cache block than the state transitions to the I state.

[0094] [Example of Directory]

[0095] FIG. 9 is a diagram illustrating an example of a
directory stored in the main memory. As stated above, the
directory stores any one of the following states in corre-
spondence with addresses in each cache block: the state L.
(Local) in which no CPU has taken out data; the state R-EX
(Remote Exclusive) in which only one CPU has taken out
data; and the state R-SH (Remote Share) in which a plurality
of CPUs have taken out data. Moreover, the directory also
includes information about the object CPU which indicates
which CPU corresponds to each of the states. In the example
illustrated in FIG. 9, in the case of an information processing
system in which sixteen CPUs are mutually connected, the
information about the object CPU is expressed as a 16-bit
sequence, for instance, in which the object CPU is indicated
as “17, another CPU, as “0” and the same CPU holding the
directory, as “-”.

[0096] In the example in FIG. 9, the home CPU (H-CPU)
is CPU[1], and it is possible to tell whether or not the data
in the memory managed by the home CPU has been taken
out by the cache of the same CPU holding the directory, by
referring to the state of the cache tag, and therefore the
CPUJ[1] is indicated as “-” in the 16-bit sequence. In the
example in FIG. 9, the data of the cache block at the address
ADDI1 has been taken out by CPU[15], the data at address
ADD2 has not been taken out by any CPU, the data at
address ADD3 has been taken out CPU[14] and CPU[2], and
the data at address ADD4 has been taken out by all of the
other CPUs.

[0097] [Operation of Load Request in Present Embodi-
ment]
[0098] Next, the operations according to the four types of

load and replace operation illustrated in the transition dia-
gram in FIG. 8 will be described in detail. There follows a
simple description of two store and three load operations. It
is presumed that the arithmetic processing devices CPU
according to the present embodiment have four core units
LCUO to LCU3, as illustrated in FIG. 3. Furthermore, a
plurality of CPUs including at least a local CPU and a home
CPU are mutually connected via a CPU bus.

[0099] [Load 1]

[0100] FIG. 10 is a diagram illustrating a load 1 operation
in which a core in LCUO in the local CPU (L-CPU) loads
data in the E state in the LL.C of LCU3, to the LLC of LCUO.
The left-hand side of FIG. 10 illustrates an operation based
on a cache protocol using the first state LL_S and the second
state HA_S according to the present embodiment, and
depicts the states of the first state LL._S of the LLCs of
LCUO to LCU3 of the local CPU (L-CPU), and the second
state HA_S of the HA, before and after transition. The
right-hand side of FIG. 10 illustrates an operation based on
a cache protocol using only the first state LI_S, in a

Feb. 16, 2017

configuration in which the LL.Cs in the CPU illustrated in
FIG. 3 are divided up for each of a plurality of core groups
LCU. In other words, the example on the right-hand side is
illustrated for the purpose of comparison with the present
embodiment.

[0101] FIG. 11 is a diagram illustrating a load 1 operation
based on a cache protocol using the first state LL._S and the
second state HA_S according to the present embodiment. As
illustrated in the left-hand side of the FIG. 10, load 1 is an
operation in which, when the LLC of the LCU3 of the local
L-CPU is storing data in the E state, a core of LCUO issues
a load request and fills data into the LL.C of LCUO. In other
words, by load 1, a cache block of the LLC in LCU3
transitions from state 5 (E/E) to state 3 (S/A).

[0102] In FIG. 11, the core of LCUO issues a load request
and the load request is issued to the LL.C by the L2 cache
(S30). The LLC of LCUO searches the first tag LI._TAG1
and produces a cache miss (S31). The LL.C of the LCU0
issues a load request to the HA via the router RT (S32), and
the HA searches the second tag LL._TAG2. As a result of
this, the HA detects that the second state HA_S of the cache
blocks corresponding to the access destination address in the
four core units LCUO to LCU3 is I-I-I-E, and therefore that
the LL.C of LCU3 is holding the data in the E state, and the
CPU (L_CPU) is holding the data in the E state (S33). As a
result of this, the HA issues a data transfer request to the
LLC of LCU3 (S34), to request transfer of the data in the
LLC of LCU3, to the LLC of LCUO.

[0103] In response to this data transfer request S34, the
(pipeline circuit of the) LL.C of LCU3 transfers the data held
therein to the LL.C of LCUO, via the router RT, and updates
the first state LL_S from E to S (S35). In response to this
data transter, the (pipeline circuit of the) LL.C of LCUO fills
(registers) with the received data in the cache memory,
responds with this data to the L2 cache, and updates the first
state LL._S from [to S (S36). The L2 cache fills with the data
in the data response in the cache memory.

