
USOO576520 1A 

United States Patent (19 11 Patent Number: 5,765,201 
Manges et al. 45 Date of Patent: Jun. 9, 1998 

54 CHANGING PAGE SIZE IN STORAGE Primary Examiner-Eddie P. Chan 
MEDIA OF COMPUTER SYSTEM Assistant Examiner Than V. Nguyen 

Attorney, Agent, or Firm-Andrew J. Dillon 
75 Inventors: Mark Gregory Manges; Lynn K. 

Chung; Shiun Lee, all of Rochester; 57 ABSTRACT 
Arlys Jean Leitzen, Byron; Edwin 
Charles Grazier, Stewartville; Michael 
Joseph Corrigan; Mark Philip Piazza, 
both of Rochester, all of Minn. 

When a computer system is upgraded, such as by adding a 
more advanced processor chip and/or a new operating 
system, a different page size may be employed. The page 
size is altered for data previously stored in a storage medium 
such as a hard disk in the computer system, without remov 
ing all of the data from the medium and rewriting it. Data is 
stored in the medium in blocks or sectors which have 
headers defining the block. Also, tables define memory 
objects and segments, and locate virtual memory addresses 

73) Assignee: International Business Machines 
Corporation, Armonk, N.Y. 

21 Appl. No.: 509,486 
1A in physical memory. The headers and/or tables can be 

22 Filed: Jul. 31, 1995 changed without rewriting all of the data in the sectors or 
(51) Int. Cl. ......................... G06F 12/02; G06F 12/10 pages in physical memory, so the page size is changed to 
52 U.S. Cl. ......................... 711/201: 711/202; 711/207; accommodate the new system components, without exces 

711/213 sive burden on system hardware or undue expenditure of 
58) Field of Search ..................................... 395/417,412, time. In an example, in changing from a CISC processor 

395/421.02, 421.07, 410; 711/201, 202, with a 512-byte page size to a RISC system with a 4K-byte 
207,212 page size, the segments are changed to always be of a size 

of an integral multiple of 4K, and "extents" or subdivisions 
56 References Cited within a segment are changed to be multiples of 4K. Any 

excess space generated by these changes is zeroed. After 
U.S. PATENT DOCUMENTS alteration, the media (such as disks) can be accessed by 

5,263,140 11/1993 Riordan ................................... 395,417 either the CISC system of the new upgraded RISC system. 
5,321,827 6/1994 Lu et al. .... 
5,465,332 11/1995 Deloye et al. .......................... 395/842 10 Claims, 6 Drawing Sheets 

9 O 

Are 
Extent Sizes 
Multiple of 

4K 

Change Extent Size 
to Multiple of 4K, 
Rewrite Data if 

Necessary; Combine 
Smaller Extents; 
Zero padding 

More 
Segments 

t 

  

    

    

  

    

    

    

  

  

  



U.S. Patent 

Fig. 1 

Jun. 9, 1998 Sheet 1 of 6 5,765,201 

CPU 10 

SECON DARY 
CACHE 

RSC 
CPU CHIP 

CSC 
CPU CHP 

BUS 
INTERPACE 

2 18 

conteur a 
( ... - uses 
O 
A3A 

2 3 

COMMUN CATION R 
MODULES 

  

  



U.S. Patent Jun. 9, 1998 Sheet 2 of 6 5,765,201 

35 512-byte pages 34 

El Eilee it, 4 K-page. S 

38 -36 
30 

31- PAGE - 5 1 2 B 
PAGE 

32 4 KB 

MAN 
MEMORY 

PAGE TABLE 25 

VIRTUAL 
MEMORY 

Fig. 2 

  

  



U.S. Patent Jun. 9, 1998 Sheet 3 of 6 5,765,201 

WRUAL MEMORY 55 

56 

:3. :S-N- Sector 
(page) 

boundaries 

s 
F-, * 

ir. . . . . . . . 57 

Fig. 4 

  



5,765,201 Sheet 4 of 6 Jun. 9, 1998 U.S. Patent 

7 8£ 8Z 8 
Caes) 

89 

9 9 

6 

1.8 | 
? u 8 | X 3 X, 8 

9 1ff |€ / 
199 9 

El 8 O - E 8 



5,765,201 Sheet 5 of 6 Jun. 9, 1998 U.S. Patent 

98 

9 8 

X, 8 €) E S 

Z ! 

