US 20150052295A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0052295 A1l

Danilak et al.

43) Pub. Date: Feb. 19, 2015

(54)

(71)
(72)

@
(22)

(60)

(1)

ADDRESS TRANSLATION FOR A
NON-VOLATILE MEMORY STORAGE
DEVICE

Applicant: Skyera, Inc., San Jose, CA (US)

Inventors: Radoeslav Danilak, Cupertino, CA (US);
Amit Bothra, San Jose, CA (US);
Arvind Pruthi, San Jose, CA (US)

Appl. No.: 14/460,216

Filed: Aug. 14,2014

Related U.S. Application Data

Provisional application No. 61/865,889, filed on Aug.
14, 2013.

Publication Classification

(52) US.CL
CPC ... GOGF 12/0246 (2013.01); GO6F 2212/7201
(2013.01)
1673 G 711/103
(57) ABSTRACT

Techniques are described for accessing data from a storage
device. In one example, the storage device may include a
storage medium comprising non-volatile memory, a network
connection, and one or more processing entities. The one or
more processors may be configured to receive a request from
the network connection at the non-volatile memory storage
device for accessing data associated with a file system object,
the request comprising a virtual address offset, a file object
identifier and a size of the data access, perform, at a flash
translation layer of a storage device software stack executing
on the one or more processing entities of the storage device, a
translation from the virtual address offset to a physical
address for the data stored on the non-volatile memory, using
the virtual address offset and the file object identifier, and

Int. Cl. access the data from the physical address from the storage
GO6F 12/02 (2006.01) medium.
VFS Layer
108
A
A
(
Journal File System
118 110
o
A
\ J
/
Block Layer
112
\
A
\ J
e A
RAID Layer
114
\ J
A
\ J
e N
Hard Disks
116
N J

Patent Application Publication

Journal
118

Feb. 19,2015 Sheet 1 of 4

US 2015/0052295 Al

VFS Layer
108

¢

File System
110

¢

Block Layer
112

¢

RAID Layer
114

¢

Hard Disks
116

N N N N

FIG. 1

Patent Application Publication Feb. 19,2015 Sheet 2 of 4 US 2015/0052295 A1

Journal
216

File System
208

:]
{ Bm;bayer]
:]
:]

RAID Layer
212

Solid state devices
214

FIG. 2

Patent Application Publication Feb. 19,2015 Sheet 3 of 4 US 2015/0052295 A1

Vertically Integrated FS
308

:

Flash Hardware (FTL)
310

FIG. 3

Patent Application Publication Feb. 19,2015 Sheet 4 of 4

400

~

US 2015/0052295 Al

405 \
PROCESSOR(S)
410
MEMORY
STORAGE DEVICE(S) 435
pho 435
OPERATING
SYSTEM
440
INPUT DEVICE(S)
415
APPLICATIONS
445
OUTPUT DEVICE(S)
420
TRANSCEIVER
450
COMMUNICATIONS
SUBSYSTEM
430
SENSOR(S)
455
COMPUTING DEVICE
400

FIG. 4

US 2015/0052295 Al

ADDRESS TRANSLATION FOR A
NON-VOLATILE MEMORY STORAGE
DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a non-provisional application of
and claims the benefit of U.S. Provisional Patent Application
Ser. No. 61/865,889, filed Aug. 14, 2013 and entitled “VER-
TICALLY INTEGRATED STORAGE,” which is incorpo-
rated by reference herein in their entirety for all purposes.

BACKGROUND

[0002] Aspects of the disclosure relate to computing and
communication technologies. In particular, aspects of the
disclosure relate to systems, methods, apparatuses, and com-
puter-readable media for improving performance of storage
devices.

[0003] Storage devices for enterprise systems require mas-
sive storage capacity. Additionally, storage solutions for
enterprise systems require sophisticated storage techniques
for reliability, robustness, fault tolerance, maximizing storage
capacity, minimizing power consumption, and reducing
latency. Various storage industry players have specialized in
aspects of these storage techniques in a segmented manner
providing piecemeal solutions. Combining of these various
segmented solutions results into a clunky storage solution that
is less than the sum of its parts and significantly underper-
forms across the board. The segmentation and underperfor-
mance of the available solutions today results in a significant
deterrent in adaptation of newer storage technologies, such as
solid state devices.

BRIEF SUMMARY

[0004] Various systems, methods, apparatuses, and com-
puter-readable media for accessing a storage medium are
described. Techniques are described for vertically integrating
the various functions for optimally accessing a solid-state
memory based, storage hardware.

[0005] An example non-volatile memory storage device
may include a storage medium comprising non-volatile
memory, a network connection for receiving data read and
write requests to the storage medium and one or more pro-
cessing entities. The one or more processing entities may be
configured to receive a request from the network connection
at the non-volatile memory storage device for accessing data
associated with a file system object, the request comprising a
virtual address offset, a file object identifier and a size of the
data access, perform, at a flash translation layer of a storage
device software stack executing on the one or more process-
ing entities of the storage device, a translation from the virtual
address offset to a physical address for the data stored on the
non-volatile memory, using the virtual address offset and the
file object identifier, and access the data from the physical
address from the storage medium.