[0104] On the other hand, the (pipeline circuit) of the LL.C
of LCU3 issues a data transfer completion notification to the
HA (S837), and in response to this, the HA updates the second
state HA_S in the second tag LL._TAG2, to “A-I-I-A” (S38).
In this series of processes, no access is made to the memory
of the home CPU (H-CPU).

[0105] FIG. 12 is a diagram illustrating a load 1 operation
based on a cache protocol using the first state LL_S (com-
parative example). As illustrated in the right-hand side of the
FIG. 10, in the load 1 operation, when the LL.C of the LCU3
of the local L-CPU is storing data in the E state, a core of
LCUO issues a load request and fills data into the LLC of
LCUO. In FIG. 12, the same processes as FIG. 11 are
labelled with the same reference numerals, and correspond-
ing processes are labelled with the same reference numeral
plus the suffix A.

[0106] InFIG. 12, aload request is issued to the LLC from
the L2 cache of LCUO0 in CPUO0, which is a local L-CPU
(S30), and the LL.C of LCUO searches the first tag LL._TAG1
and produces a cache miss (S31). The LL.C of LCUO issues
a fetch request to the home CPU (S32_A), and the MAC of
the home CPU searches the directory DIR in the memory
(S33_A). As a result of this, the home CPU detects that a
remote CPU (here, the remote CPU is the same as the local
L-CPU) is holding the data in an E state and that the LCU3
is holding the data. Here, it is assumed that the object CPU
information in the directory in FIG. 9 also includes object

US 2017/0046262 Al

CPU and object core unit LCU information. As a result of
this, the HA of the home CPU issues a data transfer request
to the LLC of LCU3 of the remote CPU (the local CPU,
CPU0) (S34), and requests transfer of the data in the LL.C of
LCUS3, to the LLC of LCUO.

[0107] The processing thereafter is similar to FIG. 11
(S35, S36), and when LLCU3 in the local L-CPU sends the
data transfer completion notification to the home H-CPU
(S37), then the home H-CPU updates the directory in such
a manner that LCUOQ and LCU3 of the local L-CPU share the
data (S38_A).

[0108] In this way, when the second state HA_S is not
used, there arises a need to access the directory in the
memory managed by the home H-CPU, two times. On the
other hand, with the cache protocol according to the present
embodiment which uses the second state HA_S in addition
to the first state LL_S in FIG. 11, no memory access occurs.
In other words, according to the present embodiment, since
the home agent HA manages the second state HA_S of a
plurality of LLCs, then it is possible to complete processing
within the local L-CPU, as far as possible.

[0109] [Load 2]

[0110] FIG. 13 is a diagram illustrating a load 2 operation
in which a core in LCUO in the local CPU (L-CPU) loads
data in the M state located in the LL.C of LCU3, to the LLC
of LCUO. Similarly to FIG. 10, the left-hand side illustrates
a cache protocol operation using the first state LI_S and the
second state HA_S according to the present embodiment,
and the right-hand side illustrates a cache protocol operation
using only the first state LL._S.

[0111] FIG. 14 is a diagram illustrating a load 2 operation
based on a cache protocol using the first state LL._S and the
second state HA_S according to the present embodiment. As
illustrated in the left-hand side of FIG. 13, load 2 is an
operation in which, when the LL.C of the LCU3 of the local
L-CPU is storing data in the M state, a core of LCUO issues
a load request and fills data into the LL.C of LCUO. In other
words, by load 2, the state of the data transitions from state
6 (M/E) of the LL.C of LCU3 to state 7 (E/M) of the LLC
of LCUO.

[0112] In FIG. 14, the core of LCUO issues a load request
and the load request is issued to the LL.C from the [.2 cache
(S40). The LLC of LCUO searches the first tag LI._TAG1
and produces a cache miss (S41). The LL.C of the LCU0
issues a load request to the HA (S42), and the HA searches
the second tag LI._TAG2 (S43). As a result of this, the HA
detects that the second state HA_S of the cache blocks
corresponding to the access destination address in the four
core units LCUO to LCU3 is I-I-I-E, and therefore that the
LLC of LCUS3 is holding the data in the E state, and the CPU
(L_CPU) is holding the data in the E state. As a result of this,
the HA issues a data transfer request to the LLC of LCU3
(S44), to request transfer of the data in the LL.C of LCU3,
to the LLC of LCUO.

