
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2017/0046262 A1 

Tomatsuri et al. 

US 201700.46262A1 

(54) 

(71) 

(72) 

(73) 

(21) 

(22) 

(30) 

Aug. 12, 2015 

ARTHMETIC PROCESSING DEVICE AND 
METHOD FOR CONTROLLING 
ARTHMETIC PROCESSING DEVICE 

Applicant: FUJITSU LIMITED, Kawasaki-shi 
(JP) 

Inventors: Hideaki Tomatsuri, Narashino (JP); 
NAOYA ISHIMURA, Tama (JP); 
Hiroyuki Kojima, Kawasaki (JP) 

Assignee: FUJITSU LIMITED, Kawasaki-shi 
(JP) 

Appl. No.: 15/213,737 

Filed: Jul. 19, 2016 

Foreign Application Priority Data 

CPUO 

16(COre+L) 
CORECORECORE CORE 
Li 

CPU 

(JP) ................................. 2015-1593O1 

16(COreil) 
CORECORECORE 

m 
CORE 

(43) Pub. Date: Feb. 16, 2017 

Publication Classification 

(51) Int. Cl. 
G06F 2/0804 (2006.01) 
G06F 2/085 (2006.01) 

(52) U.S. Cl. 
CPC ....... G06F 12/0804 (2013.01); G06F 12/0815 

(2013.01); G06F 2212/1041 (2013.01); G06F 
2212/283 (2013.01); G06F 221 2/62 (2013.01) 

(57) ABSTRACT 
An arithmetic processing device includes a plurality of core 
units, each including a plurality of cores each having a 
arithmetic and logic unit, and a cache memory shared by the 
plurality of cores; a home agent connected to the cache 
memories provided respectively in the core units; and a 
memory access controller connected to the home agent and 
controls access to a main memory. The cache memories each 
includes a data memory having cache blocks, and a first tag 
which stores a first state indicating a MESI state, for each of 
the cache blocks, and the home agent includes a second tag 
which stores a second state including at least a shared 
modify state in which dirty data is shared by cache memo 
ries, for each of the cache blocks in the cache memories 
provided respectively in each of the core units. 

CPU2 CPU3 

16(COrest.) 16(COre:-) 
CORECORE 

C C 

-A HA 

MAC NAIF 

RT 
8 

  

  



Patent Application Publication Feb. 16, 2017 Sheet 1 of 29 US 2017/0046262 A1 

E 

  



US 2017/0046262 A1 

Y 

Y 
s 4^ @-@ @ 

SS-HOOV Å HOW!!!!!!4^ 

Feb. 16, 2017. Sheet 2 of 29 Patent Application Publication 

  





DWW 

US 2017/0046262 A1 Feb. 16, 2017. Sheet 4 of 29 Patent Application Publication 

  



US 2017/0046262 A1 Feb. 16, 2017. Sheet 5 of 29 Patent Application Publication 

ndO NI SOTI NEBWA LEG QEHVHS SI VIVG (pº??ipOW) W Z ndO NI SOTT NEEM IHG GHHVHS SI VIVG (?A?SnpXE) B :\/ 

  



US 2017/0046262 A1 

BMW 

| SvH SSHYACIOVÝ SOVL?T-u Xºpu? 

ISOVITTI OTTOT 

Feb. 16, 2017. Sheet 6 of 29 Patent Application Publication 

  

  

  

  





US 2017/0046262 A1 Feb. 16, 2017. Sheet 8 of 29 Patent Application Publication 

CIT?OTTO 

GDGTnQTO Z SV S 

CITTìdOTO 
CIT !,idd (X)HTGT'GT)ndOTO 

xaT0TnoTo_º B E 
Œ; † 

| 
8 

st II || \\ 

_ . (ZGVOJ) (XHTCIT ’GIT) n0 TO 

(STVH)S (STT)S 

XETGITT OTTO(H3gwnN BIWIS)Z 
  

  





O-INI (HIG BLIVGdf? 

US 2017/0046262 A1 

  

  



US 2017/0046262 A1 

GES (S-3)S(TI B IVCldn 

Feb. 16, 2017. Sheet 11 of 29 Patent Application Publication 

  





4^ 

US 2017/0046262 A1 Feb. 16, 2017. Sheet 13 of 29 

XHOWEWÅRHO?NEW 
Patent Application Publication 

  





US 2017/0046262 A1 Feb. 16, 2017. Sheet 15 of 29 Patent Application Publication 

XO\/8-B LIHAA WIWCH 9;S (Be-I)STI E IVGdn 3SNOdSER? W?VCI 

HIVIS E NI WIWO SCITOH ?idÓTT ÍndO EHL B_1\!, S E NI VIVG SCITOH £[\[OT! -JO OTT (€nOT ‘XH-8) (HIC; HOHWES 

ARHOWE'W 
* * * * * * * * * * * wºw ** ** ** }}} 

-------~--~~~~ DTÍ €ñCT 
(W) STT 

------- OTT OTTOT 
(I) STT 

-BHOVO ZT 

CIVER] 

  

  



US 2017/0046262 A1 Feb. 16, 2017. Sheet 16 of 29 Patent Application Publication 

XR?OWEJ W OHNI (HIG] | []O GWERH 

SVH GNV SÕIT 

  







US 2017/0046262 A1 

OHNI R?IG BLIVGJdf? 

SSHOOV \ I?@ ÅR?OWBWTITTEY STI 

<!--VIVO CIVOT ssaboy \s][S][III/STILI V STI 

yQHOWEW WHOWEWÁHOWEW 
€-0[\[)T£-OTOT 
Feb. 16, 2017. Sheet 19 of 29 

STISVH GNV SÕTT 

Patent Application Publication 

  





US 2017/0046262 A1 Feb. 16, 2017. Sheet 21 of 29 Patent Application Publication 

(õñ5••• • • • • • • • ? • • • •ººººººººº ____________________(ndo euroH) 

WT69S (0001 XB-H?ÅRHOVNBWN RIIGI HIV/Oldf?\/ £9S 
NOI I WOI-HILLON ISHT ÒTH CTHVOSIC] NOH HTo?WOO CRIW OSIGY8 YHE-ÏSNWHL W ?VO (8 RH-1SNW?? ? Wf|WG+29S 

------------------*) —------—44------------|—--------------- ??? 
|----------------------------+--------------- CT? ºf DT 

G9S (I <- S) STI HIVGdn(S) SITT GRAVOSIC] \?](\/C] 

~~ ~ ~ ~ ~ ~-------------------------+-------<------ DTÍ ZÍT?T 

99S (I <- S) STTI HIVGdnVZ9S(S) ST1 

_________9ºy989 º??ºNººl!\!\!9 |____________________________|______________5m inon 
(I) STI 

· – – – – – – – – – – – – – – – – – – – – – – – – ~~~~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --* -------- OTT OTTOT 

Z95 (B-I)STI HIVGdn FITHI9S SS?uu ?WL Î(I) SITT 

HSNOdSER} \?|\/CH 

09S ISHnÔTH GWOT 

* * * * * * * * * * * * && www.;-------------------------------------------;-EHOVO ZT; 
?Z"SOH-] 



US 2017/0046262 A1 Feb. 16, 2017. Sheet 22 of 29 Patent Application Publication 

ARHO?NEW OHNI Y?IG BLIV/Oldf] 

?[5][5][5][5] STI 
yQJOW?, WHOWEW 

S TT 

ZZ "SOH-] 

STVH GNV SITT 
  



US 2017/0046262 A1 Feb. 16, 2017. Sheet 23 of 29 Patent Application Publication 

* … ? ? ?---------------------------------------------------------------ººººººº 
ÅRHOVNEHN ----VH 

_ (1-1-1-1)(Z-Z-Z-Z) STVH 
_i\} 

--------------- <-----------------|------- >-<------ DTT £[lOT 
(I-S) STT BOVldE?!(S) STT, 

6/S 

?– – – – – – + – – – – – – – + – – – – – – CTT Zf10T 

(Ie-S) STTI HOVldÐH(S) STTI 
• • • •------------------|-------------- OTT ÍTOT 

(I-S) STTI HOVldE}}(S) STÕTT 

9/SDTÍ OnQT (I-S) STI BOwldad (S) SITT 

IndCT 

  

    

  



US 2017/0046262 A1 

* * ** * * *___________________(ndº ºuOH) X£}^A(XB-8)(HS-8)(HS-R'ÁRJOHN HÄN 
(ANI) HIG B IVC|dfnHIG Hlygdn | HIQ HIxqdn | HIQ 3.xqdn 

WT?8SV/ 8/S\7 G/SV ZZS 

ŒN e<, &#? © <+ e<, 

? ------------------|--+------------|--+--------|--+---------|}} 
---- (ZO r>< ?— <!--> e<, 

\º-------------- <------~--------+-----------+------------|-------> <------- OTT £ñOT 
Z(I-S) STTI HOV?d?£8(S) STT &6/S 

(I-S) STTI HOV|d38(S) STTT 
* -------------------------------------|—--------*** -----|--------------STT Ifn)"||- §(I-S) STT BOW?dBH(S) SITT[\d\O TË 

??9/S 
a --------------------------------------------------~--~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~---- OTT 0{\DT ?=(I-S) STI HOVldEH (S) SITT £0/S 

5 

± ----------------------------------------------------------------------------EIHOVO ZT 

?-- 

<%! ?#7Z’5)||-|| 
? ?º 

  

  



Patent Application Publication Feb. 16, 2017. Sheet 25 of 29 US 2017/0046262 A1 

era. er 

i S 
Yes/ N1 ) i 

  



Patent Application Publication Feb. 16, 2017. Sheet 26 of 29 US 2017/0046262 A1 

era. S D 
t S 
N > So 
5. s 
U?) 

  



Patent Application Publication Feb. 16, 2017. Sheet 27 of 29 US 2017/0046262 A1 

& 
O 

> 

  



Patent Application Publication Feb. 16, 2017. Sheet 28 of 29 US 2017/0046262 A1 

2. 
O 
S. 

D. 