[0006] In certain embodiments, the file system object may
be provided a virtual block space for accessing data from the
non-volatile memory storage device that is independent of
virtual block spaces assigned to other file system objects,
wherein each virtual block space provides the file system
object an exclusive view of the address space. For example,
the file system object with an exclusive view of the address
space may assume that the file system object is the only object

Feb. 19, 2015

using the address space and write to any address in the virtual
block space. The mapping in the virtual block space is trans-
lated to the physical block space to appropriately consider the
mappings for all the other virtual block spaces associated
with the other file system objects. Examples of file system
objects may include files, folders, directories, etc.

[0007] Incertainembodiments, the data associated with the
file system object is accessed for performing a modify opera-
tion followed by performing a write operation to the virtual
address offset associated with the file system object. In some
instances, the data associated with the file system object may
be modified by the file translation layer by writing to a log
structured file, wherein the modify operation for the data or a
portion of the data is performed by using a log structured
write only once between receiving the request for modifying
the data or the portion of the data from the network and
completing the write operation to the non-volatile memory.
[0008] In certain embodiments, the translation from the
virtual address offset to the physical address on the non-
volatile memory by the flash translation layer may be at least
partially based on the global wear leveling performed by the
flash translation layer, wherein the global wear leveling
changes the virtual address offset to the physical address
translation to reduce the wear caused by repeated data
accesses to the same physical location on the non-volatile
memory.

[0009] Insome implementations, the flash translation layer
further performs block allocation for storing and accessing
data from the non-volatile memory. In some implementa-
tions, the garbage collection for using a log structured file
system is performed only in the flash translation layer and in
some implementations, the flash translation layer performs
reads and writes to the non-volatile memory using a log-
structured file system.

[0010] In certain aspects, the virtual address offset is pro-
vided by the access request from the network connection
using a network file sharing protocol. In certain aspects dis-
closed herein, the virtual address offset is provided by the
access request from if provided by a layer higher than a file
system layer of the storage device software stack. In one
implementation, only a single address translation is per-
formed in the storage device software stack executing on the
one or more processors of the non-volatile memory storage
device between receiving the request for accessing the data at
afile system layer of the software stack and accessing the data
at the non-volatile memory.

[0011] Aspects described above or herein with respect to a
non-volatile storage device may be performed as a method,
without limitations using various components or equivalent
components or means for performing steps describes herein.
Furthermore, aspects described herein may be performed
using instructions stored on a non-transitory computer read-
able storage medium and executable by one or more proces-
sors. Moreover, an apparatus with means described herein or
equivalent means may be used for performing the steps
described herein without deviating from the scope of the
invention.

[0012] The foregoing has outlined rather broadly features
and technical advantages of examples in order that the
detailed description that follows can be better understood.
Additional features and advantages will be described herein-
after. The conception and specific examples disclosed can be
readily utilized as a basis for modifying or designing other
structures for carrying out the same purposes of the present

US 2015/0052295 Al

disclosure. Such equivalent constructions do not depart from
the spirit and scope of the appended claims. Features which
are believed to be feature of the concepts disclosed herein,
both as to their organization and method of operation,
together with associated advantages, will be better under-
stood from the following description when considered in
connection with the accompanying figures. Each of the fig-
ures is provided for the purpose of illustration and description
only and not as a definition of the limits of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Aspects of the disclosure are illustrated by way of
example. In the accompanying figures, like reference num-
bers indicate similar elements, and:

[0014] FIG. 1 illustrates a simplified diagram of a layered
approach for accessing storage hardware.

[0015] FIG. 2 illustrates a simplified diagram of an enter-
prise, log-structured file system for accessing solid-state
memory based storage hardware.

[0016] FIG. 3 illustrates a simplified diagram of an inte-
grated file system software stack for accessing solid state
storage according to an embodiment of the invention.

[0017] FIG. 4illustrates an example of a computing system
in which one or more embodiments may be implemented.

DETAILED DESCRIPTION

[0018] Several illustrative embodiments will now be
described with respect to the accompanying drawings, which
form a part hereof. While particular embodiments, in which
one or more aspects of the disclosure may be implemented,
are described below, other embodiments may be used and
various modifications may be made without departing from
the scope of the disclosure or the spirit of the appended
claims.

[0019] FIG. 1 illustrates a simplified diagram of a layered
approach for accessing storage hardware. The layered
approach for storage devices uses a number of stacked soft-
ware/firmware layers for accessing the storage hardware
from the application layer 116. As shown in FIG. 1, in one
implementation, the layered approach includes the storage
device and the firmware associated with the storage device
116, Redundant Array of Independent Disks (RAID) layer
114, block layer 112, file system 110, virtual file system
(VFS) layer 108 and the higher level file sharing systems such
as network file system (NFS) 104 and common internet file
system (CIFS) 106. Traditionally, the various layers in the
stack may be developed by various storage device industry
vendors.