9 9 

| 1 

| 808 ? u 0 ) XE X! 9 

0 / 

1 /9 1 X, 8 €) E S 



U.S. Patent Jun. 9, 1998 Sheet 6 of 6 

Fig. 7 

90 

Read 
Seg. In fo. 

Are 
Extent Sizes 
Multiple of 

4K 

Change Extent Size 
to Multiple of 4K 
Re Write Data if 

Ne Cessary; Comb in e 
Smaller Extents, 
Zero p adding 

More 
Segments 

5,765,201 

  

    

    

    

    

    

  

  

  



5,765,201 
1. 

CHANGING PAGE SIZE IN STORAGE 
MEDIA OF COMPUTER SYSTEM 

BACKGROUND OF THE INVENTION 

1. Technical Field 

The present invention relates to computer systems and 
methods of operating computer systems, and more particu 
larly relates to improvements in methods of upgrading 
computer systems, involving changing the page size used for 
data storage in the system. 

2. Description of the Related Art 
Computer systems have been constructed employing 

microprocessor architectures based on the CISC or “Com 
plex Instruction Set Computer” style. One example is the 
IBM AS/400 minicomputer. One way of upgrading these 
systems is to install a RISC or "Reduced Instruction Set 
Computer' processor chip and its associated operating sys 
tem. In this example the page sizes used in the memory 
access and memory management schemes are different. The 
CISC process has a page size of 512-bytes, whereas the 
RISC processor has a page size of 4096-bytes. In a system 
upgrade, the customer ordinarily would have been using the 
system for a long period, perhaps several years, and so there 
would be in existence a large volume of data stored in 
permanent storage, which the customer would wish to 
preserve, and to use in the ongoing business. The storage 
allocation scheme used between the two architectures would 
have required an unload/reload of the system to move from 
the CISC processor to the upgraded RISC processor. The 
reload step can be a very time-consuming endeavor for the 
Customer. 

It would be much more preferable if the customer's data 
was able to remain on media (disk units) of the CISC system 
and enable the media to be readable on the RISC system. 

SUMMARY OF THE INVENTION 

It is therefore an objective of the invention to provide an 
improved method of upgrading a computer system wherein 
permanent storage media such as disk storage can be altered 
without reading out all of the contents to temporary storage 
and rewriting it. 
Another objective is to provide a method of changing the 

page size for data already stored in storage media such as 
disks in a computer system, with minimal need for rewriting 
the data. 

The above as well as additional objects, features, and 
advantages of the present invention will become apparent in 
the following detailed written description. 
According to one embodiment of the invention, when a 

computer system is upgraded, such as by adding a more 
advanced processor chip and/or a new operating system, a 
different page size may be employed. The page size is 
altered for data previously stored in a storage medium such 
as a hard disk in the computer system, without removing all 
of the data from the medium and rewriting it. Data is stored 
in the medium in blocks or sectors which have headers 
defining the block. Also, tables define memory objects and 
segments, and locate virtual memory addresses in physical 
memory. The headers and/or tables can be changed without 
rewriting all of the data in the sectors or pages in physical 
memory, so the page size is changed to accommodate the 
new system components, without excessive burden on sys 
tem hardware or undue expenditure of time. In an example, 
in changing from a CISC processor with a 512-byte page 

O 

15 

25 

30 

35 

45 

50 

55 

65 

2 
size to a RISC system with a 4K-byte page size, the 
segments are changed to always be of a size of an integral 
multiple of 4K, and "extents” or subdivisions within a 
segment are changed to be multiples of 4K. Any excess 
space generated by these changes is zeroed. After alteration, 
the media (such as disks) can be accessed by either the CISC 
system or the new upgraded RISC system. 