  



Patent Application Publication Feb. 16, 2017. Sheet 29 of 29 US 2017/0046262 A1 

g 
5. () 

C 

ra 
f 
s 
f 

Nea 
CN 

  



US 2017/0046262 A1 

ARTHMETIC PROCESSING DEVICE AND 
METHOD FOR CONTROLLING 

ARTHMIETIC PROCESSING DEVICE 

CROSS-REFERENCE TO RELATED 
APPLICATION 

0001. This application is based upon and claims the 
benefit of priority of the prior Japanese Patent Application 
No. 2015-159301, filed on Aug. 12, 2015, the entire contents 
of which are incorporated herein by reference. 

FIELD 

0002 The present invention relates to an arithmetic pro 
cessing device, and a control method for an arithmetic 
processing device. 

BACKGROUND 

0003. An arithmetic processing device (CPU: central 
processing unit or processor) has a plurality of cores, a last 
level cache (hereinafter, LLC) which is nearest to the main 
memory in the memory hierarchy and which is shared by the 
plurality of cores, and a memory controller. The memory 
hierarchy includes, for example, a level 1 cache (L1 cache) 
which is provided inside the core, and a level 2 cache (L2 
cache) which is provided outside the core, is shared by the 
plurality of cores, and is connected to the main memory 
outside the processor. In this case, the L2 cache which is 
nearest to the main memory corresponds to the LLC. Alter 
natively, if the memory hierarchy has an L1 cache and an L2 
cache in the cores, and outside the cores, a level 3 cache (L3 
cache) which is connected to the main memory outside the 
processor and which is shared by the plurality of cores, then 
the L3 cache nearest to the main memory corresponds to the 
LLC. 
0004. In any hierarchical structure, if a cache miss occurs 
in the LLC, then the LLC issues a fetch request to the 
memory controller of the processor managing the data, and 
the memory controller accesses the main memory, reads out 
the data, and provides a data response to the LLC originating 
the request. The LLC originating the request registers the 
read out data in the cache (cache fill), and also sends a data 
response to the core. 
0005. The volume of caches is tending to increase. In 
other words, the number of cores integrated into a CPU chip 
is increasing with process miniaturization. Furthermore, 
with the increase in the number of cores (number of threads), 
the associativity (number of ways) in a set associative cache 
rises. Along with this, the volume of the LLC which is 
shared by the plurality of cores also increases. Consequently, 
high-end processor chips are tending to increase in size with 
improvements in performance, despite the reduction in Sur 
face area achieved by the miniaturization. 
0006. In the midst of these circumstances, if an LLC 
configuration is adopted which enables a many-core proces 
Sor equal access from each of the cores, then the data access 
path to the LLC becomes longer, due to the large chip size 
and the large-capacity LLC, and the hit latency of the LLC 
increases. 
0007. Therefore, rather than a single LLC configuration 
which is shared by all of the cores, a configuration has been 
proposed in which the LLC is divided into a plurality of 
caches, and a plurality of core groups respectively share 
each of the divided LLCs. In a configuration of this kind, the 

Feb. 16, 2017 

LLC shared by each core group has a smaller capacity, the 
physical distance from the core to the LLC in the core group 
is shorter, the control is also simplified, and high-speed 
access becomes possible. In other words, compared to a 
single large-capacity LLC configuration which permits 
equal access from all of the cores, adopting a configuration 
which includes a plurality of core groups in which a limited 
number of cores share LLC of small capacity enables faster 
hit latency of the LLCs. 

SUMMARY 

0008. However, when a configuration is adopted in which 
a plurality of LLCs are provided in a single arithmetic 
processing device, then in the course of coherency control 
between the plurality of LLCs, there is frequent occurrence 
of access to the directory in the main memory, and write 
back access to the main memory on the basis of the MESI 
protocol, and so on. This kind of increase in the frequency 
of access to the main memory leads to a decrease in 
performance which slows the memory latency. 
0009. According to the first aspect of the disclosure, an 
arithmetic processing device, includes a plurality of core 
units, each provided with a plurality of cores each having a 
arithmetic and logic unit, and a cache memory which is 
shared by the plurality of cores; a home agent operatively 
connected to the cache memories provided respectively in 
the plurality of core units; and a memory access controller 
operatively connected to the home agent and controls access 
to a main memory, wherein the cache memories each 
includes a data memory having a plurality of cache blocks, 
and a first tag which stores a first state indicating a MESI 
state, for each of the plurality of cache blocks, and the home 
agent includes a second tag which stores a second state 
including at least a shared modify state in which dirty data 
is shared by a plurality of cache memories, for each of the 
plurality of cache blocks in the cache memories provided 
respectively in each of the plurality of core units. 
0010. According to the first aspect of the disclosure, it is 
possible to Suppress the frequency of access to the memory. 
0011. The object and advantages of the invention will be 
realized and attained by means of the elements and combi 
nations particularly pointed out in the claims. 
0012. It is to be understood that both the foregoing 
general description and the following detailed description 
are exemplary and explanatory and are not restrictive of the 
invention. 

BRIEF DESCRIPTION OF DRAWINGS 

0013 FIG. 1 is a diagram illustrating an example of a 
configuration in which each arithmetic processing device 
has a single LLC; 
0014 FIG. 2 is a diagram illustrating an example of the 
processing of a load request in the arithmetic processing 
devices in FIG. 1; 
0015 FIG. 3 is a diagram illustrating the configuration of 
arithmetic processing devices according to the present 
embodiment; 
0016 FIG. 4 is a diagram illustrating an example of the 
configuration of a last-level cache LLC and a home agent 
HA; 
0017 FIG. 5 is a diagram illustrating a combination of 
the first state and the second state in the present embodi 
ment; 



US 2017/0046262 A1 

0018 FIG. 6 is a diagram illustrating an example of the 
configuration of a first tag in a LLC and a second tag in a 
home agent HA according to the present embodiment; 
0019 FIG. 7 is a flowchart diagram of a memory access 
process according to the present embodiment; 
0020 FIG. 8 is a diagram of transitions between the states 
1 to 8 in FIG. 5; 
0021 FIG. 9 is a diagram illustrating an example of a 
directory stored in the main memory; 
0022 FIG. 10 is a diagram illustrating a load 1 operation 
in which a core in LCU0 in the local CPU (L-CPU) loads 
data in the Estate in the LLC of LCU3, to the LLC of LCU0; 
0023 FIG. 11 is a diagram illustrating a load 1 operation 
based on a cache protocol using the first state LL S and the 
second State HAS according to the present embodiment; 
0024 FIG. 12 is a diagram illustrating a load 1 operation 
based on a cache protocol using the first state LL S (com 
parative example); 
0025 FIG. 13 is a diagram illustrating a load 2 operation 
in which a core in LCU0 in the local CPU (L-CPU) loads 
data in the M state located in the LLC of LCU3, to the LLC 
of LCU0; 
0026 FIG. 14 is a diagram illustrating a load 2 operation 
based on a cache protocol using the first state LL S and the 
second State HAS according to the present embodiment; 
0027 FIG. 15 is a diagram illustrating a load 2 operation 
based on a cache protocol using the first state LL S (com 
parative example); 
0028 FIG. 16 is a diagram illustrating a load 3 operation 
in which a core in LCU0 in the local CPU (L-CPU) loads 
data in the E state located in the LLC of LCU3; 
0029 FIG. 17 is a diagram illustrating a load 3 operation 
based on a cache protocol using the first state LL S and the 
second State HAS according to the present embodiment; 
0030 FIG. 18 is a diagram illustrating a load 3 operation 
based on a cache protocol using the first state LL S (com 
parative example); 
0031 FIG. 19 is a diagram illustrating a store-premised 
load 4 operation in which a core in LCU0 in the local CPU 
(L-CPU) exclusively loads data in the S state located in the 
LLCs of LCU2 and LCU3, to the LLC of LCU0; 
0032 FIG. 20 is a diagram illustrating a store-premised 
load 4 operation based on a cache protocol using the first 
state LL S and the second state HAS according to the 
present embodiment; 
0033 FIG. 21 is a diagram illustrating a store-premised 
load 4 operation based on a cache protocol using the first 
state LL S (comparative example); 
0034 FIG. 22 is a diagram illustrating an operation in 
which the LLCs of the core units LCU0 to LCU3 in the local 
CPU (L-CPU) are replaced sequentially, in a case where the 
first state of the LLCs of the LCU0 to LCU3 is LL S=S: 
0035 FIG. 23 is a diagram illustrating a replace operation 
based on a cache protocol using the first and second states 
according to the present embodiment; 
0036 FIG. 24 is a diagram illustrating a replacement 
operation based on a cache protocol using the first state 
LL S (comparative example); 
0037 FIG. 25 is a diagram illustrating a state transition 
from state 5 (E/E) to state 6 (M/E); 
0038 FIG. 26 is a diagram illustrating a state transition 
from state 7 (E/M) to state 8 (M/M); 
0039 FIG. 27 is a diagram illustrating a state transition 
from state 8 (M/M) to state 7 (E/M); 

Feb. 16, 2017 

0040 FIG. 28 is a diagram illustrating a state transition 
from state 4 (S/Z) to state 7 (E/M); and 
0041 FIG. 29 is a diagram illustrating a state transition 
from state 5 (E/E) to state 2 (S/S). 