[0020] Typically, the various layers associated with the pro-
cessing of an I/O request to the storage device traverses mul-
tiple layers of a file system stack before making its way to the
storage hardware. For example, an [/O request may arrive
through a network file sharing protocol such as NFS 104 or
CIFS 106 or any other suitable file sharing protocol. NFS 104
and CIFS 106 are example of file sharing file systems that
enable accessing files over a network. NFS 104 file systems
may be used in Unix/Linux environment, whereas CIFS 106
may be oriented towards networks with windows-based
application servers or clients. NFS 104 and CIFS 106 may
interact with the system through the VFS layer 108. The VFS
layer 108 provides a standardized interface for higher layer
file systems for accessing the lower layers. For example, the

Feb. 19, 2015

VFS layer 108 may conform to a particular standard, such as
POSIX, for providing a standardized interface to the higher
layers.

[0021] The file system layer 110 provides abstraction for
storing, retrieving and updating files on the storage device.
Additionally, the file system manages access to data and
metadata of the files and available space on the device. Typi-
cally, the file system layer 110 provides a layer of mapping
between the VFS layer 108 and the block layer 112. For
example, the file system layer 110 may receive an Inode and
block offset from the higher layers and map it to a logical unit
number (LUN) and virtual block number (VBN).

[0022] The file system may also provide journaling func-
tionality 118. Journaling may refer to logging state before
committing the state in state machine. In the event of a cata-
strophic event, such as a system crash or a power failure,
journaling may enable the system to recover faster and avoid
corruption of system state.

[0023] The file system layer 110 may also perform block
allocation schemes by finding free blocks for performing the
write operations using the block layer 112. The block layer
112 provides an interface to write to the underlying layer in
blocks. The RAID layer 114 provides fault tolerance by
spreading the data and parity information across multiple
disks or planes. The RAID layer 114 typically provides a
layer of translation using mapping tables. For example, the
RAID layer 114 may take the LUN and VBN addresses from
the file system layer 110 and map those address to the device
logical block address (LBA).

[0024] Inaddition to the layers discussed above, the physi-
cal hardware for storage may also implement its own firm-
ware for storing and managing access to the physical
medium. For example, in some embodiments, the firmware
interacting with the hardware may also act as another layer
implementing its own management, caching, journaling,
mapping, and write/garbage collection. For instance, the
firmware layer may map the LBA to cylinder, track and offset
for a magnetic hard disk drive using a preset mathematical
formula. However, as discussed in more detail below, the
mapping from LBA to the physical medium becomes more
involved for a solid state device, since the write sectors are
moved around the physical medium to accommodate for wear
leveling and more sophisticated garbage collection.

[0025] In addition to their primary roles discussed above,
most of the layers of the storage stack also perform additional
house-keeping routines, such as maintaining memory, man-
agement functions, caching, linear to physical address map-
ping, garbage collection and journaling of states for protec-
tion against catastrophic events. Garbage collection may refer
to the releasing of memory/storage resources no longer
needed by the layer. Many of these house-keeping routines
are duplicated in each layer of the storage stack, since these
house-keeping routines performed by each layer are dedi-
cated to that specific layer and isolated from the other layers
because of the layered architecture causing significant
memory, processing and performance overhead.

[0026] Furthermore, for an I/O request to reach the storage
device 116, the I/O request must pass through several layers
and perform several address translations, as shown in FIG. 1.
The passing of the data message through multiple layers
requires a number of encapsulation and de-encapsulation
steps that also generates significant overhead.

[0027] Many layers, such as the VFS layer 108 and the
RAID layer 116 also manages their own mapping structures

US 2015/0052295 Al

and algorithms to translate the I/O request from one layer to
another. Mapping operations are expensive operations,
increasing latency of data operations and degrading the per-
formance of the system even further. Furthermore, continu-
ous mapping operations require multiple accesses and writes
to the device. In non-volatile memory devices, such writes to
the medium cause wear on the device decreasing the life of the
non-volatile memory.

[0028] Moreover, in some cases the storage stack layers
may be developed by different vendors and adhere to various
standard bodies. Every layer is developed in isolation from
the other layers in the storage stack software vastly repeating
the same functionality in different manifestations; thus, sig-
nificantly increasing the overhead as well as the probability of
bugs in the system. Additionally, the storage stack layered
approach hampers innovation in the product line, since any
innovation that disturbs the interfaces between the different
layers goes through a complex negotiation process with the
various stake holders, such as the vendors for the different
layers in the software stack. Furthermore, the performance
degradation has a multiplicative effect in the layered archi-
tecture further exasperating performance issues.

[0029] In some embodiments of the invention, solid state
devices, such as flash based non-volatile memory devices
may be used. Examples of non-volatile memory may be
implemented using NOR or NAND technology to map data.
NOR flash provides high-speed random access, reading and
writing data in specific memory locations; it can retrieve as
little as a single byte. NAND flash can read randomly but
typically is written sequentially at high speed, handling data
in small blocks called pages. NAND flash reads faster than it
writes, quickly transferring whole pages of data. NOR flash
behaves the same way except that reads are faster than NAND
flash and writes are slower. Less expensive than NOR flash at
high densities, NAND technology may offer higher capacity
for the same-size silicon.

[0030] Some of the duplication of functionality, latency
issues due to redundant mapping functions and garbage col-
lection in multiple layers may be even more problematic in
storage devices that use solid state devices. For example,
unnecessary writes due to duplicated mapping, journaling,
storing of metadata and garbage collection functions occur-
ring at different layers may cause unnecessary wear on the
solid state devices such as NAND flash that are sensitive to
excessive writes.

