

United States Patent [19]

Selby

[54] SUBSTITUTED FUSED HETEROCYCLIC HERBICIDES

- [75] Inventor: Thomas P. Selby, Wilmington, Del.
- [73] Assignee: E. I. du Pont de Nemours and Company, Wilmington, Del.
- [21] Appl. No.: 50,475
- [22] PCT Filed: Nov. 14, 1991
- [86] PCT No.: PCT/US91/08266
 § 371 Date: May 21, 1993
 § 102(e) Date: May 21, 1993
- [87] PCT Pub. No.: WO92/09578
 - PCT Pub. Date: Nov. 6, 1992

Related U.S. Application Data

- [63] Continuation-in-part of Ser. No. 617,707, Nov. 26, 1990, Pat. No. 5,110,347.
- [51] Int. Cl.⁶ A01N 43/54; C07D 239/72; C07D 239/80; C07D 239/88
- [58] Field of Search 544/283, 285, 286, 287, 544/288, 289; 504/240

[56] References Cited

U.S. PATENT DOCUMENTS

3,291,757	12/1966	Sturm et al	544/353
3,453,365	7/1969	Lane et al.	514/249
3,900,473	8/1975	Diel et al	544/356
5,110,347	5/1992	Selby	344/234

US005389600A

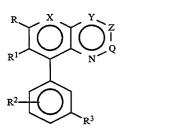
[11] Patent Number: 5,389,600

[45] Date of Patent: Feb. 14, 1995

FOREIGN PATENT DOCUMENTS

221516	5/1987	European Pat. Off
270378	6/1988	European Pat. Off
353902	2/1990	European Pat. Off
3101544	8/1982	Germany .

OTHER PUBLICATIONS


Gogte et al., "Synthesis of Heterocyclic Compounds: Part XXII-Synthesis of 1,5-1,6-and 1,8-Naphthyridines", *Indian Journal of Chemistry*, 19B, 1011-1013, 1980.

Baker et al, J. Med. Chem. 15 pp. 235-237 (1972).

Primary Examiner-Emily Bernhardt

[57] ABSTRACT

The invention relates to certain substituted fused compounds of Formula I

I

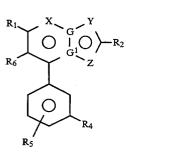
which are useful as herbicides, and their agriculturally suitable compositions, as well as methods for their use as general or selective preemergent or postemergent herbicides or as plant growth regulants.

12 Claims, No Drawings

10

SUBSTITUTED FUSED HETEROCYCLIC HERBICIDES

CROSS-REFERENCE TO RELATED APPLICATION

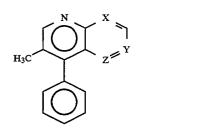

This application is a continuation-in-part of application Serial No. 07/617,707, filed Nov. 26, 1990, now U.S. Pat. No. 5,110,347, granted May 5, 1992.

BACKGROUND OF THE INVENTION

This invention relates to certain substituted fused heterocyclic compounds which are useful as herbicides and their agriculturally suitable compositions as well as methods for their use as general or selective preemer-¹⁵ gent or postemergent herbicides or as plant growth regulants.

New compounds effective for controlling the growth of undesired vegetation are in constant demand. In the most common situation, such compounds are sought to ²⁰ selectively control the growth of weeds in useful crops such as cotton, rice, corn, wheat and soybeans, to name a few. Unchecked weed growth in such crops can cause significant losses, reducing profit to the farmer and increasing costs to the consumer. In other situations, ²⁵ herbicides are desired which will control all plant growth. Examples of areas in which complete control of all vegetation is desired are areas around railroad tracks, storage tanks and industrial storage areas. There are many products commercially available for these ³⁰ purposes, but the search continues for products which are more effective, less costly and environmentally safe.

EP-A-353,902 discloses herbicidal compounds of the formula

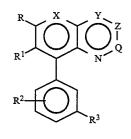


wherein, inter alia

G and G^1 are N and C; and

X, Y and Z are independently CR7 or N.

Ind. J. Chem. 1980, 19 B, 1011-1013 discloses without teaching herbicidal utility compounds of the formula



only one of X, Y, or Z can be N; otherwise CH.

SUMMARY OF THE INVENTION

This invention comprises compounds of Formula I, agriculturally suitable compositions containing them,

and their method-of-use as preemergence and/or postemergence herbicides or plant growth regulants.

wherein

- X is N or CH;
- Y is N or CR^8 ;
- Z is N, CR^4 or CR^5 ;
- Q is N, CR^4 or CR^5 ;
- R is C₁-C₄ alkyl, C₂-C₄ alkoxyalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₃ alkylamino or N (C₁-C₃ alkyl) (C₁-C₃ alkyl);
- R^1 is H, F, Cl or CH₃;
- R^2 is H, halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy or C_1 - C_3 haloalkoxy;
- R^3 is H, halogen, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₃-C₄ halocycloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, OR⁶, S(O)_nR⁷ or CN;
- \mathbb{R}^4 is H, CN, C₁-C₃ alkyl, C₁-C₃ alkoxy or halogen;
- \mathbb{R}^5 is C₁-C₄ haloalkyl, C₃-C₅ halocycloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, OR⁶, S(O)_n \mathbb{R}^7 or halogen;
- R⁶ is C₁-C₄ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl or C₂-C₄ haloalkynyl;

 \mathbb{R}^7 is \mathbb{C}_1 - \mathbb{C}_2 alkyl or \mathbb{C}_1 - \mathbb{C}_2 haloalkyl;

- R^8 is H, CN, C₁-C₃ alkyl, C₁-C₃ alkoxy or halogen; and
- n is 0, 1 or 2.

35

40

45

60

65

and their mono N-oxides and their agriculturally suitable salts, provided that:

(a) when Z is N or CR^4 , then Q is CR^5 ; and

(b) when Q is N or CR^4 , then \hat{Z} is CR^5 .

In the above definitions, the term "alkyl" used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight chain or branched alkyl, e.g., methyl, ethyl, n-propyl, isopropyl or the different 50 butyl isomers.

"Alkoxy", "alkenyl" and "alkynyl" analogously also includes straight chain or branched isomers.

"Halogen", either alone or in compound words such as "haloalkyl", means fluorine, chlorine, bromine or 55 iodine. Further, when used in compound words such as "haloalkyl" said alkyl may be partially or fully substituted with halogen atoms, which may be the same or different. Examples include CF₃, CH₂CF₃, CH₂CH₂F, CF₂CF₃ and CH₂CHFCl.

Preferred for reasons including ease of synthesis and-/or greater herbicidal efficacy are:

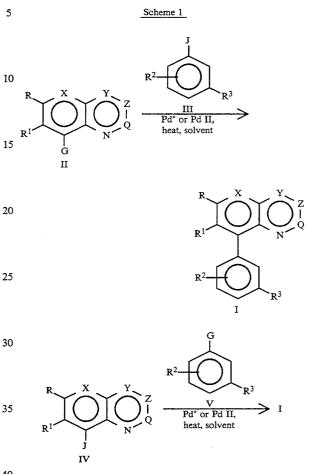
- 1. Compounds of Formula I wherein R¹ is H or F; and
 - R^2 is H or F.
- 2. Compounds of Preferred 1 wherein
- R³ is F, Cl, Br, C₁-C₄ haloalkyl, OR⁶, $S(O)_n^{R7}$ or CN;
 - n is 0;

Y is N, CH or C—CN; and their mono N-oxides. 3. Compounds of Preferred 2 wherein

- R is C₁-C₃ alkyl, C₂-C₃ alkoxyalkyl, C₂-C₃ alkenyl, C₂-C₃ alkynyl, C₁-C₂ alkoxy, C₁-C₂ alkylthio, C₁-C₂ alkylamino and N (C₁-C₂ alkyl) (C₁-C₂ alkyl);
- R⁶ is C₁-C₃ alkyl, allyl, propargyl, C₁-C₃ haloalkyl, C₂-C₃ haloalkenyl.
- 4. Compounds of Preferred 3 wherein Z is N, CH or C—CN.

Specifically Preferred for reasons of greatest ease of synthesis and/or greatest herbicidal efficacy are:

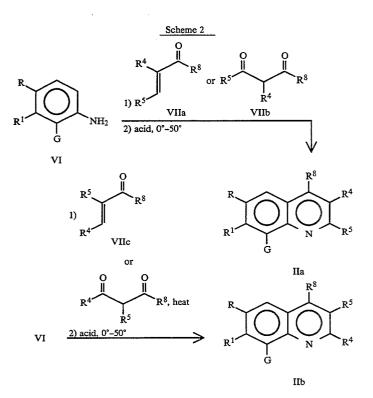
- 2-(difluoromethoxy)-6-methyl-8-[3-(trifluoromethyl)phenyl]quinoxaline;
- 7-methyl-3-(2,2,2-trifluoroethoxy)-5-[3-(trifluoromethyl)phenyl]-1,2,4-benzotriazine 1-oxide;
- 7-methyl-3-(2,2,2-trifluoroethoxy)-5-[3-(trifluoromethyl)phenyl]-1,2,4-benzotriazine; and
- 6-methyl-2-(trifluoromethyl)-8-[3-(trifluoromethyl)phenyl]quinoxaline.


DETAILED DESCRIPTION OF THE INVENTION

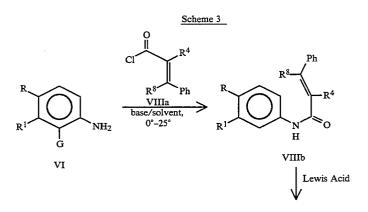
Compounds of General Formula I can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 1-10 and Equations 1-5 of this section as well as by following the ³⁰ specific procedures given in Examples 1-7.

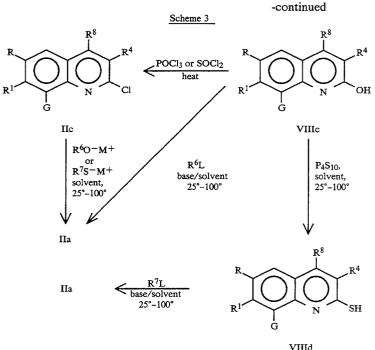
Scheme 1 illustrates the preparation of compounds of General Formula I (where R, R¹, R², R³X, Y, Z, and Q are defined as above) whereby heterocycles of Formula II where G is bromine or iodine can be coupled with substituted aryl compounds of Formula III where J is a trialkyltin (e.g. Me₃Sn), trialkylsilyl (e.g. Me₃Si), or a boronic acid (e.g. B(OH)₂) moiety. The coupling is carried out using methods known in the art: Tsuji, J., 40 Organic Synthesis with Palladium Compounds, Springer-Verlag, Berlin, 1980; Negishi, E., Acc. Chem. Res. 1982, 15, 340; Stille, J. K., Angew. Chem. 1986, 98, 504; Yamamoto, A., Yamagi, A., Chem. Pharm. Bull 1982, 30, 45 1731 and 2003; Dondoni, A., Fogagnolo, M., Medici, A., Negrini, E., Synthesis 1987, 185; Dondoni, A., Fantin, G., Fogagnolo, M., Medici A., Pedrini, P., Synthesis 1987, 693; Hoshino, Y., Miyaura, N., Suzuki, A., Bull. Chem. Soc. Jpn. 1988, 61, 3008; Sato, M., Miyaura, N., ⁵⁰ Suzuki, A., Chem. Lett. 1989, 1405; Miyaura, N., Yanagi, T., Suzuki, A. Synthetic Commun. 1981, 11, 513; Siddiqui, M. A., Snieckus, V., Tetrahedron Lett. 1988, 29, 5463; Sharp, M. J., Cheng, W., Snieckus, V., Tetra- 55 hedron Lett. 1987, 28, 5093; Hatanaka, Y., Fukushima, S., Hiyama,, T., Chem. Lett. 1989, 1711; Bailey, T. R., Tetrahedron Lett. 1986, 27, 4407. The coupling of II and III is carried out by heating in the presence of a transition metal catalyst such as tetrakis(triphenylphosphine) 60 palladium(O) or bis (triphenylphoshine) palladium (II) dichloride in a polar or nonpolar aprotic solvent such as acetonitrile or toluene. As shown in Scheme 1, compounds of General Formula I can also be prepared by $_{65}$ coupling heterocyclic compounds of Formula IV where J is a trialkyltin (e.g. Me₃Sn), trialkylsilyl (e.g. Me₃Si), or boronic acid (e.g. B (OH)₂) moiety with aryl

4


halides of Formula V where G is bromine or iodine using the same conditions as described above.

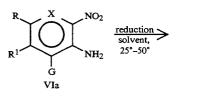
Heterocycles of Formula II can be prepared by the methods summarized in Schemes 2-10 and Equations 1-5. By methods also reported in the above cited art, treatment of heterocycles of Formula II where G is hydrogen, bromine, or iodine with base such as n-butyl lithium followed by quenching with a trialkyltin halide, trialkylsilyl halide, or trialkyl borate gives heterocyclic intermediates of Formula IV. Substituted aryl compounds of Formula III and V are either known or readily prepared by methods given in the above references.

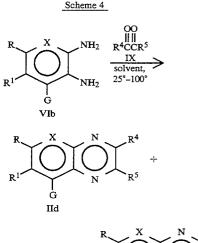

As illustrated in Scheme 2, quinolines of Formula IIa and IIb can be prepared by reaction of anilines of Formula VI with substituted acroleins, vinyl ketones, and diketones of Formulas VIIa and VIId where R^4 and R^8 are hydrogen or alkyl, R^5 is haloalkyl, haloalkenyl, haloalkynyl, or halocycloalkyl and R, R^1 , and G are as previously defined. By the methods of Skraup (*Chem. Ber.* 1880, 13, 2086; 1882, 15, 987) and Combs (*Compt: rend.* 1887, 106, 142; Bull. *Soc. Chim.* France, 1888, 49, 90), anilines VI can be heated neat with compounds VIIa and VIId followed by treatment with a strong inorganic acid such as sulfuric acid to give IIa and IIb.

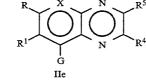


Scheme 3 illustrates the synthesis of quinolines IIa 35 and IIc where R^4 and R^8 are hydrogen or alkyl, R^5 is OR⁶, SR⁷ or chlorine, and R, R¹ and G are as defined above. Reaction of anilines of Formula VI with substituted cinnamoyl chlorides of Formula VIIIa with a base such as pyridine with or without a solvent such as meth- 40 ylene chloride or tetrahydrofuran gives cinnamides of Formula VIIIb which can then be treated with an excess of a Lewis acid such as aluminum trichloride using the conditions of Johnston et al (*J. Chem. Soc. Perkin I* 1972, 1648) to give hydroxyquinolines of Formula 45 VIIIc. Heating VIIIc in thionyl chloride or phosphorous oxychloride gives chloroquinolines IIc. Displacement of the chloro group with $R^6O - M^+$ or $R^7S - M^+$

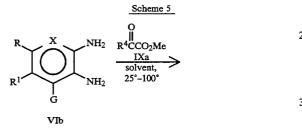
(where M is an alkali or alkaline metal such as sodium, potassium, or lithium and R^6 and R^7 are as previously defined) affords quinolines IIa where R^5 is OR^6 or SR^7 . Alkylation of VIIIc with R^6L (where L is a leaving group such as halogen, e.g. bromine or chlorine) in the presence of a base such as triethylamine or sodium hydroxide can also give IIa where R^5 is OR^6 . Reaction of VIIIc with phosphorous pentasulfide in a solvent such as pyridine affords mercaptopyridines of Formula VIIId which on alkylation with R^7L (L is as described above) gives IIa where R^5 is SR^7 . Oxidation of IIa where R^5 is SR^7 with an oxidizing agent such as metachloroperoxy-benzoic acid gives quinolines of Formula IIa where R^5 is $S(O)R^7$ or $S(O)_2R^7$.

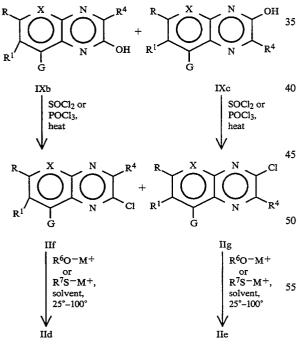

30


Quinolines of Formula IIb where \mathbb{R}^4 is alkoxy or 35 halogen and \mathbb{R}^5 is haloalkyl, haloalkenyl, haloalkynyl, or cyclohaloalkyl \mathbb{R}^8 is hydrogen or alkyl and \mathbb{R},\mathbb{R}^1 , and G are as defined above can be made from the starting materials VI and cinnamoyl chlorides of Formula VIIIe (Equation 1) using the same chemistry as shown in 40 Scheme 3.

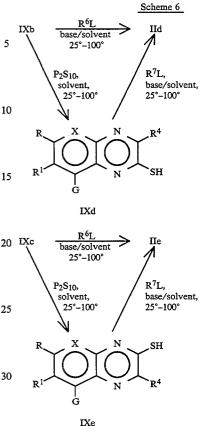

Quinoxalines and pyridopyrazines of Formula IId and IIe where X is CH or N, R^4 is hydrogen or alkyl, R^5 is haloalkyl, haloalkenyl, or haloalkynyl, and R, R^1 , and G are as previously defined can be made by the procedure shown in Scheme 4.

Scheme 4


-continued

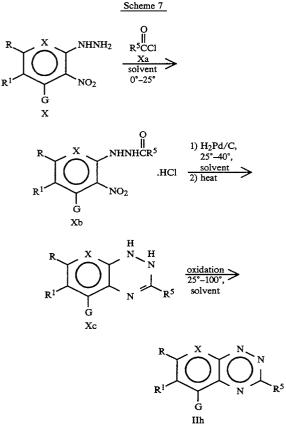


55 Reduction (e.g. catalylic hydrogenation with palladium on carbon in a solvent such as tetrahydrofuran or ethanol) of nitroanilines and nitropyridinyl amines of Formula VIa gives phenylenediamines and diaminopyridines of Formula rib. By the methods related to that of

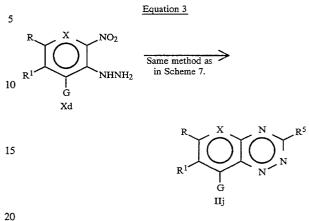

60 Jones et al (Org. Syntheses 1950, 30, 86), Gabriel et al (Chem. Ber. 1907, 40, 4850), and Bottcher (Chem. Ber. 1913, 46, 3084), condensation of VIb with a-diketones and a-ketoaldehydes of Formula IX in a nonpolar or polar protic or aprotic solvent such as ethanol, water, or 65 tetrahydrofuran affords heterocycles IId and IIe.

Schemes 5 and 6 illustrate the syntheses of quinoxalines and pyridopyrazines of Formula IId and IIe where R^5 is halogen, OR^6 or SR^7 and X, R, R^1 , R^4 , and G are defined as above. Condensation of compounds of Formula VIb with a-aldo and a-ketoesters of Formula IXa (Scheme 5) by a method similar to that of Hinsberg (*Chem. Ber.* 1884, 18, 228) in a polar protic or aprotic solvent such as ethanol, water or tetrahydrofuran gives hydroxyheterocycles of Formula IXb and IXc. Ethyl ester analogs of IXa can also be readily used in this 10 condensation. Treatment of these hydroxyheterocycles with thionyl chloride or phosphorous oxychloride gives the chloroheterocycles IIf and IIg. Displacement of the chloro substituent with R^6O-M+ or R^7S-M+ (where M is an alkali or alkaline metal such as sodium, potassium, or lithium) yields compounds IId and IIe (where R^5 is OR^6 or SR^7). 20

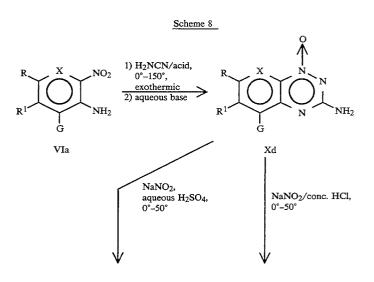
Scheme 6 demonstrates that hydroxyheterocycles IXb and IXc can also be converted to compounds IId and IIe using similar chemistry as that shown in Scheme 3. Preparation of compounds IId and IIe where R⁵ is ⁶⁵ R⁷S involve making intermediate mercaptoheterocycles IXd and IXe.

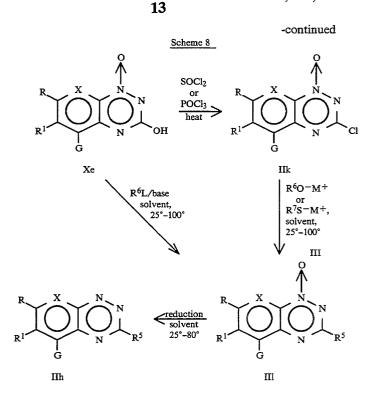


Equation 2 illustrates that compounds IId and IXe where R^4 is alkoxy and R^5 is haloalkyl, halocycloalkyl, haloalkenyl, or haloalkynyl and R, R^1 , X, and G are as defined above can be made from the starting materials VIb and the a-ketoesters IXf using the same chemistry as that in Schemes 5 and 6.


Equation 2

VID
$$\begin{array}{c} 0 \\ \| \\ R^5 CCO_2 Me \\ \hline Same methods as in \end{array}$$
 IId and IIe
Schemes 5 and 6.


By a method similar to that reported by Reich et al (J. Med. Chem. 1989, 32, 2474), Scheme 7 summarizes the preparation of benzotriazines and pyridotriazines of Formula IIh where R⁵ is haloalkyl, halocycloalkyl, haloalkenyl, or haloalkynyl and R, R¹, G, and X are as defined above. Reaction of nitrophenyl hydrazines and nitropyridinyl hydrazines of Formula X with an acid chloride of Formula Xa in a polar protic or aprotic solvent such as ethanol or acetonitrile gives hydrazide hydrochlorides of Formula Xb which can undergo catalytic hydrogenation using palladium on carbon or other suitable transition metal catalyst in a polar protic solvent such as ethanol followed by heating to give heterocycles of Formula Xc. Oxidation of Xc with an appropriate oxidizing agent in a suitable medium, e.g. manganese dioxide in aqueous sodium hydroxide or potassium ferricyanide in aqueous ammonium hydroxide, affords IIh.


By the same technique demonstrated in Scheme 7, nitrophenyl hydrazines and nitropyridinyl hydrazines of Formula Xd (Equation 3) can be converted to heterocycles of Formula IIj which are regioisomeric with IIh.