DESCRIPTION OF EMBODIMENTS 

0042 FIG. 1 is a diagram illustrating an example of a 
configuration in which each arithmetic processing device 
(CPU or processor) has a single LLC. FIG. 1 illustrates four 
arithmetic processing devices CPU0 to CPU3. Each arith 
metic processing device CPU has sixteen cores, CORE, for 
example. Each core, CORE, has a arithmetic and logic unit 
(not illustrated) and an L1 cache. Each arithmetic processing 
device CPU has a single last-level cache LLC (hereinafter, 
simply “LLC) which is shared by the sixteen cores, and 
also a home agent HA, a memory access controller MAC, a 
router RT which transfers data between arithmetic process 
ing devices, etc., an interface for non-cache access NA. IF, 
and a PCI bus, etc. The memory access controllers MAC 
each control access to a main memory, which is not illus 
trated. The router RT in each CPU is connected to the routers 
RT of the other CPUs via a bus, BUS, between the CPUs. 
0043. Here, the last-level cache means the cache memory 
which is nearest to the main memory in the memory hier 
archy, and is a cache memory which is connected to the main 
memory outside the processor via the memory access con 
troller MAC. 
0044 FIG. 2 is a diagram illustrating an example of the 
processing of a load request in the arithmetic processing 
devices in FIG. 1. FIG. 2 illustrates processing in a case 
where, for example, the arithmetic processing device CPU0 
has requested data from the memory area of the CPU1 (a 
load request or read request). The CPU that has issued the 
request is called the “local CPU (L-CPU), the CPU which 
manages the memory holding the requested data is called the 
“home CPU (H-CPU), the CPU which takes out the 
requested data from the home H-CPU is called the “remote 
CPU (R-CPU). The home CPU stores, in a directory DIR, 
information indicating whether or not data in the memory 
managed by the home CPU has been taken out by another 
CPU. The states of the directory are, for example, a state 
where no CPU has taken out data (L: Local), a state where 
one CPU has taken out data (R-EX: Remote Exclusive), and 
a state where two or more CPUs have taken out data (R-SH: 
Remote Share). The directory is stored in the main memory. 
0045. The cache protocol in the LLC generally uses a 
MESI protocol. According to the MESI protocol, the state 
(State) of the data in each cache block in a cache memory is 
one of the following four states. Firstly, the M (Modify) state 
is a “dirty' state in which the data read out from the main 
memory has been changed, and when another CPU reads 
data from a cache block in an M state, the other CPU has to 
write-back the data of this cache block, to the main memory. 
The E (Exclusive) state is a “clean' state in which the data 
read out from the main memory has not been changed, and 
matches the values in the main memory. The S (Share) state 
is a state in which the same data is also stored in another 
cache memory, and the values also match those in the main 
memory. The I (Invalid) state is a state in which the cache 
block is invalid. The combinations of states that can be 
adopted by cache blocks corresponding to two cache memo 
ries are: M/I, E/I, S/S, S/I, III. 
0046. The MESI state is stored as a state code (State) in 
a cache tag in the cache. One example of a state transfer is 



US 2017/0046262 A1 

where a cache block in the I state changes to the E State upon 
having data filled (registered) therein by a read request, and 
changes to the M state when that data is rewritten by a write 
request. The data of a cache block in the E state changes to 
the S state when read by another cache. When a read request 
is made for data corresponding to a cache block in the M 
state, the data in the cache block in the M state is written 
back to the main memory, and the cache block in the cache 
that made the read request changes the state to the E State. 
0047 Returning to FIG. 2, firstly, the LLC of the local 
CPU (L-CPU), in the event of a cache miss, sends a data 
location confirmation request MI-SH to the home CPU 
(H-CPU). In response to this confirmation request, the home 
agent of the home CPU executes memory access to the main 
memory, and checks the directory DIR information in the 
memory. Here, the directory DIR indicates that a remote 
CPU has taken out the data (R-EX). 
0048. Thereupon, the home agent HA of the home CPU 
sends a request (MB-SH) for eviction and transfer of data, 
to the LLC of the remote CPU (R-CPU). In this example, 
since the LLC of the remote CPU (R-CPU) holds data in the 
M (Modify) state, then the home agent of the home CPU 
transfers (DT) the received data to the local CPU (L-CPU) 
originating the request, and simultaneously writes back the 
data to the main memory (WRBK). The states of LLCs and 
the directory after this processing are as follows: the LLC of 
the local CPU (L-CPU) is in the E (Exclusive) state, the LLC 
of the remote CPU (R-CPU) is in the I (Invalid) state, and 
the directory DIR of the home CPU is again in the R-EX 
state (a state in which a remote CPU has taken out data). 
0049 According to FIG. 2, during the process of trans 
ferring data from the remote CPU (R-CPU) to the local CPU 
(L-CPU) via the home CPU (H-CPU), two memory accesses 
OCCU. 

0050. In the case of CPUs having the configuration in 
FIG. 1, it is envisaged that virtually all memory access 
operations are directed by a CPU to the memory managed by 
that CPU, and therefore the frequency of access to a memory 
managed by another CPU is low. Therefore, delay occurring 
due to access to the memory of another CPU has a limited 
effect on the average memory latency. Access by a CPU to 
the memory managed by that CPU also serves as access to 
the directory in order to check whether or not another CPU 
has taken out data. Therefore, the number of steps to be 
taken so as to access the directory does not involve addi 
tional steps. 
0051. However, in the CPUs illustrated in FIG. 1, when 
the number of cores increases due to the advance in minia 
turization and the enlargement of the chip size, the capacity 
of the LLCs increases, the LLC circuit area becomes larger, 
and furthermore, the operating frequency becomes faster, 
the cache latency also tends to become longer. In accordance 
with this, in order to improve the processing performance of 
the CPU, the cache latency has to be shortened. 
0052 Shortening the physical distance of the cache is an 
effective way to shorten the cache latency, and as described 
above, a configuration in which the LLCs in the CPU chips 
are divided up and each of the divided LLCs is shared by a 
smaller number of cores is effective in achieving this. 
0053 Example of Configuration of CPU, LLC and HA 
in the Present Embodiment 
0054 FIG. 3 is a diagram illustrating the configuration of 
arithmetic processing devices (CPUs) according to the pres 
ent embodiment. FIG. 3 illustrates two CPUs having the 

Feb. 16, 2017 

same configuration, by way of an example. For example, 
CPU0 has a plurality of core units LCU0 to LCU3, each 
provided with a plurality of cores CORE, and a last-level 
cache LLC which is shared by the plurality of cores. CPU0 
has four core units, for example. Furthermore, each core unit 
LCU has six cores, CORE, for example. The core units 
LCU0 to LCU3 are also called “nodes', node(0 to node 3. 
Each core, CORE, has a arithmetic and logic unit (not 
illustrated), an L1 cache, and an L2 cache. The core CORE 
may also have only the L1 cache. 
0055 Moreover, the CPU0 has a home agent HA in 
common for the plurality of core units LCU0 to LCU3, 
which is connected to the LLCs in the respective core units 
LCU0 to LCU3 via a router circuit RT. Furthermore the 
CPU0 has a memory access controller MAC which controls 
memory access to the main memory, a non-cache access 
interface NA-IF, which is an access interface for access 
other than to the cache, and a PCI bus switch. The CPU0 and 
CPU1 are interconnected by a CPU bus, BUS, via the 
respective routers RT. The CPU1 also has the same con 
figuration. 
0056. The LLC in each core unit LCU has a cache tag of 
a first tag (not illustrated), similarly to a normal cache, which 
stores a first state having a MESI state. The home agent HA 
has a second tag (indicated as HA state LCUi (where it is 0 
to 3) in the drawing) which stores a second state of the LLCs 
in the four core units. The second state is called the “HA 
State' (or HA S). The second state is described in detail 
below. 

0057 FIG. 4 is a diagram illustrating an example of the 
configuration of a last-level cache LLC and a home agent 
HA. The LLC has a request reception circuit (request port) 
10 which receives requests from the L2 cache, home agent 
HA and other CPUs, etc., and a request selection circuit 11 
which selects the received requests according to a prescribed 
priority order. Moreover, the LLC has a pipeline circuit 12 
to which the request selected by the request selection circuit 
11 is introduced (input), and which executes prescribed 
cache control. Furthermore, the LLC has an LLC cache tag 
LL TAG1, a copy of the L2 cache tag L2TAG2, a data 
memory 13 which stores data, a request output unit 14 which 
outputs requests to the L2 cache and HA, etc., and a data 
input control unit 15 which inputs data from the HA and/or 
another CPU and registers (fills) the data into the data 
memory. 

0058. The pipeline circuit 12, in the course of processing 
of the input request, refers to the cache tag LL TAG1 to 
determine a cache hit or miss, refers to the L2 tag copy 
L2TAG2 to carry out other processing, and updates the 
cache tag LL TAG1 and/or data memory 13 and outputs 
requests and/or data to the L2 cache and the HA. 
0059. A tag address and first state, which is the MESI 
state, is stored in the LLC cache tag LL TAG1, for each 
cache block of the LLC. 

0060. On the other hand, the home agent HA similarly 
has a request reception circuit 20 which receives requests 
from the LLC and/or another CPU, a request selection 
circuit 21 which selects a received request according to a 
prescribed priority order, a pipeline circuit 22, a request 
output unit 24 which outputs a request to the LLC, MAC or 
another CPU, and a data control unit 25 which stores data 
from the LLC, MAC and/or other CPU, and outputs data to 
the LLC, MAC and/or other CPU. 



US 2017/0046262 A1 

0061 The home agent HA, as stated above, has a second 
tag LL TAG2 which stores the second state HA S of the 
LLCs in the four core units. The pipeline circuit 22 refers to 
the second tag LL TAG2 to process input requests in 
accordance with this state, and outputs requests and/or data 
to the LLC, MAC and other CPU, etc. 
0062 Combination of First State LL S and Second State 
HAS 
0063 FIG. 5 is a diagram illustrating a combination of 
the first state and the second state in the present embodi 
ment. In the configuration in FIG. 1, the home agent HA is 
configured in a one-to-one correspondence with the LLC. 
On the other hand, in the configuration in FIG. 3, the home 
agent HA is connected to a plurality of LLCs via the router 
RT. In the case of FIG. 1, the home agent HA principally 
manages the directory information in the memory. On the 
other hand, in the case of FIG. 3, the home agent HA, in 
addition to managing the directory information, manages the 
second states (HA State HA S) of the plurality of LLCs, in 
order to control the cache protocol between the plurality of 
LLCs and the HA. 