[0031] FIG. 2 illustrates a simplified diagram of a log-
structured file system for accessing solid state memory based
storage hardware. A log-structured file system is a file system
in which data and metadata are written sequentially to a
circular buffer, called a log. Conventional file systems tend to
lay out files for spatial locality and make in-place changes to
their data structures in order to perform well on optical and
magnetic disks, which tend to seek relatively slowly. How-
ever, for solid-state devices log-structured file system may be
preferable in some embodiments, since solid state devices
have relatively faster seek times.

[0032] InFIG. 2, the file system 208 is a log-structured file
system. The log-structured file systems may have several
advantages over conventional file systems. For example,
write throughput is improved since writes can be batched into
large sequential runs and costly seeks are kept to a minimum.
Furthermore, writes create multiple, chronologically-ad-
vancing versions of both file data and meta-data. Some imple-
mentations make these old file versions nameable and acces-

Feb. 19, 2015

sible, a feature sometimes called snapshotting. Also, recovery
from crashes is simpler. Upon its next mount, the file system
does not need to walk all its data structures to fix any incon-
sistencies, but canreconstruct its state from the last consistent
point in the log.

[0033] Log-structured file systems, however, must perform
sophisticated garbage collection by reclaiming free space
from the tail of the log to prevent the file system from becom-
ing full when the head of the log wraps around to meet it.
[0034] Similar to the conventional file system stack
described in FIG. 1, the log-structured file system of FIG. 2
may also provide an interface for NFS 204 and CIFS 106. The
file system stack may also have a block layer 210, RAID 212,
and Journal 216 similar to the file system stack from FIG. 1in
at least some aspects of its functionality.

[0035] In addition to the layers discussed above, the solid
state devices may also implement its own firmware for storing
and managing access to the physical drive. For example, in
some embodiments, the firmware interacting with the hard-
ware may also act as another layer implementing its own
management, caching, journaling, mapping, and write/gar-
bage collection.

[0036] As shown in FIG. 2, in one implementation, solid-
state devices may be used for storage. Typically, the flash
translation layer implemented in the firmware at the hardware
layer also employs log-structured algorithms for reading and
writing to the physical medium.

[0037] The duplication of using log-structured algorithms
at multiple layers (i.e., file system 208 and device layer 214)
results in efficiencies. For example, garbage collection must
be performed at least at two layers for servicing of an I/O
request to the storage device. In some embodiments, garbage
collection for log-structured files systems may be resource
intensive and may lead to considerable inefficiencies in the
system.

[0038] Furthermore, in the system described in FIG. 2,
mapping and translation may be performed at multiple layers.
First the mapping may be performed at the files system layer
208, from Inode and block offset to LUN and VBN. Then at
the RAID layer 212 from LUN and VBN to device LBA.
Finally, the mapping may be performed again at the firmware
layer at the solid state devices from LBA to PBA (Physical
Block Address). Multiple mappings at various layers leads to
significant inefficiencies, especially while using solid state
devices as the storage medium.

[0039] FIG. 3 illustrates a simplified diagram of an inte-
grated file system software stack for accessing storage
medium according to certain embodiments of the invention.
FIG. 3 improves upon many ofthe deficiencies described with
respectto FIG. 1 and FIG. 2 by integrating functionality from
several layers, enhancing current techniques and removing
duplication or unneeded functionality. In FIG. 3, the /O
request may also arrive through a network file sharing proto-
col such as NFS 304 or CIFS 306 or any other suitable file
sharing protocol.

[0040] According to certain embodiments of the invention,
the storage medium may be implemented using non-volatile
memory. Example implementations of non-volatile memory
based devices may include, but are not limited to, using NOR,
NAND, MRAM (Magnetoresistive RAM), FRAM (Ferro-
electric RAM, RRAM (Resistive RAM)), phase change
memory or any other suitable technology. NOR flash may
provide high-speed random access and reading and writing
data in specific memory locations such as up to a single byte.

US 2015/0052295 Al

NAND flash may read randomly but typically is written
sequentially at high speed, handling data in small blocks
called pages. NAND flash may read faster than it writes,
quickly transferring whole pages of data. NOR flash may
behave in the same way except that reads may be faster than
NAND flash and writes may be slower. Generally, less expen-
sive than NOR flash at high densities, NAND technology may
offer higher capacity for the same-size silicon.

[0041] In some implementations, embodiments of the
invention may utilize a single-level cell (SLC) NAND flash
technology. In other implementations, embodiments of the
invention may utilize a Multi-Level Cell (ML.C) NAND flash
storage medium. MLLC NAND is a flash memory technology
using multiple levels per cell to allow more bits to be stored
using the same number of transistors. In SLC NAND flash
technology, each cell can exist in one of two states, storing
one bit of information per cell. Most MLC NAND flash
memory technologies have four possible states per cell, so it
can store two bits of information per cell. Using MLC NAND
may be advantageous for reducing the cost of per unit of
storage due to the higher data density.