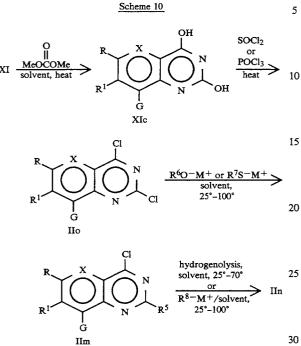
Scheme 8 illustrates the preparation of benzotriazines and pyridotriazines of Formula IIh and their N-oxides IIk and III where R⁵ is halogen, OR⁶, or SR⁷ and R, R¹, X, and G are as previously defined. Using the condi-25 tions of Wolf et al (J. Org. Chem. 1954, 76, 3551), reaction of VIa with cyanamide in an acid medium such as a mixture of concentrated hydrochloric and acetic acid (extremely exothermic) followed by heating with aqueous base, e.g. sodium hydroxide, provides aminoheterocyclic N-oxides of Formula Xd. Diazotization with 30 sodium nitrite in aqueous sulfuric acid gives hydroxyheterocycles Xe and diazotization in concentrated hydrochloric acid yields chloroheterocycles IIk. By chemistry previously discussed in Scheme 3, II1 can be obtained from both Xe and IIk. Reduction of the N-35 oxides II1, e.g. catalytic hydrogenation over palladium, afford IIh. N-oxides III can also be coupled directly with III to give N-oxides of I.

Regioisomeric benzotriazines and pyridotriazines of Formula IIj (Equation 4) and their N-oxides where R^5 is halogen, OR^6 , or SR^7 and R, R^1 , G, and X are as defined previously, can be obtained by starting with nitroanilines and nitropyridinylamines of Formula Xg and ap-³⁵ plying the chemistry shown in Scheme 8.

 $\begin{array}{c} \underbrace{\text{Equation 4}}_{R} \\ R \\ R^{1} \\ G \\ R^{1} \\ G \\ Xg \end{array} \xrightarrow{\text{NH}_{2}} \underbrace{\text{Same method as}}_{\text{in Scheme 8.}} II_{j} \\ Xg \\ \end{array} \xrightarrow{40}$

By the methods illustrated in Scheme 3, compounds Xe (Scheme 8) can be converted to compounds of Formula III as shown in Equation 5. 50

Equation 5


$$Xe \xrightarrow{1) P_2S_5/solvent,}_{2S^*-100^\circ} III 55$$

base/solvent,
2S^*-100^\circ_{2S^*-100^\circ}

Scheme 9 demonstrates the synthesis of heterocycles of Formula IIm and IIn (where R^5 is haloalkyl, halocy- 60 cloalkyl, haloalkenyl, or haloalkynyl and other groups defined as indicated above) from amino compounds XI and anhydrides of Formula XIa. The chemistry is related to that described in previous schemes. Hydrogenolysis e.g. catalytic using palladium on carbon, or dis-65 placement with $R^{8-}M^+$ (where R^{8} is alkoxy, CN, or alkyl) of the chloro group of IIm affords IIn where R^{8} is hydrogen, alkoxy, CN, or alkyl.

Preparation of compounds of Formula IIo, IIm, and IIn where R^5 is halogen, OR^6 or SR^7 and the remaining groups are as previously defined is shown in Scheme 10.

The chemistry in Scheme 10 is similar to that described in previous schemes.

Cinnolines of Formula II where X is CH, Y is CR⁸, Z is CR⁵ and Q is N, (other substituents as previously defined) can be prepared by the methods reviewed by Elderfield (*Heterocyclic Compounds*, John Wiley & ³⁵ Sons, 1957, Volume 6, Chapter 5) and used in conjunction with procedures provided in the previous schemes.

N-oxides of compounds of Formula I can be made by treating compounds of Formula X with an oxidizing 40 agent such as meta-peroxybenzoic acid in an appropriate solvent such as methylene chloride. Salts of Formula I can also be prepared by treating compounds of Formula I with a suitable acid such as hydrochloric acid.

EXAMPLE 1

Preparation of

3-(trifluoromethyl)phenyltrimethylstannane

To 20.0 g (88.9 mmol) of meta-bromobenzotrifluoride stirring in 200 ml of tetrahydrofuran at 78° C., 61.2 ml of 1.6M n-butyl lithium (97.9 mmol) in hexane was added dropwise. After stirring the reaction 10 minutes at -78° 55 C., 19.5 g (97.8 mmol) of trimethyltin chloride dissolved in 30 ml of tetrahydrofuran was added dropwise and the mixture stirred for 10 minutes at -78° C. before allowing to warm to room temperature. The reaction mixture was quenched with excess saturated sodium bicarbonate 60and extracted with ethyl acetate (300 ml). The extract was washed with saturated sodium bicarbonate and brine, dried over magnesium sulfate, and evaporated in vacuo to give a crude yield of 20.2 g of the above prod- 65 uct, isolated as a oily semi-solid. This aryl stannane was used directly as a crude material in the coupling reactions with heterocycles of Formula II.

EXAMPLE 2

Preparation of 6-Methyl-2-(2,2,2-trifluoroethoxy)-8-[3-(trifluoromethyl)phenyl]quinoline

To 25.0 g (134.4 mmol) of 2-bromo-4-methylaniline stirring in 100 ml of pyridine at 0° C., 29.1 g (174.7 mmol) of cinnamoyl chloride was added dropwise. The 10 mixture was allowed to warm to room temperature and stirred as a thick suspension for 1 h. Methylene chloride (400 ml) and excess 5% hydrochloric acid was added. The organic layer was separated, washed with 5% hydrochloric acid (2 X), water and brine, dried over magnesium sulfate, and evaporated in vacuo. To the residue, n-butyl chloride was added and a solid filtered and dried to give a 33.8 g yield of N-2-bromo-4-methylphenyl cinnamide, m.p. 148–149° C. (ethyl acetate).

A mixture of 15.0 g (47.5 mmol) of the above prepared N-2-bromo-4-methylphenyl cinnamide and 18.9 g (142.1 mmol) of aluminum trichloride was heated as a melt at about 100° C. for 1.25 h. The viscous syrup was poured onto ice and the resulting aqueous mixture stirred 10 minutes and extracted with ethyl acetate (400 5 ml). The organic extract was washed with water, brine, dried over magnesium sulfate, and evaporated in vacuo. To the residue was added n-butyl chloride and 5.5 g of a crude solid (8-bromo-2-hydroxy-6-methylquinoline) was filtered, dried, and taken on directly to the next step without characterization.

A 5.0 g sample of the above solid and 35 ml of phosphorous oxychloride was heated at reflux for 30 minutes. The hot mixture was poured onto excess ice and the resulting aqueous mixture extracted with 300 ml of diethyl ether. The ether extract was separated and washed with water, brine, dried over magnesium sulfate, and evaporated in vacuo to give a dark oil. Silica gel column chromatography (5:1 followed by 3:1 hexane/ethyl acetate) afforded 1.8 g of 8-bromo-2-chloro-6-methylquinoline isolated as a solid, m.p. $107^{\circ}-108^{\circ}$ C. A second lower R_f material (1.1g) was also isolated on chromatography and identified as 2-chloro-6-methylquinoline, m.p. $109^{\circ}-111^{\circ}$ C.

To 0.8 g of 60% sodium hydride (oil dispersion) stirring in 20 ml of tetrahydrofuran at room temperature, 2.5 ml (34.3 mmol) of 2,2,2-trifluorethanol was added dropwise. An exotherm occurred and to the resulting solution 1.7 g (6.7 mmol) of 8-bromo-2-chloro-6-methyl-quinoline was added followed by heating at reflux for 7 h. Ethyl acetate (200 ml) and excess water was added and the organic layer separated and washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo to give an oil. Silica gel column chromatography (20:1 followed by 10:1 hexane/ethyl acetate) afforded 1.9 g of 8-bromo-6-methyl-2-(2,2,2-trifluoroethoxy) quinoline, m.p. 61° - 62° C.

A mixture of 1.5 g (6.2 mmol) of 8-bromo-6-methyl-2-(2,2,2-trifluoroethoxy) quinoline, 2.3 g of crude 3-(trifluoromethyl) phenyltrimethylstannane (Example 1), and 0.2 g of tetrakis (triphenylphosphine)palladium(O) was heated in 30 ml of toluene at reflux with stirring for 3 hours. Ethyl acetate (200 ml) and excess water was added. The organic layer was separated, washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo to give an oil. Silica gel column chromatography (20:1 followed by 10:1 hexane/ethyl acetate) afforded 0.7 g of product, isolated as an oil.

10

NMR(CDCl₃): ppm 2.55 (s, 3H), 4.71 (q, 2H), 7.15 (d, 1), 7.5-8.15 (m, 7H).

EXAMPLE 3

Preparation of 6-Methyl-2-(2,2,2-trifluoroethoxy)-8-[3-(trifluoromethyl)phenyl]-quinoxaline and

6-Methyl-3-(2,2,2-trifluoroethoxy)-8-[3-trifluoromethyl)phenyl]quinoxaline

A mixture of 22.0 g (92.2 mmol) of 2-bromo-4-methyl-6-nitroaniline and catalytic amount of 10% palladium on carbon in 120 ml of tetrahydrofuran was placed on a Paar hydrogenator for 6 h at room temperature at 50–40 psi. The reaction mixture was filtered through celite and to the filtrate was added dropwise 50.0 ml of 50% glyoxylic acid. The resulting suspension was stirred at room temperature overnight, the insoluble material filtered, washed with water and ethyl acetate, and oven 20 dried to yield 8.5 g of a mixture of 8-bromo-2-hydroxy-6-methylquinoxaline and 8-bromo-3-hydroxy-6-methylquinoxaline.

A 5.0 g (20.9 mmol) sample of the above mixture of 2-25 and 3-hydroxyquinoxalines was heated in 30 ml of thionyl chloride containing a few drops of dimethylformamide. The reaction was heated at reflux for 1.5 h and the resulting solution, which gradually formed on heating, was poured carefully onto ice. The aqueous mix- 30 ture was extracted with ethyl acetate (250 ml) and the separated organic layer washed with water (2X) and brine, dried over magnesium sulfate, and evaporated in vacuo (not to dryness) to give a wet yellow solid residue. Hexane was added and the mixture stirred several ³⁵ minutes before filtering to give 2.1 g of only 8-bromo-3chloro-6-methyl-quinoxaline. Evaporating the hexane filtrate to dryness gave another 3.2 g of a crude solid which was roughly a 1:1 mixture of 8-bromo-2-chloro- 40 6-methyl-quinoxaline and 8-bromo-3-chloro-6-methylquinoxaline.

To 0.46 g of 60% sodium hydride (oil dispersion) stirring in 20 ml of tetrahydrofuran, was added dropwise 1.54 ml of 2,2,2-trifluoroethanol followed by the 45 addition of 1.8 g of the above crude mixture of quinoxalines. The reaction mixture was heated at reflux 45 minutes. Glacial acetic acid (2.0 ml) and excess water was added and the aqueous mixture extracted with ethyl acetate. The separated organic layer was washed with water, saturated sodium bicarbonate and brine, dried over magnesium sulfate, and evaporated in vacuo to give 2.4 g of an oily solid residue which was taken on directly to the next step. 55

A stirred mixture of 2.4 g of the above oily solid residue, 4.5 g of crude 3-(trifluoromethyl)-phenyltrimethylstannane (Example 1), and 0.2 g of tetrakis(triphenylphosphine)palladium(O) was heated in 30 ml of toluene for 4 h. The reaction mixture was concentrated to dryness in vacuo and the residue flash chromatographed on silica gel (40:1 hexane/ethyl acetate) to give 0.7 g of 6-methyl-3-(2,2,2-trifluoroethoxy)-8-[3-(trifluoromethyl)phenyl]quinoxaline (first to elute, m.p. 5114°-117° C.) and 0.8 g of 6-methyl-2-(2,2,2-trifluoroethoxy)-8-[3-(trifluoromethyl)phenyl]-quinoxaline (m.p. 46°-48° C.).

EXAMPLE 4

Preparation of 2-Methoxy-6-methyl-8-[3-(trifluoromethyl)phenyl]quinoxaline and

3-Methoxy-6-methyl-8-[3-(trifluoromethyl)phenyl]quinoxaline

To 2.3 g of a crude sample mixture of 8-bromo-2chloro-6-methylquinoxaline and 8-bromo-3-chloro-6methylquinoxaline (prepared as in Example 3) stirring in 20 ml of methanol, 6.3 ml of a 25 weight % of sodium methoxide in methanol was added and the mixture heated at reflux for 1 h. Glacial acetic acid (3.0 ml), 200 ml of ethyl acetate, and excess water was added. The separated organic layer was washed with saturated sodium bicarbonate, brine; dried over magnesium sulfate, and evaporated in vacuo to give 2.0 g of an oily solid residue which was taken on directly to the next step.

A stirred mixture of the above oily solid residue, 3.2 g of crude 3-(trifluoromethyl)phenyltrimethylstannane (Example 1), and 0.2 g of tetrakis(triphenylphosphine)-palladium(O) were heated in 35 ml of toluene at reflux for 8 h. In vacuo, the reaction mixture was evaporated to dryness and the residue flash chromatographed on silica gel (1:1 hexane/n-butyl chloride followed by straight n-butyl chloride) to give 0.4 g of 3-methoxy-5-methyl-8-[3-(trifluoromethyl)phenyl]quinoxaline (first product isomer to elute, m.p. 141°-142° C.) and 0.5 g of 2-methoxy-5-methyl-8-[3-(trifluoromethyl)phenyl]-quinoxaline (m.p. 119°-121° C.).

EXAMPLE 5

Preparation of

2-(Difluoromethoxy)-6-methyl-8-[3-(trifluoromethyl)phenyl]-quinoxaline and

3-(Difluoromethoxy)-6-methyl-8-[3-(trifluoromethyl)phenyl]quinoxaline

To a suspension of 5.0 g (20.9 mmol) of the above isomer mixture of 8-bromo-2-hydroxy-6-methylquinoxaline and 8-bromo-3-hydroxy-6-methylquinoxaline (prepared as in Example 3) and 9.0 g (27.1 mmol) of tetra-nbutylammonium bromide stirring in 150 ml of dioxane, 20 g (250.0 mmol) of 50% aqueous sodium hydroxide were added. The reaction mixture was placed under an atmosphere of chlorodifluoromethane (Freon-22*) whereby slight pressure was maintained by having a balloon over the reaction flask. A slow exotherm occurred and the mixture stirred 4 h. Excess water and 300 ml of diethyl ether were added. The separated organic extract was washed with water, brine, dried over magnesium sulfate, and evaporated in vacuo to give an oil residue which quickly solidified. Hexane was added, the 55 mixture stirred several minutes, and filtered to give 3.1 g of 8-bromo-3-difluoromethoxy-6-methylquinoxaline. Evaporating the filtrate gave 2.5 g of a crude isomer 8-bromo-2-difluoromethoxy-6-methylmixture of quinoxaline and 8-bromo-3-difluoromethoxy-6-methylquinoxaline.

A stirred mixture of 1.5 g (5.2 mmol) of the above 2and 3-difluoromethoxyquinoxaline isomer mixture, 4.0 g of crude 3-(trifluoromethyl)phenyltrimethylstannane (Example 1), and 0.2 g of tetrakis(triphenylphosphine)palladium(O) was heated at reflux for 16 h. The reaction mixture was evaporated in vacuo and the residue flash chromatographed on silica gel (9:1 followed by 1:1 hexane/n-butyl chloride) to afford 0.51 g of 3-(di-

EXAMPLE 6

Preparation of 6-Methyl-2-(trifluoromethyl]-8-[3-(trifluoromethyl)phenyl]quinoxaline and 6-Methyl-3-(trifluoromethyl)-8-[3-(trifluoromethyl)-

phenyl]quinoxaline

A mixture of 20.0 g (86.6 mmol) of 2-bromo-4-methyl-6-nitroaniline and a catalytic amount of 10% palladium on carbon in 100 ml of tetrahydrofuran was placed on a Paar hydrogenator at room temperature at 50-40 psi for 6 h. The reaction mixture was filtered through celite which was then washed with ethyl acetate. A total of 300 ml of ethyl acetate was added to the filtrate $_{20}$ which was washed with water, brine, dried over magnesium sulfate and evaporated in vacuo to give a dark oily semi-solid. Flash column silica gel chromatography (methylene chloride followed by 2:1 hexane/ethyl acetate) afforded 17.0 g of the main component: 3-bromo-5-25 methyl-ortho-phenylenediamine. The chromatographed product, which still contained some minor impurities, was used directly in the next step. It was initially an dark oil which solidified.

To 10.0 g (37.0 mmol) of 1,1-dibromo-3,3,3-trifluor- 30 oacetone stirring in 50 ml of water, 8.0 g (97.6 mmol) of anhydrous sodium acetate was added and the stirred mixture heated near reflux for 45 minutes followed by stirring at ambient temperature for 30 minutes. A 4.0 g (20.0 mmol) sample of the above phenylenediamine was $_{35}$ added and the mixture stirred 2 h. Excess water and 250 ml of ethyl acetate was added and the separated organic extract washed with 5% hydrochloric acid, brine, dried over magnesium sulfate, and evaporated in vacuo to give dark oil. Flash column silica gel chromatography 40 (40:1 followed by 30:1 hexane/ethyl acetate) afforded 4.3 g of a mixture (two close migrating spots) of 8bromo-6-methyl-2-trifluoromethylquinoxaline and 8bromo-6-methyl-3-trifluoromethylquinoxaline, isolated as a solid which melted at 69°-71° C.

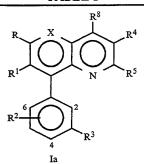
A starred mixture of 2.0 g (6.9 mmol) of the above quinoxaline isomers, 4.2 g of crude 3-(trifluoromethyl)phenyltrimethylstannane, and 0.2 g of tetrakis(triphenylphosphine)palladium(O) were heated in 30 ml of toluene for 6 h. Additional stannane (about 0.5 g) and 50 palladium catalyst (0.1 g) were added and the reaction heated another 6 h. The reaction mixture was evaporated in vacuo to dryness and the residue flash chromatographed (4:1 followed by 1:1 hexane/n-butyl chloride followed in turn by 100% n-butyl chloride) to afford 0.2 g of 6-methyl-3-(trifluoromethyl)-8-[3-(trifluoromethyl)-phenyl]quinoxaline (first product isomer to elute, m.p. 93°-94° C.) and 1.08 g of 6-methyl-2-(trifluoro-methyl)-8-[3-(trifluoromethyl)phenyl]quinoxaline (m.p. 117°-118° C.).

EXAMPLE 7

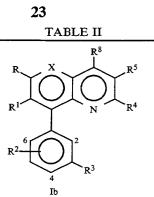
- 7-Methyl-3-(2,2,2,-trifluoroethoxy)-5-[3-(trifluoromethyl)phenyl]-1,2,4-benzotriazine-1-oxide and
- 7-Methyl-3-(2,2,2-trifluoroethoxy)-5-[3-(trifluoromethyl)phenyl]1,2,4-benzotriazine

To 13.0 g (56.3 mmol) of 2-bromo-4-methyl-6nitroaniline stirring in a mixture of 25 ml glacial acetic

acid and 5 ml of concentrated hydrochloric acid at 80° C., 29.0 g (690.5 mmol) of cyanamide and 25 ml of concentrated hydrochloric acid were added simultaneously, separately, and very slowly. At one point dur-5 ing the addition, a vigorous exotherm occurred and the external heat immediately removed. After the addition, the reaction was heated at reflux for 15 minutes. On cooling to about 50° C., 100 ml of 25% aqueous sodium 10 hydroxide were added dropwise and the mixture heated at reflux 15 minutes. The reaction was cooled to room temperature, the insoluble orange solid filtered and washed with water followed by ethyl acetate to afford 7.4 g of yellow 3-amino-5-bromo-7-methyl-1,2,4-benzo-15 triazine-1-oxide after drying.


Sodium nitrite (7.0 g, 101.4 mmol) was added portionwise to a suspension of 7.0 g (27.5 mmol) of the above aminobenzotriazine-N-oxide stirring in 140 ml of concentrated hydrochloric acid at ambient temperature. The mixture was stirred overnight and heated at 60° C. for 2 h. Excess water and 400 ml of ethyl acetate were added and the separated organic layer washed with water, saturated sodium bicarbonate, brine, and dried over magnesium sulfate. Some insoluble starting aminoheterocycle was present during the extractive workup but was not attempted to be removed. Evaporating the organic extract to dryness in vacuo afforded a crude yellow solid residue which was flash chromatographed on silica gel (4:1 methylene chloride/hexane) to give 2.5 g of 5-bromo-3-chloro-7-methyl-1,2,4-benzotriazine-1-oxide, m.p. 207°-209° C.

To 0.5 g of 60% sodium hydride stirring in 30 ml of tetrahydrofuran, 3.0 ml of 2,2,2-trifluoroethanol was added dropwise at ambient temperature. A solution resulted and 2.0 g (7.29 mmol) of the above 5-bromo-3-chloro-7-methyl-1,2,4-benzotriazine-1-oxide was added and at ambient temperature and the mixture stirred 2 h. Ethyl acetate (200 ml) and excess water were added and the separated organic extract washed with water, brine, and dried over magnesium sulfate. The solvent was removed in vacuo, hexane added to the residue, and the suspended yellow solid filtered and dried to afford 1.7 g of 5-bromo-7-methyl-3-(2,2,2-trifluoroethoxy)-1,2,4-benzotriazine-1-oxide, m.p. 127°-128° C.


A stirred mixture of 1.3 g (3.84 mmol) of the above benzotriazine N-oxide, 1.4 g of crude 3-(trifluoromethyl)phenyltrimethylstannane, and 0.2 g of tetrakis(triphenylphosphine)palladium(O) were heated in 35 ml of toluene at reflux for 4 h. The reaction mixture was evaporated in vacuo to dryness and the residue flashed chromatographed on silica gel (1:1 hexane/n-butyl chloride followed by 100% n-butyl chloride) to give 0.8 g of 7-methyl-3-(2,2,2-trifluoroethoxy)-5-[3-(tri-

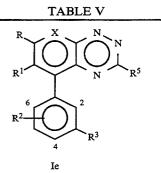
fluoromethyl)phenyl]-1,2,4-benzotriazine-1-oxide (m.p. 168°-169° C.) and 0.24 g of 7-methyl-3-(2,2,2-trifluoroe-thoxy)-5-[3-(trifluoromethyl)phenyl]-1,2,4-benzotriazine (m.p. 140°-141°).