DESCRIPTION OF THE FIGURES 

The novel features believed characteristic of the invention 
are set forth in the appended claims. The invention itself 
however, as well as a preferred mode of use, further objec 
tives and advantages thereof, will best be understood by 
reference to the following detailed description of an illus 
trative embodiment, when read in conjunction with the 
accompanying drawings, wherein: 

FIG. 1 is a functional block diagram of a computer system 
which is upgraded according to an embodiment of the 
invention; 

FIG. 2 is a diagram of a memory map of representing 
memory space for the system of FIG. 1; 

FIG. 3 is a diagram of a memory map showing how 
segments in virtual memory are stored in physical memory, 
for one example, in the system of FIGS. 1 and 2; 

FIG. 4 is a diagram of a sector or page in the system of 
FIGS. 1-3; 

FIG. 5 is a diagram in the form of a memory map showing 
how an object, its segments and extents are mapped before 
upgrade or adjustment, for the system of FIGS. 1-4; 

FIG. 6 is a diagram in the form of a memory map like FIG. 
6, showing how the same object, its segments and extents, 
are mapped after upgrade or adjustment; and 

FIG. 7 is a logic flow chart of the process for upgrading 
and changing page size according to one embodiment of the 
invention. 

DESCRIPTION OF A PREFERRED 
EMBODIMENT 

Referring to FIG. 1, one embodiment of a computer 
system is illustrated which may employ the update method 
of the invention. This system has a CPU 10 having a 
microprocessor chip 11 of the CISC type. The system is 
upgraded by adding a higher-performance microprocessor 
such as a RISC chip 12. The RISC chip 12 usually replaces 
the CISC chip. That is, another board is added, or an upgrade 
socket is provided so both microprocessor chips are in place 
but only one is active and in control at any given time. After 
the system is up and running with the upgrade chip 12, the 
old chip is no longer ever used, so it is immaterial whether 
it stays in place or not. ACISC operating system is executed 
on the CISC chip before the upgrade, and a RISC operating 
system 14 is added on top of the old operating system, for 
the upgrade process. After all upgrade tasks are performed, 
the RISC operating system is predominate. 
The processor chips 11 or 12 have the same (or 

compatible) outward configurations, including address and 
data buses and control lines, so most of the system board is 
not altered in the upgrade. Each would usually have an 
on-chip data and instruction cache (or caches). An off-chip 
or secondary cache 16 would usually be employed, and this 
would be accessed by either processor chip in the upgrade. 
The secondary cache 16, usually connected by a local bus 17 
to the CPU 10, is usually much larger than the on-chip 
cache, and access to it is somewhat slower than to the 
on-chip caches. The local bus 7 within the processor has a 



5,765,201 
3 

number of address, data, and control buses, which would not 
be changed in the upgrade. The CPU is connected to a 
system bus 18 by a bus interface 19, so translations in timing 
and controls are made to the system bus standards from the 
local busses. A main memory 20 and various other system 
resources such as an I/O controller 21 for a keyboard and 
display console 22, various kinds of communications adapt 
ers 23, and a disk storage system 24 are usually coupled to 
the system bus structure. The memory is thus hierarchical 
from fastest to slowest, and from Smallest to largest, and 
from most expensive (per byte), in progression from the 
on-chip caches with the processor chips 11 or 12, to the 
secondary cache 16, to the main memory 20, to the disk 
storage unit 24. The main memory 20 usually contains a 
subset of what is in the disk storage 24, the secondary cache 
16 contains a subset of what is in main memory 20, and the 
on-chip caches contain subsets of what is in the secondary 
cache. The CPU can access the on-chip caches within an 
cycle, whereas it takes several cycles to access the secondary 
cache 16. If a cache miss occurs in primary and secondary 
caches, then the main memory 20 is accessed to do a cache 
fill operation, from main memory. If the main memory 20 
does not contain the location for which a cache fill is 
attempted, then a page containing this data is accessed from 
disk storage 24, and the cache fill is completed and the 
memory access satisfied. The time required to acquire a page 
from disk and write it to main memory would be many 
thousands of CPU cycles, during which the CPU is ordi 
narily switched to do another task, or stalled, waiting for the 
data to satisfy the request. 