[0042] In certain embodiments of the invention, the system
hardware, such as the non-volatile memory is integrated with
the vertically integrated system, therefore integrating the
hardware and software solutions. In contrast to prior art sys-
tems, in certain embodiments of the invention, the non-vola-
tile memory is not implemented as part of several discrete
black-box devices purchased off the shelf or from original
equipment manufacturers (OEMs). Instead, certain embodi-
ments of the invention describe developing a storage system
from ground up where the storage hardware is implemented
as a single integrated system comprising non-volatile
memory that is managed by a single software stack, compris-
ing all the house-keeping functionality. In such a system only
one instance of the house keeping functions, such as manage-
ment, journaling, garbage collection, mapping, and system
write combining/caching may be needed for managing all of
the non-volatile memory in the storage device. In certain
implementations, the a single instance of the flash translation
layer manages all the non-volatile memory for the storage
device and performs some or all of the above house-keeping
functions.

[0043] Embodiments of the invention propose implement-
ing a unified and integrated file system, such as the vertically
integrated file system 308, shown in FIG. 3. In certain imple-
mentations, the vertically integrated file system 308 provides
a standardized interface, such as a POSIX compliant interface
for interacting with network file sharing protocols such as
NFS 304 and CIFS 306. In certain embodiments, only a single
translation from a virtual address offset to physical address
may be performed for processing the I/O request to the stor-
age medium. In one implementation, the virtual address oft-
set may be provided by the data access request.

[0044] In one implementation, storage hardware may be
implemented using non-volatile memory as flash hardware
310. The translation mapping and block allocation may be
performed in the flash translation layer (FTL) for the non-
volatile memory. FTL is firmware that obfuscates the details
of the underlying layout and structure of the flash hardware
310 to the upper layers. FTL may perform translations to
move about data for wear leveling. In some implementations,
FTL may use log-structured accesses to the physical flash
hardware 310. The log-structured access may be performed
only once for each access request. Since, multiple layers of

Feb. 19, 2015

mapping are detrimental to the performance and may also
wear down the non-volatile memory, embodiments of the
invention may enhance the mapping implementation of the
FTL to provide a singular translation for the I/O request to the
underlying storage. Therefore, in some implementations no
mapping of virtual address offset to logical addresses may be
needed in the file system 308 itself.

[0045] The I/O request may be converted to a file system
object that may be used to access a file or folder on a storage
device. According to one implementation, the FTL may pro-
vide each file system object with its own virtual block space.
In other words, the FTL may provide each file system object
with a map of the storage locations that the file system object
can store and access data from. In one implementation, the file
system object provides the file object identifier, virtual
address offset of the data in the virtual block space and the
number of bytes to the FTL for providing read or write access
to the non-volatile memory. The FTL may perform global
wear leveling before mapping the accesses to the physical
underlying non-volatile memory. The FTL may also perform
sparse virtual block number to physical block address trans-
lation by only providing a VBN to PBA mapping of blocks of
data that have been accessed.

[0046] The FTL may translate the virtual address offset for
the data access request using the virtual block space associ-
ated with the file object identifier and the virtual address
offset to the physical address. In some instances, the transla-
tions between the virtual address offsets and the physical
address may be periodically updated for wear leveling.
[0047] Embodiments of the invention may be advantageous
in increasing overall efficiency of the system for non-volatile
memory storage devices. In some implementation, duplica-
tion of functionality across multiple layers may be collapsed
into one or more layers. Certain functionality, such as Jour-
naling may be removed in certain implementations. In certain
embodiments, core functions, such as mapping, garbage col-
lection, block allocation and global wear leveling may all be
performed by an enhanced FTL implementation.

[0048] Embodiments of the invention may be advantageous
in increasing the efficiency of the overall file system stack by
providing a single mapping translation for virtual to physical
translations. Furthermore, the write path may also incur low
latency due to no block allocation or journaling overhead.
Embodiments of the invention also decrease wear on the flash
by low metadata overhead.

[0049] It should be appreciated that the steps described
above are for storing data on the storage medium. However,
accessing data from the storage medium also may traverse
through the same or similar steps in reverse order and per-
forms reverse functionality in some instances.

[0050] It should be appreciated that the specific steps illus-
trated in FIG. 3 provide a particular mode of switching
between modes of operation, according to an embodiment of
the present invention. Other sequences of steps may also be
performed accordingly in alternative embodiments. For
example, alternative embodiments of the present invention
may perform the steps outlined above in a different order. To
illustrate, a user may choose to change from the third mode of
operation to the first mode of operation, the fourth mode to the
second mode, or any combination there between. Moreover,
the individual steps illustrated in FIG. 3 may include multiple
sub-steps that may be performed in various sequences as
appropriate to the individual step. Furthermore, additional
steps may be added or removed depending on the particular

US 2015/0052295 Al

applications. One of ordinary skill in the art would recognize
and appreciate many variations, modifications, and alterna-
tives of the method 300.

[0051] Having described multiple aspects of the vertically
integrated architecture, an example of a computing system in
which various aspects of the disclosure may be implemented
may now be described with respect to FIG. 4. According to
one or more aspects, a computer system as illustrated in FIG.
4 may be incorporated as part of a computing device, which
may implement, perform, and/or execute any and/or all of the
features, methods, and/or method steps described herein. For
example, computer system 400 may represent some of the
components of a device and/or access point apparatus. A
device may be any computing device with a wireless unit,
such as an RF receiver. In one embodiment, the system 400 is
configured to implement any of the methods described herein.
FIG. 4 provides a schematic illustration of one embodiment
of a computer system 400 that can perform the methods
provided by various other embodiments. FIG. 4 is meant only
to provide a generalized illustration of various components,
any and/or all of which may be utilized as appropriate. F1G. 4,
therefore, broadly illustrates how individual system elements
may be implemented in a relatively separated or relatively
more integrated manner.