Using the procedures outlined in Schemes 1-10, Equations 1-5, and Examples 1-7, the compounds of Tables I-VIII and the Table of Compounds can readily be prepared by one skilled in the art.

x	R	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁸
CH	Ме	н	н	CF ₃	н	CF ₃	н
CH	Et	н	н	CF ₃	н	CF ₃	н
CH	n-Pr	н	н	CF ₃	н	CF ₃	н
CH	Me	н	н	OCF ₃	H	CF ₃	н
CH	Et	н	H	OCF ₃	н	CF ₃	н
CH	n-Pr	н	н	OCF ₃	н	CF ₃	н
CH	Me	н	H	OCHF ₂	н	CF ₃	н
CH	Me	н	н	OCF ₃	н	OCHF ₂	н
CH	Me	н	H	CF ₃	н	OCHF ₂	н
CH	Me	F	H	CF ₃	H	CF3	н
CH	Me	н	6-F	CF ₃	н	CF ₃	н
CH	Ме	н	4-F	CF ₃	н	CF ₃	н
CH	Me	н	2-OMe	CF ₃	н	CF ₃	н
CH	Me	н	2-CF3	н	н	CF3	н
CH	Me	н	H	Cl	H	CF ₃	н
CH	Me	H	H	Br	н	CF3	н
CH	Me	н	H	CN	н	CF ₃	н
CH	Et	н	H	CF ₃	н	OCHF ₂	н
CH	Ét	н	H	CN	н	CF ₃	н
CH	Me	н	н	SCF ₃	н	CF ₃	н
CH	Me	н	н	н	н	CF ₃	н
CH	Me	н	н	CF ₃	н	OCH ₂ CF ₃	H
CH	Me	н	H	CF ₃	H	SCF ₃	н
CH	Me	н	H	CF_3	н	OMe	н
CH	Et	н	н	CF ₃	н	OEt	н
CH	Me	н	н	CF ₃	н	OCHMe ₂	н
CH	Me	н	н	CF ₃	н	SMe	н
CH	Me	н	н	CF ₃	н	CHF ₂	н
СН	Et	н	H	CF ₃	H	CHF ₂	H
CH	Me	H	н	OCF ₃	H	CHF ₂	H
CH	Me	H	H	CF3	H	OCF ₂ CHF ₂	H
CH	Me	H	H	CF ₃	H	Cl	H
CH	MeCH=CH	H	H	CF ₃	H	CF3	H
CH	Me	H	H	CF ₃	H	CH=CHCF ₃	H
CH	Me	H	H	CF ₃	H	OCHF ₂	H H
CH	Et	H	H	CF3	H	OCHF ₂	H
CH	MeOCH ₂	H	H H	CF ₃	н н	CF3	H
CH	Me ₂ N	H H	н Н	CF ₃	н	CF3 CF3	н
CH CH	MeNH Me	H	H	CF3 OMe	H	CF3	н
CH	Me	н	H	CF ₃	H	SCHF ₂	H ·
CH	Me	H	H	CF ₃	Ĥ	SO ₂ CHF ₂	H
CH	MeO	H	H	CF ₃	H	CF ₃	H
CH	MeS	H	н	CF ₃	Ĥ	CF ₃	H
CH	Me	Ĥ	H	CF ₃	Me	CF ₃	н
CH	Me	Ĥ	Ĥ	CF ₃	CN	CF3	н
CH	Me	Ĥ	Ĥ	CF ₃	OMe		H
CH	Me	Ĥ	H	CF ₃	Cl	CF ₃	H
N	Me	Ĥ	H	CF ₃	н	CF ₃	H
N	Et	н	H	CF ₃	H	CF ₃	н
N	Me	Ĥ	H	CF ₃	н	OCHF ₂	H
N	Et	н	н	CF ₃	н	OCHF ₂	н
N	Me	н	н	OCF ₃	н	CF3	н
N	Ме	н	н	OCHF ₂	н	CF ₃	н
N	Me	H	н	CN	н	CF ₃	H
N	Et	н	н	CN	н	CF ₃	н
N	Me	н	н	OCF ₃	н	OCHF ₂	н
N	Me	н	н	CF ₃	н	OMe	н
N	Me	H	н	SCF ₃	н	CF ₃	н
CH	Me	н	н	CF3	н	CF ₃	Me
CH	Me	н	н	CF ₃	н	CF ₃	OMe
CH	Ме	н	н	CF ₃	н	CF ₃	Cl
CH	Me	н	н	CF ₃	H	CF ₃	CN
					-		

x	R	R1	R ²	R ³	R ⁴	R ⁵	R ⁸
CH	Me	н	н	CF ₃	н	CF ₃	н
CH	Et	н	н	CF ₃	н	CF ₃	н
CH	n-Pr	н	н	CF ₃	н	CF ₃	H
CH	Me	н	н	OCF ₃	н	CF ₃	н
CH	Et	н	н	OCF ₃	н	CF ₃	н
CH	n-Pr	н	н	OCF ₃	н	CF_3	H
CH	Me	н	н	OCHF ₂	н	CF ₃	н
CH	Me	н	н	OCF ₃	н	OCHF ₂	н
CH	Me	н	н	CF ₃	н	$OCHF_2$	н
CH	Me	F	H	CF ₃	н	CF ₃	H
CH	Me	H	6-F	CF ₃	н	CF ₃	н
CH	Me	H	4-F	CF ₃	н	CF ₃	H
CH	Me	H	2-OMe	CF ₃	H	CF3	H
CH	Me	H	2-CF3	н	н	CF ₃	H
CH	Me Me	H	H	Cl	H	CF ₃	H
CH		H	H	Br	H	CF ₃	H
CH	Et	H	H	CF ₃	H	OCHF ₂	H
CH	Me	H	H	CN	н	CF ₃	H
CH CH	Et Me	H	H	CN SOF	H	CF3	H
CH	Me	H	H	SCF3	H	CF ₃	н
CH	Me	H H	н Н	H	н	CF3	H
CH	Me	H	н Н	CF3	н Н	OCH ₂ CF ₃	H H
CH	Me	н	H	CF ₃ CF ₃	н	SCF3 OMe	н Н
CH	Et	н	н	CF3 CF3	Н	OHe	H
CH	Me	H	H	CF3 CF3	H	OCHMe ₂	н
CH	Me	Ĥ	Ĥ	CF3	H	SMe	H
CH	Me	Ĥ	Ĥ	CF ₃	Ĥ	CHF ₂	Ĥ
СН	Et	H	H	CF ₃	ĥ	CHF ₂	Ĥ
СН	Me	H	н	OCF ₃	Ĥ	CHF ₂	н
CH	Ме	н	н	CF ₃	н	OCF2CHF2	н
CH	Ме	н	н	CF ₃	н	CI	н
CH	MECH=CH	н	н	CF ₃	н	CF ₃	н
CH	Ме	н	н	CF ₃	н	CH=CHCF ₃	н
CH	Me	н	н	CF ₃	н	OCHF ₂	н
СН	Et	н	н	CF_3	н	OCHF ₂	н
CH	MeOCH ₂	\mathbf{H}	н	CF ₃	н	CF ₃	н
CH	Me ₂ N	н	н	CF ₃	н	CF3	н
CH	MeNH	H	н	CF ₃	H	CF ₃	H
CH	Me	H	H	OMe	н	CF ₃	н
CH	Me	H	H	CF ₃	н	SCHF ₂	H
CH	Me	H	H	CF ₃	H	SO ₂ CHF ₂	H
CH CH	MeO MeS	H	H	CF3	H	CF ₃	H
СН	Mes	н н	H H	CF ₃	H	CF ₃	н
CH	Me	H	H	CF3	Me CN	CF ₃	н н
CH	Me	H	H	CF3 CF3	OMe	CF3 CF3	н
CH	Me	н	H	CF ₃	Cl	CF ₃	H
N	Me	H	Ĥ	CF ₃	H	CF ₃	н
N	Et	Ĥ	Ĥ	CF ₃	н	CF ₃	н
N	Me	Ĥ	H	CF ₃	й	OCHF ₂	н
N	Et	Ĥ	Ĥ	CF ₃	ĥ	OCHF ₂	H
N	Me	н	Ĥ	OCF ₃	Ĥ	CF ₃	н
Ν	Me	н	н	OCHF ₂	Ĥ	CF ₃	H
N	Me	н	н	CN	н	CF ₃	н
N	Et	н	н	CN	Ĥ	CF ₃	н
Ν	Me	н	н	OCF ₃	н	OCHF ₂	н
N	Ме	н	н	CF ₃	н	OMe	н
N	Me	н	н	SCF ₃	н	CF ₃	н
CH	Me	н	н	CF3	н	CF ₃	Me
CH	Me	н	н	CF ₃	н	CF ₃	OMe
СН	Me	н	н	CF ₃	н	CF ₃	Cl
CH	Me	H	н	CF ₃	н	CF ₃	CN

TABLE III


	,R ⁴
	`R ⁵
R^2 $(1)^2$	
4 R ³ Ic	
10	

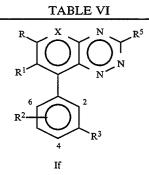
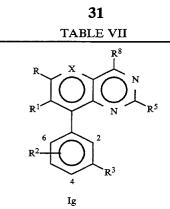

x	R	R ¹	R ²	R ³	R ⁴	R ⁵
CH	Me	н	H	CF ₃	н	CF3
CH	Et	н	н	CF ₃	н	CF ₃
	n-Pr	н	H	CF ₃	н	CF ₃
CH	Ме	н	н	OCF ₃	н	CF ₃
CH	Et	H	H	OCF ₃	н	CF ₃
CH	n-Pr	н	н	OCF3	н	CF ₃
CH		н	н	OCHF ₂	н	CF3
	Me			-		
CH	Me	н	H	OCF ₃	H	OCHF2
CH	Me	н	H	CF ₃	H	OCHF ₂
CH	Me	F	н	CF ₃	н	CF ₃
CH	Me	н	6-F	CF ₃	н	CF ₃
CH	Me	н	4-F	CF ₃	н	CF ₃
CH	Me	н	2-OMe	CF ₃	Ħ	CF3
CH	Me	н	2-CF3	H	H	CF ₃
CH	Me	н	н	Cl	н	CF ₃
CH	Et	н	н	CF ₃	н	OCHF ₂
CH	Ме	н	н	Br	н	CF ₃
CH	Me	н	н	CN	н	CF ₃
CH	Et	н	н	CN	н	CF ₃
CH	Me	н	н	SCF ₃	н	CF ₃
CH	Me	Ĥ	н	н	н	CF ₃
CH	Me	н	н	CF3	н	OCH ₂ CF ₃
CH		н	н	CF3	н	SCF3
	Me			-		-
CH	Me	н	H	CF3	н	OMe
CH	Et	H	H	CF ₃	H	OEt
CH	Me	н	н	CF ₃	н	OCHMe ₂
CH	Me	н	н	CF ₃	н	SMe
CH	Me	н	н	CF ₃	н	CHF ₂
CH	Et	н	н	CF ₃	н	CHF ₂
CH	Me	H	н	OCF ₃	н	CHF ₂
CH	Me	н	н	CF ₃	H	OCF ₂ CHF ₂
CH	Me	н	н	CF ₃	н	Cl
CH	MeCH=CH	н	н	CF ₃	н	CF ₃
CH	Me	н	н	CF ₃	н	CH=CHCF ₃
CH	Me	н	н	CF ₃	H	OCHF ₂
CH	Et	н	н	CF ₃	H	OCHF ₂
CH	MeOCH ₂	н	н	CF ₃	н	CF ₃
СН	Me ₂ N	н	н	CF ₃	н	CF ₃
CH	MeNH	н	н	CF ₃	н	CF ₃
CH	Me	н	н	OMe	н	CF ₃
CH	Me	H	H	CF ₃	н	SCHF ₂
CH	Me	H	H	CF ₃	н	SO ₂ CHF ₂
CH		н Н	н Н	CF3 CF3	н	CF ₃
	MeO MeS			-		-
CH	MeS	H	H	CF3	H Ma	CF ₃
CH	Me	H	H	CF ₃	Me	CF3
CH	Me	H	H	CF ₃	CN	CF3
CH	Me	H	H	CF ₃	OMe	CF ₃
CH	Me	H	Н	CF ₃	Cl	CF3
N	Ме	н	н	CF ₃	H	CF ₃
Ν	Et	H	н	CF_3	н	CF ₃
N	Ме	H	H	CF_3	н	OCHF ₂
N	Et	н	н	CF ₃	н	OCHF ₂
N	Ме	н	н	OCF ₃	н	CF ₃
N	Ме	н	н	OCHF ₂	н	CF ₃
N	Ме	н	н	CN	н	CF ₃
N	Et	н	н	CN	н	CF ₃
N	Me	H	н	OCF ₃	н	OCHF ₂
N	Me	н	н	CF ₃	н	OMe
N	Me	н	Ĥ	SCF ₃	н	CF3
				3		

TABLE IV R^{1} R^{2} R^{2} R^{2} R^{2} R^{3} R^{3} R^{3} R^{4} R^{4} R^{3} R^{4} R^{3}


x	R	R1	R ²	R ³	R ⁴	R ⁵
CH	Me	н	н	CF_3	н	CF3
CH	Et	н	н	CF ₃	н	CF ₃
CH	n-Pr	н	н	CF ₃	н	CF ₃
CH	Me	н	н	OCF ₃	н	CF3
CH	Et	н	н	OCF ₃	н	CF ₃
CH	n-Pr	н	н	OCF ₃	н	CF ₃
CH	Me	н	H	OCHF ₂	н	CF ₃
CH	Ме	н	н	OCF ₃	н	OCHF ₂
CH	Me	н	н	CF_3	н	OCHF ₂
CH	Me	F	н	CF ₃	н	CF ₃
CH	Me	H	6-F	CF_3	н	CF ₃
CH	Me	н	4-F	CF ₃	H	CF ₃
CH	Me	н	2-OMe	CF ₃	н	CF3
CH	Me	н	2-CF3	H	H	CF ₃
CH	Me	H	H	Cl	H	CF ₃
CH	Me	H	н	Br	н	CF ₃
CH	Et	н	H	CF ₃	н	OCHF ₂
CH	Me	н	H	CN	H	CF ₃
CH	Et	H	H	CN	H	CF3
CH	Me	н	H	SCF ₃	н	CF ₃
CH	Me	H	H	H	н	CF3
CH	Me	H	H	CF ₃ CF ₃	H	OCH ₂ CF ₃
CH	Me	H	H		H	SCF3 OMe
CH	Me	н н	H H	CF3	н н	OEt
CH	Et Me	H H		CF ₃		
СН СН	Me	н Н	н н	CF3 CF3	н н	OCHMe ₂ SMe
CH	Me	н Н	H H	•	H	CHF ₂
CH	Et	H	н	CF ₃ CF ₃	н	CHF ₂ CHF ₂
CH	Me	н	н	OCF3	н	CHF ₂ CHF ₂
CH	Me	н	н	CF3 CF3	н	OCF ₂ CHF ₂
CH	Me	н	н	CF ₃	н	Cl
CH	MECH=CH	н	н	CF ₃	н	CF ₃
CH	Meen-en	н	н	CF3	н	CH=CHCF3
CH	Me	Ĥ	н	CF ₃	ĥ	OCHF ₂
CH	Et	н	н	CF ₃	н	OCHF ₂
CH	MeOCH ₂	н	ĥ	CF ₃	ĥ	CF3
CH	Me ₂ N	н	н	CF ₃	н	CF ₃
CH	MeNH	н	н	CF ₃	н	CF ₃
CH	Me	н	н	OMe	н	CF ₃
СН	Me	н	н	CF ₃	н	SCHF ₂
CH	Me	н	н	CF ₃	н	SO ₂ CHF ₂
CH	MeO	н	н	CF ₃	н	CF ₃
CH	MeS	н	н	CF ₃	н	CF ₃
CH	Me	н	н	CF ₃	Me	CF ₃
CH	Me	н	н	CF ₃	CŇ	CF ₃
CH	Me	н	н	CF ₃	OMe	CF ₃
CH	Me	н	н	CF ₃	Cl	CF ₃
Ν	Me	н	н	CF ₃	н	CF ₃
N	Et	н	н	CF ₃	н	CF ₃
N	Me	н	H	CF ₃	н	OCHF ₂
N	Et	н	н	CF ₃	н	OCHF ₂
N	Me	н	н	OCF ₃	н	CF ₃
N	Me	н	н	OCHF ₂	н	CF ₃
N	Me	н	н	CN	н	CF ₃
N	Et	н	н	CN	H	CF ₃
N	Me	н	н	OCF ₃	н	OCHF ₂
N	Me	H	H	CF ₃	H	OMe
N	Me	н	H	SCF ₃	H	CF ₃



				- 2						•	•	
x	R	RI	R ²	R ³	R ⁵	- 15		R		R ²	R ³	R ⁵
	Ме	н		CF ₃	CF ₃		CH	Me		н	CF ₃	CF ₃
	Et	н	H	CF ₃	CF ₃		CH	Et	н	н	CF ₃	CF ₃
	n-Pr	н	н	CF ₃	CF ₃		CH	n-Pr	н	н	CF ₃	CF ₃
	Ме	н	н	OCF ₃	CF ₃		CH	Me	н	н	OCF ₃	CF3
CH	Et	н	H	OCF ₃	CF ₃	20	CH	Et	н	H	OCF ₃	CF3
CH	n-Pr	н	н	OCF ₃	CF ₃		CH	n-Pr	н	H	OCF ₃	CF ₃
CH	Ме	н	н	$OCHF_2$	CF ₃		CH	Me	н	н	OCHF ₂	CF3
CH	Ме	н	н	OCF ₃	OCHF ₂		CH	Me	н	н	OCF ₃	OCHF ₂
СН	Ме	н	н	CF ₃	OCHF ₂		CH	Me	н	н	CF ₃	OCHF ₂
СН	Ме	F	н	CF ₃	CF ₃	25	CH	Me	F	н	CF ₃	CF3
СН	Ме	н	6-F	CF ₃	CF ₃	23	CH	Me	н	6-F	CF ₃	CF ₃
СН	Ме	н	4-F	CF ₃	CF ₃		CH	Me	н	4-F	CF ₃	CF ₃
CH	Ме	н	2-OMe	CF ₃	CF ₃		CH	Me	н	2-OMe	CF ₃	CF ₃
	Ме	н	2-CF3	н	CF ₃		CH	Me	н	2-CF ₃	н	CF ₃
	Me	н	н	Cl	CF ₃		CH	Me	н	H	Cl	CF ₃
	Et	н	H	CF ₃	OCHF ₂	30	CH	Et	н	н	CF ₃	OCHF ₂
	Me	н	H	Br	CF ₃		CH	Me	н	H	Br	CF ₃
	Me	н	H	CN	CF ₃		CH	Me	н	H	CN	CF ₃
	Et	н	н	CN	CF3 CF3		СН	Et	н	н Н	CN	CF3 CF3
	Me	н	H H		-		CH	Me	н	H		
				SCF ₃	CF3	25					SCF3	CF ₃
	Me	H	H	H	CF ₃	33	CH	Me	H	H	H	CF3
	Me	H	н	CF ₃	OCH ₂ CF ₃		CH	Me	H	н	CF ₃	OCH ₂ CF ₃
	Me	Н	H	CF ₃	SCF ₃		CH	Me	н	н	CF ₃	SCF ₃
	Me	н	H	CF ₃	OMe		CH	Me	н	н	CF ₃	OMe
	Et	н	н	CF ₃	OEt		CH	Et	н	н	CF ₃	OEt
	Me	н	н	CF_3	OCHMe ₂	40	CH	Me	н	н	CF_3	OCHMe ₂
	Me	н	н	CF ₃	SMe		CH	Me	н	н	CF3	SMe
	Ме	н	н	CF ₃	CHF ₂		CH	Me	н	н	CF_3	CHF ₂
CH	Ēt	н	н	CF_3	CHF ₂		CH	Et	н	н	CF3	CHF_2
CH	Me	н	н	OCF ₃	CHF ₂		CH	Me	н	н	OCF ₃	CHF ₂
CH	Me	н	н	CF ₃	OCF ₂ CHF ₂		CH	Me	н	н	CF ₃	OCF ₂ CHF ₂
CH	Ме	н	н	CF ₃	Cl	45	CH	Me	н	н	CF ₃	Cl
CH	MeCH=CH	н	н	CF ₃	CF ₃		CH	MeCH=CH	н	н	CF ₃	CF3
CH	Me	н	н	CF ₃	CH=CHCF3		CH	Me	н	н	CF ₃	CH=CHCF ₃
CH	Ме	н	н	CF ₃	OCHF ₂		CH	Me	н	н	CF ₃	OCHF ₂
СН	Et	н	н	CF ₃	OCHF ₂		CH	Et	н	н	CF ₃	OCHF ₂
СН	MeOCH ₂	н	н	CF ₃	CF ₃	50	CH	MeOCH ₂	н	н	CF ₃	CF ₃
CH	Me ₂ N	н	н	CF ₃	CF ₃		CH	Me ₂ N	н	н	CF ₃	CF ₃
	MeNH	н	н	CF ₃	CF ₃		CH	MeNH	н	н	CF ₃	CF ₃
	Ме	н	н	OMe	CF ₃		CH	Me	н	н	OMe	CF ₃
	Ме	н	н	CF ₃	SCHF ₂		CH	Me	н	H	CF ₃	SCHF ₂
	Ме	н	н	CF ₃	SO ₂ CHF ₂	-	CH	Me	н	н	CF ₃	SO ₂ CHF ₂
	MeO	н	H	CF ₃	CF ₃	55	CH	MeO	н	Ĥ	CF ₃	CF3
	MeS	н	н	CF ₃	CF ₃		CH	MeS	H	н	CF ₃	CF ₃
	Me	н	н	CF ₃	CF ₃		N	Me	н	н	CF ₃	CF ₃
	Et	н		CF ₃	CF ₃		N	Et	н	н	CF ₃	CF ₃
	Me	н		CF ₃	OCHF ₂		N	Me	H		CF3 CF3	OCHF ₂
	Et	H		CF ₃ CF ₃	OCHF ₂	60	N	Et	н	н	CF3 CF3	OCHF ₂
	Me	н		OCF3	CF ₃	50	N	Me	н		OCF3	
		н		OCF3 OCHF2	-					H		CF3
	Me			-	CF ₃		N	Me M-	H	H	OCHF ₂	CF3
	Me	H		CN	CF ₃		N	Me	H	H	CN	CF3
	Et	H		CN	CF ₃		N	Et	H	H	CN	CF3
	Me	H	н	OCF3	OCHF ₂	65	N	Me	н	H	OCF3	OCHF ₂
	Me	н		CF ₃	OMe		N	Me	H	H	CF ₃	OMe
N	Me	н	н	SCF ₃	CF ₃	-	N	Me	H	н	SCF ₃	CF ₃