[0113] In response to this data transfer request S44, the
LLC of LCU3 transfers the data held therein to the LLC of
LCUO0 via the router RT, and since the first state LL,_S is the
M state, the data is discarded by a normal MESI protocol and
the first state LL_S is updated from M to I (S45). In response
to this data transfer, the LL.C of LCUO is filled (registered)
with the received data, responds with this data to the 1.2
cache, and updates the first state LL._S from I to E (S46).
Due to this data response, the [.2 cache is filled with the data.

Feb. 16, 2017

[0114] On the other hand, the LLC of LCU3 issues a data
transfer completion notification to the HA (S47), and in
response to this, the HA updates the second state HA_S in
the second tag LI, TAG2, to “M-I-I-I” (S48). In this series
of processes, no access is made to the memory of the home
CPU (H-CPU). In particular, the LL.C of LCU3 does not
write-back the data in the M state, to the memory.

[0115] FIG. 15 is a diagram illustrating a load 2 operation
based on a cache protocol using the first state LL_S (com-
parative example). As illustrated in the right-hand side of the
FIG. 13, in the load 2 operation, when the LL.C of the LCU3
of the local L-CPU is storing data in the M state, a core of
LCUO issues a load request and fills data into the LLC of
LCU0.

[0116] InFIG. 15, a load request is issued to the LL.C from
the L2 cache of the LCUO in the local L-CPU (S40). The
LLC of LCUO searches the first tag L.I._TAG1 and produces
a cache miss (S41). The LLC of LCUO issues a fetch request
to the home CPU (S42_A), and the MAC of the home CPU
searches the directory DIR in the memory (S43_A). As a
result of this, the home CPU detects that LCU3 in the remote
CPU (which is the same as the local L-CPU) is holding the
data in the E state. Consequently, the HA of the home
H-CPU issues a data transfer request to the LLC of LCU3 in
the local L-CPU (S44), and requests transfer of the data in
the LLC of LCUS3, to the LLC of LCUO.

[0117] Thereafter, similar processing to that in FIG. 14 is
carried out (S45, S46), the LCU3 in the local L-CPU
transfers data to the home H-CPU (S47_A), the home
H-CPU updates the directory so that LCUO in the local
L-CPU is holding the data in the E state, and the data is
written back (S48_A).

[0118] In this way, when the second state HA_S is not
used, there arises a need to access the memory managed by
the home H-CPU, two times, and to refer to and change the
directory, and write-back data. On the other hand, with the
cache protocol using the first state LI_S and the second state
HA_S illustrated in FIG. 14, no memory access occurs. In
other words, according to the present embodiment, since the
home agent HA manages the second state HA_S of a
plurality of LLCs, then it is possible to complete processing
within the local L-CPU, as far as possible.

[0119] [Load 3]

[0120] FIG. 16 is a diagram illustrating a load 3 operation
in which a core in LCUO in the local CPU (L-CPU) loads
data in the E state located in the LLC of LCU3. In FIG. 16,
the left-hand side illustrates a cache protocol operation using
the first state LI,_S and the second state HA_S according to
the present embodiment, and the right-hand side illustrates
a cache protocol operation using only the first state LI_S.
[0121] FIG. 17 is a diagram illustrating a load 3 operation
based on a cache protocol using the first state LL._S and the
second state HA_S according to the present embodiment. As
illustrated in the left-hand side of the FIG. 16, load 3 is an
operation in which, when the LLC of the LCU3 of the local
L-CPU is storing data in the E state, a core of LCUO issues
a load request and fills data into the LL.C of LCUO. In other
words, by load 3, a cache block of the LLC in LCU3
transitions from state 7 (E/M) to state 4 (S/Z).

[0122] In FIG. 17, the core of LCUO in the local L-CPU
issues a load request and the load request is issued to the
LLC from the L2 cache (S50). The LL.C of LCUO searches
the first tag LI._TAG1 and produces a cache miss (S51). The
LLC of the LCUO issues a load request to the HA (S52), and

US 2017/0046262 Al

the HA searches the second tag LI,_TAG2 (S53). As a result
of'this, the HA detects that the LL.C of LCU3 is holding dirty
data and the CPU (L._CPU) is holding data in the M state,
on the basis of the fact that the second state HA_S of the
LLCs of the four core units LCUO to LCU3 is I-I-I-M. As a
result of this, the HA issues a data transfer request to the
LLC of LCU3 (S54) and requests transfer of the data in the
LLC of LCU3, to the LLC of LCUO.

[0123] In response to this data transfer request S54, the
LLC of LCU3 transfers the data to the LLC of LCUO, via the
router RT, and the first state LI_S is updated from E to S
(S55). In response to this data transfer, the LLC of LCUO0 is
filled with the received data, responds with this data to the
L2 cache, and updates the first state LL._S from [to S (856).
Due to this data response, the [.2 cache is filled with the data.
[0124] On the other hand, the LLC of LCU3 issues a data
transfer completion notification to the HA (S57), and in
response to this, the HA updates the second state HA_S in
the second tag LI,_TAG2, to “Z-I-I-Z”. In this series of
processes, no access is made to the memory of the home
CPU (H-CPU).