[0052] The computer system 400 is shown comprising
hardware elements that can be electrically coupled via a bus
405 (or may otherwise be in communication, as appropriate).
The hardware elements may include one or more processors
410, including without limitation one or more general-pur-
pose processors and/or one or more special-purpose proces-
sors (such as digital signal processing chips, graphics accel-
eration processors, and/or the like); one or more input devices
415, which can include without limitation a camera, a mouse,
a keyboard and/or the like; and one or more output devices
420, which can include without limitation a display unit, a
printer and/or the like. The computing device 400 may also
include a sensor(s), such as temperature sensors, power sen-
sors, etc. for monitoring health of the system.

[0053] The computer system 400 may further include (and/
or be in communication with) one or more non-transitory
storage devices 425, which can comprise, without limitation,
local and/or network accessible storage, and/or can include,
without limitation, a disk drive, a drive array, an optical stor-
age device, a solid-state storage device such as a random
access memory (“RAM”) and/or a read-only memory
(“ROM”), which can be programmable, flash-updateable
and/or the like. In some embodiments, the storage may be
implemented using non-volatile memory. Such storage
devices may be configured to implement any appropriate data
storage, including without limitation, various file systems,
database structures, and/or the like.

[0054] The computer system 400 might also include acom-
munications subsystem 430, which can include without limi-
tation a modem, a network card (wireless or wired), an infra-
red communication device, a wireless communication device
and/or chipset (such as a Bluetooth® device, an 802.11
device, a WiFi device, a WiMax device, cellular communica-
tion facilities, etc.), and/or the like. The communications
subsystem 430 may permit data to be exchanged with a net-
work (such as the network described below, to name one
example), other computer systems, and/or any other devices
described herein. In many embodiments, the computer sys-
tem 400 may further comprise a non-transitory working
memory 435, which can include a RAM or ROM device, as

Feb. 19, 2015

described above. The computer system 400 might also
include a transceiver 1050 for facilitating communication by
the communications subsystem 430 with the external entities.
[0055] The computer system 400 also can comprise soft-
ware elements, shown as being currently located within the
working memory 435, including an operating system 440,
device drivers, executable libraries, and/or other code, such as
one or more application programs 445, which may comprise
computer programs provided by various embodiments, and/
or may be designed to implement methods, and/or configure
systems, provided by other embodiments, as described
herein. Merely by way of example, one or more procedures
described with respect to the method(s) discussed above,
might be implemented as code and/or instructions executable
by a computer (and/or a processor within a computer); in an
aspect, then, such code and/or instructions can be used to
configure and/or adapt a general purpose computer (or other
device) to perform one or more operations in accordance with
the described methods.

[0056] A set of these instructions and/or code might be
stored on a computer-readable storage medium, such as the
storage device(s) 425 described above. In some cases, the
storage medium might be incorporated within a computer
system, such as computer system 400. In other embodiments,
the storage medium might be separate from a computer sys-
tem (e.g., a removable medium, such as a compact disc),
and/or provided in an installation package, such that the stor-
age medium can be used to program, configure and/or adapt a
general purpose computer with the instructions/code stored
thereon. These instructions might take the form of executable
code, which is executable by the computer system 400 and/or
might take the form of source and/or installable code, which,
upon compilation and/or installation on the computer system
400 (e.g., using any of a variety of generally available com-
pilers, installation programs, compression/decompression
utilities, etc.) then takes the form of executable code.

[0057] Substantial variations may be made in accordance
with specific requirements. For example, customized hard-
ware might also be used, and/or particular elements might be
implemented in hardware, software (including portable soft-
ware, such as applets, etc.), or both. Further, connection to
other computing devices such as network input/output
devices may be employed.

[0058] Someembodiments may employ a computer system
(such as the computer system 400) to perform methods in
accordance with the disclosure. For example, some or all of
the procedures of the described methods may be performed
by the computer system 400 in response to processor 410
executing one or more sequences of one or more instructions
(which might be incorporated into the operating system 440
and/or other code, such as an application program 445) con-
tained in the working memory 435. Such instructions may be
read into the working memory 435 from another computer-
readable medium, such as one or more of the storage device(s)
425. Merely by way of example, execution of the sequences
of instructions contained in the working memory 435 might
cause the processor(s) 410 to perform one or more procedures
of the methods described herein.

[0059] The terms “machine-readable medium” and “com-
puter-readable medium,” as used herein, refer to any medium
that participates in providing data that causes a machine to
operate in a specific fashion. In an embodiment implemented
using the computer system 400, various computer-readable
media might be involved in providing instructions/code to

US 2015/0052295 Al

processor(s) 410 for execution and/or might be used to store
and/or carry such instructions/code (e.g., as signals). In many
implementations, a computer-readable medium is a physical
and/or tangible storage medium. Such a medium may take
many forms, including but not limited to, non-volatile media,
volatile media, and transmission media. Non-volatile media
include, for example, optical and/or magnetic disks, such as
the storage device(s) 425. Volatile media include, without
limitation, dynamic memory, such as the working memory
435. Transmission media include, without limitation, coaxial
cables, copper wire and fiber optics, including the wires that
comprise the bus 405, as well as the various components of
the communications subsystem 430 (and/or the media by
which the communications subsystem 430 provides commu-
nication with other devices). Hence, transmission media can
also take the form of waves (including without limitation
radio, acoustic and/or light waves, such as those generated
during radio-wave and infrared data communications).