0064. As illustrated in FIG. 5, the first state LLS which 
is held in the first tag LL TAG1 of the LLC may take any 
one of the MESI states. On the other hand, if the first state 
LL S is the S state, the second state HAS which is held in 
the second tag LL TAG2 of the HA has an A state which 
indicates that E (Exclusive) data is shared between LLCs in 
the CPU, and a Z state which indicates that M (Modify) data 
is shared between the LLCs in the CPU. This corresponds to 
States 3 and 4 in FIG. 5. 
0065. In other words, the A state of the second state 
HA S is a state in which one CPU among the plurality of 
CPUs is holding data independently, and in which any two 
or more LLCs of the plurality of LLCs in that CPU are 
sharing the data. Furthermore, the Z state of the second state 
HA S is a state in which one CPU among the plurality of 
CPUs is holding the data independently in a rewritten state 
(dirty data), and in which any two or more LLCs of the 
plurality of LLCs in that CPU are sharing the data. 
0.066 Moreover, the second state HAS, in combination 
with the first state LL S. may take one of three states in 
which data in the M state is held in the CPU (LL S/HA 
S=M/E, E/M, M/M). These correspond to states 6, 7 and 8 
in FIG. 5. These three states are described in detail herein 
after, but, for example, the data transitions to state 5 (LL 
S/HA S=E/E) when data is filled into the LLC in a certain 
core unit LCU, to state 6 (LL S/HA S=M/E) when that data 
is rewritten by a core in the same core unit, to state 7 
(LL S/HA S=E/M) when data is transferred to an LLC of 
another core unit, and to state 8 (LL S/HA S=M/M) when 
the core in the core unit of the transfer destination is 
rewritten. 

0067. Furthermore, state 2 (LL 2/HA S=S/S) means a 
state in which data is shared with another CPU, and if only 
one CPU holds the data independently and shares the data 
between a plurality of LLCs in that CPU, then there is a 
clean data sharing state, which is state 3 (S/A), or a dirty data 
sharing state, which is state 4 (S/Z). 
0068. In FIG. 5, the column “state of the CPU as viewed 
from the other CPU means the State of the data in the CPU 
having a plurality of LLCs, in terms of a MESI state. In other 
words, this means a MESI state in a MESI protocol between 
a plurality of CPUs. As illustrated in FIG. 5, between the 
CPUs, state 1 (I/I) means an I state, state 2 (S/S) means an 

Feb. 16, 2017 

S state, state 3 (S/A) means an E state, state 4 (S/Z) means 
an M state, state 5 (E/E) means an E state, and states 6, 7 and 
8 mean an M state. 
0069. The home agent HA determines the state of the 
CPU as viewed from the other CPU, on the basis of the 
combination of the first and second states of the first and 
second tags, and controls the cache in relation to the other 
CPU, by a normal MESI protocol. Consequently, even if the 
CPUs illustrated in FIG. 1 and the CPUs illustrated in FIG. 
3 are mixed, it is possible to carry out cache control suitably. 
0070. Example of Configuration of First Tag LL TAG1 
and Second Tag LL TAG2. 
0071 FIG. 6 is a diagram illustrating an example of the 
configuration of a first tag in a LLC and a second tag in a 
home agent HA according to the present embodiment. It is 
presumed that the cache memory in the LLC is a two-way 
memory, and that each way has n cache blocks. 
(0072. The left-hand side of FIG. 6 illustrates, by way of 
an example, the first tags LL TAG1 in each of the LLCs of 
the four core units LCU0 to LCU3. In each of the first tags 
LL TAG1, the first way, way 0, stores a tag address and first 
state LL S. respectively for each of n cache blocks having 
index numbers from 0 to n-1. The second way, way 1, also 
has a similar configuration. 
(0073. On the other hand, the right-hand side in FIG. 6 
illustrates the second tag LL TAG2 in the home agent HA. 
The second tag LL TAG2 is provided to correspond to each 
LLC of the front windscreen four core units LCU0 to LCU3. 
The second tag which corresponds to the LLC of the core 
unit LCU0, among the second tags LL TAG2, has two ways 
which store a tag address and a second state HAS respec 
tively for each one of n cache blocks having index numbers 
from 0 to n-1, similarly to the first tags LL TAG1. The 
second tags corresponding to the LLCs of the remaining 
three core units LCU1 to LCU3 are similar to this. More 
specifically, the first tags LL TAG1 and the second tags 
LL TAG2 corresponding to the LLCs of the core units each 
have the same number of ways and the same number of 
cache blocks, and the tag addresses stored respectively 
therein are the same. 
0074. Overall Image of Memory Access Process 
0075 FIG. 7 is a flowchart diagram of a memory access 
process according to the present embodiment. For example, 
it is supposed that a core in the core unit LCU0 in the CPU0 
in FIG. 3 has issued a load request (read request). The 
memory access process indicated below involves either: (1) 
receiving data from the LLC in the same core unit LCU0 as 
the core originating the request (S1.2); (2) receiving data 
from the LLC in a different core unit (S18); (3) receiving 
data from the main memory which is managed by the CPU0 
of the requesting core (S21); or (4) receiving data from the 
main memory managed by a different CPU (S23). Further 
more, when the memory access process is a write-premised 
load request, then if the data is shared by a plurality of LLCs, 
the data is transferred, the data is discarded and the first state 
is set to the I state by the LLC that has shared the data, and 
in the LLC that originated the request, the first state is set to 
the E state, and the data is transferred to the L2 cache (S14). 
(0076 Firstly, when a core in the core unit LCU0 of the 
CPU0 issues a load request, the L1 cache and the L2 cache 
in the core unit LCU0 both produce a cache miss, and the 
access request is input to the LLC in the core unit LCU0. 
This LLC searches the first tag LL TAG1 and if it produces 
a cache hit (Yin S10), and if a condition in which the request 



US 2017/0046262 A1 

is write-premised and the first state LL S is S is not true (N 
in S11), then the LLC transfers the data in the data memory 
producing the hit, to the L2 cache originating the request 
(data response) (S12). 
0077. If the request producing a cache hit is a write 
premised load request and the first state LL S is S (Y at 
S11), then the HA searches the second tag LL TAG2, and 
checks the second state HAS to check whether another 
CPU is sharing the data in the core block producing the hit 
(HA S-S), or whether another LLC is sharing that data 
(HA S=A, Z) (S13). The HAthen causes the LLC of another 
CPU or same CPU holding the data to discard the data, and 
change the first state LL S of that LLC to the I state, and 
furthermore, causes the LLC of the LCU0 originating the 
request to transfer the data to the L2 cache originating the 
request, and change the first state LL S of that LLC to the 
E state. Thereupon, the core in the LCU0 executes a write 
process. Since there is a need to change the state in the cache 
to the E state before writing, then a write-premised load 
request is carried out. This process corresponds to the 
write-premised load request (load request in E State) 
described below. 

0078. In step S10, if a cache miss occurs with the first tag 
of the LLC of the LCU0 (N at S10), then the LLC sends a 
request to the HA, causing the HA to search the second tag 
LL TAG2 and check the second state HAS, to check 
whether or not another LLC in the same CPU0 is holding the 
data, or whether or not another CPU is holding the data 
(S15). 
0079. As a result of the check in step S15, if another LLC 
inside the same CPU0 is holding the data (Y in S16), then 
the HA requests the other LLC which is holding that data to 
transfer the data to the LLC originating the request (S17). In 
response to this, a data transfer is carried out from the other 
LLC holding the data, to the LLC originating the request 
(data response), and Subsequently, the data is transferred to 
the L2 cache originating the request, the first state LL S of 
the first tag of the LLC originating the request is updated, 
and the second state HA S of the second tag of the HA is 
also updated (S18). 
0080. On the other hand, if, as a result of the check in step 
S15, the other LLC in the same CPU0 is not holding data (N 
at S16), then access to the main memory is needed. 
0081. Therefore, if the access destination is a local region 
(an address region of the main memory managed by the 
CPU0 that has issued the request) (Y in S19), then the HA 
requests memory access to the memory access controller 
MAC (S20), and finally, the data read out from the main 
memory is sent from the memory access controller MAC to 
the LLC originating the request, the LLC originating the 
request receives the data, and Subsequently, the data is 
transferred to the L2 cache originating the request (data 
response) (S21). Thereupon, the first state LL S of the LLC 
originating the request and the second state HA S of the HA 
are updated, and if there is a need, the directory DIR in the 
main memory is updated. 
0082. On the other hand, if the access destination is not 
a local region (N in S19), then data is requested of the home 
CPU which manages the main memory that is the access 
destination (S22). When the data is eventually transferred 
from the home CPU, the LLC originating the request in the 
CPU0 receives this data and transfers the data to the L2 
cache originating the request (data response) (S23). There 
upon, the first state LL S of the LLC originating the request 