[0125] FIG. 18 is a diagram illustrating a load 3 operation
based on a cache protocol using the first state LI_S (com-
parative example). As illustrated in the right-hand side of the
FIG. 16, in the load 3 operation, when the LL.C of the LCU3
of the local L-CPU is storing data in the M state, a core of
LCUO issues a load request and fills data into the LLC of
LCU0.

[0126] InFIG. 18, aload request is issued to the LL.C from
the L2 cache of the LCUO in the local L-CPU (S50). The
LLC of LCUO produces a cache miss (S51). The LL.C of
LCUO issues a fetch request to the home CPU (S52_A), and
the MAC of the home CPU searches the directory DIR in the
memory (S53_A). As a result of this, the home CPU detects
that the remote CPU (which is the same as the local L.-CPU)
is holding the data in the E state, and that LCU3 of ._CPU
is holding the data. Consequently, the HA of the home
H-CPU issues a data transfer request to the LLC of LCU3 in
the local L-CPU (S54), and requests transfer of the data in
the LLC of LCUS3, to the LLC of LCUO.

[0127] Thereupon, the LL.C of LCU3 transfers the data to
the LLC of LCUO0, evicts the data, because the first state
LL_S is the M state, and updates the first state LL._S from
M to I (S55_A). Moreover, the LL.C of LCUO is filled with
the transferred data, updates the first state LL._S from I to E,
and responds with the data to the 1.2 cache (S56). Moreover,
since LCU3 in the local L-CPU was in the M state, the data
evicted by the MESI protocol is transferred to the home
H-CPU (S57_A). In response to this, the home H-CPU
updates the directory so that LCUO in the local L-CPU is
holding the data, and writes back the data (S58_A).

[0128] In this way, when the second state HA_S is not
used, there arises a need to access the memory managed by
the home H-CPU, two times, and to refer to and change the
directory, and write-back data. On the other hand, with the
cache protocol using the first state LI_S and the second state
HA_S illustrated in FIG. 17, no memory access occurs.
According to the present embodiment, since the home agent
HA manages the second state HA_S of a plurality of LICs,
then it is possible to complete processing within the local
L-CPU, as far as possible.

[0129] [Store-Premised Load 4 (Load in the E State)]
[0130] FIG. 19 is a diagram illustrating a store-premised
load 4 operation in which a core in LCUO in the local CPU

Feb. 16, 2017

(L-CPU) exclusively loads data in the S state located in the
LLCs of LCU2 and LCU3, to the LLC of LCU0. In FIG. 19,
the left-hand side illustrates a cache protocol operation using
the first state LL_S and the second state HA_S, and the
right-hand side illustrates a cache protocol operation using
only the first state L.I,_S.

[0131] FIG. 20 is a diagram illustrating a store-premised
load 4 operation based on a cache protocol using the first
state LL._S and the second state HA_S according to the
present embodiment. As illustrated in the left-hand side of
the FIG. 19, the store-premised load 4 is an operation in
which, when the LLCs of LCU2 and LCU3 of the local
L-CPU are storing data in the S state, a core of LCUO issues
a store-premised load request and fills the data into the LL.C
of LCUO, in the E state. In other words, the store-premised
load request involves changing the S state of the LLC
holding the data, to the I state, and holding this data in the
E state in the LLC which newly holds the data. As a result
of this, after this load, the core is able to rewrite the data in
the LL.C due to E state, at the appropriate timing. By the
store-premised load 4, the state of the data transitions from
state 3 (S/A) of the LLCs of LCU2 and L.CU3 to state 5
(E/E) of the LLC of LCUO.

[0132] In FIG. 20, the core of LCUO in the local L-CPU
issues a load request and the L2 cache issues a load request
to the LL.C (S60). The LLC of LCUO searches the first tag
LL_TAG1 and produces a cache miss (S61). The LLC of
LCUO issues a load request to the HA (S62), and the HA
searches the second tag L.L._TAG2 (S63). As a result of this,
the HA detects that the second state HA_S of the LLCs of
the four core units LCUO to LCU3 is I-I-A-A, and hence that
the LLCs of LCU2 and LCU3 are sharing clean data and the
CPU is holding data in the E state. Consequently, the HA
issues a data transfer and discard request to the LLC of
LCU2 and issues a discard request to the LL.C of LCU3
(S64), and thereby requests transfer of the data in the LLC
of LCU2 to the LLC of LCUO.