All of the hardware of the computer system of FIG. 1 is 
unaffected by the upgrade, except of course the chip 11 or 12 
itself. The cache 16, buses 17 and 18, main memory 20, I/O 
devices 21, 22, 23, and disk unit 24, all remain the same and 
need no alteration in structure. The volatile memory, i.e., 
caches and main memory, can be rewritten in a short time, 
because these are smaller in data content and faster in 
access, as well as because these are rewritten on every 
boot-up anyway. The hard disk system 24 is not so easily 
rewritten, however. The hard disk system 24; may contain 
several disks 25, and these may be mirrored, so there are 
often many hard disks, each multiple Gigabytes in size. 
Typically, after the system has been running for a long time, 
possibly years, it contains a very large amount of the user's 
data, in place in the hard disk system. Upon an upgrade, all 
of this data must of course be saved, and the system must be 
up and running in a short time. That is, the upgrade proce 
dure itself represents downtime, and must be minimized, 
since the user's business is oftenhampered (or at a standstill) 
during computer downtime. If the data contained in the hard 
disks 25 had to be read out to temporary storage media, then 
rewritten to the hard disks, this would be expensive not only 
in hardware requirements (sufficient space would be needed 
to store all of the data from the multiple disks 25), but also 
in downtime for the system, as well as operator costs. Thus, 
according to the invention, the hard disk storage media are 
upgraded to be compatible with the new processor chip 12 
and operating system 14, without needing to read and 
rewrite the entire contents. In the example, the RISC pro 
cessor chip 12 and its operating system 14 are based on a 
page size of 4096-bytes, whereas the CISC chip 11 and its 
operating system are based on a page size of 512-bytes. The 
data on the hard disks 25 is altered with the data in place, 
rather than reading out all the data and writing it back, to 
change from the 512-byte page size to a 4096-byte page size. 

Referring to FIG. 2, the virtual memory space 30 of the 
CISC chip 11 in this example is divided into 512-byte pages 

15 

20 

25 

30 

35 

45 

50 

55 

65 

4 
31, whereas this same virtual memory space of the RISC 
processor chip 12 is divided into 4096-byte pages 32. If the 
virtual addresses were 32-bits in length, for example, as seen 
in FIG. 2 (actually, in the example of an AS/400 system 
given below, the address length is 48-bits) this means a 
4-Gbyte virtual address space 30 would be addressed for the 
CISC chip by an address of format 33, having a 9-bit page 
offset 34 and a 23-bit page address 35. That is, the 23-bit part 
35 selects one of 8 Meg (8,395,008) pages, and the offset 34 
selects one byte location of 512 within a page. For the RISC 
chip the address would be of format36, having a 12-bit page 
offset 37 and a 20-bit page address 38. That is, the 20-bit part 
37 selects one of 1 Meg (1,049,376) pages, and the offset 38 
selects one byte location of 4096 within a page. The page 
boundaries for the two addressing structures are compatible 
in that a page boundary for the 4096-byte pages 32 is always 
coincident with a pageboundary for the 512-byte pages. The 
virtual address in memory space 30 goes through one or 
more translations represented in FIG. 2 by a page table 40 
which contains an entry for each populated page of the 
memory space 30, with a pointer to the physical page 
number assigned to this virtual page, and an indication of 
whether it is located in the main memory (and thus imme 
diately accessible), and if so which page, or in the disks 25 
(and thus requiring a paging operation to move it to physical 
memory). In the page tables 40, or otherwise accessible in 
memory or from the disks, is information giving the disk 
number, track number, and sector where the page is physi 
cally located in the disk system. The page tables 40 are 
usually generated by the operating system 3 or 14 during 
the initial program load of the operating system, kept on 
disk, and upgraded as data is added or deleted. Of course, 
stored on disk system 25 for access during boot-up are tables 
giving the physical location of various, objects, segments, 
files or like memory structures, and from these the page 
tables 40 are generated by the OS. 

In many virtual memory management systems, there is 
the provision for defining "segments.” where a segment is a 
defined area of virtual memory space which is treated as a 
unit for various purposes, such as protection, assignment to 
a task or process, etc. In the example of the AS/400 system, 
a segment is defined as having a size of either 16M-byte or 
64K-byte, using this much virtual memory space, with a 
starting address an integral multiple of its size. A 16M 
segment will have the last three bytes of its starting address 
zeros, and a 64K segment will have the last two bytes of its 
starting address Zeros. But then the segment does not need 
to occupy 16M or 64K in disk memory. When a segment is 
created by the memory manager or OS, it is defined to have 
an initial “size" which can be any multiple of 512-bytes, i.e., 
any number of pages up to its 16M-byte or 64K-byte 
maximum. The size can later be extended. This defined size 
is usually split into "extents,” where the extents need not be 
contiguous in disk memory. Referring to FIG. 3, a 16M 
segment 50 may be defined in virtual space 30 having a size 
of 7K-bytes, and this is split into three different "extents” for 
storage in disk memory (in the disks 25), a 4K extent 51, a 
2K extent 52, and a 1K extent 53. In the memory space 55 
defined by the disks 25, the segment 50 may be mapped into 
three discontiguous spaces including a 4K space 56 for the 
extent 51, a 2K space 57 for the extent 52, and a 1K space 
58 for the extent 53 (eight, four, and two 512-byte sectors). 
The media which defines the space 55 is divided into eight 
sector (page) boundaries 59, where each sector (or page) is 
as seen in FIG. 4, where there is a block 60 of 512-bytes of 
data (in the system set up by processor 11 and operating 
system 13) along with an 8-byte sector header 61 which 