10

Ih

			*5				15				111			
x	R	R1	R ²	R ³	R ⁵	R ⁸	_	x	R	R1	R ²	R ³	R ⁵	R ⁸
CH	Ме	н	н	CF ₃	CF3	н		CH	Me	н	н	CF ₃	CF ₃	н
CH	Et	н	н	CF_3	CF ₃	н		CH	Et	н	н	CF ₃	CF ₃	н
CH	n-Pr	н	н	CF_3	CF ₃	н		CH	n-Pr	н	H	CF ₃	CF ₃	н
CH	Me	н	н	OCF ₃	CF_3	н	20	CH	Me	н	н	OCF ₃	CF ₃	н
CH	Et	H	H	OCF ₃	CF ₃	н		CH	Et	H	H	OCF ₃	CF ₃	H
CH	n-Pr	Н	н	OCF ₃	CF ₃	н		CH	n-Pr	H	H	OCF ₃	CF ₃	H
CH	Me	H	H	OCHF ₂	CF3	н		CH	Me	H	н	OCHF ₂	CF ₃	H
CH CH	Me Me	H H	н н	OCF ₃	OCHF ₂	H		CH CH	Me	H	н	OCF ₃	OCHF ₂	H
CH	Me	F	н Н	CF ₃ CF ₃	OCHF ₂ CF ₃	н н		СН	Me Me	H F	н н	CF ₃ CF ₃	OCHF ₂ CF ₃	H H
CH	Me	H	6-F	CF3 CF3	CF3 CF3	H	25	CH	Me	г Н	6-F	CF3 CF3	CF3 CF3	н Н
CH	Me	н	4-F	CF ₃	CF ₃	н		CH	Me	н	4-F	CF ₃	CF ₃	H
CH	Me	н	2-OMe		CF ₃	н		CH	Me	Ĥ	2-OMe		CF ₃	н
CH	Me	H	2-CF3	H	CF ₃	Ĥ		CH	Me	Ĥ	2-CF3	H	CF ₃	н
CH	Me	н	н	CI	CF ₃	н		CH	Me	н	н	Cl	CF ₃	Ĥ
CH	Et	н	н	CF ₃	OCHF ₂	н	30	CH	Et	н	н	CF ₃	OCHF ₂	н
CH	Me	н	н	Br	CF ₃	н		CH	Me	н	н	Br	CF ₃	н
CH	Ме	н	н	CN	CF ₃	н		CH	Ме	н	н	CN	CF ₃	н
CH	Et	н	н	CN	CF ₃	н		CH	Et	H	н	CN	CF ₃	н
CH	Me	н	н	SCF ₃	CF ₃	н		CH	Me	н	н	SCF ₃	CF ₃	н
СН	Me	н	н	H	CF ₃	н	25	CH	Me	н	н	н	CF ₃	H
CH	Me	н	н	CF ₃	OCH ₂ CF ₃	н	35	~	Me	н	н	CF ₃	OCH ₂ CF ₃	н
CH	Me	H	н	CF ₃	SCF ₃	н		CH	Me	H	н	CF ₃	SCF ₃	H
CH	Me	H	H	CF ₃	OMe	H		CH	Me	н	H	CF ₃	OMe	H
CH	Et	н	H	CF3	OEt	H		CH	Et	H	H	CF ₃	OEt	H
CH CH	Me Me	H H	H H	CF3 CF3	OCHMe ₂ SMe	н н		CH CH	Me Me	H H	н н	CF3	OCHMe ₂	н н
CH	Me	H	H	CF3 CF3	CHF ₂	н	40	CH	Me	н	H	CF ₃ CF ₃	SMe CHF2	н Н
СН	Et	Ĥ	ĥ	CF ₃	CHF ₂	н		CH	Et	H	H	CF ₃	CHF ₂	н
СН	Me	Ĥ	ĥ	OCF ₃	CHF ₂	Ĥ		CH	Me	Ĥ	н	OCF ₃	CHF ₂	Ĥ
СН	Me	н	н	CF ₃	OCF ₂ CHF ₂	н		CH	Me	н	н	CF ₃	OCF ₂ CHF ₂	H
СН	Me	н	н	CF ₃	Cl	н		CH	Ме	н	н	CF ₃	Cl	н
CH	MeCH=CH	н	н	CF ₃	CF ₃	н	45	CH	MeCH=CH	н	н	CF ₃	CF ₃	н
CH	Me	н	н	CF ₃	CH=CHCF ₃	н	45	CH	Ме	н	н	CF ₃	CH=CHCF ₃	н
CH	Me	н	н	CF ₃	OCHF ₂	н		CH	Me	н	н	CF_3	OCHF ₂	н
CH	Et	H	н	CF ₃	OCHF ₂	н		CH	Et	H	H	CF ₃	OCHF ₂	H
CH	MeOCH ₂	H	H	CF3	CF ₃	H		CH	MeOCH ₂	H	H	CF ₃	CF ₃	H
CH CH	Me ₂ N MeNH	H H	H H	CF ₃	CF3	н Н		CH	Me ₂ N	H H	H H	CF3	CF3	H
CH	Meinin	н	н	CF3 OMe	CF3 CF3	н Н	50	CH CH	MeNH Me	л Н	н Н	CF3 OMe	CF3 CF3	н н
CH	Me	н	н	CF ₃	SCHF ₂	H		CH	Me	H	н	CF ₃	SCHF ₂	H
CH	Me	н	н	CF ₃	SO ₂ CHF ₂	Ĥ		CH	Me	н	н	CF ₃	SO ₂ CHF ₂	Ĥ
CH	MeO	н	н	CF ₃	CF ₃	н		CH	MeO	H	н	CF ₃	CF ₃	H
CH	MeS	н	н	CF ₃	CF ₃	н		CH	MeS	н	н	CF ₃	CF ₃	н
CH	Me	н	н	CF_3	CF ₃	Me	55	CH	Ме	н	н	CF ₃	CF ₃	Me
CH	Me	н	н	CF ₃	CF ₃	CN	55	CH	Me	н	H	CF ₃	CF ₃	CN
CH	Me	н	н	CF ₃	CF ₃	OMe		CH	Me	\mathbf{H}	н	CF ₃	CF ₃	OMe
CH	Me	н	н	CF ₃	CF ₃	Cl		CH	Me	н	H	CF ₃	CF ₃	Cl
N	Me	н	н	CF ₃	CF ₃	н		N	Me	н	н	CF_3	CF ₃	н
N	Et	H	H	CF3	CF ₃	н		N	Et	н	H	CF ₃	CF ₃	H
N N	Me Et		H	CF3	OCHF ₂	H	60		Me	H		CF ₃	OCHF ₂	H
N N	Et Me		н н	CF3 OCF3	OCHF ₂ CF ₃	H		N N	Et	H H		CF ₃	OCHF ₂	H H
N N	ме Ме		н Н	OCF ₃ OCHF ₂	CF ₃ CF ₃	H H		N N	Me Me	н Н		OCF3 OCHF2	CF3 CF3	H H
N	Me		н	CN	CF3 CF3	н		N	Me		H H	CN	CF3 CF3	н
N	Et		н	CN	CF ₃	н		N	Et	н	н	CN	CF ₃	н
N	Me		н	OCF3	OCHF ₂	н	65		Me	н		OCF3	OCHF ₂	н
N	Me	н	н	CF ₃	OMe	Ĥ		N	Me	H		CF ₃	OMe	н
N	Me		н	SCF ₃	CF ₃	н		N	Me	н		SCF ₃	CF ₃	H
							•							

TABLE VIII

R5

N

Formulations

Useful formulations of the compounds of Formula I can be prepared in conventional ways. They include dusts, granules, pellets, solutions, suspensions, emul- 5 sions, wettable powders, emulsifiable concentrates and the like. Many of these may be applied directly. Sprayable formulations can be extended in suitable media and used at spray volumes of from a few liters to several hundred liters per hectare. High strength compositions 10 are primarily used as intermediates for further formulation. The formulations, broadly, contain about 0.1% to 99% by weight of active ingredient(s) and at least one of (a) about 0.1% to 20% surfactant(s) and (b) about 1% to 15 99.9% solid or liquid diluent(s). More specifically, they will contain these ingredients in the following approximate proportions:

		Weight Perce	nt*	_ 20
	Active Ingredient	Diluent(s)	Surfactant(s)	_
Wettable Powders	2090	074	1-10	-
Oil Suspensions,	3-50	40-95	0-15	
Emulsions, Solutions,				25
(including Emulsifiable				
Concentrates)				
Aqueous Suspension	10-50	40-84	1-20	
Dusts	1-25	7099	0-5	
Granules and Pellets	0.1-95	5-99.9	0-15	
High Strength Compositions	90–99	0–10	0–2	30

*Active ingredient plus at least one of a Surfactant or a Diluent equals 100 weight percent.

Lower or higher levels of active ingredient can, of course, be present depending on the intended use and ³⁵ the physical properties of the compound. Higher ratios of surfactant to active ingredient are sometimes desirable, and are achieved by incorporation into the formulation or by tank mixing.

Typical solid diluents are described in Watkins, et al., "Handbook of Insecticide Dust Diluents and Carriers",2nd Ed Dorland Books, Caldwell, N.J., but other solids, either mined or manufactured, may be used. The more absorptive diluents are preferred for wettable 45 powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden, "Solvents Guide," 2nd Ed., Interscience, N.Y., 1950, Solubility under 0.1% is preferred for suspension concentrates; solution concentrates are preferably stable 50 against phase separation at 0° C. "McCutcheon's Detergents and Emulsifiers Annual", MC Publishing Corp., Ridgewood, N.J., as well as Sisely and Wood, "Encyclopedia of Surface Active Agents", Chemical Publishing Co., Inc., New York, 1964, list surfactants and rec- 5 ommended uses. All formulations can contain minor amounts of additives to reduce foaming, caking, corrosion, microbiological growth, etc.

The methods of making such compositions are well known. Solutions are prepared by simply mixing the ₆₀ ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are prepared by wet milling (see, for example, Littler, U.S. Pat. No. 3,060,084). Granules and pellets may be made by spraying the active material 65 upon preformed granular carriers or by agglomeration techniques. See J. E. Browning, "Agglomeration", *Chemical Engineering*, Dec. 4, 1967, pp. 147ff. and

"Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York, 1973, pp. 8-57ff.

- For further information regarding the art of formulation, see for example:
- H. M. Loux, U.S. Pat. No. 3,235,361, Feb. 15, 1966, Col. 6, line 16 through Col. 7, line 19 and Examples 10 through 41;
- R. W. Luckenbaugh, U.S. Pat. No. 3,309,192, Mar. 14, 1967, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138–140, 162–164, 166, 167 and 169–182;
- H. Gysin and E. Knusli, U.S. Pat. No. 2,891,855, Jun. 23, 1959, Col. 3, line 66 through Col. 5, line 17 and Examples 1–4;
- G. C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, pp. 81-96; and
- J. D. Fryer and S. A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pp. 101–103.

In the following examples, all parts are by weight unless otherwise indicated.

Example A

Wettable Powder	
a-(difluoromethoxy)-6-methyl-8-[3-(trifluoro-	80%
methyl)phenyl]quinoxaline	
sodium alkylnaphthalenesulfonate	2%
sodium ligninsulfonate	2%
synthetic amorphous silica	3%
kaolinite	13%

The ingredients are blended, hammer-milled until all the solids are essentially under 50 microns, reblended, and packaged.

Example B

Wettable, Powder	
a-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	50%
sodium alkylnaphthalenesulfonate	2%
low viscosity methyl cellulose	2%
diatomaceous earth	46%

The ingredients are blended, coarsely hammer-milled and then air-milled to produce particles essentially all below 10 microns in diameter. The product is reblended before packaging.

Example C

	Granule	
-	Wettable Powder of Example B	5%
	attapulgite granules	95%
	(U.S.S. 20-40 mesh; 0.84-0.42 mm)	

A slurry of wettable powder containing 25% solids is sprayed on the surface of attapulgite granules in a double-cone blender. The granules are dried and packaged.

Example D

	Extruded Pellet	
-	a-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	25%

40

35

-continued

Extruded Pellet		
anhydrous sodium sulfate	10%	
crude calcium ligninsulfonate	5%	5
sodium alkylnaphthalenesulfonate	1%	5
calcium/magnesium bentonite	59%	

The ingredients are blended, hammer-milled and then moistened with about 12% water. The mixture is ex- $_{10}$ truded as cylinders about 3 mm diameter which are cut to produce pellets about 3 mm long. These may be used directly after drying, or the dried pellets may be crushed to pass a U.S.S. No. 20 sieve (0.84 mm openings). The granules held on a U.S.S. No. 40 sieve (0.42 $_{15}$ mm openings) may be packaged for use and the fines recycled.

Example E

		20
Low Strength Granule		
a-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	1%	
N,N-dimethylformamide	9%	
attapulgite granules (U.S.S. 20 to 40 sieve)	90%	25

The active ingredient is dissolved in the solvent and the solution is sprayed upon dedusted granules in a double-cone blender. After spraying of the solution has ³⁰ screen and then packaged. been completed, the blender is allowed to run for a short period and then the granules are packaged.

Example F

Granule	
a-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	80%
wetting agent	1%
crude ligninsulfonate salt (containing -20% of the natural sugars)	10%
attapulgite clay	9%

The ingredients are blended and milled to pass through a 100 mesh screen. This material is then added ⁴⁵ to a fluid bed granulator, the air flow is adjusted to gently fluidize the material, and a fine spray of water is sprayed onto the fluidized material. The fluidization and spraying are continued until granules of the desired size range are made. The spraying is stopped, but fluidization is continued, optionally with heat, until the water content is reduced to the desired level, generally less than 1%. The material is then discharged, screened to the desired size range, generally 14–100 mesh (1410–149 microns), and packaged for use. ⁵⁵

Example C	ŕ
-----------	---

Aqueous Suspension		6
α-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	40%	•
polyacrylic acid thickener	0.3%	
dodecylphenol polyethylene glycol ether	0.5%	
disodium phosphate	1%	
monosodium phosphate	0.5%	6
polyvinyl alcohol	1.0%	
water	56.7%	

The ingredients are blended and ground together in a sand mill to produce particles essentially all under 5 microns in size.

Example H

High Strength Concentrate	
α-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	99%
silica aerogel	0.5%
synthetic amorphous silica	0.5%

The ingredients are blended and ground in a hammermill to produce a material essentially all passing a U.S.S. No. 50 screen (0.3 mm opening). The concentrate may be formulated further if necessary.

Example I

Wettable Powder	
a-(difluoromethoxy)-6-methyl-8-[3-(trifluoro-	90%
methyl)phenyl]quinoxaline dioctyl sodium sulfosuccinate	0.1%
synthetic fine silica	9.9%

The ingredients are blended and ground in a hammermill to produce particles essentially all below 100 microns. The material is sifted through a U.S.S. No. 50 screen and then packaged.

Example J

Wettable Powder	
α-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	40%
sodium ligninsulfonate	20%
montmorillonite clay	40%

The ingredients are thoroughly blended, coarsely hammer-milled and then air-milled to produce particles essentially all below 10 microns in size. The material is reblended and then packaged.

Example K

Oil Suspension	
a-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	35%
blend of polyalcohol carboxylic esters and oil soluble petroleum sulfonates	6%
xylene	59%

The ingredients are combined and ground together in a sand mill to produce particles essentially all below 5 microns. The product can be used directly, extended with oils, or emulsified in water.

Example L

Dust	
α-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	10%
attapulgite	10%
Pyrophyllite	80%

The active ingredient is blended with attapulgite and then passed through a hammer-mill to produce particles substantially all below 200 microns. The ground concentrate is then blended with powdered pyrophyllite until homogeneous.

Example M

Oil Suspension		10
a-(difluoromethoxy)-6-methyl-8-[3-(trifluoro- methyl)phenyl]quinoxaline	25%	
polyoxyethylene sorbitol hexaoleate	5%	
highly aliphatic hydrocarbon oil	70%	

The ingredients are ground together in a sand mill until the solid particles have been reduced to under about 5 microns. The resulting thick suspension may be applied directly, but preferably after being extended with oils or emulsified in water.

UTILITY

Test results indicate compounds of this invention are active postemergence and preemergence herbicides. 2 Many compounds in this invention are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops such as barley (Hordeum vulgare), corn (Zea mays), cotton (Gossypium hirsutum), rice (Oryza sativa), sorghum (Sorghum bi- 30 color), soybean (Glycine max), wheat (Triticum aestivum), and to vegetable crops. Grass and broadleaf weed species controlled include, but are not limited to, barnyardgrass (Echinochloa crusgalli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), 3 cheatgrass (Bromus secalinus), chickweed (Stellaria media), crabgrass (Digitaria spp.), foxtail (Setaria spp.), lambsquarters (Chenopodium spp.), velvetleaf (Afutilon theophrasti), wild buckwheat (Polygonum convolvulus) and wild oats (Avena fatua).

These compounds also have utility for weed control of selected vegetation in specified areas such as around storage tanks, parking lots, highways, and railways; in fallow crop areas; and in citrus and plantation crops 4 such as banana, coffee, oil palm, and rubber. Alternatively, these compounds are useful to modify plant growth.

Rates of application for compounds of this invention are determined by a number of factors. These factors 5 include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general terms, the subject compounds should be applied at rates from 0.01 to 20 kg/ha with a preferred rate range of 0.02 to 2 kg/ha. Although a ⁵ small number of compounds show slight herbicidal activity at the rates tested, it is anticipated these compounds are herbicidally active at higher application rates. One skilled in the art can easily determine application rates necessary for desired level of weed control.

Compounds of this invention may be used alone or in combination with other commercial herbicides, insecticides, or fungicides. The following list exemplifies some of the herbicides suitable for use in mixtures. A combination of a compound from this invention with one or more of the following herbicides may be particularly useful for weed control.

	Common Name	Chemical Name
	acetochlor	2-chloro-N-(ethoxymethyl)-N-(2-ethyl-
5	acifluorfen	6-methylphenyl)acetamide 5-[2-chloro-4-(trifluoromethyl)-
	domaorren	phenoxy]-2-nitrobenzoic acid
	aclonifen	2-chloro-6-nitro-3-phenoxybenzenamine
	acrolein alachlor	2-propenal 2-chloro-N-(2,6-diethylphenyl)-N-
0		(methoxymethyl)acetamide
U.	alloxydim	methyl 2,2-dimethyl-4,6-dioxo-5-[1- [(2-propenyloxy)amino]butylidene]-
		cyclohexanecarboxylate
	ametryn	N-ethyl-N'-(1-methylethyl)-6-(methyl-
	amitrole	thio)-1,3,5-triazine-2,4-diamine 1H-1,2,4-triazol-3-amine
5	AMS	ammonium sulfamate
	anilofos	S-[2-[(4-chlorophenyl)(1-methyl- ethyl)amino]-2-oxoethyl]0,0-
		dimethylphosphorodithioate
	asulam	methyl [(4-aminophenyl)sulfonyl]-
n	atrazine	carbamate 6-chloro-N-ethyl-N'-(1-methylethyl)-
.0	attazine	1,3,5-triazine-2,4-diamine
	aziprotryne	4-azido-N-(1-methylethyl)-6-methyl-
	azoluron	thio-1,3,5-triazin-2-amine N-(1-ethyl-1H-pyrazol-5-yl)-N'-
	azoiaroir	phenylurea
25	barban	4-chloro-2-butynyl 3-chlorocarbamate
	benazolin	4-chloro-2-oxo-3(2H)-benzothiazole acetic acid
	benfluralin	N-butyl-N-ethyl-2,6-dinitro-4-
	bensulfuron	(trifluoromethyl)benzenamine 2-[[[[[(4,6-dimethoxy-2-pyrimidinyl)-
~	Densaturon	amino]methylcarbonyl]amino]-
80		sulfonyl]methyl]benzoic acid,
	bensulide	methyl ester 0,0-bis(1-methylethyl) S-[2-[(phenyl-
	oomounico	sulfonyl)amino]ethyl]phosphoro-
	h	dithioate
35	bentazon	3-(1-methylethyl)-(1H)-2,1,3-benzo- thiadiazin-4(3H)-one, 2,2-dioxide
	benzofluor	N-[4-(ethylthio)-2-(trifluoromethyl)-
	benzoylprop	phenyl]methanesulfonamide N-benzoyl-N-(3,4-dichlorophenyl)-DL-
	ocincoyiprop	alanine
5	benzthiazuron	N-2-benzothiazolyl-N'-methylurea
Ю	bialaphos	4-(hydroxymethylphosphinyl)-L-2- aminobutanoyl-L-alanyl-L-alanine
	bifenox	methyl 5-(2,4-dichlorophenoxy)-2-
	bromacil	nitrobenzoate 5-bromo-6-methyl-3-(1-methylpropyl)-
	bromacu	2,4(IH,3H)pyrimidinedione
1 5	*bromobutide	(+)2-bromo-3,3-dimethyl-N-(1-methyl-
	bromofenoxim	1-phenylethyl)butanamide 3,5-dibromo-4-hydroxybenzaldhyde
	ыопология	0-(2,4-dinitrophenyl)oxime
	bromoxynil	3,5-dibromo-4-hydroxybenzonitrile
	bromuron buminafos	N'-(4-bromophenyl)-N,N-dimethylurea dibutyl [1-(butylamino)cyclohexyl]-
50		phosphonate
	butachlor	N-(butoxymethyl)-2-chloro-N-(2,6- diethylphenyl)acetamide
	butamifos	0-ethyl 0-(5-methyl-2-nitrophenyl)(1-
		methylpropyl)phosphoramidothioate
55	buthidazole	3-[5-(1,1-dimethylethyl)-1,3,4- thiadiazol-2-yl]-4-hydroxy-1-
		methyl-2-imidazolidinone
	butralin	4-(1,1-dimethylethyl)-N-(1-methyl-
	butylate	propyl)-2,6-dinitrobenzenamine S-ethyl bis(2-methylpropyl)-
	-	carbamothioate
50	cacodylic acid	dimethyl arsinic oxide
	carbetamide	(R)-N-ethyl-2-[[(phenylamino)- carbonyl]oxy]propanamide
	CDAA	2-chloro-N,N-di-2-propenylacetamide
	CDEC chlomethoxyfen	2-chloroallyl diethyldithiocarbamate 4- (2,4-dichlorophenoxy)-2-methoxy-1-
55	omenoxyien	nitrobenzene
	chloramben	3-amino-2,5-dichlorobenzoic acid
	chlorbromuron	3-(4-bromo-3-chlorophenyl)-1-methoxy- 1-methylurea
	chlorbufam	1-methyl-2-propynl(3-chlorophenyl)-