Feb. 16, 2017 

and the second state HA S of the HA are updated, and the 
directory DIR in the main memory of the home CPU is 
updated. 
0083 State Transitions 
I0084 FIG. 8 is a diagram of transitions between the states 
1 to 8 in FIG. 5. In FIG. 8, the numbers in the squares 
indicate the respective states 1 to 8, and an indication Such 
as 'SS' represents the first state LL S and the second state 
HA S, respectively. Furthermore, the abbreviations which 
indicate the operational causes of the state transitions are as 
follows. 
LD: load (read) 
ST: store (write) 
RPL: replace (process for evicting data in cache) 
LD EX: store-premised load (write-premised read, exclu 
sive load) 
O CPU: processing by other CPU 
O LCU: processing by other core unit LCU 
CORE: processing by core in same core unit LCU 
I0085. Furthermore, the store-premised load by the other 
CPU O CPU LD EX is the same operation as replace RPL, 
and transitions to the I state (State 1). The load O CPU LD 
by another CPU from states 6, 7 and 8 is the same operation 
as replace RPL, and transitions to the I state (State 1). 
I0086 Of the states 1 to 8, the initial state is state 1 (I/I). 
In state 1, if a load request LD or a store-premised load 
LD EX is executed and data is filled into a cache block in 
state 1 (I/I), then the state transfers from state 1 to state 5 
(E/E). State 5 does not transfer to another state even if a 
store-premised load O LCU LD EX is executed by another 
core unit LCU. 
I0087 Next, when a store by a core CORE ST is executed 
in a cache block in state 5 (E/E), the data is rewritten to 
become dirty data, and the state transitions to state 6 (M/E). 
State 6 does not transfer to another state even if a store by 
a core CORE ST is executed again. 
I0088. In state 6 (M/E), if a load by another LCU 
O LCD LD or a store-premised load by another LCU 
O LCU LD EX is executed, then the state transitions to 
state 7 (E/M). This corresponds to load 2 described below. 
State 7 does not transition to another state even if a store 
premised load by another LCUO LCU LD EX is executed 
again. 
I0089. If store by a core CORE ST is executed in state 7 
(E/M), then state 7 transitions to state 8 (M/M). Conversely, 
in state 8 (M/M), if a load or store-premised load by another 
LCU is executed, then the state returns to state 7. State 8 
does not transfer to another state even if a store by a core 
CORE ST is executed. 
(0090. In state 7 (E/M), when a load is executed by 
another LCU, the state transitions to state 4 (S/Z). This 
corresponds to load 3 described below. State 4 does not 
transition to another state, if a load O LCU LD is executed 
by another LCU. 
(0091. In state 5 (E/E), when a load by another LCU 
O LCU LD is executed, the state transitions to state 3 
(S/A). This corresponds to load 1 described below. There 
after, state 3 does not transition to another state even if a load 
by another LCU is executed. In state 3, when a stored 
promised load LD EX is executed, then the state transitions 
to state 5. This corresponds to the store-premised load 4 
described below. 
0092. In state 5 (E/E), when a load by another CPU 
O CPU LD is executed, the state transitions to state 2 (S/S). 



US 2017/0046262 A1 

State 2 is maintained, even if the load is repeated. Con 
versely, if the store-premised load LD EX is executed in 
state 2 (S/S), the state transitions to state 5 (E/E). 
0093. In states 2 to 5, when a store-premised load by 
another CPU O CPU LD EX or replace RPL is executed, 
then the state transitions to state 1. Furthermore, in states 6, 
7 and 8, when a load by another CPU O CPU LD or 
store-premised load by another CPU O CPU LD EX or 
replace RPL is executed, then the state transitions to state 1. 
These transitions accompany the eviction of data in the 
cache block, and when there is no longer any data in the 
cache block than the state transitions to the I state. 
0094) Example of Directory 
0095 FIG. 9 is a diagram illustrating an example of a 
directory stored in the main memory. As stated above, the 
directory stores any one of the following states in corre 
spondence with addresses in each cache block: the state L 
(Local) in which no CPU has taken out data; the state R-EX 
(Remote Exclusive) in which only one CPU has taken out 
data; and the state R-SH (Remote Share) in which a plurality 
of CPUs have taken out data. Moreover, the directory also 
includes information about the object CPU which indicates 
which CPU corresponds to each of the states. In the example 
illustrated in FIG.9, in the case of an information processing 
system in which sixteen CPUs are mutually connected, the 
information about the object CPU is expressed as a 16-bit 
sequence, for instance, in which the object CPU is indicated 
as “1”, another CPU, as “0” and the same CPU holding the 
directory, as “-”. 
0096. In the example in FIG. 9, the home CPU (H-CPU) 
is CPU1, and it is possible to tell whether or not the data 
in the memory managed by the home CPU has been taken 
out by the cache of the same CPU holding the directory, by 
referring to the state of the cache tag, and therefore the 
CPU1 is indicated as '-' in the 16-bit sequence. In the 
example in FIG. 9, the data of the cache block at the address 
ADD1 has been taken out by CPU15, the data at address 
ADD2 has not been taken out by any CPU, the data at 
address ADD3 has been taken out CPU14 and CPU2), and 
the data at address ADD4 has been taken out by all of the 
other CPUs. 
0097. Operation of Load Request in Present Embodi 
ment 
0098 Next, the operations according to the four types of 
load and replace operation illustrated in the transition dia 
gram in FIG.8 will be described in detail. There follows a 
simple description of two store and three load operations. It 
is presumed that the arithmetic processing devices CPU 
according to the present embodiment have four core units 
LCU0 to LCU3, as illustrated in FIG. 3. Furthermore, a 
plurality of CPUs including at least a local CPU and a home 
CPU are mutually connected via a CPU bus. 
0099 Load 1 
0100 FIG. 10 is a diagram illustrating a load 1 operation 
in which a core in LCU0 in the local CPU (L-CPU) loads 
data in the E state in the LLC of LCU3, to the LLC of LCU0. 
The left-hand side of FIG. 10 illustrates an operation based 
on a cache protocol using the first state LL S and the second 
state HAS according to the present embodiment, and 
depicts the states of the first state LL S of the LLCs of 
LCU0 to LCU3 of the local CPU (L-CPU), and the second 
state HAS of the HA, before and after transition. The 
right-hand side of FIG. 10 illustrates an operation based on 
a cache protocol using only the first state LL S. in a 

Feb. 16, 2017 

configuration in which the LLCs in the CPU illustrated in 
FIG. 3 are divided up for each of a plurality of core groups 
LCU. In other words, the example on the right-hand side is 
illustrated for the purpose of comparison with the present 
embodiment. 
0101 FIG. 11 is a diagram illustrating a load 1 operation 
based on a cache protocol using the first state LL S and the 
second state HAS according to the present embodiment. As 
illustrated in the left-hand side of the FIG. 10, load 1 is an 
operation in which, when the LLC of the LCU3 of the local 
L-CPU is storing data in the E state, a core of LCU0 issues 
a load request and fills data into the LLC of LCU0. In other 
words, by load 1, a cache block of the LLC in LCU3 
transitions from state 5 (E/E) to state 3 (S/A). 
0102. In FIG. 11, the core of LCU0 issues a load request 
and the load request is issued to the LLC by the L2 cache 
(S30). The LLC of LCU0 searches the first tag LL TAG1 
and produces a cache miss (S31). The LLC of the LCU0 
issues a load request to the HA via the router RT (S32), and 
the HA searches the second tag LL TAG2. As a result of 
this, the HA detects that the second state HAS of the cache 
blocks corresponding to the access destination address in the 
four core units LCU0 to LCU3 is I-I-I-E, and therefore that 
the LLC of LCU3 is holding the data in the E state, and the 
CPU (L. CPU) is holding the data in the E state (S33). As a 
result of this, the HA issues a data transfer request to the 
LLC of LCU3 (S34), to request transfer of the data in the 
LLC of LCU3, to the LLC of LCU0. 
(0103) In response to this data transfer request S34, the 
(pipeline circuit of the) LLC of LCU3 transfers the data held 
therein to the LLC of LCU0, via the router RT, and updates 
the first state LL S from E to S (S35). In response to this 
data transfer, the (pipeline circuit of the) LLC of LCU0 fills 
(registers) with the received data in the cache memory, 
responds with this data to the L2 cache, and updates the first 
state LL S from I to S (S36). The L2 cache fills with the data 
in the data response in the cache memory. 
0104. On the other hand, the (pipeline circuit) of the LLC 
of LCU3 issues a data transfer completion notification to the 
HA (S37), and in response to this, the HA updates the second 
state HA S in the second tag LL TAG2, to “A-I-I-A' (S38). 
In this series of processes, no access is made to the memory 
of the home CPU (H-CPU). 
0105 FIG. 12 is a diagram illustrating a load 1 operation 
based on a cache protocol using the first state LL S (com 
parative example). As illustrated in the right-hand side of the 
FIG. 10, in the load 1 operation, when the LLC of the LCU3 
of the local L-CPU is storing data in the E state, a core of 
LCU0 issues a load request and fills data into the LLC of 
LCU0. In FIG. 12, the same processes as FIG. 11 are 
labelled with the same reference numerals, and correspond 
ing processes are labelled with the same reference numeral 
plus the suffix A. 
0106. In FIG. 12, a load request is issued to the LLC from 
the L2 cache of LCUO in CPU0, which is a local L-CPU 
(S30), and the LLC of LCU0 searches the first tag LL TAG1 
and produces a cache miss (S31). The LLC of LCU0 issues 
a fetch request to the home CPU (S32 A), and the MAC of 
the home CPU searches the directory DIR in the memory 
(S33 A). As a result of this, the home CPU detects that a 
remote CPU (here, the remote CPU is the same as the local 
L-CPU) is holding the data in an E state and that the LCU3 
is holding the data. Here, it is assumed that the object CPU 
information in the directory in FIG. 9 also includes object 



US 2017/0046262 A1 

CPU and object core unit LCU information. As a result of 
this, the HA of the home CPU issues a data transfer request 
to the LLC of LCU3 of the remote CPU (the local CPU, 
CPU0) (S34), and requests transfer of the data in the LLC of 
LCU3, to the LLC of LCU0. 
0107 The processing thereafter is similar to FIG. 11 
(S35, S36), and when LCU3 in the local L-CPU sends the 
data transfer completion notification to the home H-CPU 
(S37), then the home H-CPU updates the directory in such 
a manner that LCUO and LCU3 of the local L-CPU share the 
data (S38 A). 
0108. In this way, when the second state HAS is not 
used, there arises a need to access the directory in the 
memory managed by the home H-CPU, two times. On the 
other hand, with the cache protocol according to the present 
embodiment which uses the second state HAS in addition 
to the first state LL S in FIG. 11, no memory access occurs. 
In other words, according to the present embodiment, since 
the home agent HA manages the second state HAS of a 
plurality of LLCs, then it is possible to complete processing 
within the local L-CPU, as far as possible. 
0109 Load 2 
0110 FIG. 13 is a diagram illustrating a load 2 operation 
in which a core in LCU0 in the local CPU (L-CPU) loads 
data in the M state located in the LLC of LCU3, to the LLC 
of LCU0. Similarly to FIG. 10, the left-hand side illustrates 
a cache protocol operation using the first state LL S and the 
second state HAS according to the present embodiment, 
and the right-hand side illustrates a cache protocol operation 
using only the first state LL S. 
0111 FIG. 14 is a diagram illustrating a load 2 operation 
based on a cache protocol using the first state LL S and the 
second state HAS according to the present embodiment. As 
illustrated in the left-hand side of FIG. 13, load 2 is an 
operation in which, when the LLC of the LCU3 of the local 
L-CPU is storing data in the M state, a core of LCU0 issues 
a load request and fills data into the LLC of LCU0. In other 
words, by load 2, the state of the data transitions from state 
6 (M/E) of the LLC of LCU3 to state 7 (E/M) of the LLC 
of LCU0. 