5,765,201 
S 

includes information such as segment number. Stored tables 
correlate sector number with segment numbers, page 
numbers, etc. Note that the space 55 is shown as contiguous, 
but it could be on separate physical disk drives. That is, the 
storage management system may only in non-contiguous 
spaces but 50 not only in non-contiguous spaces but also on 
different physical devices. An extent is a set of contiguous 
512-byte sectors (pages) on a disk storage device, where the 
number of sectors in an extent is always a power of 2, so an 
extent could be a little as one sector or as much as 2exp15 
or 32K sectors (16M-byte). 
According to the invention, to accommodate the new 

processor 12 and the new operating system, there is no 
change in the sector size of 512-bytes on the storage medium 
(disks) 25. The segment size is changed to always be in 
multiples of 4K-bytes. Segments that are increased in size 
will need to have the new space zeroed. 

Each segment whose size is not a multiple of 4K will be 
increased to the nearest 4K multiple. For example, a 3K 
segment before adjustment will be a 4K segment after 
adjustment. A memory object 85 as seen in FIG. 5 having 
three segments 66, 67, and 68, of 7K, 9K, and 8k, has a total 
object size of 24K before adjustment and 28K after the 
adjustment according to the invention has taken place, as 
illustrated in FIG. 6. The adjusted object will have segments 
70,71, and 72, of 8K, 12K, and 8K, respectively. The three 
extents of 1K. 2K and 4K for segment 66 of FIG. 5 are 
adjusted to two 4K extents 76 and 77 of FIG. 6. Likewise, 
the 1K and 8K extents 78 and 79 in the 9K segment 67 of 
FIG. 5 are changed to 4K and 8K extents 80 and 81 of FIG. 
6. Similarly, the three extents 82.83 and 84 of 2K, 2K and 
4K in the 8K segment 68 of FIG. 5 are changed to two 4K 
extents 85 and 86 of FIG. 6. 

Referring to FIG. 7, a logic flow chart of the process for 
adjusting the page sizes is illustrated. The process starts at 
block 90, and first segment information is read from the 
segment or page tables on disk, at block 91. A segment is 
examined to see if the extent sizes are all integral multiples 
of 4K-bytes at block 92. If not, the extent size is changed to 
4K at block 93, and paddinig is zeroed; data in one extent 
may be combined with other extents of this segment if extra 
space was freed. All extents are already 4K, this block 93 is 
skipped. This continues until all extents of a segment are 
examined, then the next segment is read, using the loop 
created by block 94, until all segments are completed. 

Accordingly, for the upgrade described with regard to 
FIG. 1, the CISC data in media 25 is prepared on media 
readable by the RISC system, and then the CISC media is 
merged into the RISC media configuration. Once the media 
is part of the RISC configuration, the customer data can be 
read from that media as well as the new RISC operating 
system can be installed over the top of the CISC operating 
system. 
The CISC media units of allocation are examined for 

readability by the RISC system as described above. If the 
allocation would not be readable by the RISC system, then 
the allocation unit is reallocated in a RISC-compatible 
readable format as described earlier. The new allocation unit 
is then made to resemble the original allocation unit. 

This process continues until all allocation units have been 
examined. Once all the allocation units have been processed, 
the CISC media is marked as "prepared" for the merging 
step described below. The CISC media remains readable by 
the CISC system since the new allocations are based on the 
common denominator of allocation unit size (say 4096 bytes 
for example). 