[0133] Inresponse to this data transfer and discard request,
the LL.C of LCU3 discards the data and updates the first state
LL_S from S to I (S65), and the LL.C of LCU2 transfers the
data to the LLC of LCUO via the router RT, discards the data
and updates the first state LL._S from S to I (S566). In
response to this data transfer, the LL.C of LCUO is filled with
the received data, responds with this data to the L.2 cache,
and updates the first state LL._S from I to E (S67). Due to
this data response, the [.2 cache is filled with the data.
[0134] On the other hand, the LLCs of LCU2 and LCU3
issue a data transfer and discard completion notification to
the HA (S68), and in response to this, the HA updates the
second state HA_S in the second tag .I,_TAG2, to “E-I-I-I".
In this series of processes, no access is made to the memory
of the home CPU (H-CPU).

[0135] FIG. 21 is a diagram illustrating a store-premised
load 4 operation based on a cache protocol using the first
state LI_S (comparative example). As illustrated in the
right-hand side of the FIG. 19, the store-premised load 4 is
an operation in which, when the LL.Cs of the LCU2 and
LCU3 of the local L-CPU are storing data in the S state, a
core of LCUO issues a store-premised load request and fills
the data into the LLC of LCUO, in the E state.

[0136] InFIG. 21, aload request is issued to the LLC from
the L2 cache of the LCUO (S60). The LLC of LCUO
produces a cache miss (S61). The LLC of LCUO issues a
fetch request to the home CPU (S62_A), and the MAC of the

US 2017/0046262 Al

home CPU searches the directory DIR in the memory
(S63_A). As a result of this, the home CPU detects that
LCU2 and LCU3 in the remote CPU (which is the same as
the local L-CPU) are holding the data in the S state.
Consequently, the HA of the home H-CPU issues a data
transfer and discard request to the LL.Cs of LCU2 and LCU3
in the local L-CPU (S64), and requests transfer of the data
in the LLCs of LCU2 and LCU3, to the LLC of LCUO0, and
discarding of the data.

[0137] Subsequently, the same processes S65, S66, S67
and S68 as FIG. 20 are executed, and the home H-CPU
updates the directory so that LCUOQ of the local L.-CPU holds
the data in the E state (S69_A).

[0138] In this way, when the second state HA_S is not
used, there arises a need to access the memory managed by
the home H-CPU, two times, and to refer to and change the
directory. On the other hand, with the cache protocol using
the first state LL_S and the second state HA_S illustrated in
FIG. 20, no memory access occurs. According to the present
embodiment, since the home agent HA manages the second
state HA_S of a plurality of LLCs, then it is possible to
complete processing within the local L-CPU, as far as
possible.

[0139] [Replace]

[0140] FIG. 22 is a diagram illustrating an operation in
which the LLCs of the core units LCUO to LCU3 in the local
CPU (L-CPU) are replaced sequentially, in a case where the
first state of the LLCs of the LCUO0 to LCU3 is LL._S=S.In
FIG. 16, the left-hand side illustrates a cache protocol
operation using the first and second states LI_S and HA_S
according to the present embodiment, and the right-hand
side illustrates a cache protocol operation using only the first
state LL_S.

[0141] FIG. 23 is a diagram illustrating a replace operation
based on a cache protocol using the first and second states
according to the present embodiment. As illustrated in the
left-hand side of FIG. 22, since the second state of the four
LLCs in the HA is HA_S=Z7, then there is an M state
between the CPUs, and an S state between the LLCs.
Replacement is an operation in which, in order to expel a
certain cache block in the LLC, the data therein is evicted
and this evicted data is then written back to the memory.
New data is then filled into the cache block from which data
has been evicted. In general, when a cache miss is produced,
the victim line is replaced.

[0142] In FIG. 23, the LL.C of LCU0 executes a replace-
ment, evicts the data, changes the first state LL._S from the
S state to the I state (S70), and transfers the evicted data to
the HA (S71), and the HA refers to the second state HA_S,
detects that the LLC of another LCU is holding the same
data, and changes the second state relating to LCUO, from
the Z state to the I state (S72).

[0143] Next, the LL.C of LCU2 executes a replacement,
evicts the data, changes the first state LI_S from the S state
to the I state (S73), and transfers the evicted data to the HA
(S74), and the HA refers to the second state HA_S, detects
that the LLC of another LCU is holding the same data, and
changes the second state relating to LCU2, from the Z state
to the I state (S75).