[0060] Someembodiments may employ a computer system
(such as the processor 410) to perform methods in accordance
with the disclosure. For example, some or all of the proce-
dures of the described methods may be performed by the
viewing apparatus in response to the processor executing one
or more sequences of one or more instructions (which might
be incorporated into an operating system and/or other code,
such as an application program) contained in working
memory. Such instructions may be read into the working
memory from another computer-readable medium, such as
one or more of the storage device(s). Merely by way of
example, execution of the sequences of instructions con-
tained in the working memory might cause the processor(s) to
perform one or more procedures of the methods described
herein.

[0061] Again, embodiments employing computer systems
described herein are not limited to being physically con-
nected to the viewing apparatus. Processing may occur in
another apparatus, connected via wire or wirelessly to the
viewing apparatus. For example, a processor in a phone or
instructions for executing commands by a phone or tablet
may be included in these descriptions. Similarly, a network in
a remote location may house a processor and send data to the
viewing apparatus.

[0062] The terms “machine-readable medium” and “com-
puter-readable medium,” as used herein, refer to any medium
that participates in providing data that causes a machine to
operate in a specific fashion. In an embodiment implemented
using the processor 410, various computer-readable media
might be involved in providing instructions/code to processor
(s) 410 for execution and/or might be used to store and/or
carry such instructions/code (e.g., as signals). In many imple-
mentations, a computer-readable medium is a physical and/or
tangible storage medium. Such a medium may take many
forms, including but not limited to, non-volatile media, vola-
tile media, and transmission media. Non-volatile media
include, for example, optical and/or magnetic disks. Volatile
media include, without limitation, dynamic memory, such as
flash memory or DDR3 RAM. Transmission media include,
without limitation, coaxial cables, copper wire and fiber
optics, as well as the various components of a communica-
tions subsystem (and/or the media by which the communica-
tions subsystem provides communication with other
devices). Hence, transmission media can also take the form of
waves (including without limitation radio, acoustic and/or

Feb. 19, 2015

light waves, such as those generated during radio-wave and
infrared data communications).
[0063] In one or more examples, the functions described
may be implemented in hardware, software, firmware, or any
combination thereof. If implemented in software, the func-
tions may be stored on or transmitted over as one or more
instructions or code on a computer-readable medium. Com-
puter-readable media may include computer data storage
media. Data storage media may be any available media that
can be accessed by one or more computers or one or more
processors to retrieve instructions, code and/or data structures
for implementation of the techniques described in this disclo-
sure. “Data storage media” as used herein refers to manufac-
tures and does not refer to transitory propagating signals. By
way of example, and not limitation, such computer-readable
media can comprise RAM, ROM, EEPROM, CD-ROM or
other optical disk storage, magnetic disk storage, or other
magnetic storage devices, flash memory, or any other medium
that can be used to store desired program code in the form of
instructions or data structures and that can be accessed by a
computer. Disk and disc, as used herein, includes compact
disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and blu-ray disc where disks usually
reproduce data magnetically, while discs reproduce data opti-
cally with lasers. Combinations of the above should also be
included within the scope of computer-readable media.
[0064] The code may be executed by one or more proces-
sors, such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable logic arrays (FP-
GAs), or other equivalent integrated or discrete logic cir-
cuitry. Accordingly, the term “processor,” as used herein may
refer to any of the foregoing structure or any other structure
suitable for implementation of the techniques described
herein. In addition, in some aspects, the functionality
described herein may be provided within dedicated hardware
and/or software modules configured for encoding and decod-
ing, or incorporated in a combined codec. Also, the tech-
niques could be fully implemented in one or more circuits or
logic elements.
[0065] The techniques of this disclosure may be imple-
mented in a wide variety of devices or apparatuses, including
a wireless handset, an integrated circuit (IC) or a set of ICs
(e.g., a chip set). Various components, modules, or units are
described in this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard-
ware units. Rather, as described above, various units may be
combined in a codec hardware unit or provided by a collec-
tion of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable
software and/or firmware stored on computer-readable
media.
[0066] Various examples have been described. These and
other examples are within the scope of the following claims.
What is claimed is:
1. A non-volatile memory storage device comprising:
a storage medium comprising non-volatile memory;
a network connection for receiving data read and write
requests to the storage medium;
one or more processing entities configured to:
receive a request from the network connection at the
non-volatile memory storage device for accessing
data associated with a file system object, the request

US 2015/0052295 Al

comprising a virtual address offset, a file object iden-
tifier and a size of the data access;

perform, at a flash translation layer of a storage device
software stack executing on the one or more process-
ing entities of the storage device, a translation from
the virtual address offset to a physical address for the
data stored on the non-volatile memory, using the
virtual address offset and the file object identifier; and

access the data from the physical address from the stor-
age medium.