15 

25 

30 

35 

45 

50 

55 

65 

6 
In the example used above, on the CISC machine, data 

may have four allocation units of size 512-bytes, 1024 
bytes, 512-bytes and 2048-bytes, totaling a size of 4096 
bytes. After this data is prepared, there will be one allocation 
unit (extent) of size 4096 bytes. Another example would be 
data with one allocation unit of size 512-bytes; after this data 
is prepared, there will be one allocation unit of size 4096. 
Once the preparation process has begun, any new alloca 

tions are ensured to be readable by the RISC system. This 
way the preparation is only needed to be done once. 
The CISC "prepared" media is recognized by the RISC 

system during the initial power on. When detected, the CISC 
media is merged with the RISC media, maintaining the 
configuration of the CISC media defined by the customer on 
the CISC system. 

For example, if the CISC media contained three disk units 
25, those three disk units would be merged with one RISC 
disk unit to create a 4-disk-unit configuration. Any alloca 
tion units created on the CISC system that are not needed on 
the RISC system are deleted during this merging freeing up 
this disk space for the RISC system to use. 

Another example would be if the CISC media contained 
four mirrored disk units, then those four disk units would be 
merged with two RISC disk units creating a 6-unit mirrored 
system configuration. Again, the unneeded allocation units 
are freed up on the RISC system and made available to the 
storage allocation pool. 
Now that the CISC media configuration has been revived 

on the RISC system, the operating system install may 
proceed, i.e., using a normal release upgrade method. Once 
the operating system install has completed, the system is 
available for normal operations. 
While the invention has been particularly shown and 

described with reference to a preferred embodiment, it will 
be understood by those skilled in the art that various changes 
in form and detail may be made therein without departing 
from the spirit and scope of the invention. 
What is claimed is: 
1. A method of operating a computer system, wherein said 

computer system includes a first processor that utilizes a first 
page size, said method comprising the steps of: 

storing a plurality of segments of data in pages in a 
storage medium within said computer system accord 
ing to said first page size, wherein each of said seg 
ments includes a definition of one or more address 
extents; 

thereafter altering a storage scheme within said storage 
medium in response to an addition of a second proces 
sor within said computer system, wherein said second 
processor utilizes a second page size, wherein said step 
of altering includes 
examining each address extent within each of said 

segments stored in accordance with said first page 
S1ze, 

defining a new address extent aligned with a boundary 
of said second page size for any said examined 
address extent that is not aligned with a boundary of 
said second page size, and 

accessing said plurality of segments of data within said 
storage medium in accordance with said second page 
SAC 

2. A method according to claim 1, wherein said second 
page size is larger than said first page size. 

3. A method according to claim 2, wherein said second 
page size is an integral multiple of said first page size. 

4. A method according to claim 3, wherein said second 
page size is 4K-bytes and said first page size is 512-bytes. 



5,765,201 
7 

5. A method according to claim 1, including the step of 
adjusting said segments to be of a size which is an integral 
multiple of said second page size. 

6. A computer program product residing on a computer 
usable medium for upgrading a computer system, wherein 
said computer system includes a first processor that utilizes 
a first page size, said computer program product comprising: 

program code means for storing a plurality of segments of 
data in pages in a direct access storage medium within 
said computer system according to said first page size, 
wherein each of said segments includes a definition of 
one or more address extents; 

program code means for altering a storage scheme within 
said storage medium in response to an addition of a 
second processor within said computer system, wherein 
said second processor utilizes a second page size, 
wherein said program code means for altering includes: 
program code means for examining each address extent 

within each of said segments stored in accordance 
with said first page size, 

program code means for defining new address extents 
aligned with a boundary of said second page size for 

10 

15 

20 

8 
any said examined address extent that is not aligned 
with a boundary of said second page size; and 

program code means for accessing said plurality of seg 
ments of data within said storage medium in accor 
dance with said second page size. 

7. The computer program product according to claim 6, 
wherein said second page size is larger than said first page 
size. 

8. The computer program product according to claim 7, 
wherein said second page size is an integral multiple of said 
first page size. 

9. The computer program product according to claim 8, 
wherein said second page size is 4K-bytes and said first page 
size is 512-bytes. 

10. The computer program product according to claim 6. 
further includes a program code means for adjusting said 
segments to be of a size which is an integral multiple of said 
second page size. 