0112. In FIG. 14, the core of LCU0 issues a load request 
and the load request is issued to the LLC from the L2 cache 
(S40). The LLC of LCU0 searches the first tag LL TAG1 
and produces a cache miss (S41). The LLC of the LCU0 
issues a load request to the HA (S42), and the HA searches 
the second tag LL TAG2 (S43). As a result of this, the HA 
detects that the second state HAS of the cache blocks 
corresponding to the access destination address in the four 
core units LCU0 to LCU3 is I-I-I-E, and therefore that the 
LLC of LCU3 is holding the data in the Estate, and the CPU 
(L. CPU) is holding the data in the Estate. As a result of this, 
the HA issues a data transfer request to the LLC of LCU3 
(S44), to request transfer of the data in the LLC of LCU3, 
to the LLC of LCU0. 

0113. In response to this data transfer request S44, the 
LLC of LCU3 transfers the data held therein to the LLC of 
LCU0 via the router RT, and since the first state LLS is the 
M state, the data is discarded by a normal MESI protocol and 
the first state LL S is updated from M to I (S45). In response 
to this data transfer, the LLC of LCUO is filled (registered) 
with the received data, responds with this data to the L2 
cache, and updates the first state LL S from I to E (S46). 
Due to this data response, the L2 cache is filled with the data. 

Feb. 16, 2017 

0114. On the other hand, the LLC of LCU3 issues a data 
transfer completion notification to the HA (S47), and in 
response to this, the HA updates the second state HAS in 
the second tag LL TAG2, to "M-I-I-I (S48). In this series 
of processes, no access is made to the memory of the home 
CPU (H-CPU). In particular, the LLC of LCU3 does not 
write-back the data in the M state, to the memory. 
0115 FIG. 15 is a diagram illustrating a load 2 operation 
based on a cache protocol using the first state LL S (com 
parative example). As illustrated in the right-hand side of the 
FIG. 13, in the load 2 operation, when the LLC of the LCU3 
of the local L-CPU is storing data in the M state, a core of 
LCU0 issues a load request and fills data into the LLC of 
LCUO. 
0116. In FIG. 15, a load request is issued to the LLC from 
the L2 cache of the LCU0 in the local L-CPU (S40). The 
LLC of LCU0 searches the first tag LL TAG1 and produces 
a cache miss (S41). The LLC of LCU0 issues a fetch request 
to the home CPU (S42 A), and the MAC of the home CPU 
searches the directory DIR in the memory (S43 A). As a 
result of this, the home CPU detects that LCU3 in the remote 
CPU (which is the same as the local L-CPU) is holding the 
data in the E state. Consequently, the HA of the home 
H-CPU issues a data transfer request to the LLC of LCU3 in 
the local L-CPU (S44), and requests transfer of the data in 
the LLC of LCU3, to the LLC of LCU0. 
0117 Thereafter, similar processing to that in FIG. 14 is 
carried out (S45, S46), the LCU3 in the local L-CPU 
transfers data to the home H-CPU (S47 A), the home 
H-CPU updates the directory so that LCU0 in the local 
L-CPU is holding the data in the E state, and the data is 
written back (S48 A). 
0118. In this way, when the second state HA S is not 
used, there arises a need to access the memory managed by 
the home H-CPU, two times, and to refer to and change the 
directory, and write-back data. On the other hand, with the 
cache protocol using the first state LL S and the second state 
HA S illustrated in FIG. 14, no memory access occurs. In 
other words, according to the present embodiment, since the 
home agent HA manages the second state HA S of a 
plurality of LLCs, then it is possible to complete processing 
within the local L-CPU, as far as possible. 
0119 Load 3 
I0120 FIG. 16 is a diagram illustrating a load 3 operation 
in which a core in LCU0 in the local CPU (L-CPU) loads 
data in the E state located in the LLC of LCU3. In FIG. 16, 
the left-hand side illustrates a cache protocol operation using 
the first state LL S and the second state HAS according to 
the present embodiment, and the right-hand side illustrates 
a cache protocol operation using only the first state LL S. 
I0121 FIG. 17 is a diagram illustrating a load 3 operation 
based on a cache protocol using the first state LL S and the 
second state HAS according to the present embodiment. As 
illustrated in the left-hand side of the FIG. 16, load 3 is an 
operation in which, when the LLC of the LCU3 of the local 
L-CPU is storing data in the E state, a core of LCU0 issues 
a load request and fills data into the LLC of LCU0. In other 
words, by load 3, a cache block of the LLC in LCU3 
transitions from state 7 (E/M) to state 4 (S/Z). 
0122. In FIG. 17, the core of LCU0 in the local L-CPU 
issues a load request and the load request is issued to the 
LLC from the L2 cache (S50). The LLC of LCU0 searches 
the first tag LL TAG1 and produces a cache miss (S51). The 
LLC of the LCU0 issues a load request to the HA (S52), and 



US 2017/0046262 A1 

the HA searches the second tag LL TAG2 (S53). As a result 
of this, the HA detects that the LLC of LCU3 is holding dirty 
data and the CPU (L. CPU) is holding data in the M state, 
on the basis of the fact that the second state HAS of the 
LLCs of the four core units LCU0 to LCU3 is I-I-I-M. As a 
result of this, the HA issues a data transfer request to the 
LLC of LCU3 (S54) and requests transfer of the data in the 
LLC of LCU3, to the LLC of LCU0. 
0123. In response to this data transfer request S54, the 
LLC of LCU3 transfers the data to the LLC of LCU0, via the 
router RT, and the first state LL S is updated from E to S 
(S55). In response to this data transfer, the LLC of LCUO is 
filled with the received data, responds with this data to the 
L2 cache, and updates the first state LL S from I to S (S56). 
Due to this data response, the L2 cache is filled with the data. 
0124 On the other hand, the LLC of LCU3 issues a data 
transfer completion notification to the HA (S57), and in 
response to this, the HA updates the second state HAS in 
the second tag LL TAG2, to “Z-I-I-Z'. In this series of 
processes, no access is made to the memory of the home 
CPU (H-CPU). 
0.125 FIG. 18 is a diagram illustrating a load 3 operation 
based on a cache protocol using the first state LL S (com 
parative example). As illustrated in the right-hand side of the 
FIG. 16, in the load 3 operation, when the LLC of the LCU3 
of the local L-CPU is storing data in the M state, a core of 
LCU0 issues a load request and fills data into the LLC of 
LCUO. 

0126. In FIG. 18, a load request is issued to the LLC from 
the L2 cache of the LCU0 in the local L-CPU (S50). The 
LLC of LCU0 produces a cache miss (S51). The LLC of 
LCU0 issues a fetch request to the home CPU (S52 A), and 
the MAC of the home CPUsearches the directory DIR in the 
memory (S53 A). As a result of this, the home CPU detects 
that the remote CPU (which is the same as the local L-CPU) 
is holding the data in the E state, and that LCU3 of L. CPU 
is holding the data. Consequently, the HA of the home 
H-CPU issues a data transfer request to the LLC of LCU3 in 
the local L-CPU (S54), and requests transfer of the data in 
the LLC of LCU3, to the LLC of LCU0. 
0127. Thereupon, the LLC of LCU3 transfers the data to 
the LLC of LCU0, evicts the data, because the first state 
LL S is the M state, and updates the first state LL S from 
M to I (S55 A). Moreover, the LLC of LCUO is filled with 
the transferred data, updates the first state LL S from I to E. 
and responds with the data to the L2 cache (S.56). Moreover, 
since LCU3 in the local L-CPU was in the M state, the data 
evicted by the MESI protocol is transferred to the home 
H-CPU (S57 A). In response to this, the home H-CPU 
updates the directory so that LCU0 in the local L-CPU is 
holding the data, and writes back the data (S58 A). 
0128. In this way, when the second state HAS is not 
used, there arises a need to access the memory managed by 
the home H-CPU, two times, and to refer to and change the 
directory, and write-back data. On the other hand, with the 
cache protocol using the first state LL S and the second state 
HA S illustrated in FIG. 17, no memory access occurs. 
According to the present embodiment, since the home agent 
HA manages the second state HA S of a plurality of LLCs, 
then it is possible to complete processing within the local 
L-CPU, as far as possible. 
0129. Store-Premised Load 4 (Load in the E State) 
0130 FIG. 19 is a diagram illustrating a store-premised 
load 4 operation in which a core in LCU0 in the local CPU 