[0144] Moreover, the LLC of LCU1 executes a replace-
ment, evicts the data, changes the first state LL._S from the
S state to the I state (S76), and transfers the evicted data to
the HA (S77), and the HA refers to the second state HA_S,
detects that the LLC of another LCU is holding the same

Feb. 16, 2017

data, and changes the second state relating to LCU1, from
the Z state to the I state (S78).

[0145] Finally, the LL.C of LCU3 executes a replacement,
evicts the data, changes the first state LI_S from the S state
to the I state (S79), and transfers the evicted data to the HA
(S80), and the HA changes the second state relating to
LCUS3, from the Z state to the I state (S81), determines from
the second state HA_S that there is no LLC of another LCU
holding the same data, and therefore writes back the data to
the memory (S82). In other words, if HA_S=7-7-7-7, then
only when the last dirty data has been evicted, the data is
written back to the memory, and in the replacement opera-
tion up to that point, the HA only changes the second state
HA_S from the Z state to the I state, but there is no
occurrence of memory access.

[0146] FIG. 24 is a diagram illustrating a replacement
operation based on a cache protocol using the first state
LL_S (comparative example). As illustrated in the right-
hand side of FIG. 22, the data is replaced successively in a
state where the LLCs of the core units LCU0 to LCU3 of the
local L-CPU store data in the S state.

[0147] InFIG. 24, the LCUO0, LCU2, LCU1, LCU3 of the
local L-CPU successively replaces data (S70, S73, S76,
S79) and transfers the data (S71, S74, S77, S80). The home
H-CPU accesses the memory, updates the directory succes-
sively in the R-SH state (S72_A) and (S75_A), and then
changes to the R-EX state (S78_A) and finally changes to
INV and writes back to the memory (S81_A). In other
words, the home H-CPU accesses the memory each time to
confirm and change the directory, and then finally writes
back data to the memory.

[0148] In the foregoing, the five operations which are
particularly beneficial in the cache protocol according to the
present embodiment are described in detail. There follows a
brief explanation of the five state transitions based on the
cache protocol of the present embodiment.

[0149] [Store (State Transition from State 5 (E/E) to State
6 (M/E))]
[0150] FIG. 25 is a diagram illustrating a state transition

from state 5 (E/E) to state 6 (M/E). In this example, a core
in LCU3 performs a write operation for data in the E state
located in the LLC of LCU3 in the local L-CPU. Since the
data in the LLC of LCU3 is in the E state, then the core in
the LCU3 is able to perform a write operation for this data.
As a result of this, the pipeline of the LLC in LCU3 changes
the first state LL_S from the E state to the M state, by a
normal MESI protocol. The second state HA_S of the HA
remains unchanged in the E state.

[0151] [Store (State Transition from State 7 (E/M) to State
8 M/M))]
[0152] FIG. 26 is a diagram illustrating a state transition

from state 7 (E/M) to state 8 (M/M). The state transition
from state 6 (M/E) to state 7 (E/M) is as described in load
2. FIG. 26 illustrates a state transition in a case where the
LLC of LCUO in the local L-CPU fills with dirty data by load
2, the first state LL_S and the second state HA_S are in state
7 (E/M), and then a core of LCUO in the local L-CPU
performs a write operation for this dirty data. Since the write
operation is carried out, then the first state LL_S of the LL.C
in LCUO is changed from the E state to the M state, and the
second state HA_S in the HA remains unchanged in the M
state. Consequently, no memory access by the home H-CPU
occurs.

US 2017/0046262 Al

[0153] [Load (State Transition from State 8 (M/M) to State
7 (E'M))]
[0154] FIG. 27 is a diagram illustrating a state transition

from state 8 (M/M) to state 7 (E/M). This example illustrates
a state transition when a core of LCU3 makes a load request
for data in state 8 in the LLC of LCUO0 in the local L-CPU.
The pipeline of the LLC of LCU3 processes the load request
and produces a cache miss and requests data of the HA. The
HA refers to the second state HA_S, detects that the LLC of
LCUO is holding dirty data, and requests the LLC of LCU0
to transfer data to the LLC of LCU3. In response to this
request, the LLC of LCUO transfers data to the LLC of
LCU3, discards the data, and changes the first state LL._S
from the M state to the I state. This operation is similar to
load 2 in FIG. 12.

[0155] The LL.C of LCU3 sends a data transfer completion
notification to the HA, and in response to this, the HA
changes the second state from M-I-I-I to I-I-I-M. In this case
also, no memory access by the home H-CPU occurs.
[0156] [Store-Premised Load]

[0157] FIG. 28 is a diagram illustrating a state transition
from state 4 (S/Z) to state 7 (E/M). This example illustrates
an operation when, in a state where the LL.Cs of LCU2 and
LCU3 of the local L-CPU are sharing dirty data, a core of
LCUO has issued a store-premised load request for that data.
Similarly to the store-premised load 4 in FIG. 20, when the
core in LCUOQ issues a store-premised load in respect of the
data in the LLC of LCU2 or LCU3 which is in a shared state,
the LLC of LCUO produces a cache miss and issues a load
request to the HA. The HA refers to the second state HA_S,
detects that the LCU2 and LCU3 are sharing dirty data, and
requests the LL.Cs of LCU2 and LCU3 to transfer and
discard the data. The LLC of LCU2 or LCU3 transfers the
data to the LLC of LCUO, discards its own data, changes the
first state LL,_S from the S state to the I state, and issues a
data transfer and discard completion notification to the HA.
In response to this, the HA changes the second state from
1-I-Z-Z, to M-I-1-1.

[0158] [Load (State Transition from State 5 (E/E) to State
2 (S/S)]
[0159] FIG. 29 is a diagram illustrating a state transition

from state 5 (E/E) to state 2 (S/S). In this example, the LL.C
of'an LCU in another CPU has made a load request for data
in the E state located in the LLC of LCU1 of the local
L-CPU. In response to the data request from the LLC of the
LCU in the other CPU, the HA of that CPU requests the
home CPU to refer to the directory, and detects that the local
L-CPU has taken out data. In response to this, when the
home CPU requests the HA to transfer the data to the LL.C
of LCU1 in the local L-CPU, the LLC of LCU1 of the local
L-CPU, in response to this, transfers the data, changes the
first state from the E state to the S state, and the HA also
changes the second state to the S state. In response to the
transfer of data, the home H-CPU changes the directory
from R-EX to R-SH.

[0160] As described above, the arithmetic processing
device according to the present embodiment includes: a
plurality of core units in which the plurality of cores in a chip
are divided into a plurality of core units, each core unit
including a plurality of the divided cores and an LLC which
is shared by that plurality of cores; and an HA that is capable
of connecting to the LLCs of the plurality of core units; each
of the LLCs having a first tag which stores a first state
indicating a MESI state for each cache block, and the HA

Feb. 16, 2017

having a second tag which stores a second state including at
least a shared modity state (Z) for each of the cache blocks
in the LLCs. Since the state of the cache blocks in the LLCs
is managed by a combination of the first state and the second
state, then the frequency of memory access in relation to
load requests is suppressed and decrease in the performance
of the cache memory is also suppressed.

[0161] All examples and conditional language provided
herein are intended for the pedagogical purposes of aiding
the reader in understanding the invention and the concepts
contributed by the inventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although one or
more embodiments of the present invention have been
described in detail, it should be understood that the various
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What is claimed is:

1. An arithmetic processing device, comprising:

a plurality of core units, each provided with a plurality of
cores each having a arithmetic and logic unit, and a
cache memory which is shared by the plurality of cores;

a home agent operatively connected to the cache memo-
ries provided respectively in the plurality of core units;
and

a memory access controller operatively connected to the
home agent and controls access to a main memory,

wherein the cache memories each includes a data memory
having a plurality of cache blocks, and a first tag which
stores a first state indicating a MESI state, for each of
the plurality of cache blocks, and

the home agent includes a second tag which stores a
second state including at least a shared modify state in
which dirty data is shared by a plurality of cache
memories, for each of the plurality of cache blocks in
the cache memories provided respectively in each of
the plurality of core units.

2. The arithmetic processing device according to claim 1,

wherein,

when the second state stored in the second tag for a cache
block is the shared modify state, the first state stored in
the first tag for the corresponding cache block is
controlled to a shared state.

3. The arithmetic processing device according to claim 2,

wherein

the second state further includes a shared exclusive state
in which a plurality of cache memories share clean
data; and

when the second state stored in the second tag for a cache
block is the shared exclusive state, the first state stored
in the first tag for the corresponding cache block is
controlled to the shared state.

4. The arithmetic processing device according to claim 2,

wherein

the home agent, in response to a load request supplied
from a first cache memory in a first core unit of any of
the plurality of core units, when the second tag indi-
cates that a second cache memory in a second core unit
other than the first core unit, among the plurality of core
units, is holding data corresponding to the load request,
requests the second cache memory to transfer the held
data to the first cache memory;

US 2017/0046262 Al

the second cache memory changes the first state of the

first tag; and

the home agent changes the second state of the second tag.

5. The arithmetic processing device according to claim 4,
wherein,

when data in a modify state which corresponds to the load

request and is held by the second cache memory has
been transferred to the first cache memory in response
to the load request supplied from the first cache
memory, the first cache memory changes the first state
of the first tag for a transmission destination cache
block to a shared state, and the home agent changes the
second state of the second tag for the transmission
destination cache block to the shared modify state.

6. The arithmetic processing device according to claim 5,
wherein the home agent does not write back data which
corresponds to the load request and is held by the second
cache memory, to the main memory via the memory access
controller.

7. The arithmetic processing device according to claim 4,
wherein,

in a case where the first state of the first tag for a certain

cache block in the second cache memory is a modify
state, and the second state of the second tag for the
certain cache block is an exclusive state;

when data which corresponds to the load request and is

held by the second cache memory has been discarded
and also transferred to the first cache memory in
response to the load request supplied from the first
cache memory, the first cache memory changes the first
state of the first tag for a transmission destination cache
block to an exclusive state, and the home agent changes
the second state of the second tag for the transmission
destination cache block to a modify state.

8. The arithmetic processing device according to claim 7,
wherein the home agent does not write back data which
corresponds to the load request and is held by the second
cache memory, to the main memory via the memory access
controller.

9. The arithmetic processing device according to claim 3,
wherein

the home agent, in response to a load request supplied

from a first cache memory in a first core unit of any of
the plurality of core units, when the second tag indi-
cates that a second cache memory in a second core unit
other than the first core unit, among the plurality of core
units, is holding data corresponding to the load request,
requests the second cache memory to transfer the held
data to the first cache memory;

the second cache memory changes the first state of the

first tag; and

the home agent changes the second state of the second tag.

10. The arithmetic processing device according to claim
9, wherein,

when data in an exclusive state which corresponds to the

load request and is held by the second cache memory
has been transferred to the first cache memory in
response to the load request supplied from the first
cache memory, the first cache memory changes the first
state of the first tag for a transmission destination cache
block to a shared state, and the home agent changes the
second state of the second tag for the transmission
destination cache block to a shared exclusive state.

Feb. 16, 2017

11. The arithmetic processing device according to claim
10, wherein,

in a case where the first state of the first tag for certain
cache blocks in the second cache memory and a third
cache memory is a share state, and the second state of
the second tag for two cache blocks corresponding to
the certain cache blocks is the shared exclusive state,

when data which corresponds to the load request and is
held by the second cache memory and the third cache
memory has been discarded and also transferred to the
first cache memory in response to a store-premised load
request supplied from the first cache memory, the first
cache memory changes the first state of the first tag for
a transmission destination cache block to an exclusive
state, and the home agent changes the second state of
the second tag for the transmission destination cache
block to an exclusive state.

12. The arithmetic processing device according to claim

4, wherein,

in a case where the first state of the first tags for certain
cache blocks in the second cache memory and a third
cache memory are a share state, and the second state of
the second tags for two cache blocks corresponding to
the certain cache blocks are the shared modify state,

the second cache memory, in response to a replace request
for replacing data in a designated cache block, discards
the data in the designated cache block, and the home
agent changes the second state in the second tag
corresponding to the designated cache block in the
second cache memory into an invalid state,

after discarding the data by the second cache memory, the
third cache memory, in response to the replace request
for replacing data in the designated cache block, dis-
cards the data in the designated cache block, the home
agent changes the second state in the second tag
corresponding to the designated cache block in the third
cache memory into the invalid state and issues a write
back request for writing the discarded data in the main
memory to the memory access controller.

13. The arithmetic processing device according to claim

1, further comprising:

a router that provides a connection route between the
cache memories in each of the plurality of core units,
and between the cache memories and the home agent.

14. A method for controlling an arithmetic processing

device that includes a plurality of core units, each provided
with a plurality of cores each having a arithmetic and logic
unit, and a cache memory which is shared by the plurality of
cores, a home agent operatively connected to the cache
memories provided respectively in the plurality of core
units, and a memory access controller operatively connected
to the home agent and controls access to a main memory, the
method comprising:

changing, by the cache memories, a first state in a first tag
storing the first state that indicates MESI state for each
of cache blocks in the data memory, in response to a
transferring and a registration of data in a data memory
in the cache memories; and

changing, by the home agent, a second state in a second
tag storing the second state that includes at least a
shared modify state for each of cache blocks in the
cache memory included in each plural core units, in
response to the transferring and the registration of data
in the data memory.

US 2017/0046262 Al Feb. 16, 2017
12

15. The method for controlling an arithmetic processing
device according to claim 14, wherein when the home agent
changes the second state stored in the second tag into the
shared modify state, the cache memory changes the first
state stored in the first tag for corresponding cache block into
the share state.