-continue

				+0
Common Name	-continued Chemical Name		Common Name	-continued
Common Name			Common Name	Chemical Name
chlorfenac	carbamate 2,3,6-trichlorobenzeneacetic acid			trifluoromethylphenoxy)pyridine-3-
chlorflurecol-	methyl 2-chloro-9-hydroxy-9H-	5	dimefuron	carboxamide N'-[3-chloro-4-[5-(1,1-dimethy]-
methyl	fluorene-9-carboxylate			ethyl)-2-oxo-1,3,4-oxadiazol-3(2H)-
chloridazon	5-amino-4-chloro-2-phenyl-3(2H)-			yl]phenyl]-N,N-dimethylurea
	pyridazinone		dimethachlor	2-chloro-N-(2,6-dimethylphenyl)-N-(2-
chlorimuron	2-[[[((4-chloro-6-methoxy-2-			methoxyethyl)acetamide
	pyrimidinyl)ethylamino]carbonyl]- amino]sulfonyl]benzoic acid, ethyl	10	dimethametryn	N-(1,2-dimethylpropyl)-N'-ethyl-6- (methylthio)-1,3,5-triazine-2,4-
	ester			diamine
chlornitrofen	1,3,5-trichloro-2-(4-nitrophenoxy)-		dimethipin	2,3-dihydro-5,6-dimethyl-1,4-dithiin
	benzene		-	1,1,4,4-tetraoxide
chloropicrin	trichloronitromethane		dimethylarsinic	dimethylarsinic acid
chloroxuron	N'-[4-(4-chlorophenoxy)phenyl]-N,N-	15	dinitramine	N ³ ,N ³ -diethyl-2,4-dinitro-6-(tri-
chlorpropham	dimethylurea 1-methylethyl 3-chlorophenylcarbamate	10	dinoseb	fluoromethyl)-1,3-benzenediamine 2-(1-methylpropyl)-4,6-dinitrophenol
chlorsulfuron	2-chloro-N-[[(4-methoxy-6-methyl-		dinoterb	2-(1,1-dimethylethyl)-4,6-dinitro-
	1,3,5-triazin-2-yl)-amino]-		water er e	phenol
	carbonyl]benzenesulfonamide		diphenamid	N,N-dimethyl-a-phenylbenzeneacetamide
chlorthal-	dimethyl 2,3,5,6-tetrachloro-1,4-		dipropetryn	6-(ethylthio)-N,N'-bis(1-methyl-
dimethyl	benzenedicarboxylate	20		ethyl)-1,3,5-triazine-2,4-diamine
chlorthiamid chlortoluron	2,6-dichlorobenzene carbothioamide N'-(3-chloro-4-methylphenyl)-N,N-		diquat	6,7-dihydrodipyrido[1,2-a:2',-1'-c]-
cinortonition	dimethylurea		diuron	pyrazinediium ion N'-(3,4-dichlorophenyl)-N,N-
cinmethylin	exo-1-methyl-4-(1-methylethyl)-2-[(2-		uniton	dimethylurea
2	methylphenyl)methoxy]-7-oxabicyclo-		DNOC	2-methyl-4,6-dinitrophenol
	[2.2.1]heptane	25	DPX-V9360	2-[[(4,6-dimethoxypyrimidin-2-yl)-
clethodim	(E,E)-(+)-2-[1-[[(3-chloro-2-			aminocarbonyl]aminosulfonyl]-N,N-
	propenyl)oxy]imino]propyl]-5-[2-		D0144	dimethyl-3-pyridinecarboxamide
	(ethylthio)propyl]-3-hydroxy-2- cyclohexen-1-one		DSMA	disodium salt of MAA
clomazone	2-[(2-chlorophenyl)methyl]-4,4-		dymron	N-(4-methylphenyl)-N'-(1-methyl-1- phenylethyl)urea
	dimethyl-3-isoxazolidinone	30	eglinazine-ethyl	N-[4-chloro-6-(ethylamino)-1,3,5-
cloproxydim	(E,E)-2-[1-[[(3-chloro-2-propenyl)-	30	5	triazin-2-yl]glycine ethyl ester
	oxy)imino]butyl]-5-[2-(ethylthio)-		endothall	7-oxabicyclo[2.2.1]heptane-2,3-
	propyl]-3-hydroxy-2-cyclohexen-1-			dicarboxylic acid
clopyralid	one 3,6-dichloro-2-pyridinecarboxylic		EPTC ethalfluralin	S-ethyl dipropylcarbamothioate
сюругана	acid		ethamuraim	N-ethyl-N-(2-methyl-2-propenyl)-2,6- dinitro-4-(trifluoromethyl)
СМА	calcium salt of MAA	35		benzenamine
cyanazine	2-[[4-chloro-6-(ethylamino)-1,3,5-		ethidimuron	N-[5-(ethylsulfonyl)-1,3,4-thia-
	triazin-2-yl]amino]-2-methyl-			diazol-2-yl]-N,N'-dimethylurea
	propanenitrile		*ethofumesate	(+)-2-ethoxy-2,3-dihydro-3,3-
cycloate cycloxydim	S-ethyl cyclohexylethylcarbamothioate 2-[1-ethoxyimino)buty]]-3-hydroxy-5-			dimethyl-5-benzofuranyl methane- sulfonate
ey ereny enn	(tetrahydro-2H-thiopyran-3-yl)-2-	40	fenac	2,3,6-trichlorobenzeneacetic acid
	cyclohexene-1-one		*fenoprop	(+)-2-(2,4,5-trichlorophenoxy)-
cycluron	3-cyclooctyl-1,1-dimethylurea		-	propanoic acid
cyperquat	1-methyl-4-phenylpyridinium		*fenoxaprop	(+)-2-[4-[(6-chloro-2-benzoxazolyl)-
cyprazine	2-chloro-4-(cyclopropylamino)-6- (isopropylamino)-s-triazine		fenuron	oxy]phenoxy]propanoic acid N,N-dimethyl-N'-phenylurea
cyprazole	N-[5-(2-chloro-1,1-dimethylethyl)-	45	fenuron TCA	Salt of fenuron and TCA
51	1,3,4-thiadiazol-2-yl]cyclopropane-	7,7	flamprop-M-	1-methylethyl N-benzoyl-N-(3-chloro-
	carboxamide		isopropyl	4-fluorophenyl)-D-alanine
cypromid	3',4'-dichlorocyclopropane-		flamprop-methyl	methyl N-benzoyl-N-(3-chloro-4-
dalapon	carboxanilide 2,2-dichloropropanoic acid		*flue-ife-	fluorophenyl)-DL-alaninate
dazomet	tetrahydrol-3,5-dimethyl-2H-1,3,5-		*fluazifop	(+)-2-[4-[[5-(trifluoromethyl)-2- pyridinyl]oxy]phenoxy]propanoic
	thiadiazine-2-thione	50		acid
DCPA	dimethyl 2,3,5,6-tetrachloro-1,4-		fluazifop-P	(R)-2-[4-[[5-(trifluoromethyl)-2-
	benzenedicarboxylate			pyridinyl]oxy]phenoxy]propanoic
desmedipham	ethyl [3-[[(phenylamino)carbonyl]-		~	acid
desmetrvn	oxy]phenyl]carbamate 2-(isopropylamino)-4-(methylamino)-6-		fluchloralin	N-(2-chloroethyl)-2,6-dinitro-N-
desmen yn	(methylthio)-s-triazine	55		propyl-4-(trifluoromethyl)- benzenamine
diallate	S-(2,3-dichloro-2-propenyl)bis(1-		fluometuron	N,N-dimethyl-N'-[3-(trifluoro-
	methylethyl)carbamothioate			methyl)phenyl]urea
dicamba	3,6-dichloro-2-methoxybenzoic acid		fluralin	N-butyl-N-ethyl-2,6-dinitro-4-
dichlobenil	2,6-dichlorobenzonitrile		6 41C	(trifluoromethyl)benzenamine
dichlorprop	(+)-2-(2,4-dichlorophenoxy)propanoic acid	60	fluorodifen	p-nitrophenyl a,a,a-trifluoro-2-
*diclofopmethyl	(+)-2-[4-(2,4-dichlorophenoxy)-		fluoroglycofen	nitro-p-tolyl ether carboxymethyl 5-[2-chloro-4-(tri-
pinetity1	phenoxy]propanoic acid, methyl			fluoromethyl)phenoxy]-2-nitro-
	ester			benzoate
diethatyl	N-(chloroacetyl)-N-(2,6-diethyl-		flurecol-butyl	butyl 9-hydroxy-9H-fluorene-9-
1:6	phenyl)glycine		a	carboxylate
difenoxuron	N'-[4-(4-methoxyphenoxy)phenyl]-N,N- dimethylurea	65	fluridone	1-methyl-3-phenyl-5-[3-(trifluoro-
difenzoquat	1,2-dimethyl-3,5-diphenyl-1H-		flurochloridone	methyl)phenyl]-4(lH)-pyridinone 3-chloro-4-(chloromethyl)-1-[3-
·····	pyrazolium ion			(trifluoromethyl)phenyl]-2-
diflufenican	N-(2,4-difluorophenyl)-2-(3-			pyrrolidinone

continued

42

-continued

	-continued			-continued
Common Name	Chemical Name		Common Name	Chemical Name
uroxypyr	[(4-amino-3,5-dichloro-6-fluoro-2-		methoxyphenone	(4-methoxy-3-methylphenyl)(3-
omesafen	pyridinyl)oxy]acetic acid 5-[2-chloro-4-(trifluoromethyl)-	5	methyldymron	methylphenyl)methanone N-methyl-N'-(1-methyl-1-phenyl-
	phenoxy]-N-(methylsulfonyl)-2- nitrobenzamide		metobromuron	ethyl)-N-phenylurea N'-(4-bromophenyl)-N-methoxy-N-
osamine-	ethyl hydrogen (aminocarbonyl)-			methylurea
mmonium	phosphonate ammonium ethyl		metolachlor	2-chloro-N-(2-ethyl-6-methylphenyl)-
lufosinate-	ammonium 2-amino-4-(hydroxymethyl-	10		N-(2-methoxy-1-methylethyl)-
mmonium	phosphinyl)butanoate	10	motorugon	acetamide N'-(3-chloro-4-methoxyphenyl)-N,N-
lyphosate aloxyfop	N-(phosphonomethyl)glycine 2-[4-[[3-chloro-5-(trifluoromethyl)-		metoxuron	dimethylurea
uoxytop	2-pyridinyl]oxy]-phenoxy]propanoic acid		metribuzin	4-amino-6-(1,1-dimethylethyl)-3- (methylthio)-1,2,4-triazin-5(4H)-
exaflurate	potassium hexafluoroarsenate			one
exazinone	3-cyclohexyl-6-(dimethylamino)-l-	15	metsulfuron	2-[[[(4-methoxy-6-methyl-1,3,5-
	methyl-1,3,5-triazine-2,4-		methyl	triazin-2-yl)amino]carbonyl]amino]-
nazamethabenz	(1H, 3H) dione 6-(4-isopropyl-4-methyl-5-oxo-2-		МН	sulfonyl]benzoic acid, methyl ester 1,2-dihydro-3,6-pyridazinedione
nazametnaoenz	imidazolin-2-yl)-m-toluic acid,		molinate	S-ethyl hexahydro-1H-azepine-1-carbo-
	methyl ester and 6-(4-isopropyl-4-			thioate
	methyl-5-oxo-2-imidazolin-2-yl)-p-	20	monalide	N-(4-chlorophenyl)-2,2-dimethyl-
	toluic acid, methyl ester			pentanamide
nazapyr	(+)-2-[4,5-dihydro-4-methyl-4-(1-		monolinuron	3-(p-chlorophenyl)-1-methoxy-1-
	methylethyl)-5-oxo-1H-imidazol-2- yl]-3-pyridinecarboxylic acid		monuron	methyl-urea N'-(4-chlorophenyl)-N,N-dimethylurea
nazaquin	2-[4,5-dihydro-4-methyl-4-(1-methyl-		MSMA	monosodium salt of MAA
	ethyl)-5-oxo-1H-imidazol-2-yl]-3-	25		2-(2-naphthalenyloxy)-N-phenyl-
	quinolinecarboxylic acid	20	-	propanamide
nazethapyr	(+)-2-[4,5-dihydro-4-methyl-4-(1-		napropamide	N,N-diethyl-2-(1-naphthalenyloxy)-
	methylethyl)-5-oxo-1H-imidazol-2- yl]-5-ethyl-3-pyridine carboxylic		naptalam	propanamide 2-[(1-naphthalenylamino)carbonyl]- benzoic acid
xynil	acid 4-hydroxy-3,5-diiodobenzonitrile		neburon	1-buty1-3-(3,4-dichlorophenyl)-1-
ocarbamid	N-(2-methylpropyl)-2-oxo-1-	30	neouron	methylurea
	imidazolidinecarboxamide		nitralin	4-methylsulfonyl-2,6-dinitro-N,N-
opropalin	4-(1-methylethyl)-2,6-dinitro-N,N-			dipropylaniline
	dipropylbenzenamine		nitrofen	2,4-dichloro-1-(4-nitrophenoxy)-
oproturon	N-(4-isopropylphenyl)-N',N'- dimethylurea		nitrofluorfen	benzene 2-chloro-1-(4-nitrophenoxy)-4-(tri-
ouron	N'-[5-(1,1-dimethylethyl)-3-	35	mitomotici	fluoromethyl)benzene
	isoxazolyl]-N,N-dimethylurea		norea	N,N-dimethyl-N'-(octahydro-4,7-
oxaben	N-[3-(1-ethyl-1-methylpropyl)-5-			methano-1H-inden-5-yl)urea-
	isoxazolyl]-2,6-dimethoxybenzamide		~	$3a\alpha$, 4α , 5α , 7α , $7a\alpha$ -isomer
arbutilate	3-[[(dimethylamino)carbonyl]- amino]phenyl-(1,1-dimethylethyl)-		norflurazon	4-chloro-5-(methylamino)-2-[3- (trifluoromethyl)phenyl]-3(2H)-
	carbamate	40		pyridazinone
ictofen	(+)-2-ethoxy-1-methyl-2-oxoethyl-5-		orbencarb	S-[2-(chlorophenyl)methyl]diethyl-
	[2-chloro-4-(trifluoromethyl)-			carbamothioate
	phenoxy]-2-nitrobenzoate		oryzalin	4-(dipropylamino)-3,5-dinitrobenzene-
enacil	3-cyclohexyl-6,7-dihydro-1H-cyclo-		oxadiazon	sulfonamide 3-[2,4-dichloro-5-(1-methylethoxy)-
nuron	pentapyrimidine-2,4(3H,5H)-dione N'-(3,4-dichlorophenyl)-N-methoxy-N-	45	Oxadiazon	phenyl]-5-(1,1-dimethylethyl)-
nuron	methylurea	43		1,3,4-oxadiazol-2(3H)-one
IAA	methylarsonic acid		oxyfluorfen	2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-
IAMA	monoammonium salt of MAA			(trifluoromethyl)benzene
ICPA	(4-chloro-2-methylphenoxy)acetic acid		paraquat pabulate	1,1'-dimethyl-4,4'-dipyridinium ion
ICPA-thioethyl	S-ethyl (4-chloro-2-methylphenoxy)- ethanethioate		pebulate pendimethalin	S-propyl butylethylcarbamothioate N-(1-ethylpropyl)-3,4-dimethyl-2,6-
ICPB	4-(4-chloro-2-methylphenoxy)butanoic	50	penumentann	dinitrobenzenamine
	acid		perfluidone	1,1,1-trifluoro-N-[2-methyl-4-
ecoprop	(+)-2-(4-chloro-2-methylphenoxy)-		-	(phenylsulfonyl)phenyl]methane-
	propanoic acid			sulfonamide,
nefenacet	2-(2-benzothiazolyloxy)-N-methyl-N-		phenisopham	3-[[(1-methylethoxy)carbonyl]-
efluidide	phenyl acetamide N-[2,4-dimethyl-5-[[(trifluoro-	55	phenmedipham	amino]phenyl ethylphenylcarbamate 3-[(methoxycarbonyl)amino]phenyl(3-
	methyl)sulfonyl]amino]phenyl]-	-	Promotipitan	methylphenyl)carbamate
	acetamide		picloram	4-amino-3,5,6-trichloro-2-pyridine-
etamitron	4-amino-3-methyl-6-phenyl-1,2,4-			carboxylic acid
	triazin-5(4H)-one		piperophos	S-[2-(2-methyl-1-piperidinyl)-2-oxo-
etazachlor	2-chloro-N-(2,6-dimethylphenyl)-N-	60		ethyl]0,0-dipropyl phosphoro- dithioate
iethabenz-	(1(H)-pyrazol-1-ylmethyl)acetamide 1,3-dimethyl-3-(2-benzothiazolyl)urea	00	pretilachlor	dithioate 2-chloro-N-(2,6-diethylphenyl)-N-(2-
hiazuron	1,5-unitinyi-5-(2-tenzoimazoiyi)utea		Premacinoi	propoxyethyl)acetamide
nethalpropalin	N-(2-methyl-2-propenyl)-2,6-dinitro-		procyazine	2-[[4-chloro-6-(cyclopropylamino)-
	N-propyl-4-(trifluoromethyl)-			1,3,5-triazine-2-yl]amino]-2-
_	benzenamide		. .	methylpropanenitrile
netham	methylcarbamodithioic acid	65	prodiamine	2,4-dinitro-N3,N3-dipropyl-6-(tri-
nethazole	2-(3,4-dichlorophenyl)-4-methyl-		profluralin	fluoromethyl)-1,3-benzenediamine N-(cyclopropylmethyl)-2,6-dinitro-N-
nethoxuron	1,2,4-oxadiazolidine-3,5-dione N'-(3-chloro-4-methoxyphenyl)-N,N-		Pronurann	propyl-4-(trifluoromethyl)-
				Prop 11 - (Linite Of Official VI)-

	-continued			-continued
Common Name	Chemical Name		Common Name	Chemical Name
proglinazine-	N-[4-chloro-6-[(1-methylethyl)amino]-		tebuthiuron	N-[5-(1,1-dimethylethyl)-1,3,4-
ethyl	1,3,5-triazin-2-yl]-glycine ethyl	5	terbacil	thiadiazol-2-yl]-N,N'-dimethylurea 5-chloro-3-(1,1-dimethylethyl)-6- methyl-2,4(1H,3H)-pyrimidinedione
prometon	ester 6-methoxy-N,N'-bis(1-methylethyl)- 1,3,5-triazine-2,4-diamine		terbuchlor	N-(butoxymethyl)-2-chloro-N-[2-(1,1- dimethylethyl)-6-methylphenyl]- acetamide
prometryn	N,N'-bis(1-methylethyl)-6-(methyl-	10	terbumeton	N-(1,1-dimethylethyl)-N'-ethyl-6- methoxy-1,3,5-triazine-2,4-diamine
pronamide	thio)-1,3,5-triazine-2,4-diamine 3,5-dichloro-N-(1,1-dimethyl-2-		terbuthylazine	2-(tert-butylamino)-4-chloro-6- (ethylamino)-s-triazine
propachlor	propynyl)benzamide 2-chloro-N-(1-methylethyl)-N-phenyl		terbutol	2,6-di-tert-butyl-p-tolyl methyl- carbamate
	acetamide	15	terbutryn	N-(1,1-dimethylethyl)-N'-ethyl-6- (methylthio)-1,3,5-triazine-2,4-
propanil	N-(3,4-dichlorophenyl)propanamide			diamine
propaquizafop	2-[[(1-methylethylidene)amino]oxy]-		thifensulfuron	3-[[[[(4-methoxy-6-methyl-1,3,5- triazin-2-yl)amino]carbonyl]amino]-
	ethyl-2-[4-[(6-chloro-2-			sulfonyl]-2-thiophenecarboxylic
	quinoxalinyl)oxy]phenoxy]- propanoate	20		acid, methyl ester
propazine	6-chloro-N,N'-bis(1-methylethyl)-		thiametur-	methyl 3-[[[(4-methoxy-6-methyl-
	1,3,5-triazine-2,4-diamine		onmethyl	1,3,5-triazin-2-yl)amino]carbonyl]- amino]sulfonyl]2-thiophene- carboxylate
propham	1-methylethyl phenylcarbamate		thiazafluron	N,N'-dimethyl-N-[5-(trifluoromethyl)-
propyzamide	3,5-dichloro-N-(1,1-dimethyl-2-	25		1,3,4-thiadiazol-2-yl]urea
	propynl)benzamide		thiobencarb	S-[(4-chlorophenyl)methyl]diethyl- carbamothioate
prosulfalin	N-[[4-(dipropylamino)-3,5-dinitro- phenyl]sulfonyl]-S,S-dimethyl-		tiocarbazil	S-(phenylmethyl) bis(1-methylpropyl)- carbamothioate
	sulfilimine		tralkoxydim	2-[1-(ethoxyimino)propyl]-3-hydroxy-
prosulfocarb	S-benzyldipropylthiocarbamate	30		5-(2,4,6-trimethylphenyl)-2-
prynachlor	2-chloro-N-(1-methyl-2-propynyl)-		triallate	cyclohexen-1-one S-(2,3,3-trichloro-2-propenyl)bis(1-
	acetanilide			methylethyl)carbamothioate
pyrazon	5-amino-4-chloro-2-phenyl-3(2H)- pyridazinone		triasulfuron	2-(2-chloroethoxy)-N-[[(4-methoxy-6- methyl-1,3,5-triazin-2-yl)amino]-
pyrazosulfuron-	ethyl 5-[[[(4,6-dimethoxy-2-	35		carbonyl]benzenesulfonamide
ethyl	pyrimidinyl)amino]carbonyl]-		tribenuron methyl	2-[[[[N-(4-methoxy-6-methyl-1,3,5- triazine-2-yl)-N-methylamino]-
	amino]sulfonyl]-1-methyl-1H-			carbonyl]amino]sulfonyl]benzoic
	pyrazole-4-carboxylate			acid, methyl ester
pyrazoxyfen	2-[[4-(2,4-dichlorobenzoyl)-1,3-	40	triclopyr	[(3,5,6-trichloro-2-pyridinyl)oxy]-
	dimethyl-1H-pyrazol-5-yl]oxy-1-	40	*tridiphane	acetic acid (+)2-(3,5-dichlorophenyl)-2-(2,2,2-
	phenylethanone		the phane	trichloroethyl)oxirane
pyridate	0-(6-chloro-3-phenyl-4-pyridazinyl)		trietazine	6-chloro-N-N,N'-triethyl-1,3,5-
	S-octyl carbonothioate		trifluralin	triazine-2,4-diamine 2,6-dinitro-N,N-dipropyl-4-
quizalofop ethyl	(+)-2-[4-[(6-chloro-2-quinoxalinyl)-	45	umuam	(trifluoromethyl)benzenamine
	oxy]phenoxy]propanoic acid, ester		trimeturon	1-(p-chlorophenyl)-2,3,3-trimethyl-
secbumeton	N-ethyl-6-methoxy-N'-(1-methyl-		2,4-D	pseudourea
	propyl)-1,3,5-triazine-2,4-diamine		2,4-DB	(2,4-dichlorophenoxy)acetic acid 4-(2,4-dichlorophenoxy)butanoic acid
sethoxydim	2-[1-(ethoxyimino)butyl]-5-[2-(ethyl-		vernolate	S-propyl dipropylcarbamothioate
	thio)propyl]-3-hydroxy-2-cyclo-	50	xylachlor	2-chloro-N-(2,3-dimethylphenyl)-N-(1- methylethyl)acetamide
	hexen-1-one			ineuryiethyijacetamide
siduron	N-(2-methylcyclohexyl)-N'-phenylurea		0.1 . 1	
simazine	6-chloro-N,N'-diethyl-1,3,5-triazine-			rbicidal properties of the subject com-
imatrum	2,4-diamine	55	•	discovered in greenhouse tests as de-
simetryn	N,N'-diethyl-6-(methylthio)-1,3,5- triazine-2,4-diamine		scribed below.	
odium chlorate	sodium chlorate			
sodium mono-	chloroacetic acid, sodium salt			
chloroacetate		60		
sulfometuron	2-[[[[(4,6-dimethyl-2-pyrimidinyl)-			
methyl	amino]carbonyl]amino]sulfonyl]-			
	benzoic acid, methyl ester			
2,4,5-T	(2,4,5-trichlorophenoxy)acetic acid			
	2,3,6-trichlorobenzoic acid	15		
2,3,6-TBA	2,3,0-memorobenzoie aciu	65		
2,3,6-TBA ГCA ebutam	trichloroacetic acid	65		