2. The non-volatile memory storage device of claim 1,
wherein the file system object is provided a virtual block
space for accessing data from the non-volatile memory stor-
age device that is independent of virtual block spaces
assigned to other file system objects, wherein each virtual
block space provides the file system object an exclusive view
of the address space.

3. The non-volatile memory storage device of claim 1,
wherein the data associated with the file system object is
accessed for performing a modify operation followed by per-
forming a write operation to the virtual address offset asso-
ciated with the file system object.

4. The non-volatile memory storage device of claim 3,
wherein the data associated with the file system object is
modified by the file translation layer by writing to a log
structured file, wherein the modify operation for the dataora
portion of the data is performed by using a log structured
write only once between receiving the request for moditying
the data or the portion of the data from the network and
completing the write operation to the non-volatile memory.

5. The non-volatile memory storage device of claim 1,
wherein the translation from the virtual address offset to the
physical address on the non-volatile memory by the flash
translation layer is at least partially based on the global wear
leveling performed by the flash translation layer, wherein the
global wear leveling changes the virtual address offset to the
physical address translation to reduce the wear caused by
repeated data accesses to the same physical location on the
non-volatile memory.

6. The non-volatile memory storage device of claim 1,
wherein the flash translation layer further performs block
allocation for storing and accessing data from the non-vola-
tile memory.

7. The non-volatile memory storage device of claim 1,
wherein the garbage collection for using a log structured file
system is performed only in the flash translation layer.

8. The non-volatile memory storage device of claim 1,
wherein the flash translation layer performs reads and writes
to the non-volatile memory using a log-structured file system.

9. The non-volatile memory storage device of claim 1,
wherein the virtual address offset is provided by the access
request from the network connection using a network file
sharing protocol.

10. The non-volatile memory storage device of claim 1,
wherein the virtual address offset is provided by the access
request from if provided by a layer higher than a file system
layer of the storage device software stack.

11. The non-volatile memory storage device of claim 1,
wherein only a single address translation is performed in the
storage device software stack executing on the one or more
processors of the non-volatile memory storage device
between receiving the request for accessing the data at a file
system layer of the software stack and accessing the data at
the non-volatile memory.

Feb. 19, 2015

12. A non-transitory computer readable storage medium,
wherein the non-transitory computer readable storage
medium comprises instructions executable by a processor, the
instructions comprising instructions to:
receive a request from a network connection at a non-
volatile memory storage device comprising the non-
transitory computer readable storage medium, for
accessing data associated with a file system object, the
request comprising a virtual address offset, a file object
identifier and a size of the data access;
perform, at a flash translation layer of a storage device
software stack executing by the one or more processing
entities of the non-volatile storage device, a translation
from the virtual address offset to a physical address for
the data stored on the non-volatile memory, using the
virtual address offset and the file object identifier; and

access the data from the physical address from the non-
volatile memory.

13. The non-transitory computer readable storage medium
of claim 12, wherein the file system object is provided a
virtual block space for accessing data from the non-volatile
memory storage device that is independent of virtual block
spaces assigned to other file system objects.

14. The non-transitory computer readable storage medium
of claim 12, wherein the translation from the virtual address
offset to the physical address on the non-volatile memory by
the flash translation layer is at least partially based on the
global wear leveling performed by the flash translation layer,
wherein the global wear leveling changes the virtual address
offset to the physical address translation to reduce the wear
caused by repeated data accesses to the same physical loca-
tion on the non-volatile memory.

15. The non-transitory computer readable storage medium
of claim 12, wherein the flash translation layer receives the
virtual address offset for the data access request through the
network connection using a network file sharing protocol.

16. The non-transitory computer readable storage medium
of claim 12, wherein only a single address translation is
performed in the storage device software stack executing on
the non-volatile memory storage device between receiving
the request for accessing the data at a file system layer of the
software stack and accessing the non-volatile memory.

17. A method for accessing data on a non-volatile memory
storage device, the method comprising:

receiving a request, at a flash translation layer of a software

stack executing on the non-volatile memory storage
device, for accessing data associated with a file system
object, the request comprising a virtual address offset, a
file object identifier and the size of the data access,
wherein the flash translation layer manages non-volatile
memory;

performing a translation from the virtual address offsetto a

physical address for the data on the non-volatile
memory, using the virtual address offset and the file
object identifier; and

accessing the data from the non-volatile memory.

18. The method of claim 17, wherein the translation from
the virtual address offset to the physical address on the non-
volatile memory by the flash translation layer is at least par-
tially based on the global wear leveling performed by the flash
translation layer, wherein the global wear leveling changes
the virtual address offset to physical address translation to
reduce the wear caused by repeated data accesses to a physi-
cal location on the non-volatile memory.

US 2015/0052295 Al

19. The method of claim 17, wherein the flash translation
layer receives the virtual address offset for the data access
request from a network using a network file sharing protocol.

20. The method of claim 17, wherein only a single address
translation is performed in the software stack executing on the
non-volatile memory storage device between receiving the
request for accessing the data at a file system layer of the
software stack and accessing the non-volatile memory.

#* #* #* #* #*

Feb. 19, 2015