Feb. 16, 2017 

(L-CPU) exclusively loads data in the S state located in the 
LLCs of LCU2 and LCU3, to the LLC of LCU0. In FIG. 19, 
the left-hand side illustrates a cache protocol operation using 
the first state LLS and the second state HAS, and the 
right-hand side illustrates a cache protocol operation using 
only the first state LL S. 
I0131 FIG. 20 is a diagram illustrating a store-premised 
load 4 operation based on a cache protocol using the first 
state LL S and the second state HAS according to the 
present embodiment. As illustrated in the left-hand side of 
the FIG. 19, the store-premised load 4 is an operation in 
which, when the LLCs of LCU2 and LCU3 of the local 
L-CPU are storing data in the S state, a core of LCUO issues 
a store-premised load request and fills the data into the LLC 
of LCU0, in the E state. In other words, the store-premised 
load request involves changing the S state of the LLC 
holding the data, to the I state, and holding this data in the 
E state in the LLC which newly holds the data. As a result 
of this, after this load, the core is able to rewrite the data in 
the LLC due to E state, at the appropriate timing. By the 
store-premised load 4, the state of the data transitions from 
state 3 (S/A) of the LLCs of LCU2 and LCU3 to state 5 
(E/E) of the LLC of LCU0. 
(0132. In FIG. 20, the core of LCU0 in the local L-CPU 
issues a load request and the L2 cache issues a load request 
to the LLC (S60). The LLC of LCU0 searches the first tag 
LL TAG1 and produces a cache miss (S61). The LLC of 
LCU0 issues a load request to the HA (S62), and the HA 
searches the second tag LL TAG2 (S63). As a result of this, 
the HA detects that the second state HAS of the LLCs of 
the four core units LCU0 to LCU3 is I-I-A-A, and hence that 
the LLCs of LCU2 and LCU3 are sharing clean data and the 
CPU is holding data in the E state. Consequently, the HA 
issues a data transfer and discard request to the LLC of 
LCU2 and issues a discard request to the LLC of LCU3 
(S64), and thereby requests transfer of the data in the LLC 
of LCU2 to the LLC of LCU0. 
I0133. In response to this data transfer and discard request, 
the LLC of LCU3 discards the data and updates the first state 
LL S from S to I (S65), and the LLC of LCU2 transfers the 
data to the LLC of LCU0 via the router RT, discards the data 
and updates the first state LL S from S to I (S66). In 
response to this data transfer, the LLC of LCU0 is filled with 
the received data, responds with this data to the L2 cache, 
and updates the first state LL S from I to E (S67). Due to 
this data response, the L2 cache is filled with the data. 
0134. On the other hand, the LLCs of LCU2 and LCU3 
issue a data transfer and discard completion notification to 
the HA (S68), and in response to this, the HA updates the 
second state HAS in the second tag LL TAG2, to “E-I-I-I’. 
In this series of processes, no access is made to the memory 
of the home CPU (H-CPU). 
0.135 FIG. 21 is a diagram illustrating a store-premised 
load 4 operation based on a cache protocol using the first 
state LL S (comparative example). As illustrated in the 
right-hand side of the FIG. 19, the store-premised load 4 is 
an operation in which, when the LLCs of the LCU2 and 
LCU3 of the local L-CPU are storing data in the S state, a 
core of LCU0 issues a store-premised load request and fills 
the data into the LLC of LCU0, in the E state. 
0.136. In FIG. 21, a load request is issued to the LLC from 
the L2 cache of the LCU0 (S60). The LLC of LCU0 
produces a cache miss (S61). The LLC of LCU0 issues a 
fetch request to the home CPU (S62 A), and the MAC of the 



US 2017/0046262 A1 

home CPU searches the directory DIR in the memory 
(S63 A). As a result of this, the home CPU detects that 
LCU2 and LCU3 in the remote CPU (which is the same as 
the local L-CPU) are holding the data in the S state. 
Consequently, the HA of the home H-CPU issues a data 
transfer and discard request to the LLCs of LCU2 and LCU3 
in the local L-CPU (S64), and requests transfer of the data 
in the LLCs of LCU2 and LCU3, to the LLC of LCU0, and 
discarding of the data. 
0137 Subsequently, the same processes S65, S66, S67 
and S68 as FIG. 20 are executed, and the home H-CPU 
updates the directory so that LCU0 of the local L-CPU holds 
the data in the E state (S69 A). 
0.138. In this way, when the second state HAS is not 
used, there arises a need to access the memory managed by 
the home H-CPU, two times, and to refer to and change the 
directory. On the other hand, with the cache protocol using 
the first state LLS and the second state HAS illustrated in 
FIG. 20, no memory access occurs. According to the present 
embodiment, since the home agent HA manages the second 
state HA S of a plurality of LLCs, then it is possible to 
complete processing within the local L-CPU, as far as 
possible. 
0139 Replace 
0140 FIG. 22 is a diagram illustrating an operation in 
which the LLCs of the core units LCU0 to LCU3 in the local 
CPU (L-CPU) are replaced sequentially, in a case where the 
first state of the LLCs of the LCU0 to LCU3 is LL S=S. In 
FIG. 16, the left-hand side illustrates a cache protocol 
operation using the first and second states LL S and HAS 
according to the present embodiment, and the right-hand 
side illustrates a cache protocol operation using only the first 
State LL S. 
0141 FIG. 23 is a diagram illustrating a replace operation 
based on a cache protocol using the first and second states 
according to the present embodiment. As illustrated in the 
left-hand side of FIG. 22, since the second state of the four 
LLCs in the HA is HAS-Z, then there is an M state 
between the CPUs, and an S state between the LLCs. 
Replacement is an operation in which, in order to expel a 
certain cache block in the LLC, the data therein is evicted 
and this evicted data is then written back to the memory. 
New data is then filled into the cache block from which data 
has been evicted. In general, when a cache miss is produced, 
the victim line is replaced. 
0142. In FIG. 23, the LLC of LCU0 executes a replace 
ment, evicts the data, changes the first state LL S from the 
S state to the I state (S70), and transfers the evicted data to 
the HA (S71), and the HA refers to the second state HA. S. 
detects that the LLC of another LCU is holding the same 
data, and changes the second state relating to LCU0, from 
the Z state to the I state (S72). 
0143 Next, the LLC of LCU2 executes a replacement, 
evicts the data, changes the first state LL S from the S state 
to the I state (S73), and transfers the evicted data to the HA 
(S74), and the HA refers to the second state HA S, detects 
that the LLC of another LCU is holding the same data, and 
changes the second state relating to LCU2, from the Z state 
to the I state (S75). 
0144. Moreover, the LLC of LCU1 executes a replace 
ment, evicts the data, changes the first state LL S from the 
S state to the I state (S76), and transfers the evicted data to 
the HA (S77), and the HA refers to the second state HA S, 
detects that the LLC of another LCU is holding the same 

Feb. 16, 2017 

data, and changes the second state relating to LCU1, from 
the Z state to the I state (S78). 
0145 Finally, the LLC of LCU3 executes a replacement, 
evicts the data, changes the first state LL S from the S state 
to the I state (S79), and transfers the evicted data to the HA 
(S80), and the HA changes the second state relating to 
LCU3, from the Z state to the I state (S81), determines from 
the second state HAS that there is no LLC of another LCU 
holding the same data, and therefore writes back the data to 
the memory (S82). In other words, if HA S=Z-Z-Z-Z, then 
only when the last dirty data has been evicted, the data is 
written back to the memory, and in the replacement opera 
tion up to that point, the HA only changes the second State 
HAS from the Z state to the I state, but there is no 
occurrence of memory access. 
0146 FIG. 24 is a diagram illustrating a replacement 
operation based on a cache protocol using the first state 
LL S (comparative example). As illustrated in the right 
hand side of FIG. 22, the data is replaced successively in a 
State where the LLCs of the core units LCU0 to LCU3 of the 
local L-CPU store data in the S state. 

0.147. In FIG. 24, the LCU0, LCU2, LCU1, LCU3 of the 
local L-CPU successively replaces data (S70, S73, S76, 
S79) and transfers the data (S71, S74, S77, S80). The home 
H-CPU accesses the memory, updates the directory succes 
sively in the R-SH state (S72 A) and (S75 A), and then 
changes to the R-EX state (S78 A) and finally changes to 
INV and writes back to the memory (S81 A). In other 
words, the home H-CPU accesses the memory each time to 
confirm and change the directory, and then finally writes 
back data to the memory. 
0.148. In the foregoing, the five operations which are 
particularly beneficial in the cache protocol according to the 
present embodiment are described in detail. There follows a 
brief explanation of the five state transitions based on the 
cache protocol of the present embodiment. 
0149 Store (State Transition from State 5 (E/E) to State 
6 (M/E)) 
0150 FIG. 25 is a diagram illustrating a state transition 
from state 5 (E/E) to state 6 (M/E). In this example, a core 
in LCU3 performs a write operation for data in the E state 
located in the LLC of LCU3 in the local L-CPU. Since the 
data in the LLC of LCU3 is in the E state, then the core in 
the LCU3 is able to perform a write operation for this data. 
As a result of this, the pipeline of the LLC in LCU3 changes 
the first state LL S from the E state to the M state, by a 
normal MESI protocol. The second state HA S of the HA 
remains unchanged in the E State. 
0151 Store (State Transition from State 7 (E/M) to State 
8 (M/M)) 
0152 FIG. 26 is a diagram illustrating a state transition 
from state 7 (E/M) to state 8 (M/M). The state transition 
from state 6 (M/E) to state 7 (E/M) is as described in load 
2. FIG. 26 illustrates a state transition in a case where the 
LLC of LCU0 in the local L-CPU fills with dirty data by load 
2, the first state LLS and the second state HAS are in state 
7 (E/M), and then a core of LCU0 in the local L-CPU 
performs a write operation for this dirty data. Since the write 
operation is carried out, then the first state LL S of the LLC 
in LCUO is changed from the E state to the M state, and the 
second state HAS in the HA remains unchanged in the M 
state. Consequently, no memory access by the home H-CPU 
OCCU.S. 



US 2017/0046262 A1 

0153. Load (State Transition from State 8 (M/M) to State 
7 (E/M)) 
0154 FIG. 27 is a diagram illustrating a state transition 
from state 8 (M/M) to state 7 (E/M). This example illustrates 
a state transition when a core of LCU3 makes a load request 
for data in State 8 in the LLC of LCUO in the local L-CPU. 
The pipeline of the LLC of LCU3 processes the load request 
and produces a cache miss and requests data of the HA. The 
HA refers to the second state HAS, detects that the LLC of 
LCUO is holding dirty data, and requests the LLC of LCU0 
to transfer data to the LLC of LCU3. In response to this 
request, the LLC of LCU0 transfers data to the LLC of 
LCU3, discards the data, and changes the first state LL S 
from the M state to the I state. This operation is similar to 
load 2 in FIG. 12. 
(O155 The LLC of LCU3 sends a data transfer completion 
notification to the HA, and in response to this, the HA 
changes the second state from M-I-I-I to I-I-I-M. In this case 
also, no memory access by the home H-CPU occurs. 
0156 Store-Premised Load 
0157 FIG. 28 is a diagram illustrating a state transition 
from state 4 (S/Z) to state 7 (E/M). This example illustrates 
an operation when, in a state where the LLCs of LCU2 and 
LCU3 of the local L-CPU are sharing dirty data, a core of 
LCU0 has issued a store-premised load request for that data. 
Similarly to the store-premised load 4 in FIG. 20, when the 
core in LCU0 issues a store-premised load in respect of the 
data in the LLC of LCU2 or LCU3 which is in a shared state, 
the LLC of LCU0 produces a cache miss and issues a load 
request to the HA. The HA refers to the second state HA. S. 
detects that the LCU2 and LCU3 are sharing dirty data, and 
requests the LLCs of LCU2 and LCU3 to transfer and 
discard the data. The LLC of LCU2 or LCU3 transfers the 
data to the LLC of LCU0, discards its own data, changes the 
first state LLS from the S state to the I state, and issues a 
data transfer and discard completion notification to the HA. 
In response to this, the HA changes the second state from 
I-I-Z-Z, to M-I-I-I. 
0158 Load (State Transition from State 5 (E/E) to State 
2 (S/S)) 
0159 FIG. 29 is a diagram illustrating a state transition 
from state 5 (E/E) to state 2 (S/S). In this example, the LLC 
of an LCU in another CPU has made a load request for data 
in the E state located in the LLC of LCU1 of the local 
L-CPU. In response to the data request from the LLC of the 
LCU in the other CPU, the HA of that CPU requests the 
home CPU to refer to the directory, and detects that the local 
L-CPU has taken out data. In response to this, when the 
home CPU requests the HA to transfer the data to the LLC 
of LCU1 in the local L-CPU, the LLC of LCU1 of the local 
L-CPU, in response to this, transfers the data, changes the 
first state from the E state to the S state, and the HA also 
changes the second state to the S state. In response to the 
transfer of data, the home H-CPU changes the directory 
from R-EX to R-SH. 
0160. As described above, the arithmetic processing 
device according to the present embodiment includes: a 
plurality of core units in which the plurality of cores in a chip 
are divided into a plurality of core units, each core unit 
including a plurality of the divided cores and an LLC which 
is shared by that plurality of cores; and an HA that is capable 
of connecting to the LLCs of the plurality of core units; each 
of the LLCs having a first tag which stores a first state 
indicating a MESI state for each cache block, and the HA 

Feb. 16, 2017 

having a second tag which stores a second state including at 
least a shared modify state (Z) for each of the cache blocks 
in the LLCs. Since the state of the cache blocks in the LLCs 
is managed by a combination of the first state and the second 
state, then the frequency of memory access in relation to 
load requests is suppressed and decrease in the performance 
of the cache memory is also Suppressed. 
0.161 All examples and conditional language provided 
herein are intended for the pedagogical purposes of aiding 
the reader in understanding the invention and the concepts 
contributed by the inventor to further the art, and are not to 
be construed as limitations to Such specifically recited 
examples and conditions, nor does the organization of Such 
examples in the specification relate to a showing of the 
superiority and inferiority of the invention. Although one or 
more embodiments of the present invention have been 
described in detail, it should be understood that the various 
changes, Substitutions, and alterations could be made hereto 
without departing from the spirit and scope of the invention. 
What is claimed is: 
1. An arithmetic processing device, comprising: 
a plurality of core units, each provided with a plurality of 

cores each having a arithmetic and logic unit, and a 
cache memory which is shared by the plurality of cores; 

a home agent operatively connected to the cache memo 
ries provided respectively in the plurality of core units: 
and 

a memory access controller operatively connected to the 
home agent and controls access to a main memory, 

wherein the cache memories each includes a data memory 
having a plurality of cache blocks, and a first tag which 
stores a first state indicating a MESI state, for each of 
the plurality of cache blocks, and 

the home agent includes a second tag which stores a 
second state including at least a shared modify state in 
which dirty data is shared by a plurality of cache 
memories, for each of the plurality of cache blocks in 
the cache memories provided respectively in each of 
the plurality of core units. 

2. The arithmetic processing device according to claim 1, 
wherein, 
when the second state stored in the second tag for a cache 

block is the shared modify state, the first state stored in 
the first tag for the corresponding cache block is 
controlled to a shared state. 

3. The arithmetic processing device according to claim 2, 
wherein 

the second state further includes a shared exclusive state 
in which a plurality of cache memories share clean 
data; and 

when the second state stored in the second tag for a cache 
block is the shared exclusive state, the first state stored 
in the first tag for the corresponding cache block is 
controlled to the shared state. 

4. The arithmetic processing device according to claim 2, 
wherein 

the home agent, in response to a load request Supplied 
from a first cache memory in a first core unit of any of 
the plurality of core units, when the second tag indi 
cates that a second cache memory in a second core unit 
other than the first core unit, among the plurality of core 
units, is holding data corresponding to the load request, 
requests the second cache memory to transfer the held 
data to the first cache memory; 



US 2017/0046262 A1 

the second cache memory changes the first state of the 
first tag; and 

the home agent changes the second state of the second tag. 
5. The arithmetic processing device according to claim 4. 

wherein, 
when data in a modify state which corresponds to the load 

request and is held by the second cache memory has 
been transferred to the first cache memory in response 
to the load request supplied from the first cache 
memory, the first cache memory changes the first state 
of the first tag for a transmission destination cache 
block to a shared State, and the home agent changes the 
second state of the second tag for the transmission 
destination cache block to the shared modify state. 

6. The arithmetic processing device according to claim 5. 
wherein the home agent does not write back data which 
corresponds to the load request and is held by the second 
cache memory, to the main memory via the memory access 
controller. 

7. The arithmetic processing device according to claim 4. 
wherein, 

in a case where the first state of the first tag for a certain 
cache block in the second cache memory is a modify 
state, and the second state of the second tag for the 
certain cache block is an exclusive state; 

when data which corresponds to the load request and is 
held by the second cache memory has been discarded 
and also transferred to the first cache memory in 
response to the load request supplied from the first 
cache memory, the first cache memory changes the first 
state of the first tag for a transmission destination cache 
block to an exclusive state, and the home agent changes 
the second state of the second tag for the transmission 
destination cache block to a modify state. 

8. The arithmetic processing device according to claim 7. 
wherein the home agent does not write back data which 
corresponds to the load request and is held by the second 
cache memory, to the main memory via the memory access 
controller. 

9. The arithmetic processing device according to claim 3, 
wherein 

the home agent, in response to a load request Supplied 
from a first cache memory in a first core unit of any of 
the plurality of core units, when the second tag indi 
cates that a second cache memory in a second core unit 
other than the first core unit, among the plurality of core 
units, is holding data corresponding to the load request, 
requests the second cache memory to transfer the held 
data to the first cache memory; 

the second cache memory changes the first state of the 
first tag; and 

the home agent changes the second state of the second tag. 
10. The arithmetic processing device according to claim 

9, wherein, 
when data in an exclusive state which corresponds to the 

load request and is held by the second cache memory 
has been transferred to the first cache memory in 
response to the load request Supplied from the first 
cache memory, the first cache memory changes the first 
state of the first tag for a transmission destination cache 
block to a shared State, and the home agent changes the 
second state of the second tag for the transmission 
destination cache block to a shared exclusive state. 

11 
Feb. 16, 2017 

11. The arithmetic processing device according to claim 
10, wherein, 

in a case where the first state of the first tag for certain 
cache blocks in the second cache memory and a third 
cache memory is a share state, and the second state of 
the second tag for two cache blocks corresponding to 
the certain cache blocks is the shared exclusive state, 

when data which corresponds to the load request and is 
held by the second cache memory and the third cache 
memory has been discarded and also transferred to the 
first cache memory in response to a store-premised load 
request Supplied from the first cache memory, the first 
cache memory changes the first state of the first tag for 
a transmission destination cache block to an exclusive 
state, and the home agent changes the second State of 
the second tag for the transmission destination cache 
block to an exclusive state. 

12. The arithmetic processing device according to claim 
4, wherein, 

in a case where the first state of the first tags for certain 
cache blocks in the second cache memory and a third 
cache memory are a share state, and the second state of 
the second tags for two cache blocks corresponding to 
the certain cache blocks are the shared modify state, 

the second cache memory, in response to a replace request 
for replacing data in a designated cache block, discards 
the data in the designated cache block, and the home 
agent changes the second state in the second tag 
corresponding to the designated cache block in the 
second cache memory into an invalid state, 

after discarding the data by the second cache memory, the 
third cache memory, in response to the replace request 
for replacing data in the designated cache block, dis 
cards the data in the designated cache block, the home 
agent changes the second state in the second tag 
corresponding to the designated cache block in the third 
cache memory into the invalid state and issues a write 
back request for writing the discarded data in the main 
memory to the memory access controller. 

13. The arithmetic processing device according to claim 
1, further comprising: 

a router that provides a connection route between the 
cache memories in each of the plurality of core units, 
and between the cache memories and the home agent. 

14. A method for controlling an arithmetic processing 
device that includes a plurality of core units, each provided 
with a plurality of cores each having a arithmetic and logic 
unit, and a cache memory which is shared by the plurality of 
cores, a home agent operatively connected to the cache 
memories provided respectively in the plurality of core 
units, and a memory access controller operatively connected 
to the home agent and controls access to a main memory, the 
method comprising: 

changing, by the cache memories, a first state in a first tag 
storing the first state that indicates MESI state for each 
of cache blocks in the data memory, in response to a 
transferring and a registration of data in a data memory 
in the cache memories; and 

changing, by the home agent, a second state in a second 
tag storing the second State that includes at least a 
shared modify state for each of cache blocks in the 
cache memory included in each plural core units, in 
response to the transferring and the registration of data 
in the data memory. 



US 2017/0046262 A1 Feb. 16, 2017 
12 

15. The method for controlling an arithmetic processing 
device according to claim 14, wherein when the home agent 
changes the second state stored in the second tag into the 
shared modify state, the cache memory changes the first 
state stored in the first tag for corresponding cache block into 
the share state. 