				TAB	LE OF COMPOUN	DS		
				RR_1		Z I Q		
CMPD	R	\mathbb{R}^1	R ³	Y	Z	0	n	m.p. (°C.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	R Me Me Me Me Me Me Me Me Me Me Me Me Et Et Et Et Et Me Me	ннннннннннннннннннннн	R ³ CF ₃ CF ₃ CCF ₃ CC	CH NNNNNNNNNNN NNNNNNNN NNNNNNNNNNNNNNN	CH C $-OCH_2CF_3$ C $-OMe$ CH N N CH C $-CF_3$ CH N N N N N N C $-OCHF_2$ CH C $-CF_3$ CH C $-CF_3$ CH C $-CF_3$ CH CH C $-CF_3$ CH CH C $-CF_3$ CH C $-CF_3$ CH CH C $-CF_3$ CH CH C $-CF_3$ CH C $-OCF_3$ CH C $-OCF_5$ CH C $-OCF_$	$\begin{array}{c} 0 \\ \hline C = OCH_2CF_3 \\ CH \\ CH \\ C = OMe \\ \hline C = OCH_2CF_3 \\ C = OCH_2CF_3 \\ C = OCH_2CF_3 \\ C = OCH_2CF_3 \\ C = OCHF_2 \\ C = OCHF_2 \\ C = OCHF_2 \\ C = OCHF_2 \\ CH \\ C = OCHF_2 \\ CH \\ C = CF_3 \\ C = OCHF_2 \\ CH \\ C = CF_3 \\ C = OCHF_2 \\ CH \\ C = CF_3 \\ C = OCHF_2 \\ C$	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	oil 114-117 141-142 119-121 168-169 140-141 46-48 93-94 117-118 128-129 109-110 147-148 117-118 105-106 103-104 165-166 171-172 74-75 65-67 55-58 102-105 48-50 oil 101-103 61-64
26 27	MeO MeO	н н	CF3 OCF3	N N	CH CH	C-OCHF ₂ C-OCHF ₂	0	127-131 103-106
28	MeO	H	OCF3	N	C-OCHF2	CH CH	0	62-65
29	MeO	H	CF3	N	C-OCHF2	CH	0	80-84
30 31	Me Me	Me Me	OCHF ₂ OCHF ₂	N N	CH C—OCHF ₂	C—OCHF ₂ CH	0 0	109-113 85-88
31	Me MeO	H	OCHF2 OCF3	N	CH CH	C-CF3	0	85-88
33	MeO	Ĥ	CF ₃	N	CH	C-CF3	0	110-112
34	Et	н	CF ₃	N	C-CF3	СН	0	139-140

TEST A

Seeds of barley (Hordeum vulgate), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), cheatgrass ⁵⁰ (Bromus secalinus), chickweed (Stellaria media), cocklebur (Xanthium pensylvanicum), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria spp.), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hedercea), rape (Brassica napus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and 60

wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species were also treated with postemergence applications of test chemicals. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table A, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

																						٠,	5		,υ	00											-													
										4'	7																									4	8													
		29	•	° c	48	- 4	. .	n r		۰ م	2	57 B	~ ~	n r-		• ►	. r			• •	, o	` c	4 6	7	ო		(ha)	Î																						
		28	1	ייר		•	۰ ·	- 1	- 1	- (7 5	0 °	עת	e ve	, o	۰c	-	- ~	1 00	7	F Q4	c		4	4		Rate (50 o/ha)	30 é	c	0	0	0	0	0				0		0		> <	0	0	0	0	0	0	0	,
		27	,	. .	+ 0	• •	~ `	۰	× v	0,	~ ~	5,0	οч	,	- oc)	- 40	5	ı —) 0	o ve	2	4	4		Rate																							
		26	-	r 4	•	א א	•	ŝ	ю г	- (ъ с	י ע	. «) ~	>	٢	• ~	2	4	+ 0		, ,	n	ო			34	- -	0	0	0	0	-		~ c	~ c	c	c			-	0	0	0	0	0	0	0	, O
		25	,	. .	•	0 F		4 0	•	• •	7	2 •	יי	10	~ ~	2			. 5	x	00	•	+ +	+	~			2 33												. v	. c) <	m	-	-	<u>س</u>	5	2	0	, <u> </u>
		24	4			лo	•	- 0	0 r	~ 4	n ş	2 ∘	• •	1 ₽			œ	~ ~	1 -	~	, c	۰ <i>-</i> -	- 4	>	∞			31 32	-	0				0.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) -) () () (0	0	0	0	0	0	0	,
		23	-	+ -	- 17	~ ~	۰ ،	- 1		+ -		5 r	- ~	, r-	. v r	0	4	. 0	0	~				- 1				29	~		ŝ	ŝ	· س	<u>ہ</u>	-	• •		2	1	. v	> c	.	n ·			ŝ	8	-		•
		22	۰	4 9	ч	. .	, ,		- r			~ ~	4 6	10		. 0	ŝ			v) oc	, ,	, c	৸৸	r			7 28						о с										-		m	∞	-		·
		21	,	1 (*	5 4	- -	• •		~ r		۱ ۲	~ r	- 17	۰ o	6	- 1	1	ŝ	2	9	0		2 4		- 1 0			26 27		- 7				- r																
		20	، ا	۰. ۱	• •	4 4	+ -		* ~	∩ -		1 •	• •	۽ ا	Ś	0	0	, m	2	"	0							25	1	7																				
		19	، ا	1 ~	• •	יי נ		-1 u	ب ر	t c	2	7 C	n	- 00		0	ļ	·		"	-		۰ -	10	2 7			24	6	e	٢	m	~ 1	- ~	о с	• <u>c</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	I	œ	,	\	0		6	9	6	4	ę	1
		18	6		• •	+ C	> <	~ ~	• •	م ا	v •	4 -	- ~	۰ –	· ~	0	I		ŝ	\$	~	10	ء د	>	0			23	1	, 1	ę	-	0 0	ົ່	۱ C		2	6	-	4	· c	2 .	n i	0	0	7	4	0	0	0
	ha)	17	,	i ∝	v	ריי ר	• •	7 F	-	~	40	0 r	~ v	, <u>c</u>	9	0	~~~~	2		5	۰ σ		• •	n ve	4			1 22		0	ŝ	4											n .			4	- 1	-	0	-
	(400 g/ha)	16	,	•		, c	، -		• •	n c	v 1	n r	4 (*	, 0	, m	I	9		7	7	. 0	·	• •	4	• •••		¢∕ha)	20 21	0	-			_	- 1- -		_														3
	Rate (4	15	۰ ا	10		~ ∝		4 r	~ 0	•	n a	סע		, <u>0</u>	~	7	7	m	m	0 0	• •		, ee	~ ~	~ ∞		(100 g/	19	0	0	ŝ	0	0,	7			ŝ	-	1	9				rm-f 1		7	9	1	0	4
		14	∎		. v e	> 1	- c	4 F	- 1-	- 4	. .	~ ~	- ব	. 0	∞	5	S	2	7	7	. 6			~ ~	. 9		_ Rate (18	0	-		0	0.		c	2	• •••	-	-	2			0	0	0	7	0	0	0	I
	NCE	13	ĺ																						~~	NCE		1	°	3	ę	~	⊃ t	-	~	1 40	((C)	ŝ	10	Ś		- v	<u> </u>	- •	~	9	œ	-	0	ŝ
LE /	RGE	12	Ā			- v	. .	0 F	-	^	4 w	~		• œ	4	ł	6	2	7	7	. 6	4	. 4.	, r-	. ∞	RGE		5 16		7																				
TABLE	POSTEMERGENCE	11				ŝ	· -	1 4	>	1	1 4	• •	• ~	, r-	7	1	8	1		ŝ	6	"	• 4	• ~	9	POSTEMERGENC		4 15		4														- (. 1	-	~	-	5	ŝ
	SOd	10	6	1 v r	-	- \c	, ,	0 F	-	"	n œ	o 4	<u>م</u> د	9	٢	-	6	7	7	ŝ	6	2		9 0) ∞	POS		13 14	5	1 2				ი • ი										- ·	7	9	8 8	2	2 2	2 4
	•	6	۴	, v		~	, c	4 v	ן י	، ا	4 6	n ve	~	10	~	0	4		-	~	6	~	10	1 m	4			12	7	3																			I	7
		8											,											1 m				Ξ	-		4					ŝ									-	4	œ	-	1	Ś
		67						9 4 9 5		-			a en				7 5							5 4				9 10	0	2					1	. w	4	1 3	4 5		0								0 3	2 5
		5	0 2					, v , c		۰ ۲			• 0			-	5	-	1 2	9								~	0	-	ŝ	~ ~	-	4		o	7	-	7	2	C		> (- c	- 1	m	5	-	0	2
		4	~ ~		· ~	10		- 4	ل ه د		· .	- c			ŝ	0	2	-		۔ ب		-						1	0	7	4	0 0	•	ר ו		7	1	-	4	9				.	- •	4	ŝ	6	0	3
		3	c	-		• 0			<u>،</u> د	۰ c		>	•	5	4	0	ŝ	0	0	4	~	c	- c	5	0			2 6	0	1 2	2	0.	- 1 F	- 		1 7	1 2	1 2		3 3						4			0 2	1 2
		7	C	~	"				ب ر		- ~	o	• 6	ŝ	9	0	9	0	0	ŝ	~	~		, ro	0		(ha)																							
		-	C	C	C	0	0 0	2	• ~	4 C		>	C	ŝ	2	-	0	-	0	-	7	-	c	2	0		200 g/	30	0	0	0	0 0	-		0	0	0	0	0	0	0	~ c		- c	5	-	0	0	0	
	(F	9	3		v	ŝ		2	-	"	<u>م</u> د	~ ~	. .	10	œ	I	6	ω	£	5	6	œ	~	m ا	1		Rate (200 g/ha)																							
	Rate (2000 g/ha)	s	~	1	¥.	. m		4 67	, I	6	۳ ۱	<i>.</i> .	1 00	œ	~	0	œ	-	-	9	8	2	-	· ~	9			+	0	0	0	~ ~			0	0	4	0	0	0	1	0	> <	- c	-	0	0	0	0	0
	e (200	4	2	3	v	• - 1	· ~	1 5	~ ~	~	- v			9	7	-	4		7	9	80	ŝ	0	2	7		1/g 00	33	-	4	~ '	"	4 F		2	9	9	ē	I	7	0	, r	، د	n c	× 1	n j	10	'n	1	7
	Rat	3	c	-		• 0	c	>	• ~	<u>ب</u> ا	1 (*	c	· 7	9	4	ŝ	4	0	0	ŝ	6	0	C	-	0		Rate (400 g/ha)	32	-	6	4 1	n •	v	n ve		7	9	7	6	9	0	4	+ ~	4 6	N 1	4	×	7	0	5
	İ	-	C	-	¥7	0	c	2 4	- v r	• C	x	>	0	4	7	-	0	-	e	Ś	9	T	0	7	••••		Я	31	7	0	0 0	00			0	0	7	1	0	ŝ	0) (4 0	. .	5	0	0	0	1
		COMPOUND	Barlev	Barnvardgrass	Bedstraw	Blackgrass	Cheatorace	Chickweed	Cocklehur	Corn	Cotton	Crahorass	Giant foxtail	Lambsquarters	Morningglory	Nutsedge	Rape	Rice	Sorghum	Soybean	Sugar beet	Velvetleaf	Wheat	Wild buckwheat	Wild oat			COMPOUND	Barley	Barnyardgrass	Bedstraw	Blackgrass	Chicking ass	Cocklehur	Corn	Cotton	Crabgrass	Giant foxtail	Lambsquarters	Morningglory	Nutsedge	Rane	Diac	Nice Sozehum	aurginin	soyoean	Sugar beet	Velvetleaf	Wheat	Wild buckwheat

5,389,600

Rate (2000 g/hg) Igass 0 0 2 3 6 1 2 3 6 1 2 3 5 1 <th1< th=""> 1 1 <</th1<>	Wild oat	0	و	0		0		-								1	Can	UND	0			1	•		·											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Rat	e (200	0 g/ha												AH	R	CENC		Rate ((400	g/ha)														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	COMPOUND		ŝ									5	∞	6	2	=	12	13		15 16		17 18	8 19	20	2	22	23	24	25	26	27	28	29		31	31 32 33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Barley Barnvardørass	00		~ ~			00	00					0 v	20	ŝ	с r	2 5	\$ <u></u>		9 2 8			00	ŝ	ωo	00	0 4	8 C	5 01	~	~ ~	- 0	~		00	0 4
garas 0 3 9 10 0 9 10 9 9 10 9 9 10 <th10< th=""> <th10< th=""> <th10< th=""></th10<></th10<></th10<>	Bedstraw	• c					, c	50					2		° 0		2 00	- 0									• c	2 0	20		- T		n च			• •
Wereact betweet 0 0 4 9 10 0 2 9 10 5 7 9 9 10	Blackgrass	0		•		_	0			-			2	0	ŝ		. 6	0							· Ħ		-	0	0	6	9	01	• •		。 。	9
weed 0 2 10 10 0 3 3 7 9 10	Cheatgrass	0				_					-		œ	10	ŝ	œ	2	10									ŝ	10	2	10	9	"	. 0		0	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chickweed	0		• •		_	0	0		-			ŝ	2	6	6	10	10							Ξ		0	6	6	10	6	0	1		0	. 6
n 1 0 1 2 2 0 0 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1	Cocklebur	0	1		1	·		I	1	I	•		١	1	7	4	-	7							-		0	0	0	0	0	0	0	Ŭ	0	0
main 0 0 0 4 6 0 0 0 1 1 2 0 pass 1 5 10	Corn						_	-	- 1				7	2	7	7		ŝ							•,		0	ŝ	e		-	-	-	0	~	1
Trans. 1 2 10 <th1< td=""><td>Cotton</td><td>0.</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>0 0</td><td>•</td><td></td><td></td><td>0 0</td><td>⊖ ;</td><td>- (</td><td></td><td>- ;</td><td>~ ;</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0 0</td><td>- ;</td><td>] ;</td><td></td><td>2</td><td>1:</td><td>0</td><td>0</td><td></td><td>7</td></th1<>	Cotton	0.			•				0 0	•			0 0	⊖ ;	- (- ;	~ ;									0 0	- ;] ;		2	1:	0	0		7
Rate 0 <td>Crabgrass Giant fortail</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7 0</td> <td></td> <td></td> <td></td> <td>5 v</td> <td>29</td> <td>5 بر</td> <td>סע</td> <td>29</td> <td>2 ⊆</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>. 5</td> <td></td> <td>υ Ξ</td> <td>2 9</td> <td>29</td> <td></td> <td>2 \$</td> <td>29</td> <td>29</td> <td>\circ</td> <td></td> <td>29</td>	Crabgrass Giant fortail								7 0				5 v	29	5 بر	סע	29	2 ⊆							. 5		υ Ξ	2 9	29		2 \$	29	29	\circ		29
Magnetication Magneti	I amhennartere	• 0							-	•			2 ⊊	2 ⊆	2	` ≘	2	2 2							: =		2	2 5	2 5		2 5	2 5	2 ₽			
discrete 0	Morningelory								•	-			2	2 5	Ś	2 10	5	2 50										2 9	2 -		2	2 9	2 -			
0 0 2 6 8 0 1 0 1	Nutsedge	9	'			_			1				0	3		0	0	0						_		0	0	0	· C		. 0		. c	° C		, c
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rape	0		-									2	0	10	~	4	10					0				0	10	6		2	, "	2	0		a vo
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rice	2	-	~			_		-		_		0	2	-	-	-	-									0	-	2		-	0		0		0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sorghum	0		•	4	_					-	-	9	æ	7	-		ŝ						-		2	0	9	2		-	-	0	0		-
bbeet 0 0 0 10 10 0 2 0 2 0 2 10	Soybean	0		~	1 5							_	0	-	2	-	7	6					0	0			0	-	ĉ		-	0	0	0		0
Ideat 1 1 6 10 0 0 5 1 2 1 3 7 7 8 7 7 3 7 5 1 3 7 7 8 7 7 3 7 9 9 9 10 0 0 0 0 3 3 2 3 3 2 3 3 9 9 10 10 10 0 <th< td=""><td>Sugar beet</td><td>0</td><td>0</td><td>_</td><td></td><td>_</td><td>0</td><td>2</td><td></td><td></td><td></td><td></td><td>æ</td><td>8</td><td>10</td><td>6</td><td>1</td><td>10</td><td></td><td></td><td></td><td></td><td>800</td><td>-</td><td>0,</td><td></td><td>ŝ</td><td>10</td><td>01</td><td></td><td>6</td><td>6</td><td>8</td><td>0</td><td></td><td>8</td></th<>	Sugar beet	0	0	_		_	0	2					æ	8	10	6	1	10					800	-	0,		ŝ	10	01		6	6	8	0		8
true 0 0 3 3 6 0 0 0 3 3 2 5 2 4 3 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 7 9 9 1 <th1< th=""> 1 1 1</th1<>	Velvetleaf	1	_			_	-					-	2	01	7	S	-	e					-	-			0	2	1		0	0	0	0	_	e
buckwheat 0 2 4 8 1 9 9 9 9 1 7 7 9 9 9 1 7 7 9 9 1 7 7 9 9 1 7 7 9 9 1 7 7 9 9 1 7 7 9 9 1 <th1< td=""><td>Wheat</td><td>0</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>ŝ</td><td>ŝ</td><td>7</td><td>ŝ</td><td>5</td><td>4</td><td></td><td></td><td></td><td></td><td>-</td><td>4</td><td>-,</td><td>-</td><td>0</td><td>5</td><td>7</td><td>-</td><td>6</td><td>4</td><td>-</td><td>0</td><td></td><td>S</td></th1<>	Wheat	0		-								5	ŝ	ŝ	7	ŝ	5	4					-	4	-,	-	0	5	7	-	6	4	-	0		S
Rate (200 g/ha) PREMIRCIANCE Rate (200 g/ha) Rate (100 30 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ardgrass 0 0 2 6 7 8 9 10 11 2 1 18 19 ardgrass 0 0 2 0 2 2 1 2 4 1 15 16 17 18 10 ardgrass 0 0 2 3 4 4 3 5 6 10 2 0	Wild buckwheat Wild cat	00		 ~			- ·	00				40	40	∞ σ		6 ¤	~ 0	r 0		6 4		40	4 4				0 -	2	•	°	٢	°	•	9		е С 4 С 4
Mate (JOU Bria) Mate (JOU Bria) Mate (JOU Bria) Mate (JOU Bria) POUND 30 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ardgrass 0 0 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 grass 0 0 2 6 8 7 9 5 5 4 6 10 1 2 7 9 5 5 5 4 6 10 1 2 7 9 5 0												1				EEN	ERG	ENC																		
POUND 30 2 6 7 8 9 10 11 15 16 17 18 raw 0 0 2 0 2 2 1 1 2 4 0 0 0 ardgrass 0 0 2 0 2 2 1 2 4 0 <td></td> <td>kate (</td> <td>λ Ω</td> <td>na)</td> <td></td> <td>¥</td> <td>ate (1</td> <td>JU g/ha,</td> <td>1a)</td> <td></td> <td>Kate</td> <td></td> <td>~</td>		kate (λ Ω	na)													¥	ate (1	JU g/ha,	1a)														Kate		~
γ 0 0 2 0 2 2 1 2 4 0 0 0 0 0 1 1 1 2 4 0	COMPOUND		30		~		-	∞		9	Ξ		13	14	15	16	17	18	6	20	21	22	23	24 2	25	26	27 2	28	29	31 3	32	33	34			30
ardgrass 0 2 3 1 4 4 1 5 3 10 2 3 10 2 3 10 2 3 0 2 3 0 2 3 0 1 2 3 0 2 3 0 2 3 0 2 3 0 2 3 0 1 2 3 3 10 1 2 3 3 10 1 2 3 0 1 2 1 3 0 1 2 3 3 10 1 2 3 3 10 1 2 1 3 10 10 2 10 2 10 2 10 11 <td>Barley</td> <td></td> <td>0</td> <td></td> <td>0</td> <td>1 2</td> <td>0</td> <td>0</td> <td>2</td> <td>7</td> <td></td> <td>-</td> <td>-</td> <td>2</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>2</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>_</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0</td>	Barley		0		0	1 2	0	0	2	7		-	-	2	4	0	0	0	0	0	0	0	0		2	0		0		_	0	0	0			0
raw 0 2 6 2 3 4 2 3 3 10 1 2 $-$ grass 0 0 5 5 5 5 5 6 10 3 0 1 2 $-$ weed 0 0 7 5 5 5 6 10 3 0 0 3 0 1	Barnyardgrass		0		0		ŝ	-	4	4	4	-	S	.	10	7	e	0	0	0	2	3	7	8	2	1	0	-		0	1	-	0			0
grass 0 0 6 8 7 9 5 5 4 6 10 3 0 grass 0 0 1 <	Bedstraw		0		61		61	0	ŝ	4			ŝ	ŝ	2	-	2	1	-	0	ŝ	0	-		4	ŝ		ñ			0		0			0
grass 0 7 2 3 9 6 4 3 5 6 10 2 3 weed 0 0 1	Blackgrass				0		~			ŝ	•••		4	9	2	0	m 1	0	γΩ,	-	6	.	~ ~ '		ŝ	2		~ ~			2	2	0			0
weed 0 </td <td>Cheatgrass</td> <td></td> <td>- <</td> <td></td> <td></td> <td></td> <td>2 0</td> <td>τι (</td> <td></td> <td>0</td> <td></td> <td></td> <td><u>^</u></td> <td>0,</td> <td>⊇ :</td> <td>-</td> <td>r ¥ 1</td> <td>-</td> <td>~ `</td> <td>2</td> <td>2</td> <td>2 1</td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>0 0</td> <td>0 1</td> <td>0 0</td> <td></td> <td></td> <td>0</td>	Cheatgrass		- <				2 0	τ ι (0			<u>^</u>	0,	⊇ :	-	r ¥ 1	-	~ `	2	2	2 1	2			2					0 0	0 1	0 0			0
eour 0 0 0 0 0 0 1 <th< td=""><td>Cnickweed</td><td></td><td>-</td><td></td><td>-</td><td></td><td>></td><td>></td><td>7</td><td>•</td><td>.,</td><td></td><td>~ ~</td><td></td><td>2 '</td><td>> <</td><td>- (</td><td>-</td><td>5</td><td>× 0</td><td>n</td><td>5 0</td><td>.</td><td></td><td>م</td><td>.</td><td></td><td><u>_</u></td><td></td><td></td><td>0</td><td>-</td><td>0</td><td></td><td></td><td>0</td></th<>	Cnickweed		-		-		>	>	7	•	.,		~ ~		2 '	> <	- (-	5	× 0	n	5 0	.		م	.		<u>_</u>			0	-	0			0
n 0 <th0< th=""> <th0< th=""> <th0< th=""></th0<></th0<></th0<>	Cockleour						- 1		-	- -	1.	- c			n -	- -		-	- c	- c	1,				- -	- c					-	1 -	-			-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cotton						• •		• 0	• <			•	- 0	- 0	- c				> c	ء د										>					•
factors 0 1 9 10 9 9 9 10 9 10 9 10 9 10 <th< td=""><td>Contour</td><td></td><td></td><td></td><td>- ·</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>• •</td><td>00</td><td>2</td><td></td><td>2</td><td>></td><td></td><td>2 4</td><td>4 0</td><td></td><td>,</td><td></td><td>- 0</td><td>, v</td><td></td><td>2 4</td><td></td><td>•</td><td></td><td>> <</td><td>2 0</td><td></td><td></td><td></td></th<>	Contour				- ·			0					• •	00	2		2	>		2 4	4 0		,		- 0	, v		2 4		•		> <	2 0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Giant fortail						r 5	00	-	~ 0	- 0		r 0	r 5	29	סת	2 0] <	- 4	אר	סע	• •	n v			• •					•••	4 4	-			-
Aquaticas 2 0	I ambeduartare) (2 0			` 2			<u></u>	2 5	2 9		2	, c	- c	• •		~ 4	~			• 5					- <	,	,			5 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Momineelour.		N 0		> <	-	> <	n (<u>о</u> с	2 -	• •		2 -	2 -	3 1	- -	3 0	-		~ ~	- r	n (v c		. .	2 9		- v			5.	> <	-			-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Number of the second se						> <	>	7	- 0			- 0		0	- 0	> <	-	5 0	n (<	5 0	> <		0	-		0			0	7	-			-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nutsedge		.		0 0		.	1 '	'	э ·			0	э ·	1	0	0	-	-	-	•		0		5	0		0			0	0	0			0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Kape		00		0 0		2 10	0 0		- 0			~ <	- (• •	0 0	0 0	0	0 0	0 0	0 0	o ,	0 0		~ ~	- 0		00			0	0	0 0			0
wheat 0 0 1 0 1	Vice					-	.	> <		- -			5.	20	- ·	> <	.	-	5 0	2	-	- (-			- -					•	- -	- -			• •
wheat 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 3 0 0 0 0 0 0 1 0 1 1 3 0 0	Sorgnum						<			- •				> (- ·	> (- (-		-	-		-		- (-						0	0			0 (
wheat 0 0 4 4 4 5 5 9 9 8 7 0 0 0 0 0 0 1 0 1 1 3 0 0 0 0 1 0 0 1 0 1 1 3 0 0 0 0 1 0 0 1 0 1 1 2 0 0 0 0 1 0 0 2 2 5 2 0 0	Soyoean				-		د	5.		- (·	0	- (> <)	.	5.		د		⇒ •			-		5				0	0			0
	Sugar beet		0		0		4	4	-	×		5	9	δ	δ	×	2	0	-	-	9	m	m		6	×		1			0	0	0			0
	Velvetleaf		0		0		0	0	-	0		0	-		ŝ	0	0	0	0	0	0	0	0		2	0		0			0	0	0			0
	Wheat		0		0	-	0	0	2	-	0	-	-	-	~	0	0	0	0	0	0	0	0		1	0		0			0	0	0			0
	Wild buckwheat				0	r (0	2	2	ŝ	•	°	~	ŝ	6	2	0	1	0	0	4	, -	0	1	,	Ì	1	1	1		0	2	0			
0 0 0 4 3 4 9 5 4 4 8 8 8 2 3 0	Wild oat		0		0	4	ŝ	4	6	ŝ		4	∞	~	~	7	ŝ	0	0	~	6	_	2	6	2	ŝ	ŝ	9	"	c		-	c			C

5,389,600

TEST B

The compounds evaluated in this test were formulated in a non-phytoxic solvent and applied to the soil surface before plant seedlings emerged (preemergence 5 application), to water that covered the soil surface (paddy application), and to plants that were in the oneto-four leaf stage (postemergence application). A sandy loam soil was used for the preemergence and postemergence tests, while a silt loam soil was used in the paddy ¹⁰ test. Water depth was approximately 2.5 cm for the paddy test and was maintained at this level for the duration of the test.

Plant species in the preemergence and postemergence tests consisted of barley (Hordeum vulgare), bedstraw 15 (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), duck salad (Heteranthera limosa), giant foxtail (Setaria faberii), lamb- 20 squarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), ryegrass (Lolium multiflorum), sorghum (Sorghum bicolor), soybean (Glycine max), speedwell (Veronica persica), sugar beet (Beta vulgaris), ²⁵ velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus) and wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus). All plant species were planted one day before application of the compound for the preemergence ³⁰ portion of this test. Plantings of these species were adjusted to produce plants of appropriate size for the postemergence portion of the test. Plant species in the paddy test consisted of barnyardgrass (Echinochloa crusgalli), rice (Oryza sativa), and umbrella sedge (Cyperus 35 difformis).

All plant species were grown using normal greenhouse practices. Visual evaluations of injury expressed on treated plants, when compared to untreated controls, were recorded approximately fourteen to twenty-one days after application of the test compound. Plant response ratings, summarized in Table B, were recorded on a 0 to 10 scale where 0 is no injury and 10 is complete control. A dash (-) response means no test result.

	TABL	EВ			
P	OSTEME	RGENC	E		
		COM	IPOUNI	<u>)</u>	
	5	9	15	21	24
Rate (500 g/ha)					
Barley Igri	4	3	4	1	2
Bedstraw	4	10	9	9	9
Blackgrass	3	8	9	6	9
Chickweed	5 3 5	10	9	9	9
Corn	3	4	4	5	4 5
Cotton		6	4	3	
Crabgrass	3	7	9	6	8
Downy brome	1	4	5		2 2
Duck salad	4	5	2	0	2
Giant foxtail	4	6	6	3	5
Lambsquarters	6	10	10	10	10
Morningglory	6	7	10	8	8
Pigweed	8	8	8	8	8
Rape	5	7	9	6	6
Ryegrass	0	3	4	2	1
Sorghum	2	3	4	4	4
Soybean	5	7	9	6	9
Speedwell	10	10	10	10	10
Sugar beet	8	10	9	10	10
Velvetleaf	0	7	8	4	6
Wheat	2	3	3	1	3
Wild buckwheat	3	9	7	10	10

52

	TABLE B	-continu	ued		
Wild oat	4	7	6	3	10
Barnyardgrass Rice Japonica	5 2	10 6	9 6	9 5	10 4
Umbrella sedge	7	9	9	3	6
Rate (250 g/ha)					
Barley Igri	2	3	2	1	2
Bedstraw Blackgrass	3 2	8 7	9 9	9 6	9 9
Chickweed	5	7	9	9	6
Corn	3 4	3	3	4	3
Cotton Crabgrass	4	6 6	3 9	3 6	4 8
Downy brome	0	2	4		1
Duck salad Giant foxtail	2 3	3 4	1 5	0	1 3
Lambsquarters	4	10	10	10	9
Morningglory	5	6	9	7	7
Pigweed Rape	6 4	8 6	8 9	8 5	8 3
Ryegrass	0	õ	3	_	ŏ
Sorghum	2	2	3	4	3
Soybean Speedwell	4 10	7 10	8 10	.5 10	3 10
Sugar beet	8	10	9	10	8
Velvetleaf Wheet	0	6	7	4	5
Wheat Wild buckwheat	1 2	2 7	2 6	10	2 10
Wild oat	3	5	5	2	
Barnyardgrass Rice Japonica	5 0	10 5	9 6	9 4	10 4
Umbrella sedge	6	8	8	4	5
Rate (125 g/ha)					
Barley Igri	2	2	2		1
Bedstraw Blackgrrass	0 0	8 7	7 9	9 5	8 6
Chickweed	3	7	9	7	
Corn Cotton	3 3	3 5	3 3	4 2	2 4
Crabgrass	3	5	9	4	7
Downy brome	0	0	3	0	0
Duck salad Giant foxtail	2 3	3 3	0 4	0 2	0
Lambsquarters	3	10	10	10	9
Morningglory	5 6	6	9	7	5 5
Pigweed Rape	6 4	8 5	8 8	7 3	2
Ryegrass	0	0	2	0	0
Sorghum Soybean	2 4	2 6	2 8	3 5	3 3
Speedwell	10	10	10	10	10
Sugar beet	6	8	9	9	6
Velvetleaf Wheat	0 1	4 1	6 2	2 0	0 1
Wild buckwheat	1	5	5	9	7
Wild oat	3 4	3 10	4 9	0 9	3 10
Barnyardgrass Rice Japonica	4	3	4	2	3
Umbrella sedge	5	8	5	0	1
Rate (62 g/ha)		2		0	
Barley Igri Bedstraw	1 0	2 7	1 7	0 4	1 5
Blackgrass	0	2	7	1	3
Chickweed Corn	2 3	6 2	8 2	4 3	5 2 3
Cotton	3	4	3	2	3
Crabgrass	3	4	9	2	7
Downy brome Duck salad	0 1	0 2	2 0	0 0	0 0
Giant foxtail	3	3	3	2	0
Lambsquarters Morningglory	3 3	10 6	10	9 5	9 5
Morningglory Pigweed	3 6	7	7 7	5	5
Rape	3	5	7	2	_
Ryegrass	0 2	0 1	2 2	0 3	0 2
Sorghum Soybean	2 4	6	2 7	5	2
Speedwell	9	10	10	10	10
Sugar beet Velvetleaf	6 0	8 3	8 6	9 2	6 0
Wheat	1	0	2	0	0
Wild buckwheat	0	5	4	7	6

53

54

		ວະ	2						5	÷			
Barroy and prove the set of the	Т	ABLE B-	continu	ıed				TA	BLE B-	continu	ed		
Barroy and prove the set of the	Wild oat	3	2	3	0	3		Wild buckwheat	8	8	10	6	10
Ref East of product D O S O O S O O S Number lands Section Section Section Section Section Section Section Bartery [rft 1 1 1 0 - Section Sect													
									-	-	•		-
Ref CI $E/Ea). Description 4 8 10 10 0 0 0 10 10 00 00 10$		0	5	2	0		5		0	_	1	0	0
	Rate (31 g/ha)								-	8	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Barley Iori	1	1	1	0				3		10		10
Bilekgras 0 0 4 - 2 Corn 4 3 0 2 0 <						5			8	8	10	5	10
					_			Corn	4	3	0	2	0
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \label{constraints} & 2 & 3 & 3 & 3 & 2 & 2 & 3 \\ \mbox{Crohyprome} & 0 & 0 & 2 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Gradual} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Sophem} & 2 & 1 & 2 & 2 & 2 & 2 \\ \mbox{Sophem} & 2 & 1 & 2 & 1 & 2 & 2 & 2 \\ \mbox{Sophem} & 2 & 1 & 2 & 1 & 2 & 2 & 2 \\ \mbox{Sophem} & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Sophem} & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Sophem} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Sophem} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Sophem} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Sophem} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Sophem} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mbox{Sophem} & 0 & 0 & 0 & $		0	5	8	. 4			Cotton		-	-	-	
$\begin{array}{c cccc} Conterms & 5 & 3 & 5 & 2 & 2 & 7 \\ Downy frome & 0 & 0 & 0 & 0 & 0 & 0 \\ Dack slad & 0 & 0 & 0 & 0 & 0 & 0 \\ Control Costall & 3 & 3 & 0 & 0 & 0 & 0 & 0 \\ Costa slad & 0 & 1 & 0 & 10 & 0 & 5 & 10 \\ Costa slad & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ Costa slad & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ Costa slad & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ Costa slad & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	Corn	2	1	2	3	2	10		•				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cotton	2							0			4	4
	Crabgrass	3 .							_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	-			-			-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-		-				-	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							15						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-							10			10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							20	•		9	10	5	9
						-	20		6	5	4	4	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-					Wheat	0	0	3	0	0
													—
Wild buckwhat 0 0 2 4 3 Rate ($32 \ gha)$ Barryardgrass 0 9 9 5 7 25 Badrey Lgri 0 0 1 0 0 1 0 0 1 0 0 1 0									3	3	8	5	9
Wild ost Rice Japonica 2 2 2 0 0 25 Barley Igri 0 0 1 0 0 0 1 0		-				-		Rate (62 g/ha)					
Barayardgrass 0 9 9 5 7 220 Bedstraw 3 7 10 2 0 10 Umbrella sedge 0 3 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td><td>Barley Igri</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td></th<>							25	Barley Igri	0	0	1	0	0
		0	9	9	5	7	25	Bedstraw	-				
		0	0	2	0	1							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0	3	0	0	0							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		DREEMED	CENCE	,					-	-	-	-	
	-	PREEMER			_					-			
Bate (500 g/hs). Deck salad						<u> </u>	30						
		5	9	15	21	24	50		0	2	4	3	0
Barley [gri 2 5 4 3 Lambsquarters 10 6 10 5 0 Bedstraw 10<	Rate (500 g/ha)								_	10	10		10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2	5	٨	3							
Blackgrass 6 10 10 10 10 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10 10 9 10		10								-			
$ \begin{array}{c cccc} Chickweed & 10 & 10 & 10 & 9 & 10 & 35 & Raye & 4 & 3 & 4 & 0 & 0 & 0 \\ Com & 7 & 4 & 2 & 3 & 0 & Ryegrass & 0 & 5 & 9 & 2 & 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$										-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							35		-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									-		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									Ó	4	4		0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		10	10	10	10	10			0	0	0	0	0
Gant fortail 10			6	10	4	10		Speedwell	10	10	10	8	
Lambsquarters 10	Duck salad	_						Sugar beet	7				
Morninglory 8 4 8 3 6 Wild buckwheat 4 5 10 2 9 Pigweed 10 0 1 0 0 1 0 0 1 0 0 10 0 0 1 0 0 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>							40			-			
Pigweed101010101010Wild oat31543Rape10101044Rate (31 g/na)31543Ryegrass61010510Barley Igri00100Sorghum488545Bedstraw00500Sopedwell101010101010Corn000000Sugar beet10910101010Corn0000000Wild oat31644Crabgrass7910510Wild oat31644Crabgrass7910510Wild oat311644Crabgrass7910510Wild oat311322Lambquarters731052Bedstraw7101010101010103823Chickweed1010101010101034000000Downy brome061044Speedwell9101038 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td>									-	-	-	-	
Rape Ryegrass10101044Rate (31 g/ha) Barley Igri00100Sorghum48545Bedstraw00500Sorghum306445Bedstraw0059810Sugar beet101010101010Chickweed50951Sugar beet01644Crabgrass7910510Wild buckwheat99106105Downy brome00000Wild oat310101050Moriningglory300000Wild oat310101050Moriningglory3000000Barley Igri2132205Rape0100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>									-				
Ryegrass61010510Barley Igri00100Sorghum488545Bdestraw00500Soybean3064-45Blackgrass059810Sugar beet101010101010Chickweed50951Sugar beet01644Cotton00000Wheat0161050Downy brome00130Wild oat31010101050Duck saladBarley Igri21322Lambsquarters731052Bedstraw7101050Morningglory30000Barley Igri2132055Ryegrass0010Corn7302055Ryegrass00100Corn7302055Ryegrass00100Corn7302055Ryegrass00100Corn7302055Ryegra									3	1	5	4	3
	-					-			_				_
Sorgham306445Blacklaw0059810Speedwell10101010Chickweed50951Sugar beet10971048Cotton00000Wheat01644Crabgrass7910510Wild buckwheat991061050Downy brome00130Wild oat31010101050Downy brome00130Wild oat31010101050Morningglory300000Backgrass61010101010Pigweed9101038Chickweed1010101010Pigweed9101038Chickweed1010101010Sorghum03400Corn7302055Ryegrass00000Corn7302055Ryegrass00000Corn7302055Ryegrass000000Downy brome													
Speedwell101010101010Chrickweed50951Sugar beet109101010Corn00000Weidetaf971048Cotton000000Wild buckwheat99106100000130Wild oat310101050Downy brome00130Wild oat310101050Duck saladRate (250 g/ha) </td <td></td> <td>•</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>45</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td>		•	-		-		45				-		-
Sugar beet 10 9 10 10 10 Corn 0						10		Chickgrass					
Velvetleaf971048Cotton0000000Wheat01644Cotton0000000Wild buckwheat991061050Downy brome00130Wild oat31010101050Downy brome00130Barley Igri21322Lambsquarters731052Bedstraw7101050Morningglory30000Backgrass610101010Pigweed9101038Chickweed1010101010Pigweed9101038Chickweed1010101010103400Corton30400Sorghum03400Corton30400Sorghum03400Corton30400Sorghum03400Corton30010101010891089Duck salad													
Wheat 0 1 6 4 4 Crabgrass 7 9 10 5 10 Wild buckwheat 9 9 10 6 10 50 Downy brome 0 0 1 3 0 10 10 10 50 Downy brome 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 10													
Wild buckwheat 9 9 10 6 10 50 7 <th7< th=""> 7 <th7< th=""></th7<></th7<>									-				
Wild oat 3 10 10 10 10 10 50 Duck salad	Wild buckwheat												
Rate (250 g/ha) Giant foxtail 7 7 10 6 7 Barley Igri 2 1 3 2 2 Lambsquarters 7 3 10 5 2 Bedstraw 7 10 10 5 0 Morningglory 3 0 </td <td>Wild oat</td> <td>3</td> <td>10</td> <td>10</td> <td>10</td> <td>10</td> <td>20</td> <td></td> <td>_</td> <td></td> <td>_</td> <td>-</td> <td>_</td>	Wild oat	3	10	10	10	10	20		_		_	-	_
Barley Igri 2 1 3 2 2 Lambsquarters 7 3 10 5 2 Bedstraw 7 10 10 5 0 Morningglory 3 0 <t< td=""><td>Rate (250 g/ha)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7</td><td>7</td><td>10</td><td>6</td><td></td></t<>	Rate (250 g/ha)								7	7	10	6	
Bedstraw 7 10 10 5 0 Morningglory 3 0	Barley Igri							Lambsquarters	7	3		5	2
Blackgrass 6 10 10 10 10 Pigweed 9 10 10 3 8 Chickweed 10 10 10 9 10 55 Rape 0 0 10 3 8 Corn 7 3 0 2 0 55 Rape 0 0 1 0 0 Corn 7 3 0 2 0 55 Ryegrass 0 0 5 2 3 Cotton 3 0 4 0 0 Sorghum 0 3 4 0 0 Downy brome 0 6 10 4 4 Speedwell 9 9 10 8 9 Duck salad - - - - Sugar beet 2 0 3 0 0 2 2 0 Lambsquarters 10 10 10 10 10 10 Wild backwheat 4 2 7 0 0	Bedstraw												
Corn 7 3 0 2 0 55 Ryegrass 0 0 5 2 3 Cotton 3 0 4 0 0 Sorghum 0 3 4 0 0 Cathering 10								Pigweed					
Conn30400Sorghum03400Cotton30400Sorghum03400Crabgrass101010101010Soybean00000Downy brome061044Speedwell991089Duck saladSugar beet20823Giant foxtail9101010101010Velvetleaf00220Lambsquarters1010101010101003000Morningglory63725Wild buckwheat42700Rape810824410 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>55</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							55						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	55						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-	-		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		U											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
Morningglory 6 3 7 2 5 Wild buckwheat 4 2 7 0 0 Pigweed 10 10 10 10 10 10 10 10 10 10 10 10 Wild buckwheat 4 2 7 0 0 Rape 8 10 8 2 4 4 2 0 4 2							60		-	-			
Pigweed 10 10 10 10 10 10 10 Wild oat 2 0 4 2 0 Rape 8 10 8 2 4 10							55						
Rape 8 10 8 2 4 Ryegrass 6 10 10 4 10 Sorghum 3 7 7 5 Soybean 3 0 3 2 0 65 Speedwell 10 10 10 10 Seeds of barnyardgrass (<i>Echinochloa crus-galli</i>), cassia Sugar beet 10 9 10 9 10 Seeds of barnyardgrass (<i>Echinochloa crus-galli</i>), cassia Velvetleaf 8 7 8 4 6 (<i>Cassia obtusifolia</i>), cocklebur (<i>Xanthium pensyl-</i>													
Ryegrass61010410Sorghum3775Soybean30320Speedwell10101010Sugar beet109109Velvetleaf87846(Cassia obtusifolia), cocklebur (Xanthium pensyl-										-			
Sorghum3775—TEST CSoybean3032065TEST CSpeedwell1010101010Seeds of barnyardgrass (Echinochloa crus-galli), cassiaSugar beet10910910Seeds of barnyardgrass (Echinochloa crus-galli), cassiaVelvetleaf87846(Cassia obtusifolia), cocklebur (Xanthium pensyl-													
Speedwell 10 10 10 10 10 Seeds of barnyardgrass (Echinochloa crus-galli), cassia Sugar beet 10 9 10 9 10 Get Cassia obtusifolia), cocklebur (Xanthium pensyl-									TTO	тс			
Sugar beet 10 9 10 9 10 Seeds of barnyardgrass (Echinochioa crus-gain), cassia Velvetleaf 8 7 8 4 6 (Cassia obtusifolia), cocklebur (Xanthium pensyl-							65		162	ιU			
Velvetleaf 8 7 8 4 6 (Cassia obtusifolia), cocklebur (Xanthium pensyl-								Seeds of barnvard	grass (E	chinoch	loa crus	-galli).	cassia
where $ -$		8											
	wneat		—	د	1	4		<i>vanicum</i> , common	Lagwee	a (Anti	nosia e		com

(Zea mays), cotton (Gossypium hirsutam), crabgrass (Digitaria spp.), fall panicum (Paicum dicholomiflorum), giant foxtail (Setaria faberii), green foxtail (Setaria vividis), jimson weed (Datura stramonium), johnson grass (Sorghum halepense), morningglory (Ipomoea spp.), 5 prickly sida (Sida spinosa), signalgrass (Brachiaria platyphylla), soybean (Glycine max), velvetleaf (Abutilon theophrasti), wild proso (Panium miliaceum) and purple nutsedge (Cyperus rotundus) tubers were planted into a silt loam soil. Test chemicals, dissolved in a non-10 phytotoxic solvent, were then applied to the soil surface within one day after the seeds were planted. Pots receiving these preemergence treatments were placed in the greenhouse and maintained according to routine 15 greenhouse procedures.

Treated plants and untreated controls were maintained in the greenhouse approximately 21 days after application of the test compound. Visual evaluations of plant injury responses were then recorded. Plant response ratings, summarized in Table C, are reported on ²⁰ a 0 to 10 scale where 0 is no effect and 10 is complete control.

PREEM	IERGENCE		
		POUND	
	9	15	
Rate (500 g/ha)			
Barnyardgrass	8		
Cassia	6		
Cocklebur	0		
Common Ragweed	8		
Corn G4689A	3		
Cotton	0		
Crabgrass	10		
Fall Panicum	10		
Giant Foxtail	10		
Green Foxtail	10		
Jimson weed	8		
Johnson Grass	9		
Morningglory	7		
Prickly sida	7		
Signalgrass	10		
Soybean	1		
Velvetleaf	4		
Wild Proso	9		
Rate (250 g/ha)			
Barnyardgrass	7	10	
Cassia	0	8	
Cocklebur	0	0	
Common Ragweed	8	10	
Corn G4689A	1	2	
Cotton	0	0	
Crabgrass	10	10	
Fall Panicum	10	10	
Giant Foxtail Green Foxtail	10 10	10	
Jimson weed		10	
Johnson Grass	6 6	7	
Nutsedge	6	U	
Prickly sida	5	6	
Signalgrass	10	10	
Velvetleaf	4	6	
Wild Proso	9	· 9	
Rate (125 g/ha)	2	7	
	£	0	
Barnyardgrass Cassia	5 0	8	
Cocklebur	0	0	
	1	0 0	
Common Ragweed Corn G4689A	1		
Cotton	0	1	
	10	10	
Crabgrass Fall Panicum	10	10	
Giant Foxtail	9	10	
Green Foxtail	10	10	
Jimson weed	2	10	
Johnson Grass	1	6	

56

PREEN	MERGENCE	
	COMPOUND	
	9	15
Nutsedge	0	
Prickly sida	0	6
Signalgrass	0	10
Soybean Velvetleaf	0	2
Wild Proso	8	8
Rate (62 g/ha)	·	•
Barnyardgrass	2	7
Cassia	0	0
Cocklebur	<u> </u>	0
Common Ragweed	0	0
Corn G4689A		1
Cotton Crabgrass	0 10	10
Fall Panicum	0	10
Giant Foxtail	9	10
Green Foxtail	7	10
Jimson weed	0	0
Johnson Grass	_	6
Morningglory	0	_
Nutsedge Brickly side	0	2
Prickly sida Signalgrass	0	0 10
Soybean	0	
/elvetleaf	0	0
Wild Proso	7	8
Rate (31 g/ha)		
Barnyardgrass	0	2
Cassia	0	0
Cocklebur	0	0
Common Ragweed	0	0
Corn G4689A Cotton		1
Crabgrass	2	9
Fall Panicum		Ó
Giant Foxtail	8	8
Green Foxtail	6	8
Jimson weed	0	0
Johnson Grass	0	6
Morningglory Prickly sida	0	0 0
Signalgrass	_	9
Soybean	0	ó
Velvetleaf	Ō	Ō
Wild Proso	6	7
Rate (16 g/ha)		
Barnyardgrass		0
Cassia		0
Cocklebur		0
Common Ragweed		0 0
Crabgrass		6
all Panicum		ŏ
iant Foxtail		2
freen Foxtail		4
imson weed		0
ohnson Grass		2
forningglory Jutsedge		0 0
rickly sida		0
Signalgrass		ŏ
oybean		Õ
elvetleaf		0
ild Proso		6

TEST D

Plastic pots were partially filled with silt loam soil. The soil was then saturated with water. Japonica rice (*Oryza sativa*) seedlings at the 2.0 to 2.5 leaf stage, seeds

65 selected from barnyardgrass (Echinochloa crus-galli), umbrella sedge (Cyperus difformis), and tubers selected from arrowhead (Sagittaria spp.), waterchestnut (Eleocharis spp.), were planted into this soil. After planting,

water levels were raised to 3 cm above the soil surface and maintained at this l cal treatments were f solvent and applied Treated plants and conhouse for approximatel were compared to co Plant response ratings reported on a 0 to 10 s is complete control. A result.

	PADDY	
	COMPOUND	15
	9	
Rate (500 g/ha)	_	
Arrowhead	0	
Barnyardgrass	10	
Japonica rice	4	20
Umbrella sedge	6	20
Waterchestnut	0	
Rate (250 g/ha)	_	
Arrowhead	0	
Barnyardgrass	10	
Japonica rice	3	25
Umbrella sedge	4	25
Waterchestnut	0	
Rate (125 g/ha)	_	
Arrowhead	0	
Barnyardgrass	9	
Japonica rice	2 3	30
Umbrella sedge		30
Waterchestnut	0	
<u>Rate (64 g/ha)</u>		
Arrowhead	0	
Barnyardgrass	3	
Japonica rice	1	35
Umbrella sedge	4	35
Waterchestnut	0	
Rate (32 g/ha)		
Arrowhead	0	
Barnyardgrass	1	
Japonica rice	0	40
Umbrella sedge	3	
Waterchestnut	0	

sed to 5 oni above the son surface		
s level throughout the test. Chemi-		
formulated in a non-phytotoxic		
l directly to the paddy water.		
ontrols were maintained in a green-	5	
ely 21 days, after which all species		3-1f B.Y.
controls and visually evaluated.		Jap Dire
÷		Jap Rice
gs, summarized in Table D, are		Rate (25
scale where 0 is no effect and 10		1-LF B.
A dash $(-)$ response means no test	10	2-LF B.
		3-1f B.Y.
		Jap Dire
TABLE D		Jap Rice
		Rate (12
PADDY		1-LF B.

58 TABLE E-continued

TABL	E E-continued
	Flood
	COMPOUND
	9
3-lf B.Y.Grass	8
Jap Direct Seed	3
Jap Rice Eff	3
Rate (250 g/ha)	-
1-LF B.Y.Grass	10
2-LF B.Y.Grass	8
3-lf B.Y.Grass	9
Jap Direct Seed	1
Jap Rice Eff	1
Rate (125 g/ha)	
1-LF B.Y.Grass	9
2-LF B.Y.Grass	5
3-lf B.Y.Grass	3
Jap Direct Seed	1
Jap Rice Eff	0
Rate (64 g/ha)	
1-LF B.Y.Grass	8
2-LF B.Y.Grass	4
3-lf B.Y.Grass	2
Jap Direct Seed	1
Jap Rice Eff	0
Rate (32 g/ha)	
1-LF B.Y.Grass	6
2-LF B.Y.Grass	2
3-lf B.Y.Grass	0
Jap Direct Seed	0
Jap Pace Eff	0
Rate (16 g/ha)	
1-LF B.Y.Grass	0
2-LF B.Y.Grass	0
3-lf B.Y.Grass	0
Jap Direct Seed	0
Jap Rice Eff	0
Rate (8 g/ha)	
1-LF B.Y.Grass	0
2-LF B.Y.Grass	0
3-If B.Y.Grass	0
Jap Direct Seed	0
Jap Rice Eff	0

TEST F Compounds evaluated in this test were formulated in

a non-phytoxic solvent and applied to the soil surface before plant seedlings emerged (preemergence application) and to plants that were An the one-to-four leaf 45 stage (postemergence application). A sandy loam soil was used for the preemergence test while a mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied within approximately one day after planting seeds for the preemergence test. Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include winter barley (Hordeum vulgare cv. 'Igri'), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), downy brome (Bromus tectorum), field violet (Viloa arvensis), green foxtail (Setaria viridis), kochia (Kochia scoparia), lambsquarters (Chenopodium album), Persian speedwell (Veronica persica), rape (Brassica napus cv. 'Jet Neuf'), ryegrass (Lolium multiflorum), sugar beet (Beta vulgaris cv. 'US1'), sunflower (Helianthus annuus cv. 'Russian Giant'), spring 5 wheat (Triticum aestivum cv. 'ERA'), winter wheat (Triticum aestivum cv. 'Talent'), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), and wild radish (Raphanus raphanis-

TEST E

Plastic pots were partially filled with silt loam soil. The soil was then flooded with water, Japonica rice (Oryza sativa) sprouted seeds and 1.5 leaf transplants were planted in the soil. Seeds of barnyardgrass (Echinochloa crus-galli) were planted in saturated soil 50 and plants grown to the 1 leaf, 2 leaf and 3 leaf stages for testing. At testing, the water level for all plantings was raised to 2 cm above the soil surface. Chemical treatments were formulated in a non-phytotoxic solvent and applied directly to the paddy water. Treated plants and 55 controls were maintained in a greenhouse for approximately 21 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarize in Table E are reported on a 0 to 10 scale where 0 is no effect and 10 is complete control. A $_{60}$ dash (-) response means no test result.

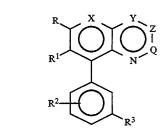
	TA	BL	Æ	Ε
--	----	----	---	---

	Flood		
		COMPOUND 9	65
 Rate (500 g/ha)			
1-LF B.Y.Grass		10	
2-LF B.Y.Grass		9	

trum). Blackgrass and wild oat were treated postemergence at two growth stages. The first stage (1) was when the plants had two to three leaves. The second stage (2) was when the plants had approximately four leaves or in the initial stages of tillering. Treated plants 5 and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table F, are based upon a 0 to 10 scale where 0 is no 10 effect and 10 is complete control. A dash response (-) means no test result.

		60		
-	TAB	LE F-continued	1	
	Sugar beet	4	3	
	Sunflower Wheat (Spring)	3 0	10 0	
5	Wheat (Winter)	õ	õ	
	Wild buckwheat	0	0	
	Wild mustard Wild oat (1)	0	5 0	
	Wild oat (1)	0	0	
	Wild radish	0	4	
0	Winter Barley	0	0	
	$\frac{\text{Rate (64 g/ha)}}{\text{Plaghamas (1)}}$	0		
	Blackgrass (1) Blackgrass (2)	0		
	Chickweed	0		
-	Downy brine	0		
5	Field violet Galium (1)	0		
	Galium (2)	_		
	Green foxtail	0		
	Kochia Lambsquarters	0		
0	Persn Speedwell	ŏ		
-	Rape	_		
	Ryegrass Sugar beet	0 3		
	Sunflower	0		
	Wheat (Spring)	0		
5	Wheat (Winter)	0		
	Wild buckwheat Wild mustard	0		
	Wild oat (1)	Ő		
	Wild oat (2)	0		
	Wild radish Winter Barley	0		
2	Rate (32 g/ha)	0		
	Blackgrass (1)	0	4	
	Blackgrass (2)	2	5	
	Chickweed Downy brome	2	2 0	
5	Field violet	4	9	
,	Galium (1)	0	3	
	Galium (2) Green foxtail	7	2 9	
	Kochia	Ó	Ó	
	Lambsquarters	2	8	
)	Persn Speedwell Rape	3 2	10 4	
	Ryegrass	õ	3	
	Sugar beet	3	7	
	Sunflower Wheat (Spring)	0	2 0	
	Wheat (Winter)	0	0 0	
5	Wild buckwheat	0	0	
	Wild mustard Wild oat (1)	0 2	4 3	
	Wild oat (2)	2	2	
	Wild radish	0	2	
、-	Winter Barley	0	0	
,	PRE	EMERGENCE		
		<u>COMP</u>	15	
	Rate (500 g/ha)	,	*~	
	Blackgrass (1)	10	10	
5	Blackgrass (2)	10	10	
	Chickweed	10	10	
	Downy brome Field violet	10 10	10 10	
	Galium (1)	10	10	
`	Galium (2)	-	10	
)	Green foxtail Kochia	10 10	10 10	
	Lambsquarters	10	10	
	Persn Speedwell	10	10	
	Rape	9	10	
;	Ryegrass Sugar beet	10 10	10 10	
	Sunflower	0	10	
	Wheat (Spring)	4	4	
	Wheat (Winter) Wild buckwheat	3 10	4 10	
	······································	10	10	

	ABLE F EMERGENCE		
		OUND	
	9	15	
Rate (500 g/ha)		-	
Blackgrass (1) Blackgrass (2)	_	7 5	
Chickweed	0	3	
Downy brome	_	2	
Field violet	4	10	
Galium (1)	0	2	
Galium (2)		_	
Green foxtail Kochia		6 6	
Lambsquarters	8 7	10	
Persn Speedwell	6	10	
Rape	_	10	
Ryegrass	· _	3	
Sugar beet	8	9	
Sunflower Wheat (Samian)	7	10	
Wheat (Spring) Wheat (Winter)	0	3 2	
Wild buckwheat	2	2	
Wild mustard	7	10	
Wild oat (1)		4	
Wild oat (2)	—	4	
Wild radish	7	9	
Winter Barley Rate (250 g (ba)	_	2	
Rate (250 g/ha)	0	7	
Blackgrass (1) Blackgrass (2)	0	3 3	
Chickweed	ŏ	0	
Downy brome	õ	õ	
Field violet	2	9	
Galium (1)	0	0	
Galium (2)		_	
Green foxtail Kochia	4 6	4 4	
Lambsquarters	5	8	
Persn Speedwell	4	10	
Rape	—	10	
Ryegrass	0	0	
Sugar beet	6	6	
Sunflower Wheat (Spring)	6 0	10 0	
Wheat (Winter)	0	0	
Wild buckwheat	õ	ŏ	
Wild mustard	4	8	
Wild oat (1)	2	2	
Wild oat (2) Wild radish	3	2	
Winter Barley	3 0	8 0	
Rate (125 g/ha)	5	Ŭ	
Blackgrass (1)	0	0	
Blackgrass (2)	õ	ŏ	
Chickweed	0	0	
Downy brome	0	0	
Field violet	0	8	
Galium (1) Galium (2)	0	0	
Galium (2) Green foxtail	2	2	
Kochia	3	2	
Lambsquarters	2	5	
Persn Speedwell	2	7	
Rape	_	9	
Ryegrass	0	0	


TABLE F-continued				
Wild mustard	9	10		
Wild oat (1)	10 10	10 10		
Wild oat (2) Wild radish	10	10		
Winter Barley	4	4		
Rate (250 g/ha)				
Blackgrass (1) Blackgrass (2)	8 8	10 10		
Blackgrass (2) Chickweed	10	10		
Downy brome	9	10		
Field violet	10 10	10 10		
Galium (1) Galium (2)		10		
Green foxtail	10	10		
Kochia	7	10 10		
Lambsquarters Persn Speedwell	10 10	10		
Rape	8	10		
Ryegrass	10	10		
Sugar beet Sunflower	10 0	10 10		
Wheat (Spring)	2	2		
Wheat (Winter)	2	2		
Wild buckwheat Wild mustard	10 7	10 10		
Wild oat (1)	8	10		
Wild oat (2)	10	9		
Wild radish Winter Barley	8 2	10 2		
Rate (125 g/ha)	2	2		
Blackgrass (1)	6	10		
Blackgrass (2)	6	10		
Chickweed	8 6	10 7		
Downy brome Field violet	10	10		
Galium (1)	8	8		
Galium (2)		8		
Green foxtail Kochia	10 3	10 8		
Lambsquarters	8	10		
Persn Speedwell	10	10		
Rape Ryegrass	6 8	7 8		
Sugar beet	8	10		
Sunflower	0	9		
Wheat (Spring) Wheat (Winter)	0	0 0		
Wild buckwheat	6	8		
Wild mustard	3	10		
Wild oat (1) Wild oat (2)	6 7	8 8		
Wild radish	6	8 7		
Winter Barley	0	0		
Rate (64 g/ha)				
Blackgrass (1) Blackgrass (2)	4 4	8 8		
Chickweed	5	7		
Downy brome	4	3		
Field violet	8 4	10 4		
Galium (1) Galium (2)		5		
Green foxtail	10	10		
Kochia Lambsquarters	0 6	4 10		
Persn Speedwell	6	10		
Rape	4	5		
Ryegrass Sugar beet	3 6	6 9		
Sunflower	ő	4		
Wheat (Spring)	0	0		
Wheat (Winter) Wild buckwheat	0 2	0 3		
Wild mustard	0	7		
Wild oat (1)	4	6		
Wild oat (2) Wild radish	5 2	5 3		
Winter Barley	2 0	0		
Rate (16 g/ha)				
Blackgrass (1)	0	2		
Blackgrass (2) Chickweed	0	20		
	v	~		

0,0		62		
_	TABL	E F-continued		
-	Downy brome	0	0	
	Field violet	0	6	
	Galium (1)	0	0	
5	Galium (2)	—	0	
	Green foxtail	3	4	
	Kochia	0	0	
	Lambsquarters	0	5	
10	Persn Speedwell	0	7	
	Rape	0	2	
	Ryegrass	0	0	
	Sugar beet	0	3	
	Sunflower	0	0	
	Wheat (Spring)	0	0	
	Wheat (Winter)	0	0	
15	Wild buckwheat	0	0	
	Wild mustard	0	2	
	Wild oat (1)	0	0	
	Wild oat (2)	0	0	
	Wild radish	0	0	
	Winter Barley	0	0	

I

20 What is claimed is:

1. A compound of the formula

wherein

25

30

50

55

X is CH; 35

Y is CR⁸; Z is N;

- Q is N CR⁵;
- R is C1-C4 alkyl, C2-C4 alkoxyalkyl, C2-C4 alkenyl, C2-C4 alkynyl, C1-C4 alkoxy, C1-C4 alkylthio, 40 C1-C3 alkylamino or N(C1-C3 alkyl)(C1-C3 alkyl); R^1 is H, F, Cl or CH₃;
 - R^2 is H, halogen, C₁-C₃ alkyl, C₁-C₃ haloalkyl, C_1-C_3 alkoxy or C_1-C_3 haloalkoxy;
- R^3 is H, halogen, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ 45 alkynyl, C1-C4 haloalkyl, C3-C4 halocycloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, OR6, $S(O)_n R^7$ or CN;
 - R⁵ is C₁-C₄ haloalkyl, C₃-C₅ halocycloalkyl, C₂-C₄ haloalkenyl, C₂–C₄ haloalkynyl, OR^6 , $S(O)_n R^7$ or halogen;
 - R^6 is C_1 -C₄ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C1-C4 haloalkyl, C2-C4 haloalkenyl or C2-C4 haloalkynyl;
 - \mathbb{R}^7 is \mathbb{C}_1 - \mathbb{C}_2 alkyl or \mathbb{C}_1 - \mathbb{C}_2 haloalkyl;
 - R⁸ is H, CN, C₁-C₃ alkyl, C₁-C₃ alkoxy or halogen; and
 - n is 0, 1 or 2;

or their mono N-oxides or their agriculturally suitable 60 salts.

- 2. The compounds of claim 1 wherein
- \mathbf{R}^1 is H or $\hat{\mathbf{F}}$; and
- R² is H or F.
- 3. The compounds of claim 2 wherein
- R^3 is F, Cl, Br, C₁-C₄ haloalkyl, OR⁶, S(O)_nR⁷ or CN; 65 n is O;
 - Y is CH or C-CN; and
 - their mono N-oxides.

4. The compounds of claim 3 wherein

- R is C_1-C_3 alkyl, C_2-C_3 alkoxyalkyl, C_2-C_3 alkenyl, C2-C3 alkynyl, C1-C2 alkoxy, C1-C2 alkylthio, C_1-C_2 alkylamino and $N(C_1-C_2 \text{ alkyl})(C_1-C_2 \text{ al-}_5)$ kyl);
- R^6 is C₁-C₃ alkyl, allyl, propargyl, C₁-C₃ haloalkyl, C2-C3 haloalkenyl.

5. A composition suitable for controlling the growth amount of a compound of claim 1 and at least one of the following: surfactant, solid or liquid diluent.

6. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of claim 2 and at least one of the ¹⁵ following: surfactant, solid or liquid diluent.

7. A composition suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of claim 3 and at least one of the 20 $\hat{4}$. following: surfactant, solid or liquid diluent.

8. A composition .suitable for controlling the growth of undesired vegetation which comprises an effective amount of a compound of claim 4 and at least one of the following: surfactant, solid or liquid diluent.

9. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of claim 1.

10. A method for controlling the growth of undesired of undesired vegetation which comprises an effective 10 vegetation which comprises applying to the locus to be protected an effective amount of a compound of claim 2.

> 11. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of claim 3.

> 12. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of claim

25

30

35

40

45

50

55

60

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 5,389,600 DATED : FEBRUARY 14, 1995 INVENTOR(S) : THOMAS P. SELBY

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby corrected as shown below:

Column 15, line 53:

Change "78°C" to -- -78°C --.

Column 19, line 46:

Change "starred" to --stirred --.

Columns 45 and 46, table heading:

Change "O" to --Q--.

Signed and Sealed this

Thirtieth Day of July, 1996

Bince Lehran

BRUCE LEHMAN Commissioner of Patents and Trademarks

Attesting Officer

Attest: