
(12) United States Patent
Kobayashi

USOO7478363B2

US 7.478,363 B2
Jan. 13, 2009

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(86)

(87)

(65)

(30)
Sep. 18, 2001

(51)

(52)
(58)

METHOD FORTRANSLATING A GIVEN
SOURCE PROGRAMINTO AN OBJECT
PROGRAM CONTAINING COMPUTING
EXPRESSIONS

Inventor: Shiro Kobayashi, Yokohama (JP)

Assignee: Asahi Kasei Kabushiki Kaisha, Osaka
(JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 551 days.

Appl. No.: 10/489,815

PCT Fled: Sep. 17, 2002

PCT NO.:

S371 (c)(1),
(2), (4) Date:

PCT/UPO2/O9508

Mar. 17, 2004

PCT Pub. No.: WOO3/032157

PCT Pub. Date: Apr. 17, 2003

Prior Publication Data

US 2004/O255.284 A1 Dec. 16, 2004

Foreign Application Priority Data

(JP) 2001-283923

Int. C.
G06F 9/44 (2006.01)
G06F 9/45 (2006.01)
U.S. Cl. 717/106; 717/140
Field of Classification Search 717/140–147,

717/106
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,805,121 A *
5,442,790 A 8, 1995
5,524,244. A * 6/1996
5,819,097 A * 10/1998
6,161,217 A 12, 2000

2/1989 Scott et al. 345/421
Nosenchuck et al.
Robinson et al. T17,140
Brooks et al. T17,141
Detlefset al.

(Continued)
FOREIGN PATENT DOCUMENTS

EP 1 O94 401 B1 5, 2005

(Continued)
OTHER PUBLICATIONS

Omuro, Mano, “Speech Coding Software DualSpeech', NTT R&D,
Vo. 47, No. 5, (Japan). The Telecommunications Association, pp.
549-554, (1998).

(Continued)
Primary Examiner Wei Y Zhen
Assistant Examiner Chih-Ching Chow
(74) Attorney, Agent, or Firm—Finnegan, Henderson,
Farabow, Garrett & Dunner, L.L.P.

(57) ABSTRACT

A compiler capable of facilitating calculation description in a
Source program and simplifying the source program descrip
tion so as to reduce generation of bugs in calculation accord
ing to the block floating method by software. When a source
program is given with description of calculation formula per
forming addition is extracted from the source program. A
portion related to an addition in the extracted calculation
formula is expanded as an instruction code constituting the
processing performing addition using a data block corre
sponding to a plurality of block floating variables to be added.
The expanded instruction code is embedded in an object
program, thus creating and outputting an object program.

11 Claims, 13 Drawing Sheets

SART

Auo SOURCE PROGRAM OBE ENTERED -- S00

No S104
ADDITION FORMULA PRESENT

es

UCTION CODES GENERATE INSTR
FOR ADDITION EN BOCK S10B
FLOATING-POINT FORMAT

FORUA PRESENT

-m-- S108

k MULTIPLY-ACCUMULATE N

Yes

GENERATE INSTRUCTION CODES FOR
MULTIPLICATION-ACCUMULATION IN
BLOCK FLOATING-POINT FORMAT

- S10

OTHER COMPIINGPROCESSES - S12

OUTPUT OBJECT PROGRAM -- S114

EN

US 7.478,363 B2
Page 2

U.S. PATENT DOCUMENTS

6,247,174 B1* 6/2001 Santhanam et al. 717,154
6,438,745 B1* 8/2002 Kanamaru et al. 717/137
6,625,806 B1* 9/2003 Ono et al. 717/136
6,728,739 B1 4/2004 Kobayashi et al.
6,728,951 B1 * 4/2004 Gibson et al. T17,140
6,748,587 B1 * 6/2004 Santhanam et al.
6.951,014 B1* 9/2005 Sokolov
6.966,056 B2 * 1 1/2005 Kawaguchi.

... 717,140
717/139
717? 152

7,185,324 B2 * 2/2007 Michimoto et al. ... 717,140
2002/0035589 A1* 3/2002 Saulsbury et al. 7O877OO

FOREIGN PATENT DOCUMENTS

JP 04-184624 A 7, 1992
JP 06-232757 A 8, 1994
JP O7-325710 A 12/1995

OTHER PUBLICATIONS

Yamamoto, Shirokura, “C++ Introduction, Try the C++. No. 4”, C
Magazine, vol. 10, No. 4. (Japan) Softbank Corp., pp. 110-117.
(1992).

Muruta, Nishitani. “Signal Processor and Application Thereof, first
edition, (Japan), Shokodo Co., Ltd., ISBN: 4-7856-2005-6, pp.
27-38, (1988).
Shiro Kobayashi et al., “A Block-Floating-Point System for Multiple
Datapath DSP.” Signal Processing Systems, (1998), pp. 427-436,
XPO1O3O3712.

Masahiro Kato, et al., “Write Everything in High-Class Language.
Information Processing and Signal Processing Aggregation.” Nikkei
Electronics, Aug. 23, 1999 (No. 750), pp. 297-303.
Hideo Wada, “New Fortran 90.” Information Processing, vol. 36, No.
4, Apr. 15, 1995, pp. 297-303.
Koichiro Hotta, et al., “Complete Reference to Fortran 90 and Opti
mizing the Array Operation by a Loop Fusion.” Nikkei Electronics,
Nov. 20, 1995 (No. 649), pp. 141-153.
Shuji Urano, “Introduction to C++ Programming First Session.”
ASCII, vol. 14, #1 Jan. 1, 1990, pp. 370-375.

* cited by examiner

U.S. Patent Jan. 13, 2009 Sheet 1 of 13 US 7.478,363 B2

FI G, 1

100 COMPUTER

30

I

K . . .) F

38

INPUT STORAGE DISPLAY
DEVICE DEVICE DEVICE

40 42 44

FI G, 2

DATA

lot or it is (DATA GROUP) k DATA ITEMS

DATA BLOCK

U.S. Patent Jan. 13, 2009 Sheet 2 of 13 US 7.478,363 B2

FI G, 3

START

ALLOW SOURCE PROGRAM TO BE ENTERED S100

No S104
ADDITION FORMULA PRESENT

Yes

GENERATE INSTRUCTION CODES
FOR ADDITION IN BLOCK
FLOATING-POINT FORMAT

S106

S108

MULTIPLY-ACCUMULATE No
FORMULA PRESENT

GENERATE INSTRUCTION CODES FOR
MULTIPLICATION-ACCUMULATION IN
BLOCK FLOATING-POINT FORMAT

OTHER COMPILING PROCESSES S112

OUTPUT OBJECT PROGRAM S114

END

U.S. Patent Jan. 13, 2009 Sheet 3 of 13 US 7.478,363 B2

FI G, 4

BETWEEN GSF AND COMMON BSF

RIGHT-SHIFT EACH DATA ITEM
IN DATA GROUP BASED ON S208
DIFFERENTIAL SF

S210
ALL, DATA GROUPS Yes
PROCESSED?

No S212

READ NEXT GSF IN SCALE DATA BLOCK B ha-S214
DATA BLOCK A

SCALE DATA BLOCK Cra-S216

ADD DATA ITEMS IN DATA S218
BLOCKS A, B AND C

STORE ADDITION RESULTS S220
IN DATA BLOCK Y

SCALE DATA BLOCK Y ha-S222

END

U.S. Patent Jan. 13, 2009 Sheet 4 of 13 US 7.478,363 B2

FI G, 5

START

READ BSFS OF DATA BLOCKS A, B AND Cra-S300

CALCULATE CORRECTIVE BSF N-S302

DOES DATA BLOCK C CONTAIN DATA
WITH ARGER ABSOLUTE WALUE THAN
MULTIPLICATION-RESULT DATA BLOCK
OF DATA BLOCKS A AND B?

Yes
READ FIRST GSF IN DATA BLOCK A S306

CALCULATE DIFFERENTIAL SF S308
BETWEEN GSF AND BSF

ADD CORRECTIVE BSF TO DIFFERENTIAL SFN- S310

RIGHT-SHIFT EACH DATA ITEM IN S312
DATA GROUP BASED ON DIFFERENTIAL SF

S314 ALL DATA GROUPS PROCESSED? YES
N O S316

READ NEXT GSF IN DATA BLOCK A

S304

S318

READ FIRST GSF IN DATA BLOCK C

CALCULATE DIFFERENTIAL SF
BETWEEN GSF AND BSF

RIGHT-SHIFT EACH DATA

SCALE DATA BLOCK C

SCALE DATA BLOCK A

SCALE DATA BLOCK B S328

ITEM IN DATA GROUP BASED MUIPLY DAIA IN DATA us BLOCKS A AND B ON DIFFERENTIAL SF

STORE MULTIPLICATION S332 ALL, DATA GROUPS S324
RESULTS IN DATA BLOCK X PROCESSED?

NO S326

ADD DATA BLOCKS X AND Cral S334 READ NEXT GSF IN DATA BLOCK C

STORE ADDITION RESULTS us IN DATA BLOCK Y

SCALE DATA BLOCK Y ral S338

END

S320

S322

U.S. Patent Jan. 13, 2009 Sheet 5 of 13 US 7.478,363 B2

FI G, 6

mul blocks bfp bfp bfp.c
idefine NUM SAMPLE 8 ~ S400
bfioat a NUMSAMPLE,
bfloat bNUM SAMPLE);
float CNUMSAMPLE: S02

NUM SAMPLE);

=0;ikNUM SAMPLE; it--)
ri-ai:kbi;
(i.0;i&NUMSAMPLE:ii)
i=riskci;

exico), so"

U.S. Patent Jan. 13, 2009 Sheet 6 of 13 US 7.478,363 B2

word it a NUM SAMPLE);
global sf t a sfb; i
global Word t bNUMSAMPLE);
global sf t b_sfb; global wordt CNUM'SAMPLE); $50?
global Sft c_sfb;
global word t r(NUMSAMPLE);

r_sfb;

SFBO-loadsf(asfb); // LOAD BSF (a sfb) OF all INTO SFBO REGISTER
SFB1=load_st (b_sfb); // LOADBSF (b.sfb) OF b) INTO SFB1REGISTER
SFB2=SFB0+SFB1; ; // CALCULATE BSF BASED ON ENTERED PRODUCT OF axb)
resetsfb (SFB3); // INITIALIZE BSF SEARCH OF MULTIPLICATION RESULTS OF akb)
P0=&a(0); } // SET POINTER TO a
P1=& bO); // SET POINTER TO b
P2=&r0; ; // SET POINTER TO r - - - - - - - - - - ---

-

loop (NUM SAMPLE)
{
RA=bfp load man(iP0++M1, SFB0); } // LOAD DATA FROM a
RB=bfp load man(tP1++M, SFB1); ; // LOAD DATA FROM b|
RX-RA-RB; // MULTIPLICATION

- s

{{P2++M1 || SFB3}=bfp store man (RX, SFB2); ; // STORE COMPUTED RESULTS IN r)

r_sfb=storesf(SFB3); // STORE BSF OF r () -- S512
SFBO-loadsi(rsib); // LOAD BSF (rsfb) OF r (INTO SFBO REGISTER
SFB1=load_sf(c_sfb); // LOAD BSF (c.sfb) OF cl INTO SFB1REGISTER
SFB2=SFB0+SFB1; fiss 4 // CALCULATE BSF BASED ON ENTERED PRODUCT OF r)kc)
reset.sfb(SFB3); // INITIALIZE BSF SEARCH OF MULTIPLICATION RESULTS OF r)kc) iter-el-S516
;PO=&r (O; ; // SET POINTER TOr ()
P1=&c.O; ; // SET POINTER TO c)

O; ; // SET POINTER TO r

to site.
RA-bfp load man(POHM, SFBO); // LOAD DATA FROM r)
RB-bfp load man(P1-M, SFB1); // LOAD DATA FROM c()
RX-RA-RB; // MULTIPLICATION

- - - - - - - - - - - - - - as us as a - - - - - - - - - - - - - - - - a - s

{kP2++M1 || SFB3}=bfp store man (RX, SFB2); ; // STORE COMPUTED RESULTS IN r

r_sfb=store sf (SFB3); // STORE BSF OF r--S520

U.S. Patent Jan. 13, 2009 Sheet 7 of 13 US 7.478,363 B2

FI G, 8

mul blocks bfp fxp bfp.c
define NUM SAMPLE 8 ~ S600

bfloat bNUMSAMPLE
fixed c.NUMSAMPLE
bfloat rNUM, SAMPLE

int mul blocks(void)

unsigned int i;

for(iO;i&NUMSAMPLE:ii-F5
ritaibi)

-

for(i=0; i<NUMSAMPLE;i---)
...rilrtilicili............ J

U.S. Patent Jan. 13, 2009 Sheet 8 of 13 US 7.478,363 B2

FI G, 9

mul blocks bfp fxp bfp.asm
idefine NUM SAMPLE 8 ~ S700

word t anLM SAMPLE);
sfit a Sfb;
wordt bNUMSAMPLE);;
Sf t b Sfb;
wordt CNUMSAMPLE);:S02
word trNUMSAMPLE);:

S706 S
SFBO-loadsf(asfb); // LOAD BSF (a sib) OF a) INTO SFBO REGISTER
;SFB1=load_sf(b_sfb); // LOAD BSF (b.sfb) OF b) INTO SFB1REGISTER
SFB2=SFB0+SFB1; ; // CALCULATE BSF BASED ON ENTERED PRODUCT OF alkb)
resetsfb (SFB3); // INITIALIZE BSF SEARCH OF MULTIPLICATION RESULTS OF askb)

a - - - - - - as - - - - ::4-sl-S708

PO-&aO); // SET POINTER TO all
P1=& bO); } // SET POINTER TO b)
P2=&r O; ; // SET POINTER TO r) - - - - - - - - -ss----->

loop (NUMSAMPLE)

RA=bfp load man (kPO++M1, SFBO); // LOAD DATA FROM a
RB=bfp load man (kP1++M1, SFB1); // LOAD DATA FROM b)

RX-RA-RB; 77 MULTIPLICATIONI
kP2++M1 || SFB3}=bfp store man (RX, SFB2); ; // STORE COMPUTED RESULTS IN r)

:--
r_sfb=store sf(SFB3); // STORE BSF OF is."

- a - --

;SFB0=loadsf(r.sfb); // LOADBSF (r_sfb) OF r () INTO SFBO REGISTER
reset.sfb.SFB3); // INITIALIZE BSF SEARCH OF MULTIPLICATION RESULTS OF r()}ct) so uses as as sw- - - -

P0=&rO; ; // SET POINTER TO r()
P1=&c.O; ; // SET POINTER TO c)

O); } // SET POINTER TO r

-S718
RA=bfp load man (::PO++M1, SFBO); // LOAD DATA FROM r
RB=load man(kP1++M1); // LOAD DATA FROM c()
RX-RA-RB; // MULTIPLICATION I

} {{P2+M1 SFB3)-bfpistore man(RX.SFBO); // STORE COMPUTED RESULTS IN r()
r sfb-store sf (SFB3); // STORE BSF OF r-N-S720

}

U.S. Patent Jan. 13, 2009 Sheet 9 of 13 US 7.478,363 B2

bfloat a K+1);
bfloat bN+1); N-S800
bfloat r(N+1); :

its a

for(n=0;nk=N; n++) i-S802
{

r(n)=0.0; -1. S804 :
for (k=0; k{=K; k++)

rth-afk-bin-k);
- a - - - - -

U.S. Patent Jan. 13, 2009 Sheet 10 of 13 US 7.478,363 B2

FI G, 1 1

S810

S812

S814

SET WRITE POSITION OF r(n) TO FIRST GROUP--S816

SET READ POSITION OF r(n) TO FIRST GROUP S818

SET READ POSITION OF a(k) TO FIRST GROUP S820

S822

S824

RIGHT-SHIFT IT BASED ON DIFFERENTIAL SF

S828

RIGHT-SHIFT DATA IN DATA GROUP IN b(n) S830

SET READ POSITION OF b(n) TO NEXT GROUP S832

MULTIPLY AND ACCUMULATE DATA IN a(k) AND b(n) S834
S836

S850

SET READ POSITION OF b(n)
TO DATA GROUP WHICH
CORRESPONDS TO CURRENT
VALUE OF n IN r(n)

a(k) PROCESSED UP TO
K-K ?

Yes
SCALE MULTIPLY-ACCUMULATE RESULTS
AND WRITE THEM INTO r(n)

CALCULATE AND WRITE GSF OF S840
MULTIPLY-ACCUMLATE RESULTS

SET WRITE POSITION OF r(n) TO NEXT DATA GROUP S842

COMPARE BSF OF r(n) AND GSF, AND UPDATA BSF S844
S846

S838

r(n) PROCESSED UP TO No
n-cN ?

Yes
STORE BSF OF r(n) S848

END

U.S. Patent Jan. 13, 2009 Sheet 11 of 13 US 7.478,363 B2

fixed a K+1); :
bfloat bN+1); N-S900
bfloat r(N+1);

ce a is a as a

-

for(n=0;nk=N; n++) -$902

for (k=0;kk=K; k++) :
rth-ak-6(n-k); ’90
or :

l + + al F AA +. al

U.S. Patent Jan. 13, 2009 Sheet 12 of 13 US 7.478,363 B2

FI G, 1 3

S910

S912

S914

S916

S918

SET READ POSITION OF a(k) TO FIRST GROUP S920

S922

S924

S926

S928

RIGHT-SHIFT IT BASED ON DIFFERENTIAL SF S930

S932

s934 S950
S936 SET READ POSITION OF b(n)

TO DATA GROUP WHICH
CORRESPONDS TO CURRENT

a(k) PROCESSED UP TO
k=K ?

VALUE OF n IN r(n)
Yes

SCALEMULTIPLY-ACCUMULATE RESULTS uses AND WRITE THEM INTO r(n)

CALCULATE AND WRITE GSF OF S940
MULTIPY-ACCUMULATE RESULTS

SET WRITE POSITION OF r(n) TO NEXT DATA GROUP S942

COMPARE BSF OF r(n) AND GSF, AND UPDATE BSF S944
S946

r(n) PROCESSED UP TO NO

Yes
STORE BSF OF r(n) S948

END

U.S. Patent Jan. 13, 2009 Sheet 13 of 13 US 7.478,363 B2

FI G, 1 4

DATA ADDRESS BUS
BLOCK FLOATING-POINT DATA

DATA MEMORY
ADDRESS GENERATOR BSF

GSF DATA DATA DATA
GSF

t

DATA DATA

h

CONTROL
LOGIC (UNUSED) DATA DATA DATA

(UNUSED) DATA DATA DATA

-

BOCKFOAINGPONTCONTROLLER

SELECTOR
BFS
REGISTER :

SFBO SFB1 FILE

an - a as - - - - - - - -ARITHMETIC:

COMPUTATIONAL
INPUT REGISTER

FILE

SFB2 SFB3

SELECTOR

PROCESSOR
COMPUTATIONAL
RESULT REGISTER ADDER-SUBTRACTOR : SELECTOR

BSF
DETECTOR

GSF

OUTPUT SHIFTER

US 7,478,363 B2
1.

METHOD FORTRANSLATING A GIVEN
SOURCE PROGRAMINTO AN OBJECT
PROGRAM CONTAINING COMPUTING

EXPRESSIONS

TECHNICAL FIELD

The present invention relates to an apparatus, program, and
method which translate a source program into an object pro
gram. More particularly, it relates to a compiler apparatus,
compiler program, and object program generating method
which make it easy to describearithmetic operations in Source
programs, make it simple to write source programs, and
reduce bugs, when performing block floating-point opera
tions in Software.

BACKGROUND ART

Numeric representations in digital signal processing
include fixed-point representation and floating-point repre
sentation.

In the floating-point representation, each data item has an
exponent part and mantissa. This has the advantage of ensur
ing high accuracy and wide dynamic range, but has the prob
lem of requiring complex, large-scale hardware. On the other
hand, the fixed-point representation requires only simple
hardware and small-scale circuits, but has the problem of low
computational accuracy.
As a solution to the problem with the floating-point repre

sentation, a format called block floating-point has been pro
posed. This format treats a predetermined number (e.g., m) of
data items as one data block, gives one block scale factor to
each data block, and scales them data items in the data block
equally, thereby making effective use of a limited dynamic
range and preventing deterioration in accuracy.

To implement block floating-point operations in Software,
a source program is written in a predetermined programming
language (e.g., in the C language), the Source program is
translated into an object program using an appropriate com
piler, and the object program is executed on a computer.

However, to implement block floating-point operations in
Software, it is necessary to organize one or more data items
into a data group and organize two or more data groups into a
data block, which handles a data structure that contains the
group scale factors of individual data groups and the block
scale factor of the data block. Thus, when writing a source
program, the data structure must be defined as a structure.
This means that a lot of preparation is required before describ
ing block floating-point operations.

Also, defining a structure makes it possible to use struc
tured data as a cohesive variable for arithmetic operations, but
there are certain limits, and the structured data is useful only
for simple Substitutions orarithmetic operations among struc
ture variables. The simple arithmetic operations here mean
arithmetic operations among the same type of structure vari
ables, i.e., among data in the same data group or among scale
factors. To implement block floating-point operations, it is
necessary to perform arithmetic operations by Scaling data
according to scale factors. Thus, simple arithmetic operations
among structure variables are not enough and a unique func
tion must be created for each type of arithmetic operation.
Suppose, for example, functions bfp add (X. Sub.1, X. Sub.2)
are created to add data in two data blocks. To perform the
arithmetic operation of Equation (1), structure variables must
be nested as shown in Equation (2). A, B, and C in Equations

10

15

25

30

35

40

45

50

55

60

65

2
(1) and (2) below are structure variables (objects) created in a
Source program according to a block floating-point data struc
ture defined as a structure.

YFA-B-C (1)

Y=hfip. Sub.--add(hfip. Sub.--add(A,B),C) (2)

This makes it cumbersome to write a source program and
difficult to create a program which contain a small number of
bugs.

Furthermore, to perform addition across two or more data
blocks at the execution level of an object program, it is nec
essary to align digit places among the data blocks during the
addition because the data in the data blocks have been scaled.
For example, when adding data from two different data
blocks, data A“0.1 with a group scale factor of “2 and data
B“0.11 with a group scale factor of “3, data A is changed to
"0.001 by a two-bits right shift and data B is changed to
“0.00011” by a three-bits right shift before the addition. Then,
the computational result is normalized again to finally obtain
data “0.111 with a group scale factor of “2.

Thus, to perform addition across data blocks, the data items
in each data block must be normalized, and then the data items
must be normalized across the data blocks, complicating
arithmetic processing. This causes Such problems as
increased computational load, decreased computing speed,
and increase in the number of circuit element. The same is
true for subtraction across two or more data blocks.

Furthermore, when performing multiplication-accumula
tion (arithmetic operations which involve adding multiplica
tion results to obtain their total Sum; the same applies here
inafter) across two or more data blocks at the execution level
of an object program, specifically, for example, when multi
plying data in data blocks A and B and adding data in data
block C to the multiplication results, it is necessary to go
through three processes: (1) multiplication of data in data
blocks A and B, (2) digit place alignment (Scaling) between
the multiplication results and the data in data block C, and (3)
addition of data in data block C to the multiplication results.
However, for scaling after the multiplication, a longer bit
length must be assigned to structured variables than during
the multiplication to avoid cancellation of significant digits
by Scaling. This not only increases data capacity required for
arithmetic operations, but also involves bit length conversion,
which may lower computational efficiency.
The present invention has been made in view of unsolved

problems with conventional techniques such as those
described above. Its first object is to provide a compiler appa
ratus, compiler program, and object program generating
method which make it easy to describe arithmetic operations
in source programs, make it simple to write source programs,
and reduce bugs, when performing block floating-point
operations in Software. Its second object is to provide a com
piler apparatus, compiler program, and object program gen
erating method which simplify arithmetic processing when
performing addition or subtraction in block floating-point
format using software. Its third object is to provide a compiler
apparatus, compiler program, and object program generating
method which decrease data capacity required for arithmetic
operations and improve computational efficiency when per
forming multiplication-accumulation in block floating-point
format using software.

DISCLOSURE OF THE INVENTION

To achieve the above objects, an embodiment of the present
invention sets forth a compiler apparatus which handles block
floating-point variables.

US 7,478,363 B2
3

With this configuration, the compiler apparatus handles
block floating-point variables in compilation.

Further, the present invention sets forth an embodiment of
the compiler apparatus, characterized by generating Such
instruction codes as to: calculate an operational block scale
factor based on a computing expression and on information
about operand of the computing expression; and perform a
shifting process based on the operational block scale factor
and on block scale factors and feed data to a computing unit,
in the case of block floating-point variables.

With this configuration, the compiler apparatus generate
Such instruction codes as to calculate an operational block
scale factor based on a computing expression and on infor
mation about operand of the computing expression; and per
form a shifting process based on the operational block scale
factor and on block scale factors and feed data to a computing
unit, in the case of block floating-point variables.

The present invention further sets forth an embodiment of
the compiler apparatus, characterized by generating Such
instruction codes as to: calculate an interim Scale factor based
on a computing expression and on information about operand
of the computing expression; and normalize computational
results and calculate block scale factors based on updated
group scale factors updated as a result of the normalization
and on the interim Scale factor, in the case of block floating
point output variables.

With this configuration, the compiler apparatus generates
Such instruction codes as to calculate an interim Scale factor
based on a computing expression and on information about
operand of the computing expression; and normalize compu
tational results and calculate block scale factors based on
updated group scale factors updated as a result of the normal
ization and on the interim scale factor, in the case of block
floating-point output variables.

Another embodiment of the present invention sets forth a
compiler apparatus which handles hierarchical block float
ing-point variables.

With this configuration, the compiler apparatus handles
hierarchical block floating-point variables in compilation.

Another embodiment of the present invention sets forth the
compiler apparatus, characterized by generating Such instruc
tion codes as to: calculate an operational block scale factor
based on a computing expression and on information about
operand of the computing expression; and perform a shifting
process based on the operational block scale factor, block
scale factors, and group scale factors and feed data to a com
puting unit, in the case of hierarchical block floating-point
variables.

With this configuration, the compiler apparatus generates
Such instruction codes as to calculate an operational block
scale factor based on a computing expression and on infor
mation about operand of the computing expression; and per
form a shifting process based on the operational block scale
factor, block scale factors, and group scale factors and feed
data to a computing unit, in the case of hierarchical block
floating-point variables.

Another embodiment of the present invention sets forth the
compiler apparatus, characterized by generating Such instruc
tion codes as to: calculate an interim Scale factor based on a
computing expression and on information about operand of
the computing expression; and in the case of hierarchical
block floating-point output variables, group-normalize com
putational results, calculate final group scale factors based on
the group scale factors updated as a result of the group nor
malization and on the interim scale factor, and calculate a
block scale factor from the calculated group Scale factors.

10

15

25

30

35

40

45

50

55

60

65

4
With this configuration, the compiler apparatus generates

Such instruction codes as to calculate an interim Scale factor
based on a computing expression and on information about
operand of the computing expression; and in the case of
hierarchical block floating-point output variables, group-nor
malize computational results, calculate final group scale fac
tors based on the group scale factors updated as a result of the
group normalization and on the interim Scale factor, and
calculate a block scale factor from the calculated group scale
factors.

Another embodiment of the present invention sets forth a
compiler apparatus which handles block floating-point vari
ables, characterized by generating Such instruction codes, in
the case of multiplication or division, as to calculate a block
scale factor of multiplication results based on block scale
factors of block floating-point variables.

With this configuration, the compiler apparatus generates
Such instruction codes, in the case of multiplication or divi
Sion, as to calculate a block scale factor of multiplication
results based on block scale factors of block floating-point
variables.

Another embodiment of the present invention sets forth a
compiler apparatus which handles block floating-point vari
ables and fixed-point variables, characterized by generating
Such instruction codes, in the case of multiplication or divi
Sion, as to calculate a block scale factor of multiplication
results based on block scale factors of block floating-point
variables.

With this configuration, the compiler apparatus generates
Such instruction codes, in the case of multiplication or divi
Sion, as to calculate a block scale factor of multiplication
results based on block scale factors of block floating-point
variables.

Another embodiment of the present invention sets forth a
compiler apparatus which handles hierarchical block float
ing-point variables, characterized by generating Such instruc
tion codes, in the case of multiplication or division, as to
calculate block scale factors of computational results based
on block scale factors of hierarchical block floating-point
variables.

With this configuration, the compiler apparatus generates
Such instruction codes, in the case of multiplication or divi
Sion, as to calculate block scale factors of computational
results based on block scale factors of hierarchical block
floating-point variables.

Another embodiment of the present invention sets forth a
compiler apparatus which handles block floating-point vari
ables, characterized by generating Such instruction codes, in
the case of addition or Subtraction, as to: Select a common
block scale factor based on comparison of block scale factors
of block floating-point variables; scale data in data blocks
based on the common scale factor; and perform addition or
Subtraction on the scaled data.
With this configuration, the compiler apparatus generates

Such instruction codes, in the case of addition or Subtraction,
as to select a common block scale factor based on comparison
of block scale factors of block floating-point variables; scale
data in data blocks based on the common scale factor; and
perform addition or subtraction on the scaled data.

Another embodiment of the present invention sets forth a
compiler apparatus which handles block floating-point vari
ables and fixed-point variables, characterized by generating
Such instruction codes, in the case of addition or Subtraction,
as to select a common block scale factor based on comparison
between a block scale factor of a block floating-point variable
and a virtual block scale factor of a fixed-point variable given

US 7,478,363 B2
5

by a constant; scale data in data blocks based on the common
scale factor; and perform addition or subtraction on the scaled
data.

With this configuration, the compiler apparatus generates
Such instruction codes, in the case of addition or Subtraction,
as to select a common block scale factor based on comparison
between a block scale factor of a block floating-point variable
and a virtual block scale factor of a fixed-point variable given
by a constant; scale data in data blocks based on the common
scale factor; and perform addition or subtraction on the scaled
data.

Another embodiment of the present invention sets forth a
compiler apparatus which handles hierarchical block float
ing-point variables, characterized by generating Such instruc
tion codes, in the case of addition or Subtraction, as to: select
a common block scale factor based on comparison of block
scale factors of hierarchical block floating-point variables:
scale data in data groups based on differences between the
common scale factor and group Scale factors of the respective
data groups; and perform addition or Subtraction on the scaled
data.

With this configuration, the compiler apparatus generates
Such instruction codes, in the case of addition or Subtraction,
as to select a common block scale factor based on comparison
of block scale factors of hierarchical block floating-point
variables; scale data in data groups based on differences
between the common scale factor and group Scale factors of
the respective data groups; and perform addition or Subtrac
tion on the scaled data.

Another embodiment of the present invention sets forth a
compiler apparatus which handles block floating-point vari
ables, characterized by generating such instruction codes, in
the case of addition or Subtraction, as to: Select a common
block scale factor based on comparison of block scale factors
of block floating-point variables; scale data in data blocks
based on the common scale factor; and perform addition or
Subtraction on the scaled data.

With this configuration, the compiler apparatus generates
Such instruction codes, in the case of addition or Subtraction,
as to select a common block scale factor based on comparison
of block scale factors of block floating-point variables; scale
data in data blocks based on the common scale factor; and
perform addition or Subtraction on the scaled data.

Another embodiment of the present invention sets forth a
compiler apparatus which handles block floating-point vari
ables and fixed-point variables, characterized by generating
Such instruction codes, in the case of addition or Subtraction,
as to: Select a common block scale factor based on compari
son of block scale factors of block floating-point variables:
scale data in data blocks based on the common scale factor;
and perform addition or Subtraction on the scaled data.

With this configuration, the compiler apparatus generates
Such instruction codes, in the case of addition or Subtraction,
as to: Select a common block scale factor based on compari
son of block scale factors of block floating-point variables:
scale data in data blocks based on the common scale factor;
and perform addition or Subtraction on the scaled data.

Another embodiment of the present invention sets forth a
compiler apparatus which handles hierarchical block float
ing-point variables, characterized by generating Such instruc
tion codes, in the case of addition or Subtraction, as to: select
a common block scale factor based on comparison of block
scale factors of hierarchical block floating-point variables:
scale data in data groups based on differences between the
common scale factor and group Scale factors of the respective
data groups; and perform addition or Subtraction on the scaled
data.

10

15

6
With this configuration, the compiler apparatus generates

Such instruction codes, in the case of addition or Subtraction,
as to select a common block scale factor based on comparison
of block scale factors of hierarchical block floating-point
variables; scale data in data groups based on differences
between the common scale factor and group Scale factors of
the respective data groups; and perform addition or Subtrac
tion on the scaled data.

Another embodiment of the present invention sets forth a
compiler apparatus which handles block floating-point vari
ables, characterized by: performing arithmetic operations on
block floating variables to be subjected to multiplication out
of multiplication-accumulation, accumulating multiplication
results to complete multiplication-accumulation, producing
the computational result as a computational-result data block,
and calculating a computational-result block scale factor
based on block scale factors.

With this configuration, the compiler apparatus performs
arithmetic operations on block floating variables to be sub

20 jected to multiplication out of multiplication-accumulation,

25

30

35

40

45

50

55

60

65

accumulates multiplication results to complete multiplica
tion-accumulation, produces the computational result as a
computational-result data block, and calculates a computa
tional-result block scale factor based on block scale factors.

Another embodiment of the present invention sets forth a
compiler apparatus which handles block floating-point vari
ables and fixed-point variables, characterized by: performing
arithmetic operations on block floating variables and fixed
point variables to be subjected to multiplication out of mul
tiplication-accumulation, accumulating multiplication
results to complete multiplication-accumulation, producing
the computational result as a computational-result data block,
and calculating a computational-result block scale factor
based on block scale factors.

With this configuration, the compiler apparatus performs
arithmetic operations on block floating variables and fixed
point variables to be subjected to multiplication out of mul
tiplication-accumulation, accumulates multiplication results
to complete multiplication-accumulation, produces the com
putational result as a computational-result data block, and
calculates a computational-result block scale factor based on
block scale factors.

Another embodiment of the present invention sets forth a
compiler apparatus which handles hierarchical block float
ing-point variables, characterized by: Scaling data of hierar
chical block floating variables to be subjected to multiplica
tion out of multiplication-accumulation using a scale factor
consisting of a difference between group scale factor and
block scale factor, performing arithmetic operations on the
scaled data, accumulating multiplication results to complete
multiplication-accumulation, producing the computational
result as a computational-result data block, and calculating a
computational-result block scale factor based on block scale
factors.

With this configuration, the compiler apparatus scales data
of hierarchical block floating variables to be subjected to
multiplication out of multiplication-accumulation using a
scale factor consisting of a difference between group scale
factor and block scale factor, performs arithmetic operations
on the scaled data, accumulates multiplication results to com
plete multiplication-accumulation, produces the computa
tional result as a computational-result data block, and calcu
lates a computational-result block scale factor based on block
scale factors.

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program
into an object program when the source program contains

US 7,478,363 B2
7

computing expressions which are written using block floating
variables of a Block Floating data type, characterized in that:
each of the block floating variables constitutes a data block
containing one or more data items and the data block is a
variable which represents a data structure containing a block
scale factor of the data block; and the compiler apparatus
comprises computing expression detecting means for detect
ing the computing expressions in the source program, com
puting expression expanding means for expanding the com
puting expressions detected by the computing expression
detecting means into predetermined instruction codes, and
instruction code conversion means for converting the instruc
tion codes produced by the computing expression expanding
means into the object program.

With this configuration, given a source program containing
computing expressions written using block floating variables,
the computing expression detecting means detects the com
puting expressions in the source program, the computing
expression expanding means expands the detected computing
expressions into predetermined instruction codes, and the
instruction code conversion means converts the produced
instruction codes into an object program.

In some embodiments “if input operand contain block
floating type data” means a situation in which there are two or
more input operand to be operated upon and at least one of
them is block floating type data.

Also, “if the input operand is block floating type data'
means a situation in which there is one input operand to be
operated upon (i.e., arithmetic operations are to be performed
within the data block) and the input operand is of the Block
Floating type.

Another embodiment of the present invention sets forth the
compiler apparatus, characterized in that: the computing
expression detecting means detects operators in the expres
sions, the data type of input operand for the operators, and the
data type of output operand for the operators as detection
results; and the computing expression expanding means oper
ates based on the operators and data type information about
input operand for the operators in the detection results pro
duced by the computing expression detecting means, gener
ating instruction codes which specify a process of calculating
an operational block scale factor from the block scale factors
of input data blocks if input operand contain block floating
type data, and generating instruction codes which specify a
process of feeding block floating type data into a computing
unit for performing a shifting process based on either or both
of the operational block scale factor and/or the block scale
factor of an input operand if the input operand is block float
ing type data.

With this configuration, the computing expression detect
ing means detects operators in the expressions, the data type
of input operand for the operators, and the data type of output
operand for the operators as detection results. Then, the com
puting expression expanding means operates based on the
operators and data type information about input operand for
the operators in the detection results produced by the com
puting expression detecting means, generating instruction
codes which specify a process of calculating an operational
block scale factor from the block scale factors of input data
blocks if input operand contain block floating type data, and
generating instruction codes which specify a process offeed
ing block floating type data into a computing unit for per
forming a shifting process based on either or both of the
operational block scale factor and/or the block scale factor of
an input operand if the input operand is block floating type
data.

5

10

15

25

30

35

40

45

50

55

60

65

8
Another embodiment of the present invention sets forth the

compiler apparatus, characterized in that: the computing
expression expanding means expands any block floating type
data fed to a computing unit into instruction codes which
specify a computational process based on the operators; and
the computing expression expanding means produces
instruction codes which specify a data output process for
calculating an interim block scale factor from the block scale
factors of input data blocks, normalizing computational
results which correspond to an output operand, and calculat
ing block scale factors from the interim block scale factor if
the output operand is block floating type data.

With this configuration, the computing expression expand
ing means expands any block floating type data fed to a
computing unit into instruction codes which specify a com
putational process based on the operators. If output operand
are block floating type data, the computing expression
expanding means produces instruction codes which specify a
data output process for calculating an interim block scale
factor from the block scale factors of input data blocks, nor
malizing computational results which correspond to the out
put operand, and calculating block scale factors from the
interim block scale factor.

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables of a Block Floating data type, characterized in that:
each of the block floating variables constitutes a data block
containing one or more data groups, each of which in turn
contains one or more data items and one group scale factor,
the data block being a variable which represents a data struc
ture containing a block scale factor of the data block; and the
compiler apparatus comprises computing expression detect
ing means for detecting the computing expressions in the
Source program, computing expression expanding means for
expanding the computing expressions detected by the com
puting expression detecting means into predetermined
instruction codes, and instruction code conversion means for
converting the instruction codes produced by the computing
expression expanding means into the object program.

With this configuration, given a source program containing
computing expressions written using block floating variables,
the computing expression detecting means detects the com
puting expressions in the source program, the computing
expression expanding means expands the detected computing
expressions into predetermined instruction codes, and the
instruction code conversion means converts the produced
instruction codes into an object program.

In some embodiments “if input operand contain block
floating type data” means a situation in which there are two or
more input operand to be operated upon and at least one of
them is block floating type data.

In some embodiments “if the input operand is block float
ing type data” means a situation in which there is one input
operand to be operated upon (i.e., arithmetic operations are to
be performed within the data block) and the input operand is
of the Block Floating type.

Another embodiment of the present invention sets forth the
compiler apparatus, characterized in that: the computing
expression detecting means detects operators in the expres
sions, the data type of input operand for the operators, and the
data type of output operand for the operators as detection
results; and the computing expression expanding means oper
ates based on the operators and data type information about
input operand for the operators in the detection results pro
duced by the computing expression detecting means, gener

US 7,478,363 B2

ating instruction codes which specify a process of calculating
an operational block scale factor from the block scale factors
of input data blocks if input operand contain block floating
type data, and generating instruction codes which specify a
process of feeding block floating type data into a computing
unit for performing a shifting process based on either or both
of the operational block scale factor and/or the block scale
factor of an input operand as well as on the group scale factor
if the input operand is block floating type data.

With this configuration, the computing expression detect
ing means detects operators in the expressions, the data type
of input operand for the operators, and the data type of output
operand for the operators as detection results. Then, the com
puting expression expanding means operates based on the
operators and data type information about input operand for
the operators in the detection results produced by the com
puting expression detecting means, generating instruction
codes which specify a process of calculating an operational
block scale factor from the block scale factors of input data
blocks if input operand contain block floating type data, and
generating instruction codes which specify a process offeed
ing block floating type data into a computing unit for per
forming a shifting process based on either or both of the
operational block scale factor and/or the block scale factor of
an input operand as well as on the group scale factor if the
input operand is block floating type data.

Another embodiment of the present invention sets forth the
compiler apparatus, characterized in that: the computing
expression expanding means expands any block floating type
data fed to a computing unit into instruction codes which
specify a computational process based on the operators; and
the computing expression expanding means produces
instruction codes which specify a data output process for
calculating an interim block scale factor from the block scale
factors of input data blocks, group-normalizing computa
tional results which correspond to an output operand, calcu
lating final group scale factors based on either or both of
updated group scale factors calculated as a result of the group
normalization and/or the interim block scale factor, and cal
culating a block scale factor from the calculated group scale
factors if the output operand is block floating type data.

With this configuration, the computing expression expand
ing means expands any block floating type data fed to a
computing unit into instruction codes which specify a com
putational process based on the operators. If output operand
are block floating type data, the computing expression
expanding means produces instruction codes which specify a
data output process for calculating an interim block scale
factor from the block scale factors of input data blocks, group
normalizing computational results which correspond to the
output operand, calculating final group scale factors based on
either or both of updated group scale factors calculated as a
result of the group normalization and/or the interim block
scale factor, and calculating a block scale factor from the
calculated group scale factors if the output operand is block
floating type data.

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program
into an object program when the Source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
items and the data block is a variable which represents a data
structure containing a block scale factor of the data block; and
the compiler apparatus comprises computing expression
detecting means for detecting the computing expressions for
multiplication or division in the Source program, computing

10

15

25

30

35

40

45

50

55

60

65

10
expression expanding means for expanding the computing
expressions detected by the computing expression detecting
means into predetermined instruction codes, and instruction
code embedding means for embedding the instruction codes
produced by the computing expression expanding means in
the object program; of the computing expressions detected by
the computing expression detecting means, the computing
expression expanding means expands that part which
involves multiplication or division into instruction codes
which specify multiplication or division for data blocks cor
responding to the block floating variables to be subjected to
multiplication or division; and the process specified by the
instruction codes performs multiplication or division on data
in the data blocks, produces the computational result as a
computational-result data block, and calculates the block
scale factor of the computational-result data block based on
the block scale factors of the data blocks.

With this configuration, given a source program containing
computing expressions written using block floating variables,
the computing expression detecting means detects the com
puting expressions for multiplication or division in the source
program, the computing expression expanding means
expands that part of the detected computing expressions
which involves multiplication or division into instruction
codes which specify multiplication or division for data blocks
corresponding to the block floating variables to be subjected
to multiplication or division, and instruction code embedding
means embeds the produced instruction codes in the object
program.

Thus, when the object program is executed, in relation to
that part of the computing expressions which involves multi
plication or division, multiplication or division is performed
on data in the data blocks. Then, the computational result is
produced as a computational-result data block, and the block
scale factor of the computational-result data block is calcu
lated based on the block scale factors of the data blocks.

Examples of the scale factor here include a shift amount
used to bit-shift data. In this case, Scaling is performed by
bit-shifting data by a shift amount equivalent to a given scale
factor. This also applies to embodiments of the compiler
apparatus.

Also, the object program may be an executable program
containing instruction codes which can be executed directly
by a processing unit such as a CPU or DSP (Digital Signal
Processor) or an intermediate file such as a text file which
represents a program written in a lower-level language than a
language used for the Source program. This also applies to
embodiments of the compiler apparatus.

Also, the data blocks corresponding to the block floating
variables to be subjected to multiplication or division may be
two or more different data blocks or a single data block. That
is, multiplication or division may be performed either across
different data blocks or within the same data block. This also
applies to embodiments of the compiler apparatus.

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables and fixed-point variables, characterized in that: each
of the block floating variables constitutes a data block con
taining one or more data items and the data block is a variable
which represents a data structure containing a block scale
factor of the data block; each of the fixed-point variables
represents a data structure which constitutes a data block
containing one or more data items; the compiler apparatus
comprises computing expression detecting means for detect
ing the computing expressions for multiplication or division

US 7,478,363 B2
11

in the source program, computing expression expanding
means for expanding the computing expressions detected by
the computing expression detecting means into predeter
mined instruction codes, and instruction code embedding
means for embedding the instruction codes produced by the
computing expression expanding means in the object pro
gram; of the computing expressions detected by the comput
ing expression detecting means, the computing expression
expanding means expands that part which involves multipli
cation or division into instruction codes which specify mul
tiplication or division for data blocks corresponding to the
block floating variables and fixed-point variables to be sub
jected to multiplication or division; and the process specified
by the instruction codes performs multiplication or division
on data in the data blocks which correspond to the block
floating variables and data in the data blocks which corre
spond to the fixed-point variables, produces the computa
tional result as a computational-result data block, and calcu
lates the block scale factor of the computational-result data
block based on the block scale factors of the data blocks
which correspond to the block floating variables.

With this configuration, given a source program containing
computing expressions written using block floating variables
and fixed-point variables, the computing expression detecting
means detects the computing expressions for multiplication
or division in the Source program, the computing expression
expanding means expands that part of the detected computing
expressions which involves multiplication or division into
instruction codes which specify multiplication or division for
data blocks corresponding to the block floating variables and
fixed-point variables to be subjected to multiplication or divi
sion, and instruction code embedding means embeds the pro
duced instruction codes in the object program.

Thus, when the object program is executed, in relation to
that part of the computing expressions which involves multi
plication or division, multiplication or division is performed
on data in the data blocks which correspond to the block
floating variables and data in the data blocks which corre
spond to the fixed-point variables. Then, the computational
result is produced as a computational-result data block, and
the block scale factor of the computational-result data block is
calculated based on the block scale factors of the data blocks
which correspond to the block floating variables.

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program
into an object program when the Source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
groups, each of which in turn contains one or more data items,
the data block being a variable which represents a data struc
ture containing the group scale factors of the respective data
groups and the block scale factor of the data block; the com
piler apparatus comprises computing expression detecting
means for detecting the computing expressions for multipli
cation or division in the Source program, computing expres
sion expanding means for expanding the computing expres
sions detected by the computing expression detecting means
into predetermined instruction codes, and instruction code
embedding means for embedding the instruction codes pro
duced by the computing expression expanding means in the
object program; of the computing expressions detected by the
computing expression detecting means, the computing
expression expanding means expands that part which
involves multiplication or division into instruction codes
which specify multiplication or division for data blocks cor
responding to the block floating variables to be subjected to

10

15

25

30

35

40

45

50

55

60

65

12
multiplication or division; and the process specified by the
instruction codes performs multiplication or division on data
in each data group of the data block, produces the computa
tional result as a computational-result data block, and calcu
lates the block scale factor of the computational-result data
block based on the block scale factor of the data block.

With this configuration, given a source program containing
computing expressions written using block floating variables,
the computing expression detecting means detects the com
puting expressions for multiplication or division in the source
program, the computing expression expanding means
expands that part of the detected computing expressions
which involves multiplication or division into instruction
codes which specify multiplication or division for data blocks
corresponding to the block floating variables to be subjected
to multiplication or division, and instruction code embedding
means embeds the produced instruction codes in the object
program.

Thus, when the object program is executed, in relation to
that part of the computing expressions which involves multi
plication or division, multiplication or division is performed
on each data in the data blocks. Then, the computational result
is produced as a computational-result data block, and the
block scale factor of the computational-result data block is
calculated based on the block scale factors of the data blocks.

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
items and the data block is a variable which represents a data
structure containing a block scale factor of the data block; the
compiler apparatus comprises computing expression detect
ing means for detecting the computing expressions for addi
tion or subtraction in the Source program, computing expres
sion expanding means for expanding the computing
expressions detected by the computing expression detecting
means into predetermined instruction codes, and instruction
code embedding means for embedding the instruction codes
produced by the computing expression expanding means in
the object program; of the computing expressions detected by
the computing expression detecting means, the computing
expression expanding means expands that part which
involves addition or subtraction into instruction codes which
specify addition or subtraction for data blocks corresponding
to the block floating variables to be subjected to addition or
Subtraction; and the process specified by the instruction codes
selects the block scale factor of the data block containing data
with the maximum absolute value as a common block scale
factor, Scales data in the data blocks based on the common
block scale factor, and performs addition or subtraction on the
scaled data in the data blocks.
With this configuration, given a source program containing

computing expressions written using block floating variables,
the computing expression detecting means detects the com
puting expressions for addition or Subtraction in the Source
program, the computing expression expanding means
expands that part of the detected computing expressions
which involves addition or subtraction into instruction codes
which specify addition or subtraction for data blocks corre
sponding to the block floating variables to be subjected to
addition or subtraction, and instruction code embedding
means embeds the produced instruction codes in the object
program.

Thus, when the object program is executed, the block scale
factor of the data block containing data with the maximum

US 7,478,363 B2
13

absolute value is selected as a common block scale factor in
relation to that part of the computing expressions which
involves addition or subtraction. Then, data in the data blocks
is scaled based on the common block scale factor and addition
or subtraction is performed on the scaled data in the data 5
blocks.

Also, the data blocks corresponding to the block floating
variables to be subjected to addition or subtraction may be
two or more different data blocks or a single data block. That
is, addition or subtraction may be performed either across 10
different data blocks or within the same data block. This also
applies to embodiments of the compiler apparatus, the com
piler programs, and object program generating methods.

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program 15
into an object program when the Source program contains
computing expressions which are written using block floating
variables and fixed-point variables, characterized in that: each
of the block floating variables constitutes a data block con
taining one or more data items and the data block is a variable 20
which represents a data structure containing a block scale
factor of the data block; each of the fixed-point variables
represents a data structure which constitutes a data block
containing one or more data items; the compiler apparatus
comprises computing expression detecting means for detect- 25
ing the computing expressions for addition or subtraction in
the Source program, computing expression expanding means
for expanding the computing expressions detected by the
computing expression detecting means into predetermined
instruction codes, and instruction code embedding means for 30
embedding the instruction codes produced by the computing
expression expanding means in the object program; of the
computing expressions detected by the computing expression
detecting means, the computing expression expanding means
expands that part which involves addition or subtraction into 35
instruction codes which specify addition or subtraction for
data blocks corresponding to the block floating variables and
fixed-point variables to be subjected to addition or subtrac
tion; and the process specified by the instruction codes cal
culates a virtual block scale factor of fixed-point data blocks 40
as a constant, selects the block scale factor of the data block
containing data with the maximum absolute value as a com
mon block scale factor from among the block scale factors of
the data blocks which correspond to the block floating vari
ables and the virtual block scale factor, scales data in the data 45
blocks based on the common block scale factor, and performs
addition or subtraction on the scaled data in the data blocks
and data in the data blocks which correspond to the fixed
point variables.

With this configuration, given a source program containing 50
computing expressions written using block floating variables
and fixed-point variables, the computing expression detecting
means detects the computing expressions for addition or Sub
traction in the source program, the computing expression
expanding means expands that part of the detected computing 55
expressions which involves addition or subtraction into
instruction codes which specify addition or subtraction for
data blocks corresponding to the block floating variables and
fixed-point variables to be subjected to addition or subtrac
tion, and instruction code embedding means embeds the pro- 60
duced instruction codes in the object program.

Thus, when the object program is executed, in relation to
that part of the computing expressions which involves addi
tion or subtraction, a virtual block scale factor given as a
constant is calculated for fixed-point data blocks, the block 65
scale factor of the data block containing data with the maxi
mum absolute value as a common block scale factor is

14
selected from among the block scale factors of the data blocks
which correspond to the block floating variables and the
virtual block scale factor, data in the data blocks are scaled
based on the common block scale factor. Then, addition or
subtraction is performed on the scaled data in the data blocks
and data in the data blocks which correspond to the fixed
point variables.

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
groups, each of which in turn contains one or more data items,
the data block being a variable which represents a data struc
ture containing the group scale factors of the respective data
groups and the block scale factor of the data block; the com
piler apparatus comprises computing expression detecting
means for detecting the computing expressions for addition
or subtraction in the Source program, computing expression
expanding means for expanding the computing expressions
detected by the computing expression detecting means into
predetermined instruction codes, and instruction code
embedding means for embedding the instruction codes pro
duced by the computing expression expanding means in the
object program; of the computing expressions detected by the
computing expression detecting means, the computing
expression expanding means expands that part which
involves addition or subtraction into instruction codes which
specify addition or subtraction for data blocks corresponding
to the block floating variables to be subjected to addition or
subtraction; and the process specified by the instruction codes
selects the block scale factor of the data block containing data
with the maximum absolute value as a common block scale
factor, Scales data in the data groups in each data block based
on Scale factors consisting of differences between the group
scale factors of the respective data groups and the common
block scale factor, and performs addition or subtraction on the
scaled data in the data blocks.
With this configuration, given a source program containing

computing expressions written using block floating variables,
the computing expression detecting means detects the com
puting expressions for addition or Subtraction in the Source
program, the computing expression expanding means
expands that part of the detected computing expressions
which involves addition or subtraction into instruction codes
which specify addition or subtraction for data blocks corre
sponding to the block floating variables to be subjected to
addition or subtraction, and instruction code embedding
means embeds the produced instruction codes in the object
program.

Thus, when the object program is executed, the block scale
factor of the data block containing data with the maximum
absolute value is selected as a common block scale factor in
relation to that part of the computing expressions which
involves addition or subtraction. Then, data in the data groups
in each data block are scaled based on scale factors consisting
of differences between the group scale factors of the respec
tive data groups and the common block scale factor, and
addition or subtraction is performed on the scaled data in the
data blocks.

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data

US 7,478,363 B2
15

items and the data block is a variable which represents a data
structure containing a block scale factor of the data block; the
compiler apparatus comprises computing expression detect
ing means for detecting the computing expressions for mul
tiplication-accumulation in the source program, computing
expression expanding means for expanding the computing
expressions detected by the computing expression detecting
means into predetermined instruction codes, and instruction
code embedding means for embedding the instruction codes
produced by the computing expression expanding means in
the object program; of the computing expressions detected by
the computing expression detecting means, the computing
expression expanding means expands that part which
involves multiplication-accumulation into instruction codes
which specify multiplication-accumulation for a first data
block and second data block which correspond to two block
floating variables to be subjected to multiplication and a third
data block which corresponds to a block floating variable to
be subjected to addition or Subtraction; and the process speci
fied by the instruction codes comprises a first scaling process
for scaling data in the first data block based on a given scale
factor, a second Scaling process for Scaling data in the third
data block based on a given scale factor, a multiplication
process for multiplying the second data block by the first data
block from the first Scaling process, and a computational
process for performing addition or subtraction using the mul
tiplication-result data block from the multiplication process
and the third data block from the second scaling process,
further calculates a corrective block scale factor which is a
difference between a multiplication-result block scale factor
and the block scale factor of the third data block, the multi
plication-result block scale factor being the sum of the block
scale factors of the first data block and the second data block,
and gives the corrective block scale factor to the first scaling
process, feeds data from the first data block to the first scaling
process, gives no scale factor to the second scaling process,
and feeds data from the third data block to the second scaling
process.

With this configuration, given a source program containing
computing expressions written using block floating variables,
the computing expression detecting means detects the com
puting expressions for multiplication-accumulation in the
given source program, the computing expression expanding
means expands that part of the detected computing expres
sions which involves multiplication-accumulation into
instruction codes which specify multiplication-accumulation
for a first data block and second data block which correspond
to two block floating variables to be subjected to multiplica
tion and a third data block which corresponds to a block
floating variable to be subjected to addition or subtraction,
and instruction code embedding means embeds the produced
instruction codes in the object program.

Thus, when the object program is executed, in relation to
that part of the computing expressions which involves multi
plication-accumulation, a corrective block scale factor is cal
culated as a difference between a multiplication-result block
scale factor and the block scale factor of the third data block
and scale correction processes for digit place alignment
among the data blocks are performed to align digit places
before performing addition or Subtraction in a multiplication
process.
When a scale correction process is started, the process

gives the corrective block scale factor to the first scaling
process and feeds data from the first data block to the first
Scaling process. The process Scales the data in the first data
block based on the corrective block scale factor. Then, the
multiplication process multiplies the second data block by the

10

15

25

30

35

40

45

50

55

60

65

16
first data block from the first scaling process and feeds the
result to the computational process as a multiplication-result
data block. Thus, the data in the multiplication-result data
block are corrected by means of Scaling with respect to the
first data block before multiplication so that their digit places
will be aligned with those of the data in the third data block.
On the other hand, since no scale factor is given to the

second Scaling process and data from the third data block is
fed to the second scaling process, the data in the third data
block are fed to the computational process without Scaling. In
the final addition or subtraction, the computational process
performs addition or Subtraction using the multiplication
result data block from the multiplication process and the third
data block from the second Scaling process, with the digit
places aligned.

Another embodiment of the present invention sets forth the
compiler apparatus, characterized in that the process speci
fied by the instruction codes performs either: a first scale
correction process for giving the corrective block scale factor
to the first scaling process, feeding data from the first data
block to the first scaling process, giving no scale factor to the
second scaling process, and feeding data from the third data
block to the second scaling process; or a second scale correc
tion process for giving the corrective block scale factor to the
second scaling process, feeding data from the third data block
to the second scaling process, giving no scale factor to the first
Scaling process, and feeding data from the first data block to
the first Scaling process.

With this configuration, when the object program is
executed, in relation to multiplication-accumulation out of
the computing expressions, a corrective block scale factor is
calculated as a difference between a multiplication-result
block scale factor and the block scale factor of the third data
block and either the first scale correction process or second
scale correction process is performed.
When the first scale correction process is started, the pro

cess gives the corrective block scale factor to the first scaling
process and feeds data from the first data block to the first
Scaling process. The process scales the data in the first data
block based on the corrective block scale factor by the first
Scaling process. Then, the multiplication process multiplies
the second data block by the first data block from the first
Scaling process and feeds the result to the computational
process as a multiplication-result data block. Thus, the data in
the multiplication-result data block are corrected by means of
scaling with respect to the first data block before multiplica
tion so that their digit places will be aligned with those of the
data in the third data block.

On the other hand, since no scale factor is given to the
second Scaling process and data from the third data block is
fed to the second scaling process, the data in the third data
block are fed to the computational process without Scaling. In
the final addition or subtraction, the computational process
performs addition or Subtraction using the multiplication
result data block from the multiplication process and the third
data block from the second Scaling process, with the digit
places aligned.
When the second scale correction process is started, the

process gives the corrective block scale factor to the second
Scaling process and feeds data from the third data block to the
second scaling process. The second scaling process scales the
data in the third data block based on the corrective block scale
factor and feeds the result to the computational process. Thus,
the data in the third data block are corrected by means of
Scaling so that their digit places will be aligned with those of
the data in the multiplication-result data block.

US 7,478,363 B2
17

On the other hand, since no scale factor is given to the first
Scaling process and data from the first data block is fed to the
first Scaling process, the data in the first data block are fed to
the multiplication process without Scaling. Then, the multi
plication process multiplies the second data block by the first
data block from the first scaling process and feeds the result to
the computational process as a multiplication-result data
block. In the final addition or subtraction, the computational
process performs addition or subtraction using the multipli
cation-result data block from the multiplication process and
the third data block from the second scaling process, with the
digit places aligned.

Another embodiment of the present invention sets forth the
compiler apparatus, characterized in that: the process speci
fied by the instruction codes selectively performs either the
first scale correction process or the second scale correction
process based on magnitude relation between the multiplica
tion-result block scale factor and the block scale factor of the
third data block.

With this configuration, the compiler apparatus selectively
performs either the first scale correction process or the second
scale correction process based on magnitude relation between
the multiplication-result block scale factor and the block
scale factor of the third data block.

Another embodiment of the present invention sets forth the
compiler apparatus, characterized in that: the first scaling
process shifts inputted data to lower-order bits by a shift
amount equivalent to a given scale factor; the second scaling
process shifts inputted data to lower-order bits by a shift
amount equivalent to a given scale factor; and the process
specified by the instruction codes performs the first scale
correction process when the block scale factor of the third
data block is larger than the multiplication-result block scale
factor, and performs the second scale correction process when
the multiplication-result block scale factor is larger than the
block scale factor of the third data block.

With this configuration, when the block scale factor of the
third data block is larger than the multiplication-result block
scale factor, the compiler apparatus performs the first scale
correction process. On the other hand, when the multiplica
tion-result block scale factor is larger than the block scale
factor of the third data block, the compiler apparatus performs
the second scale correction process. That is, the first scaling
process or second scaling process shifts the data in the Smaller
of the block scale factors—the block scale factor of the third
data block and the multiplication-result block scale factor—
to lower-order bits by a shift amount equivalent to the correc
tive block scale factor (hereinafter referred to simply as right
shifting).

Another embodiment of the present invention sets forth the
compiler apparatus, characterized in that: the first scaling
process shifts inputted data to higher-order bits by a shift
amount equivalent to a given scale factor; the second scaling
process shifts inputted data to higher-order bits by a shift
amount equivalent to a given scale factor; and the process
specified by the instruction codes performs the second scale
correction process when the block scale factor of the third
data block is larger than the multiplication-result block scale
factor, and performs the first scale correction process when
the multiplication-result block scale factor is larger than the
block scale factor of the third data block.

With this configuration, when the block scale factor of the
third data block is larger than the multiplication-result block
scale factor, the compiler apparatus performs the second scale
correction process. On the other hand, when the multiplica
tion-result block scale factor is larger than the block scale
factor of the third data block, the compiler apparatus performs

10

15

25

30

35

40

45

50

55

60

65

18
the first scale correction process. That is, the first scaling
process or second Scaling process shifts the data in the Smaller
of the block scale factors—the block scale factor of the third
data block and the multiplication-result block scale factor—
to higher-order bits by a shift amount equivalent to the cor
rective block scale factor (hereinafter referred to simply as
left-shifting).

Another embodiment of the present invention sets forth a
compiler apparatus which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
groups, each of which in turn contains one or more data items,
the data block being a variable which represents a data struc
ture containing the group scale factors of the respective data
groups and the block scale factor of the data block; the com
piler apparatus comprises computing expression detecting
means for detecting the computing expressions for multipli
cation-accumulation in the Source program, computing
expression expanding means for expanding the computing
expressions detected by the computing expression detecting
means into predetermined instruction codes, and instruction
code embedding means for embedding the instruction codes
produced by the computing expression expanding means in
the object program; of the computing expressions detected by
the computing expression detecting means, the computing
expression expanding means expands that part which
involves multiplication-accumulation into instruction codes
which specify multiplication-accumulation for a first data
block and second data block which correspond to two block
floating variables to be subjected to multiplication and a third
data block which corresponds to a block floating variable to
be subjected to addition or Subtraction; and the process speci
fied by the instruction codes comprises a first scaling process
for Scaling data in the first data block based on a given scale
factor, a second scaling process for scaling data in the third
data block based on a given scale factor, a multiplication
process for multiplying the second data block by the first data
block from the first Scaling process, and a computational
process for performing addition or subtraction using the mul
tiplication-result data block from the multiplication process
and the third data block from the second Scaling process,
calculates a corrective block scale factor which is a difference
between a multiplication-result block scale factor and the
block scale factor of the third data block, the multiplication
result block scale factor being the sum of the block scale
factors of the first data block and the second data block, and
adds the corrective block scale factor to the scale factor con
sisting of the difference between the group scale factor of
each data group in the first data block and the block scale
factor of the first data block, gives the sum to the first scaling
process, and feeds data in the data group to the first scaling
process as well as gives the scale factor consisting of the
difference between the group scale factor of each data group
in the third data block and the block scale factor of the third
data block to the second scaling process and feeds data in the
data group to the second scaling process.

With this configuration, given a source program containing
computing expressions written using block floating variables,
the computing expression detecting means detects the com
puting expressions for multiplication-accumulation in the
given source program, the computing expression expanding
means expands that part of the detected computing expres
sions which involves multiplication-accumulation into
instruction codes which specify multiplication-accumulation
for a first data block and second data block which correspond

US 7,478,363 B2
19

to two block floating variables to be subjected to multiplica
tion and a third data block which corresponds to a block
floating variable to be subjected to addition or subtraction,
and instruction code embedding means embeds the produced
instruction codes in the object program.

Thus, when the object program is executed, in relation to
that part of the computing expressions which involves multi
plication-accumulation, a corrective block scale factor is cal
culated as a difference between a multiplication-result block
scale factor and the block scale factor of the third data block
and scale correction processes for digit place alignment
among the data blocks are performed to align digit places
before performing addition or Subtraction in a multiplication
process.

When a scale correction process is started, the process adds
the corrective block scale factor to the scale factor consisting
of the difference between the group scale factor of each data
group in the first data block and the block scale factor of the
first data block, gives the Sum to the first scaling process, and
feeds data in the data group to the first scaling process. Then,
the first scaling process Scales data in the first data block
based on the group scale factors, block scale factor, and
corrective block scale factor. Then, the multiplication process
multiplies the second data block by the first data block from
the first Scaling process and feeds the result to the computa
tional process as a multiplication-result data block. Thus, the
data in the multiplication-result data block are corrected by
means of scaling with respect to the first data block before
multiplication so that their digit places will be aligned with
those of the data in the third data block.

On the other hand, the process feeds the scale factors con
sisting of the differences between the group scale factors of
data groups in the third data block and the block scale factor
of the third data block to the second scaling process together
with data in the data groups. Then, the second scaling process
scales the data in the third data block based on the group scale
factors and block scale factor and feeds the result to the
computational process. In the final addition or Subtraction,
the computational process performs addition or subtraction
using the multiplication-result data block from the multipli
cation process and the third data block from the second scal
ing process, with the digit places aligned.

Another embodiment of the present invention sets forth the
compiler apparatus, characterized in that the process speci
fied by the instruction codes performs either: a first scale
correction process for adding the corrective block scale factor
to the scale factor consisting of the difference between the
group scale factor of each data group in the first data block and
the block scale factor of the first data block, giving the sum to
the first scaling process, and feeding data in the data group to
the first scaling process as well as giving the scale factor
consisting of the difference between the group scale factor of
each data group in the third data block and the block scale
factor of the third data block to the second Scaling process and
feeding data in the data group to the second scaling process;
or a second scale correction process for adding the corrective
block scale factor to the scale factor consisting of the differ
ence between the group Scale factor of each data group in the
third data block and the block scale factor of the third data
block, giving the Sum to the second scaling process, and
feeding data in the data group to the second scaling process as
well as giving the scale factor consisting of the difference
between the group scale factor of each data group in the first
data block and the block scale factor of the first data block to
the first scaling process and feeding data in the data group to
the first Scaling process.

10

15

25

30

35

40

45

50

55

60

65

20
With this configuration, when the object program is

executed, in relation to multiplication-accumulation out of
the computing expressions, a corrective block scale factor is
calculated as a difference between a multiplication-result
block scale factor and the block scale factor of the third data
block and either the first scale correction process or second
scale correction process is performed.
When the first scale correction process is started, the pro

cess adds the corrective block scale factor to the scale factor
consisting of the difference between the group scale factor of
each data group in the first data block and the block scale
factor of the first data block, gives the sum to the first scaling
process, and feeds data in the data group to the first scaling
process. Then, the first Scaling process scales data in the first
data block based on the group scale factors, block scalefactor,
and corrective block scale factor. Then, the multiplication
process multiplies the second data block by the first data
block from the first scaling process and feeds the result to the
computational process as a multiplication-result data block.
Thus, the data in the multiplication-result data block are
corrected by means of Scaling with respect to the first data
block before multiplication so that their digit places will be
aligned with those of the data in the third data block.
On the other hand, the second scale correction gives the

scale factor consisting of the difference between the group
scale factor of each data group in the third data block and the
block scale factor of the third data block to the second scaling
process and feeds data in the data group to the second scaling
process. Then, the second Scaling process scales the data in
the third data block based on the groupscale factors and block
scale factor and feeds the result to the computational process.
In the final addition or subtraction, the computational process
performs addition or Subtraction using the multiplication
result data block from the multiplication process and the third
data block from the second Scaling process, with the digit
places aligned.
When the second scale correction process is started, the

process adds the corrective block scale factor to the scale
factor consisting of the difference between the group scale
factor of each data group in the third data block and the block
scale factor of the third data block, gives the sum to the second
Scaling process, and feeds data in the data group to the second
Scaling process. Then, the second scaling process Scales the
data in the third data block based on the group scale factors,
block scale factor, and corrective block scale factor and feeds
the result to the computational process. Thus, the data in the
third data block are corrected by means of scaling so that their
digit places will be aligned with those of the data in the
multiplication-result data block.
On the other hand, the process feeds the scale factors con

sisting of the differences between the group scale factors of
data groups in the first data block and the block scale factor of
the first data block to the first scaling process together with
data in the data groups. Then, the first scaling process Scales
the data in the first data block based on the group scale factors
and block scale factor and feeds the result to the multiplica
tion process. Then, the multiplication process multiplies the
second data block by the first data block from the first scaling
process and feeds the result to the computational process as a
multiplication-result data block. In the final addition or sub
traction, the computational process performs addition or Sub
traction using the multiplication-result data block from the
multiplication process and the third data block from the sec
ond scaling process, with the digit places aligned.

US 7,478,363 B2
21

On the other hand, to achieve the above objects, an embodi
ment of the present invention sets forth a compiler program
that makes a computer execute processes which handle block
floating-point variables.

Another embodiment of the present invention sets forth the
compiler program, characterized by making a computer
execute the process of generating Such instruction codes as to:
calculate an operational block scale factor based on a com
puting expression and on information about operand of the
computing expression; and perform a shifting process based
on the operational block scale factor and on block scale fac
tors and feed data to a computing unit, in the case of block
floating-point variables.

Another embodiment of the present invention sets forth the
compiler program, characterized by making a computer
execute the process of generating Such instruction codes as to:
calculate an interim Scale factor based on a computing expres
sion and on information about operand of the computing
expression; and normalize computational results and calcu
late block scale factors based on updated group scale factors
updated as a result of the normalization and on the interim
scale factor, in the case of block floating-point output vari
ables.

Another embodiment of the present invention sets forth a
compiler program that makes a computer execute processes
which handle hierarchical block floating-point variables.

Another embodiment of the present invention sets forth the
compiler program, characterized by making a computer
execute the process of generating Such instruction codes as to:
calculate an operational block scale factor based on a com
puting expression and on information about operand of the
computing expression; and perform a shifting process based
on the operational block scale factor, block scale factors, and
group scale factors and feed data to a computing unit, in the
case of hierarchical block floating-point variables.

Another embodiment of the present invention sets forth the
compiler program, characterized by making a computer
execute the process of generating Such instruction codes as to:
calculate an interim Scale factor based on a computing expres
sion and on information about operand of the computing
expression; and in the case of hierarchical block floating
point output variables, group-normalize computational
results, calculate final group scale factors based on the group
scale factors updated as a result of the group normalization
and on the interim Scale factor, and calculate a block scale
factor from the calculated group scale factors.

Another embodiment of the present invention sets forth a
compiler program which handles block floating-point vari
ables, characterized by making a computer execute the pro
cess of generating Such instruction codes, in the case of
multiplication or division, as to calculate a block scale factor
of multiplication results based on block scale factors of block
floating-point variables.

Another embodiment of the present invention sets forth a
compiler program which handles block floating-point vari
ables and fixed-point variables, characterized by making a
computer execute the process of generating such instruction
codes, in the case of multiplication or division, as to calculate
a block scale factor of multiplication results based on block
scale factors of block floating-point variables.

Another embodiment of the present invention sets forth a
compiler program which handles hierarchical block floating
point variables, characterized by making a computer execute
the process of generating Such instruction codes, in the case
of multiplication or division, as to calculate block scale fac
tors of computational results based on block scale factors of
hierarchical block floating-point variables.

10

15

25

30

35

40

45

50

55

60

65

22
Another embodiment of the present invention sets forth a

compiler program which handles block floating-point vari
ables, characterized by making a computer execute the pro
cess of generating Such instruction codes, in the case of addi
tion or subtraction, as to: select a common block scale factor
based on comparison of block scale factors of block floating
point variables; scale data in data blocks based on the com
mon Scale factor, and perform addition or Subtraction on the
scaled data.

Another embodiment of the present invention sets forth a
compiler program which handles block floating-point vari
ables and fixed-point variables, characterized by making a
computer execute the process of generating Such instruction
codes, in the case of addition or Subtraction, as to: select a
common block scale factor based on comparison between a
block scale factor of a block floating-point variable and a
virtual block scale factor of a fixed-point variable given by a
constant; scale data in data blocks based on the common scale
factor; and perform addition or Subtraction on the scaled data.

Another embodiment of the present invention sets forth a
compiler program which handles hierarchical block floating
point variables, characterized by making a computer execute
the process of generating Such instruction codes, in the case of
addition or Subtraction, as to: select a common block scale
factor based on comparison of block scale factors of hierar
chical block floating-point variables; scale data in data groups
based on differences between the common scale factor and
group scale factors of the respective data groups; and perform
addition or subtraction on the scaled data.

Another embodiment of the present invention sets forth a
compiler program which handles block floating-point vari
ables, characterized by making a computer execute the pro
cess of generating Such instruction codes, in the case of addi
tion or subtraction, as to: select a common block scale factor
based on comparison of block scale factors of block floating
point variables; scale data in data blocks based on the com
mon Scale factor, and perform addition or Subtraction on the
scaled data.

Another embodiment of the present invention sets forth a
compiler program which handles block floating-point vari
ables and fixed-point variables, characterized by making a
computer execute the process of generating Such instruction
codes, in the case of addition or Subtraction, as to: select a
common block scale factor based on comparison of block
scale factors of block floating-point variables; Scale data in
data blocks based on the common scale factor; and perform
addition or subtraction on the scaled data.

Another embodiment of the present invention sets forth a
compiler program which handles hierarchical block floating
point variables, characterized by making a computer execute
the process of generating Such instruction codes, in the case of
addition or Subtraction, as to: select a common block scale
factor based on comparison of block scale factors of hierar
chical block floating-point variables; scale data in data groups
based on differences between the common scale factor and
group scale factors of the respective data groups; and perform
addition or subtraction on the scaled data.

Another embodiment of the present invention sets forth a
compiler program which handles block floating-point vari
ables, characterized by making a computer execute the pro
cess of performing arithmetic operations on block floating
variables to be subjected to multiplication out of multiplica
tion-accumulation, accumulating multiplication results to
complete multiplication-accumulation, producing the com
putational result as a computational-result data block, and
calculating a computational-result block scale factor based on
block scale factors.

US 7,478,363 B2
23

Another embodiment of the present invention sets forth a
compiler program which handles block floating-point vari
ables and fixed-point variables, characterized by making a
computer execute the process of performing arithmetic
operations on block floating variables and fixed-point vari
ables to be subjected to multiplication out of multiplication
accumulation, accumulating multiplication results to com
plete multiplication-accumulation, producing the
computational result as a computational-result data block,
and calculating a computational-result block scale factor
based on block scale factors.

Another embodiment of the present invention sets forth a
compiler program which handles hierarchical block floating
point variables, characterized by making a computer execute
the process of Scaling data of hierarchical block floating
variables to be subjected to multiplication out of multiplica
tion-accumulation using a scale factor consisting of a differ
ence between group scale factor and block scale factor, per
forming arithmetic operations on the scaled data,
accumulating multiplication results to complete multiplica
tion-accumulation, producing the computational result as a
computational-result data block, and calculating a computa
tional-result block scale factor based on block scale factors.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the Source program contains
computing expressions which are written using block floating
variables of a Block Floating data type, characterized in that:
each of the block floating variables constitutes a data block
containing one or more data items and the data block is a
variable which represents a data structure containing a block
scale factor of the data block; and the compiler program
makes a computer execute processes implemented as com
puting expression detecting means for detecting the comput
ing expressions in the source program, computing expression
expanding means for expanding the computing expressions
detected by the computing expression detecting means into
predetermined instruction codes, and instruction code con
version means for converting the instruction codes produced
by the computing expression expanding means into the object
program.

Another embodiment of the present invention sets forth the
compiler program, characterized in that: the computing
expression detecting means detects operators in the expres
sions, the data type of input operand for the operators, and the
data type of output operand for the operators as detection
results; and the computing expression expanding means oper
ates based on the operators and data type information about
input operand for the operators in the detection results pro
duced by the computing expression detecting means, gener
ating instruction codes which specify a process of calculating
an operational block scale factor from the block scale factors
of input data blocks if input operand contain block floating
type data, and generating instruction codes which specify a
process of feeding block floating type data into a computing
unit for performing a shifting process based on either or both
of the operational block scale factor and/or the block scale
factor of an input operand if the input operand is block float
ing type data.

Another embodiment of the present invention sets forth the
compiler program, characterized in that: the computing
expression expanding means expands any block floating type
data fed to a computing unit into instruction codes which
specify a computational process based on the operators; and
the computing expression expanding means produces
instruction codes which specify a data output process for
calculating an interim block scale factor from the block scale

10

15

25

30

35

40

45

50

55

60

65

24
factors of input data blocks, normalizing computational
results which correspond to an output operand, and calculat
ing block scale factors from the interim block scale factor if
the output operand is block floating type data.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables of a Block Floating data type, characterized in that:
each of the block floating variables constitutes a data block
containing one or more data groups, each of which in turn
contains one or more data items and one group scale factor,
the data block being a variable which represents a data struc
ture containing a block scale factor of the data block; and the
compiler program makes a computer execute processes
implemented as computing expression detecting means for
detecting the computing expressions in the source program,
computing expression expanding means for expanding the
computing expressions detected by the computing expression
detecting means into predetermined instruction codes, and
instruction code conversion means for converting the instruc
tion codes produced by the computing expression expanding
means into the object program.

Another embodiment of the present invention sets forth the
compiler program, characterized in that: the computing
expression detecting means detects operators in the expres
sions, the data type of input operand for the operators, and the
data type of output operand for the operators as detection
results; and the computing expression expanding means oper
ates based on the operators and data type information about
input operand for the operators in the detection results pro
duced by the computing expression detecting means, gener
ating instruction codes which specify a process of calculating
an operational block scale factor from the block scale factors
of input data blocks if input operand contain block floating
type data, and generating instruction codes which specify a
process of feeding block floating type data into a computing
unit for performing a shifting process based on either or both
of the operational block scale factor and/or the block scale
factor of an input operand as well as on the group scale factor
if the input operand is block floating type data.

Another embodiment of the present invention sets forth the
compiler program, characterized in that: the computing
expression expanding means expands any block floating type
data fed to a computing unit into instruction codes which
specify a computational process based on the operators; and
the computing expression expanding means produces
instruction codes which specify a data output process for
calculating an interim block scale factor from the block scale
factors of input data blocks, group-normalizing computa
tional results which correspond to an output operand, calcu
lating final group scale factors based on either or both of
updated group scale factors calculated as a result of the group
normalization and/or the interim block scale factor, and cal
culating a block scale factor from the calculated group scale
factors if the output operand is block floating type data.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
items and the data block is a variable which represents a data
structure containing a block scale factor of the data block; and
the compiler program makes a computer execute processes
implemented as computing expression detecting means for
detecting the computing expressions for multiplication or

US 7,478,363 B2
25

division in the Source program, computing expression
expanding means for expanding the computing expressions
detected by the computing expression detecting means into
predetermined instruction codes, and instruction code
embedding means for embedding the instruction codes pro
duced by the computing expression expanding means in the
object program; of the computing expressions detected by the
computing expression detecting means, the computing
expression expanding means expands that part which
involves multiplication or division into instruction codes
which specify multiplication or division for data blocks cor
responding to the block floating variables to be subjected to
multiplication or division; and the process specified by the
instruction codes performs multiplication or division on data
in the data blocks, produces the computational result as a
computational-result data block, and calculates the block
scale factor of the computational-result data block based on
the block scale factors of the data blocks.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the Source program contains
computing expressions which are written using block floating
variables and fixed-point variables, characterized in that: each
of the block floating variables constitutes a data block con
taining one or more data items and the data block is a variable
which represents a data structure containing a block scale
factor of the data block; each of the fixed-point variables
represents a data structure which constitutes a data block
containing one or more data items; the compiler program
makes a computer execute processes implemented as com
puting expression detecting means for detecting the comput
ing expressions for multiplication or division in the source
program, computing expression expanding means for
expanding the computing expressions detected by the com
puting expression detecting means into predetermined
instruction codes, and instruction code embedding means for
embedding the instruction codes produced by the computing
expression expanding means in the object program; of the
computing expressions detected by the computing expression
detecting means, the computing expression expanding means
expands that part which involves multiplication or division
into instruction codes which specify multiplication or divi
sion for data blocks corresponding to the block floating vari
ables and fixed-point variables to be subjected to multiplica
tion or division; and the process specified by the instruction
codes performs multiplication or division on data in the data
blocks which correspond to the block floating variables and
data in the data blocks which correspond to the fixed-point
variables, produces the computational result as a computa
tional-result data block, and calculates the block scale factor
of the computational-result data block based on the block
scale factors of the data blocks which correspond to the block
floating variables.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the Source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
groups, each of which in turn contains one or more data items,
the data block being a variable which represents a data struc
ture containing the group scale factors of the respective data
groups and the block scale factor of the data block; the com
piler program makes a computer execute processes imple
mented as computing expression detecting means for detect
ing the computing expressions for multiplication or division
in the source program, computing expression expanding

10

15

25

30

35

40

45

50

55

60

65

26
means for expanding the computing expressions detected by
the computing expression detecting means into predeter
mined instruction codes, and instruction code embedding
means for embedding the instruction codes produced by the
computing expression expanding means in the object pro
gram; of the computing expressions detected by the comput
ing expression detecting means, the computing expression
expanding means expands that part which involves multipli
cation or division into instruction codes which specify mul
tiplication or division for data blocks corresponding to the
block floating variables to be subjected to multiplication or
division; and the process specified by the instruction codes
performs multiplication or division on data in each data group
of the data block, produces the computational result as a
computational-result data block, and calculates the block
scale factor of the computational-result data block based on
the block scale factor of the data block.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
items and the data block is a variable which represents a data
structure containing a block scale factor of the data block; the
compiler program makes a computer execute processes
implemented as computing expression detecting means for
detecting the computing expressions for addition or Subtrac
tion in the source program, computing expression expanding
means for expanding the computing expressions detected by
the computing expression detecting means into predeter
mined instruction codes, and instruction code embedding
means for embedding the instruction codes produced by the
computing expression expanding means in the object pro
gram; of the computing expressions detected by the comput
ing expression detecting means, the computing expression
expanding means expands that part which involves addition
or Subtraction into instruction codes which specify addition
or subtraction for data blocks corresponding to the block
floating variables to be subjected to addition or subtraction;
and the process specified by the instruction codes selects the
block scale factor of the data block containing data with the
maximum absolute value as a common block scale factor,
scales data in the data blocks based on the common block
scale factor, and performs addition or Subtraction on the
scaled data in the data blocks.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the source program contains
computing expressions which are written using block floating
variables and fixed-point variables, characterized in that: each
of the block floating variables constitutes a data block con
taining one or more data items and the data block is a variable
which represents a data structure containing a block scale
factor of the data block; each of the fixed-point variables
represents a data structure which constitutes a data block
containing one or more data items; the compiler program
makes a computer execute processes implemented as com
puting expression detecting means for detecting the comput
ing expressions for addition or Subtraction in the Source pro
gram, computing expression expanding means for expanding
the computing expressions detected by the computing expres
sion detecting means into predetermined instruction codes,
and instruction code embedding means for embedding the
instruction codes produced by the computing expression
expanding means in the object program; of the computing
expressions detected by the computing expression detecting

US 7,478,363 B2
27

means, the computing expression expanding means expands
that part which involves addition or subtraction into instruc
tion codes which specify addition or subtraction for data
blocks corresponding to the block floating variables and
fixed-point variables to be subjected to addition or subtrac
tion; and the process specified by the instruction codes cal
culates a virtual block scale factor of fixed-point data blocks
as a constant, selects the block scale factor of the data block
containing data with the maximum absolute value as a com
mon block scale factor from among the block scale factors of 10
the data blocks which correspond to the block floating vari
ables and the virtual block scale factor, scales data in the data
blocks based on the common block scale factor, and performs
addition or subtraction on the scaled data in the data blocks
and data in the data blocks which correspond to the fixed
point variables.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the Source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
groups, each of which in turn contains one or more data items,
the data block being a variable which represents a data struc
ture containing the group scale factors of the respective data
groups and the block scale factor of the data block; the com
piler program makes a computer execute processes imple
mented as computing expression detecting means for detect
ing the computing expressions for addition or subtraction in
the Source program, computing expression expanding means
for expanding the computing expressions detected by the
computing expression detecting means into predetermined
instruction codes, and instruction code embedding means for
embedding the instruction codes produced by the computing
expression expanding means in the object program; of the
computing expressions detected by the computing expression
detecting means, the computing expression expanding means
expands that part which involves addition or subtraction into
instruction codes which specify addition or subtraction for
data blocks corresponding to the block floating variables to be
Subjected to addition or subtraction; and the process specified
by the instruction codes selects the block scale factor of the
data block containing data with the maximum absolute value
as a common block scale factor, scales data in the data groups
in each data block based on Scale factors consisting of differ
ences between the group scale factors of the respective data
groups and the common block scale factor, and performs
addition or subtraction on the scaled data in the data blocks.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the Source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
items and the data block is a variable which represents a data
structure containing a block scale factor of the data block; the
compiler program makes a computer execute processes
implemented as computing expression detecting means for
detecting the computing expressions for multiplication-accu
mulation in the source program, computing expression
expanding means for expanding the computing expressions
detected by the computing expression detecting means into
predetermined instruction codes, and instruction code
embedding means for embedding the instruction codes pro
duced by the computing expression expanding means in the
object program; of the computing expressions detected by the
computing expression detecting means, the computing

15

25

30

35

40

45

50

55

60

65

28
expression expanding means expands that part which
involves multiplication-accumulation into instruction codes
which specify multiplication-accumulation for a first data
block and second data block which correspond to two block
floating variables to be subjected to multiplication and a third
data block which corresponds to a block floating variable to
be subjected to addition or Subtraction; and the process speci
fied by the instruction codes comprises a first scaling process
for Scaling data in the first data block based on a given scale
factor, a second scaling process for scaling data in the third
data block based on a given scale factor, a multiplication
process for multiplying the second data block by the first data
block from the first Scaling process, and a computational
process for performing addition or subtraction using the mul
tiplication-result data block from the multiplication process
and the third data block from the second Scaling process,
further calculates a corrective block scale factor which is a
difference between a multiplication-result block scale factor
and the block scale factor of the third data block, the multi
plication-result block scale factor being the sum of the block
scale factors of the first data block and the second data block,
and gives the corrective block scale factor to the first scaling
process, feeds data from the first data block to the first scaling
process, gives no scale factor to the second scaling process,
and feeds data from the third data block to the second scaling
process.

Another embodiment of the present invention sets forth the
compiler program, characterized in that the process specified
by the instruction codes performs either: a first scale correc
tion process for giving the corrective block scale factor to the
first Scaling process, feeding data from the first data block to
the first scaling process, giving no scale factor to the second
Scaling process, and feeding data from the third data block to
the second scaling process; or a second scale correction pro
cess for giving the corrective block scale factor to the second
Scaling process, feeding data from the third data block to the
second scaling process, giving no scale factor to the first
Scaling process, and feeding data from the first data block to
the first Scaling process.

Another embodiment of the present invention sets forth the
compiler program, characterized in that: the process specified
by the instruction codes selectively performs either the first
scale correction process or the second scale correction pro
cess based on magnitude relation between the multiplication
result block scale factor and the block scalefactor of the third
data block.

Another embodiment of the present invention sets forth the
compiler program, characterized in that: the first scaling pro
cess shifts inputted data to lower-order bits by a shift amount
equivalent to a given scale factor; the second scaling process
shifts inputted data to lower-order bits by a shift amount
equivalent to a given scale factor, and the process specified by
the instruction codes performs the first scale correction pro
cess when the block scale factor of the third data block is
larger than the multiplication-result block scale factor, and
performs the second scale correction process when the mul
tiplication-result block scale factor is larger than the block
scale factor of the third data block.

Another embodiment of the present invention sets forth the
compiler program, characterized in that: the first scaling pro
cess shifts inputted data to higher-order bits by a shift amount
equivalent to a given scale factor; the second scaling process
shifts inputted data to higher-order bits by a shift amount
equivalent to a given scale factor, and the process specified by
the instruction codes performs the second scale correction
process when the block scale factor of the third data block is
larger than the multiplication-result block scale factor, and

US 7,478,363 B2
29

performs the first scale correction process when the multipli
cation-result block scale factor is larger than the block scale
factor of the third data block.

Another embodiment of the present invention sets forth a
compiler program which translates a given source program
into an object program when the Source program contains
computing expressions which are written using block floating
variables, characterized in that: each of the block floating
variables constitutes a data block containing one or more data
groups, each of which in turn contains one or more data items,
the data block being a variable which represents a data struc
ture containing the group scale factors of the respective data
groups and the block scale fact or of the data block; the
compiler program makes a computer execute processes
implemented as computing expression detecting means for
detecting the computing expressions for multiplication-accu
mulation in the source program, computing expression
expanding means for expanding the computing expressions
detected by the computing expression detecting means into
predetermined instruction codes, and instruction code
embedding means for embedding the instruction codes pro
duced by the computing expression expanding means in the
object program; of the computing expressions detected by the
computing expression detecting means, the computing
expression expanding means expands that part which
involves multiplication-accumulation into instruction codes
which specify multiplication-accumulation for a first data
block and second data block which correspond to two block
floating variables to be subjected to multiplication and a third
data block which corresponds to a block floating variable to
be subjected to addition or Subtraction; and the process speci
fied by the instruction codes comprises a first scaling process
for scaling data in the first data block based on a given scale
factor, a second Scaling process for Scaling data in the third
data block based on a given scale factor, a multiplication
process for multiplying the second data block by the first data
block from the first Scaling process, and a computational
process for performing addition or subtraction using the mul
tiplication-result data block from the multiplication process
and the third data block from the second scaling process,
calculates a corrective block scale factor which is a difference
between a multiplication-result block scale factor and the
block scale factor of the third data block, the multiplication
result block scale factor being the sum of the block scale
factors of the first data block and the second data block, and
adds the corrective block scale factor to the scale factor con
sisting of the difference between the group scale factor of
each data group in the first data block and the block scale
factor of the first data block, gives the sum to the first scaling
process, and feeds data in the data group to the first scaling
process as well as gives the scale factor consisting of the
difference between the group scale factor of each data group
in the third data block and the block scale factor of the third
data block to the second scaling process and feeds data in the
data group to the second scaling process.

Another embodiment of the present invention sets forth the
compiler program, characterized in that the process specified
by the instruction codes performs either: a first scale correc
tion process for adding the corrective block scale factor to the
scale factor consisting of the difference between the group
scale factor of each data group in the first data block and the
block scale factor of the first data block, giving the sum to the
first scaling process, and feeding data in the data group to the
first scaling process as well as giving the scale factor consist
ing of the difference between the group scale factor of each
data group in the third data block and the block scale factor of
the third data block to the second Scaling process and feeding

10

15

25

30

35

40

45

50

55

60

65

30
data in the data group to the second scaling process; or a
second scale correction process for adding the corrective
block scale factor to the scale factor consisting of the differ
ence between the group Scale factor of each data group in the
third data block and the block scale factor of the third data
block, giving the Sum to the second Scaling process, and
feeding data in the data group to the second Scaling process as
well as giving the scale factor consisting of the difference
between the group scale factor of each data group in the first
data block and the block scale factor of the first data block to
the first scaling process and feeding data in the data group to
the first Scaling process.

Another embodiment of the present invention sets forth the
object program generating method, characterized by gener
ating Such instruction codes as to: calculate an operational
block scale factor based on a computing expression and on
information about operand of the computing expression; and
perform a shifting process based on the operational block
scale factor and on block scale factors and feed data to a
computing unit, in the case of block floating-point variables.

Another embodiment of the present invention sets forth the
object program generating method, characterized by gener
ating Such instruction codes as to: calculate an interim scale
factor based on a computing expression and on information
about operand of the computing expression; and normalize
computational results and calculate block scale factors based
on updated group scale factors updated as a result of the
normalization and on the interim Scale factor, in the case of
block floating-point output variables.

Another embodiment of the present invention sets forth an
object program generating method which handles hierarchi
cal block floating-point variables.

Another embodiment of the present invention sets forth the
object program generating method, characterized by gener
ating Such instruction codes as to: calculate an operational
block scale factor based on a computing expression and on
information about operand of the computing expression; and
perform a shifting process based on the operational block
scale factor, block scale factors, and group scale factors and
feed data to a computing unit, in the case of hierarchical block
floating-point variables.

Another embodiment of the present invention sets forth the
object program generating method, characterized by gener
ating Such instruction codes as to: calculate an interim scale
factor based on a computing expression and on information
about operand of the computing expression; and in the case of
hierarchical block floating-point output variables, group-nor
malize computational results, calculate final group scale fac
tors based on the group scale factors updated as a result of the
group normalization and on the interim Scale factor, and
calculate a block scale factor from the calculated group scale
factors.

Another embodiment of the present invention sets forth an
object program generating method which handles block float
ing-point variables, characterized by: generating Such
instruction codes, in the case of multiplication or division, as
to calculate a block scale factor of multiplication results based
on block scale factors of block floating-point variables.

Another embodiment of the present invention sets forth an
object program generating method which handles block float
ing-point variables and fixed-point variables, characterized
by: generating Such instruction codes, in the case of multipli
cation or division, as to calculate a block scale factor of
multiplication results based on block scale factors of block
floating-point variables.

Another embodiment of the present invention sets forth an
object program generating method which handles hierarchi

US 7,478,363 B2
31

cal block floating-point variables, characterized by: generat
ing Such instruction codes, in the case of multiplication or
division, as to calculate block scale factors of computational
results based on block scale factors of hierarchical block
floating-point variables.

Another embodiment the present invention sets forth an
object program generating method which handles block float
ing-point variables, characterized by generating Such instruc
tion codes, in the case of addition or Subtraction, as to: select
a common block scale factor based on comparison of block
scale factors of block floating-point variables; Scale data in
data blocks based on the common scale factor; and perform
addition or Subtraction on the scaled data.

Another embodiment of the present invention sets forth an
object program generating method which handles block float
ing-point variables and fixed-point variables, characterized
by generating Such instruction codes, in the case of addition
or subtraction, as to: Select a common block scale factor based
on comparison between a block scale factor of a block float
ing-point variable and a virtual block scale factor of a fixed
point variable given by a constant; scale data in data blocks
based on the common scale factor; and perform addition or
Subtraction on the scaled data.

Another embodiment of the present invention sets forth an
object program generating method which handles hierarchi
cal block floating-point variables, characterized by generat
ing Such instruction codes, in the case of addition or Subtrac
tion, as to: Select a common block scale factor based on
comparison of block scale factors of hierarchical block float
ing-point variables; scale data in data groups based on differ
ences between the common scale factor and group scale fac
tors of the respective data groups; and perform addition or
Subtraction on the scaled data.

Another embodiment of the present invention sets forth an
object program generating method which handles block float
ing-point variables, characterized by generating Such instruc
tion codes, in the case of addition or Subtraction, as to: select
a common block scale factor based on comparison of block
scale factors of block floating-point variables; Scale data in
data blocks based on the common scale factor; and perform
addition or Subtraction on the scaled data.

Another embodiment of the present invention sets forth an
object program generating method which handles block float
ing-point variables and fixed-point variables, characterized
by generating Such instruction codes, in the case of addition
or subtraction, as to: Select a common block scale factor based
on comparison of block scale factors of block floating-point
variables; Scale data in data blocks based on the common
scale factor; and perform addition or subtraction on the scaled
data.

Another embodiment of the present invention sets forth an
object program generating method which handles hierarchi
cal block floating-point variables, characterized by generat
ing Such instruction codes, in the case of addition or Subtrac
tion, as to: Select a common block scale factor based on
comparison of block scale factors of hierarchical block float
ing-point variables; scale data in data groups based on differ
ences between the common scale factor and group scale fac
tors of the respective data groups; and perform addition or
Subtraction on the scaled data.

Another embodiment of the present invention sets forth an
object program generating method which handles block float
ing-point variables, characterized by: performing arithmetic
operations on block floating variables to be subjected to mul
tiplication out of multiplication-accumulation, accumulating
multiplication results to complete multiplication-accumula
tion, producing the computational result as a computational

10

15

25

30

35

40

45

50

55

60

65

32
result data block, and calculating a computational-result
block scale factor based on block scale factors.

Another embodiment of the present invention sets forth an
object program generating method which handles block float
ing-point variables and fixed-point variables, characterized
by: performing arithmetic operations on block floating vari
ables and fixed-point variables to be subjected to multiplica
tion out of multiplication-accumulation, accumulating mul
tiplication results to complete multiplication-accumulation,
producing the computational result as a computational-result
data block, and calculating a computational-result block scale
factor based on block scale factors.

Another embodiment of the present invention sets forth an
object program generating method which handles hierarchi
cal block floating-point variables, characterized by: Scaling
data of hierarchical block floating variables to be subjected to
multiplication out of multiplication-accumulation using a
scale factor consisting of a difference between group scale
factor and block scale factor, performing arithmetic opera
tions on the scaled data, accumulating multiplication results
to complete multiplication-accumulation, producing the
computational result as a computational-result data block,
and calculating a computational-result block scale factor
based on block scale factors.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the Source pro
gram contains computing expressions which are written
using block floating variables of a Block Floating data type,
characterized in that: each of the block floating variables
constitutes a data block containing one or more data items and
the data block is a variable which represents a data structure
containing a block scale factor of the data block; and the
object program generating method comprises a computing
expression detecting step of detecting the computing expres
sions in the Source program, a computing expression expand
ing step of expanding the computing expressions detected in
the computing expression detecting step into predetermined
instruction codes, and an instruction code conversion step of
converting the instruction codes produced in the computing
expression expanding step into the object program.

Another embodiment of the present invention sets forth the
object program generating method, characterized in that: the
computing expression detecting step detects operators in the
expressions, the data type of input operand for the operators,
and the data type of output operand for the operators as
detection results; and the computing expression expanding
step operates based on the operators and data type informa
tion about input operand for the operators in the detection
results produced in the computing expression detecting step,
generating instruction codes which specify a process of cal
culating an operational block scalefactor from the block scale
factors of input data blocks if input operand contain block
floating type data, and generating instruction codes which
specify a process of feeding block floating type data into a
computing unit for performing a shifting process based on
either or both of the operational block scale factor and/or the
block scale factor of an input operand if the input operand is
block floating type data.

Another embodiment of the present invention sets forth the
object program generating method, characterized in that: the
computing expression expanding step expands any block
floating type data fed to a computing unit into instruction
codes which specify a computational process based on the
operators; and the computing expression expanding step pro
duces instruction codes which specify a data output process
for calculating an interim block scale factor from the block

US 7,478,363 B2
33

scale factors of input data blocks, normalizing computational
results which correspond to an output operand, and calculat
ing block scale factors from the interim block scale factor if
the output operand is block floating type data.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the source pro
gram contains computing expressions which are written
using block floating variables of a Block Floating data type,
characterized in that: each of the block floating variables
constitutes a data block containing one or more data groups,
each of which in turn contains one or more data items and one
group scale factor, the data block being a variable which
represents a data structure containing a block scale factor of
the data block; and the object program generating method
comprises a computing expression detecting step of detecting
the computing expressions in the Source program, a comput
ing expression expanding step of expanding the computing
expressions detected in the computing expression detecting
step into predetermined instruction codes, and an instruction
code conversion step of converting the instruction codes pro
duced in the computing expression expanding step into the
object program.

Another embodiment of the present invention sets forth the
object program generating method, characterized in that: the
computing expression detecting step detects operators in the
expressions, the data type of input operand for the operators,
and the data type of output operand for the operators as
detection results; and the computing expression expanding
step operates based on the operators and data type informa
tion about input operand for the operators in the detection
results produced in the computing expression detecting step,
generating instruction codes which specify a process of cal
culating an operational block scale factor from the block scale
factors of input data blocks if input operand contain block
floating type data, and generating instruction codes which
specify a process of feeding block floating type data into a
computing unit for performing a shifting process based on
either or both of the operational block scale factor and/or the
block scale factor of an input operand as well as on the group
scale factor if the input operand is block floating type data.

Another embodiment of the present invention sets forth the
object program generating method, characterized in that: the
computing expression expanding step expands any block
floating type data fed to a computing unit into instruction
codes which specify a computational process based on the
operators; and the computing expression expanding step pro
duces instruction codes which specify a data output process
for calculating an interim block scale factor from the block
scale factors of input data blocks, group-normalizing compu
tational results which correspond to an output operand, cal
culating final group Scale factors based on either or both of
updated group scale factors calculated as a result of the group
normalization and/or the interim block scale factor, and cal
culating a block scale factor from the calculated group scale
factors if the output operand is block floating type data.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the source pro
gram contains computing expressions which are written
using block floating variables, characterized in that: each of
the block floating variables constitutes a data block contain
ing one or more data items and the data block is a variable
which represents a data structure containing a block scale
factor of the data block; and the object program generating
method comprises a computing expression detecting step of
detecting the computing expressions for multiplication or

10

15

25

30

35

40

45

50

55

60

65

34
division in the Source program, a computing expression
expanding step of expanding the computing expressions
detected in the computing expression detecting step into pre
determined instruction codes, and an instruction code embed
ding step of embedding the instruction codes produced in the
computing expression expanding step in the object program;
of the computing expressions detected in the computing
expression detecting step, the computing expression expand
ing step expands that part which involves multiplication or
division into instruction codes which specify multiplication
or division for data blocks corresponding to the block floating
variables to be subjected to multiplication or division; and the
process specified by the instruction codes performs multipli
cation or division on data in the data blocks, produces the
computational result as a computational-result data block,
and calculates the block scale factor of the computational
result data block based on the block scale factors of the data
blocks.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the Source pro
gram contains computing expressions which are written
using block floating variables and fixed-point variables, char
acterized in that: each of the block floating variables consti
tutes a data block containing one or more data items and the
data block is a variable which represents a data structure
containing a block scale factor of the data block; each of the
fixed-point variables represents a data structure which con
stitutes a data block containing one or more data items; the
object program generating method comprises a computing
expression detecting step of detecting the computing expres
sions for multiplication or division in the source program, a
computing expression expanding step of expanding the com
puting expressions detected in the computing expression
detecting step into predetermined instruction codes, and an
instruction code embedding step of embedding the instruc
tion codes produced in the computing expression expanding
step in the object program; of the computing expressions
detected in the computing expression detecting step, the com
puting expression expanding step expands that part which
involves multiplication or division into instruction codes
which specify multiplication or division for data blocks cor
responding to the block floating variables and fixed-point
variables to be subjected to multiplication or division; and the
process specified by the instruction codes performs multipli
cation or division on data in the data blocks which correspond
to the block floating variables and data in the data blocks
which correspond to the fixed-point variables, produces the
computational result as a computational-result data block,
and calculates the block scale factor of the computational
result data block based on the block scale factors of the data
blocks which correspond to the block floating variables.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the Source pro
gram contains computing expressions which are written
using block floating variables, characterized in that: each of
the block floating variables constitutes a data block contain
ing one or more data groups, each of which in turn contains
one or more data items, the data block being a variable which
represents a data structure containing the group scale factors
of the respective data groups and the block scale factor of the
data block; the object program generating method comprises
a computing expression detecting step of detecting the com
puting expressions for multiplication or division in the source
program, a computing expression expanding step of expand
ing the computing expressions detected in the computing

US 7,478,363 B2
35

expression detecting step into predetermined instruction
codes, and an instruction code embedding step of embedding
the instruction codes produced in the computing expression
expanding step in the object program; of the computing
expressions detected in the computing expression detecting
step, the computing expression expanding step expands that
part which involves multiplication or division into instruction
codes which specify multiplication or division for data blocks
corresponding to the block floating variables to be subjected
to multiplication or division; and the process specified by the
instruction codes performs multiplication or division on data
in each data group of the data block, produces the computa
tional result as a computational-result data block, and calcu
lates the block scale factor of the computational-result data
block based on the block scale factor of the data block.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the source pro
gram contains computing expressions which are written
using block floating variables, characterized in that: each of
the block floating variables constitutes a data block contain
ing one or more data items and the data block is a variable
which represents a data structure containing a block scale
factor of the data block; the object program generating
method comprises a computing expression detecting step of
detecting the computing expressions for addition or Subtrac
tion in the source program, a computing expression expand
ing step of expanding the computing expressions detected in
the computing expression detecting step into predetermined
instruction codes, and an instruction code embedding step of
embedding the instruction codes produced in the computing
expression expanding step in the object program; of the com
puting expressions detected in the computing expression
detecting step, the computing expression expanding step
expands that part which involves addition or subtraction into
instruction codes which specify addition or subtraction for
data blocks corresponding to the block floating variables to be
Subjected to addition or subtraction; and the process specified
by the instruction codes selects the block scale factor of the
data block containing data with the maximum absolute value
as a common block scale factor, scales data in the data blocks
based on the common block scale factor, and performs addi
tion or subtraction on the scaled data in the data blocks.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the source pro
gram contains computing expressions which are written
using block floating variables and fixed-point variables, char
acterized in that: each of the block floating variables consti
tutes a data block containing one or more data items and the
data block is a variable which represents a data structure
containing a block scale factor of the data block; each of the
fixed-point variables represents a data structure which con
stitutes a data block containing one or more data items; the
object program generating method comprises a computing
expression detecting step of detecting the computing expres
sions for addition or subtraction in the Source program, a
computing expression expanding step of expanding the com
puting expressions detected in the computing expression
detecting step into predetermined instruction codes, and an
instruction code embedding step of embedding the instruc
tion codes produced in the computing expression expanding
step in the object program; of the computing expressions
detected in the computing expression detecting step, the com
puting expression expanding step expands that part which
involves addition or subtraction into instruction codes which
specify addition or subtraction for data blocks corresponding

5

10

15

25

30

35

40

45

50

55

60

65

36
to the block floating variables and fixed-point variables to be
Subjected to addition or subtraction; and the process specified
by the instruction codes calculates a virtual block scale factor
offixed-point data blocks as a constant, selects the block scale
factor of the data block containing data with the maximum
absolute value as a common block scale factor from among
the block scale factors of the data blocks which correspond to
the block floating variables and the virtual block scale factor,
scales data in the data blocks based on the common block
scale factor, and performs addition or Subtraction on the
scaled data in the data blocks and data in the data blocks
which correspond to the fixed-point variables.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the Source pro
gram contains computing expressions which are written
using block floating variables, characterized in that: each of
the block floating variables constitutes a data block contain
ing one or more data groups, each of which in turn contains
one or more data items, the data block being a variable which
represents a data structure containing the group scale factors
of the respective data groups and the block scale factor of the
data block; the object program generating method comprises
a computing expression detecting step of detecting the com
puting expressions for addition or Subtraction in the Source
program, a computing expression expanding step of expand
ing the computing expressions detected in the computing
expression detecting step into predetermined instruction
codes, and an instruction code embedding step of embedding
the instruction codes produced in the computing expression
expanding step in the object program; of the computing
expressions detected in the computing expression detecting
step, the computing expression expanding step expands that
part which involves addition or subtraction into instruction
codes which specify addition or subtraction for data blocks
corresponding to the block floating variables to be subjected
to addition or subtraction; and the process specified by the
instruction codes selects the block scale factor of the data
block containing data with the maximum absolute value as a
common block scale factor, scales data in the data groups in
each data block based on Scale factors consisting of differ
ences between the group scale factors of the respective data
groups and the common block scale factor, and performs
addition or subtraction on the scaled data in the data blocks.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the Source pro
gram contains computing expressions which are written
using block floating variables, characterized in that: each of
the block floating variables constitutes a data block contain
ing one or more data items and the data block is a variable
which represents a data structure containing a block scale
factor of the data block; the object program generating
method comprises a computing expression detecting step of
detecting the computing expressions for multiplication-accu
mulation in the source program, a computing expression
expanding step of expanding the computing expressions
detected in the computing expression detecting step into pre
determined instruction codes, and an instruction code embed
ding step of embedding the instruction codes produced in the
computing expression expanding step in the object program;
of the computing expressions detected in the computing
expression detecting step, the computing expression expand
ing step expands that part which involves multiplication
accumulation into instruction codes which specify multipli
cation-accumulation for a first data block and second data
block which correspond to two block floating variables to be

US 7,478,363 B2
37

subjected to multiplication and a third data block which cor
responds to a block floating variable to be subjected to addi
tion or Subtraction; and the process specified by the instruc
tion codes comprises a first Scaling process for scaling data in
the first data block based on a given scale factor, a second
Scaling process for Scaling data in the third data block based
on a given scale factor, a multiplication process for multiply
ing the second data block by the first data block from the first
Scaling process, and a computational process for performing
addition or Subtraction using the multiplication-result data
block from the multiplication process and the third data block
from the second scaling process, further calculates a correc
tive block scale factor which is a difference between a mul
tiplication-result block scale factor and the block scale factor
of the third data block, the multiplication-result block scale
factor being the sum of the block scale factors of the first data
block and the second data block, and gives the corrective
block scale factor to the first scaling process, feeds data from
the first data block to the first scaling process, gives no scale
factor to the second scaling process, and feeds data from the
third data block to the second scaling process.

Another embodiment of the present invention sets forth the
object program generating method, characterized in that the
process specified by the instruction codes performs either: a
first scale correction process for giving the corrective block
scale factor to the first scaling process, feeding data from the
first data block to the first scaling process, giving no scale
factor to the second Scaling process, and feeding data from the
third data block to the second Scaling process; or a second
scale correction process for giving the corrective block scale
factor to the second Scaling process, feeding data from the
third data block to the second scaling process, giving no scale
factor to the first Scaling process, and feeding data from the
first data block to the first scaling process.

Another embodiment of the present invention sets forth the
object program generating method, characterized in that the
process specified by the instruction codes performs either: a
first scale correction process for giving the corrective block
scale factor to the first scaling process, feeding data from the
first data block to the first scaling process, giving no scale
factor to the second Scaling process, and feeding data from the
third data block to the second Scaling process; or a second
scale correction process for giving the corrective block scale
factor to the second Scaling process, feeding data from the
third data block to the second scaling process, giving no scale
factor to the first Scaling process, and feeding data from the
first data block to the first scaling process.

Another embodiment of the present invention sets forth the
object program generating method, characterized in that: the
process specified by the instruction codes selectively per
forms either the first scale correction process or the second
scale correction process based on magnitude relation between
the multiplication-result block scale factor and the block
scale factor of the third data block.

Another embodiment of the present invention sets forth the
object program generating method, characterized in that: the
first scaling process shifts inputted data to lower-order bits by
a shift amount equivalent to a given Scale factor, the second
Scaling process shifts inputted data to lower-order bits by a
shift amount equivalent to a given scale factor; and the pro
cess specified by the instruction codes performs the first scale
correction process when the block scale factor of the third
data block is larger than the multiplication-result block scale
factor, and performs the second scale correction process when
the multiplication-result block scale factor is larger than the
block scale factor of the third data block.

10

15

25

30

35

40

45

50

55

60

65

38
Another embodiment of the present invention sets forth the

object program generating method, characterized in that: the
first scaling process shifts inputted data to higher-order bits
by a shift amount equivalent to a given scalefactor; the second
Scaling process shifts inputted data to higher-order bits by a
shift amount equivalent to a given scale factor, and the pro
cess specified by the instruction codes performs the second
scale correction process when the block scale factor of the
third data block is larger than the multiplication-result block
scale factor, and performs the first scale correction process
when the multiplication-result block scale factor is larger than
the block scale factor of the third data block.

Another embodiment of the present invention sets forth an
object program generating method for translating a given
Source program into an object program when the Source pro
gram contains computing expressions which are written
using block floating variables, characterized in that: each of
the block floating variables constitutes a data block contain
ing one or more data groups, each of which in turn contains
one or more data items, the data block being a variable which
represents a data structure containing the group scale factors
of the respective data groups and the block scale factor of the
data block; the object program generating method comprises
a computing expression detecting step of detecting the com
puting expressions for multiplication-accumulation in the
Source program, a computing expression expanding step of
expanding the computing expressions detected in the com
puting expression detecting step into predetermined instruc
tion codes, and an instruction code embedding step of embed
ding the instruction codes produced in the computing
expression expanding step in the object program; of the com
puting expressions detected in the computing expression
detecting step, the computing expression expanding step
expands that part which involves multiplication-accumula
tion into instruction codes which specify multiplication-ac
cumulation for a first data block and second data block which
correspond to two block floating variables to be subjected to
multiplication and a third data block which corresponds to a
block floating variable to be subjected to addition or subtrac
tion; and the process specified by the instruction codes com
prises a first scaling process for scaling data in the first data
block based on a given scale factor, a second scaling process
for Scaling data in the third data block based on a given scale
factor, a multiplication process for multiplying the second
data block by the first data block from the first scaling pro
cess, and a computational process for performing addition or
Subtraction using the multiplication-result data block from
the multiplication process and the third data block from the
second Scaling process, calculates a corrective block scale
factor which is a difference between a multiplication-result
block scale factor and the block scale factor of the third data
block, the multiplication-result block scale factor being the
sum of the block scale factors of the first data block and the
second data block, and adds the corrective block scale factor
to the scale factor consisting of the difference between the
group scale factor of each data group in the first data block and
the block scale factor of the first data block, gives the sum to
the first Scaling process, and feeds data in the data group to the
first scaling process as well as gives the scale factor consisting
of the difference between the group scale factor of each data
group in the third data block and the block scale factor of the
third data block to the second Scaling process and feeds data
in the data group to the second Scaling process.

Another embodiment of the present invention sets forth the
object program generating method, characterized in that the
process specified by the instruction codes performs either: a
first scale correction process for adding the corrective block

US 7,478,363 B2
39

scale factor to the scale factor consisting of the difference
between the group scale factor of each data group in the first
data block and the block scale factor of the first data block,
giving the Sum to the first scaling process, and feeding data in
the data group to the first Scaling process as well as giving the
scale factor consisting of the difference between the group
scale factor of each data group in the third data block and the
block scale factor of the third data block to the second scaling
process and feeding data in the data group to the second
Scaling process; or a second scale correction process for add
ing the corrective block scale factor to the scale factor con
sisting of the difference between the group scale factor of
each data group in the third data block and the block scale
factor of the third data block, giving the Sum to the second
Scaling process, and feeding data in the data group to the
second scaling process as well as giving the scale factor
consisting of the difference between the group scale factor of
each data group in the first data block and the block scale
factor of the first data block to the first scaling process and
feeding data in the data group to the first scaling process.

Compiler apparatus, compiler programs, and object pro
gram generating methods for use to achieve the above objects
have been described above, but they are not restrictive and
first to third compiler apparatus described below may also be
proposed.
The first compiler apparatus is a compiler apparatus which

translates a given Source program into an object program
when the source program contains computing expressions
which are written using block floating variables of a Block
Floating data type, characterized in that:

each of the block floating variables constitutes a data block
containing one or more data groups, each of which in turn
contains one or more data items and one group scale factor,
the data block being a variable which represents a data struc
ture containing a block scale factor of the data block;

the compiler apparatus comprises computing expression
detecting means for detecting the computing expressions in
the Source program, computing expression expanding means
for expanding the computing expressions detected by the
computing expression detecting means into predetermined
instruction codes, and instruction code conversion means for
converting the instruction codes produced by the computing
expression expanding means into the object program;

the computing expression detecting means detects opera
tors in the expressions, the data type of input operand for the
operators, and the data type of output operand for the opera
tors as detection results; and

the computing expression expanding means operates based
on the operators and data type information about input oper
and for the operators in the detection results produced by the
computing expression detecting means,

generating instruction codes which specify a process of
calculating either or both of an operational block scale factor
and/or interim block scale factor from the block scale factors
of input data blocks if input operand contain block floating
type data,

generating instruction codes which specify a process of
feeding block floating type data into a computing unit for
performing a shifting process based on either or both of the
operational block scale factor and/or the block scale factor of
an input operand as well as on the group scale factor if the
input operand is block floating type data,

expanding any block floating type data fed to a computing
unit into instruction codes which specify a computational
process based on the operators, and

generating instruction codes which specify a data output
process for group-normalizing computational results which

5

10

15

25

30

35

40

45

50

55

60

65

40
correspond to an output operand, calculating final groupscale
factors based on either or both of updated group scale factors
calculated as a result of the group normalization and/or the
interim block scale factor, and calculating a block scale factor
from the calculated group scale factors if the output operand
is block floating type data.

Here, the sentence “if input operand contain block floating
type data” means a situation in which there are two or more
input operand to be operated upon and at least one of them is
block floating type data.

Also, the sentence “if the input operand is block floating
type data” means a situation in which there is one input
operand to be operated upon (i.e., arithmetic operations are to
be performed within the data block) and the input operand is
of the Block Floating type.

Also, the interim block scale factor corresponds to the
common scale factor according to an embodiment of the
invention if for example, arithmetic operations performed
are additions or Subtractions. It corresponds to the multipli
cation-result block scale factor according to an embodiment
of the invention, if arithmetic operations performed are mul
tiplications or divisions.

Also, the operational block scale factor corresponds to the
common scale factor if, for example, arithmetic operations
performed are additions or Subtractions.
The second compiler apparatus is the first compiler appa

ratus, characterized in that:
the operators in the computing expressions indicate addi

tion or subtraction;
the instruction codes which specify a process of calculating

the operational block scale factor are not generated if the
input operand are of the Block Floating type and are from the
same data block; and

the process offeeding data into the computing unit involves
a shifting process which is based on the difference between
block scale factor and group scale factor.
The third compiler apparatus is the first compiler appara

tus, characterized in that:
the operators in the computing expressions indicate addi

tion or subtraction;
the computing expression expanding means produces

instruction codes which specify a process of calculating the
block scale factor of the data block containing data with the
maximum absolute value as the operational block scale factor
if the input operand are of the Block Floating type and are
from a plurality of different data blocks;

and the process of feeding data into the computing unit
involves a shifting process which is based on the difference
between the operational block scale factor and group scale
factor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing a configuration of a
computer;

FIG. 2 is a diagram showing a data structure in block
floating-point format;

FIG. 3 is a flowchart showing a block floating compiling
process;

FIG. 4 is a flowchart showing an example of the process
specified by the instruction codes produced in Step S106;

FIG. 5 is a flowchart showing an example of the process
specified by the instruction codes produced in Step S110;

FIG. 6 shows a source program which describes a multi
plication formula in block floating-point format;

FIG. 7 shows an object program obtained by compiling the
Source program shown in FIG. 6;

US 7,478,363 B2
41

FIG. 8 shows a source program which describes a multi
plication formula in block floating-point format;

FIG.9 shows an object program obtained by compiling the
source program shown in FIG. 8:

FIG. 10 shows a source program which describes a multi
ply-accumulate formula in block floating-point format;

FIG. 11 shows an object program obtained by compiling
the source program shown in FIG. 10;

FIG. 12 shows a source program which describes a multi
ply-accumulate formula in block floating-point format;

FIG. 13 shows an object program obtained by compiling
the source program shown in FIG. 12; and

FIG. 14 is a block diagram showing a configuration of a
DSP.

BEST MODE FOR CARRYING OUT THE
INVENTION

A preferred embodiment of the present invention will be
described with reference to the drawings. FIGS. 1 to 5 are
diagrams showing an embodiment of a data processing unit
according to the present invention.

In this embodiment, a compiler apparatus, compiler pro
gram, and object program generating method according to the
present invention are applied to a case in which a source
program containing computing expressions written in block
floating-point format is translated on a computer 100 into an
object program executable by the computer 100 as shown in
FIG. 1. Hereinafter, translation and generation will be
referred to collectively as compilation.

First, configuration of the computer 100 will be described
in detail below with reference to FIG. 1. FIG. 1 is a block
diagram showing the configuration of the computer 100.
As shown in FIG. 1, the computer 100 comprises a CPU 30

which performs arithmetic operations and controls the entire
system based on a control program, a ROM 32 for prestoring
the control program of the CPU 30 in a predetermined area, a
RAM 34 for storing data read out of the ROM 32 and com
putational results needed in the computational processes of
the CPU 30, and an I/F38 which mediates input and output of
data from/to external equipment, all of which are intercon
nected via a bus 39 which is a signal line for data transfer—
to allow data exchange among them.

I/F 38 is connected with external devices: an input device
40 which serves as a human interface and consists of a key
board, mouse, etc. for data input; a storage device 42 which
stores data, tables, etc. in the form of files; and a display
device 44 which displays images according to image signals.
The storage device 42 stores source programs and object

programs in the form of files. According to the present inven
tion, the source programs to be compiled can be written in a
predetermined programming language (e.g., in the C lan
guage) and computing expressions in block floating-point
format can be written using block floating variables. The
block floating variables are variables which have a data struc
ture in block floating-point format. As shown in FIG. 2,
according to the data structure in block floating-point format,
k data items are organized into a data group and two or more
data groups are organized into a data block, which contains
the group scale factors of individual data groups and the block
scale factor of the data block. FIG. 2 is a diagram showing a
data structure in block floating-point format.

Block floating variables are characterized in that they
specify data structure in block floating-point format without
indicating the group scale factors and block scale factor
explicitly. Suppose, for example, the number of data groups in
a data block is '3' and the number of data items in each data

10

15

25

30

35

40

45

50

55

60

65

42
group is “2. a block floating variable can be defined in a
Source program using Equation (3) below. In this case, the
data block contains three group scale factors and one block
scale factor, but there is no need to indicate them explicitly in
the source program. This makes it simple to write the Source
program.

bfloat A32); (3)

The CPU 30 consists of a microprocessing unit (MPU), etc.
It starts a predetermined program stored in a predetermined
area of the ROM32 and performs a block floating compiling
process in a flowchart of FIG. 3 according to the program.
FIG. 3 is a flowchart showing the block floating compiling
process.
The block floating compiling process is the process of

compiling a given source program when the Source program
contains computing expressions written using block floating
variables. It is performed by the CPU 30, beginning with Step
S100 as shown in FIG. 3.

In Step S100, the CPU 30 is fed the source program, per
forms lexical, syntactic, and semantic analyses, and stores the
analysis results in the form of an intermediate language,
symbol table, or the like. Then, it goes to Step S104.

In Step S104, the CPU 30 checks the analysis results
obtained in Step S100 to see whether there are computing
expressions which involve addition. If it is found that there are
computing expressions which involve addition (Yes), the
CPU 30 goes to Step S106, where it expands that part of the
computing expressions in the analysis results which involves
addition into instruction codes which specify addition for
data blocks corresponding to a plurality of block floating
variables to be subjected to addition. Incidentally, the process
specified by the instruction codes produced in Step S106 will
be described concretely later.

Then, the CPU 30 goes to Step S108, where it checks the
analysis results obtained in Step S100 to see whether there are
computing expressions which involve multiplication-accu
mulation. If it is found that there are computing expressions
which involve multiplication-accumulation (Yes), the CPU
30 goes to Step S100, where it expands that part of the
computing expressions in the analysis results which involves
multiplication-accumulation into instruction codes which
specify multiplication-accumulation for data blocks corre
sponding to a plurality of block floating variables to be sub
jected to multiplication-accumulation. Incidentally, the pro
cess specified by the instruction codes produced in Step S110
will be described concretely later.

Then, the CPU 30 goes to Step S112, where it performs
compiling processes other than those performed in Steps
S104 to S110. Then, it goes to Step S114, where itembeds the
instruction codes produced at Steps S106 and S110 in an
object program to be generated, outputs the object program,
and thereby ends the sequence of processes.
On the other hand, if it is found in Step S104 that there is no

computing expression which involves addition in the loaded
program lines (No), the CPU 30 goes to Step S108.
On the other hand, if it is found in Step S108 that there is no

computing expression which involves multiplication-accu
mulation (No), the CPU 30 goes to Step S112.

Next, the process specified by the instruction codes pro
duced in Step S106 will be described in detail with reference
to FIG. 4. FIG. 4 is a flowchart showing an example of the
process specified by the instruction codes produced in Step
S106.
The process specified by the instruction codes constitutes

part of the object program and results from expanding that
part of the computing expressions in block floating-point

US 7,478,363 B2
43

format which involves addition. It is performed by a DSP
beginning with Step S200 as shown in FIG. 4. Incidentally,
FIG. 4 shows compilation results obtained when an addition
formula contained in a source program and given by Equation
(4) below is expanded. In Equation (4), A, B, C, and Y are
block floating variables. In the object program, the block
floating variables A, B, and C correspond to data blocks A, B,
and C, respectively.

In Step S200, the DSP loads the block scale factors of the
data blocks A, B, and C. Then, in Step S202, from among the
loaded block scale factors, the DSP selects the block scale
factor of the data block containing data with the maximum
absolute value as a common block scalefactor. Then, the DSP
goes to Step S204.

In Step S204, the DSP loads the first group scale factor in
the data block A. Then, in Step S206, the DSP calculates a
differential scale factor consisting of the difference between
the loaded group scale factor and the common block scale
factor. Then, in Step S208, the DSP right-shifts each data item
in the data group by a shift amount equivalent to the calcu
lated differential scale factor. Then, the DSP goes to Step
S210.

In Step S210, the DSP judges whetherall the data groups in
the data block A have gone through the processes of Steps
S106 and S108. If it is found that all the data groups have been
processed (Yes), the DSP goes to Step S214. Otherwise (No),
it goes to Step S212, where it loads the next group scale factor
in the data block A, and then it goes to Step S206.

In Step S214, the DSP performs scaling of the data block B
in the same manner as in Steps S204 to S212. In Step S216,
the DSP performs scaling of the data block C in the same
manner as in Steps S204 to S212. Then, the DSP goes to Step
S218.

In Step S218, the DSP adds the data in the data blocks A, B,
and C. In Step S220, the DSP stores the results of addition
produced at Step S218 in a data blockY. Then, in Step S222,
the DSP normalizes the data in the data block Y, and thereby
ends the sequence of processes.

Incidentally, the normalization in Step S222 involves
selecting the data with the maximum absolute value in a data
group, calculating the number of consecutive O’s starting with
the highest-order bit, designating this number as a group scale
factor, and left-shifting each data item in the data group by a
shift amount equivalent to the group scale factor. This process
is referred to as group normalization and is performed on
every data group in the data block. When normalization of all
the data groups is finished, the Smallest of the group scale
factors is designated as the block scale factor. This sequence
of processes is referred to as block normalization or simply as
normalization. This also applied to Step S338.

Next, the process specified by the instruction codes pro
duced in Step S110 above will be described in detail with
reference to FIG.5. FIG. 5 is a flowchart showing an example
of the process specified by the instruction codes produced in
Step S110.
The process specified by the instruction codes constitutes

part of the object program and results from expanding that
part of the computing expressions in block floating-point
format which involves multiplication-accumulation. It is per
formed by the DSP beginning with Step S300 as shown in
FIG. 5. Incidentally, FIG. 5 shows compilation results
obtained when a multiply–accumulate formula which serves
as a basic arithmetic unit and is given by Equation (6) below
is expanded to implement an exponential expression given by
Equation (5). In Equations (5) and (6), S. A. Sub.i., B.Sub.i, A.

10

15

25

30

35

40

45

50

55

60

65

44
B, C, and Y are block floating variables. In the object pro
gram, the block floating variables A, B, and C correspond to
data blocks A, B, and C, respectively. 1S=1Ai.times.Bi(5)
Y=Ai.times. Bi-Ci-1Ci=Y(6)

In Step S300, the DSP loads the block scale factors of the
data blocks A, B, and C. In Step S302, the DSP calculates a
corrective block scale factor which is a difference between a
multiplication-result block scale factor and the block scale
factor of the data block C, the multiplication-result block
scale factor being the sum of the block scalefactors of the data
blocks A and B. In Step S304, based on the sign of the
corrective block scale factor, the DSP judges whether the data
block C contains data with a larger absolute value than the
multiplication-result data block of data blocks A and B. If it is
found that the data block C contains data with a larger abso
lute value (Yes), the DSP goes to Step S306.

In Step S306, the DSP loads the first group scale factor in
the data block A. In Step S308, the DSP calculates a differ
ential scale factor consisting of the difference between the
loaded group scale factor and the block scale factor of the data
block A. In Step S310, the DSP adds the corrective block scale
factor to the calculated differential scale factor. In Step S312,
the DSP right-shifts each data item in the data group by a shift
amount equivalent to the differential scale factor plus the
corrective block scale factor. Then, the DSP goes to Step
S314.

In Step S314, the DSP judges whether all the data groups in
the data block A have gone through the processes of Steps
S308 to S312. If it is found that all the data groups have been
processed (Yes), the DSP goes to Step S318. Otherwise (No),
it goes to Step S316, where it loads the next group scale factor
in the data block A, and then it goes to Step S308.

In Step S318, the DSP loads the first group scale factor in
the data block C. In Step S320, the DSP calculates a differ
ential scale factor consisting of the difference between the
loaded group scale factor and the block scale factor of the data
block C. In Step S322, the DSP right-shifts each data item in
the data group by a shift amount equivalent to the calculated
differential scale factor. Then, the DSP goes to Step S324.

In Step S324, the DSP judges whether all the data groups in
the data block C have gone through the processes of Steps
S320 and S322. If it is found that all the data groups have been
processed (Yes), the DSP goes to Step S328. Otherwise (No),
it goes to Step S326, where it loads the next group scale factor
in the data block C, and then it goes to Step S320.

In Step S328, the DSP performs scaling of the data block B
in the same manner as in Steps S318 to S326. In Step S330,
the DSP multiplies the data in the data blocks A and B. In Step
S332, the DSP stores the multiplication results produced at
Step S330 in a data block X. Then, the DSP goes to Step S334.

In Step S334, the DSP adds the data in the data blocks X
and C. In Step S336, the DSP stores the results of addition
produced at Step S334 in a data blockY. Then, in Step S338,
the DSP normalizes the data in the data block Y, and thereby
ends the sequence of processes.
On the other hand, if it is found in Step S304 that the data

block C does not contain data with a larger absolute value
(No), the DSP goes to Step S340, where it performs scaling of
the data block C in the same manner as in Steps S306 to S316.
Then, in Step S342, the DSP performs scaling of the data
block A in the same manner as in Steps S318 to S326. Then,
the DSP goes to Step S328.

Next, operation of the above embodiment will be
described.

First, description will be given of procedures for compiling
a source program which describes the addition formula given
by Equation (4).

US 7,478,363 B2
45

On the computer 100, when the user provides the source
program which describes the addition formula given by Equa
tion (4), the CPU 30 goes through Steps S100, S104, and
S106 to detect computing expressions for addition in the
provided source program and expand that part of the detected
computing expressions which involves addition into instruc
tion codes which specify addition for data blocks correspond
ing to a plurality of block floating variables to be subjected to
addition. Then, the CPU 30 goes through Step S114 to embed
the instruction codes in the object program to be generated
and output the object program.

Thus, when the object program is executed, the CPU 30
goes through Steps S200 and S202 to select the block scale
factor of the data block containing data with the maximum
absolute value from among the block scale factors of the data
blocks A, B, and C as a common block scale factor in relation
to that part of the computing expressions which involves
addition. Then, the CPU 30 goes through Steps S204 to S222
to Scale data in the data groups in each of the data blockSA, B,
and C based on Scale factors consisting of differences
between the group scale factors of the respective data groups
and the common block scale factor and perform addition on
the scaled data in the data blocks A, B, and C.

Next, description will be given of procedures for compiling
a source program which describes the multiply-accumulate
formula given by Equation (6).
On the computer 100, when the user provides the source

program which describes the multiply-accumulate formula
given by Equation (6), the CPU 30 goes through Steps S100,
S108, and S110 to detect computing expressions for multi
plication-accumulation in the provided source program and
expand that part of the detected computing expressions which
involves multiplication-accumulation into instruction codes
which specify multiplication-accumulation for the data
blocks A and B that correspond to two block floating variables
to be subjected to multiplication-accumulation and the data
block C that corresponds to a block floating variable to be
subjected to addition. Then, the CPU 30 goes through Step
S114 to embed the instruction codes in the object program to
be generated and output the object program.

Thus, when the object program is executed, the CPU 30
goes through Steps S300 to S304 to calculate a corrective
block scale factor consisting of the difference between a
multiplication-result block scale factor and the block scale
factor of the third data block in relation to that part of the
computing expressions which involves multiplication-accu
mulation and perform either a first scale correction process or
second scale correction process.
The first scale correction process is performed when the

data block C contains data with a larger absolute value. In the
first scale correction process, the CPU 30 repeats Steps S308
to S316 to calculate a differential scalefactor consisting of the
difference between the group scale factor of each data group
in the data block A and the block scale factor of the data block
A and right-shift each data item in the data group by a shift
amount equivalent to the calculated differential scale factor
plus the corrective block scale factor. Also, the CPU 30
repeats Steps S318 to S326 to calculate a differential scale
factor consisting of the difference between the group scale
factor of each data group in the data block B and the block
scale factor of the data block Band right-shift each data item
in the data group by a shift amount equivalent to the calcu
lated differential scale factor. Then, the CPU 30 goes through
Steps S330 and S332 to multiply the data in the data blocks A
and B and store the multiplication results in the data block X.
Thus, the data in the data block X are corrected by means of

5

10

15

25

30

35

40

45

50

55

60

65

46
scaling with respect to the data block Abefore multiplication
so that their digit places will be aligned with those of the data
in the data block C.

Also, the CPU 30 goes through Step S328 to calculate a
differential scale factor consisting of the difference between
the group scale factor of each data group in the data block C
and the block scale factor of the data block C and right-shift
each data item in the data group by a shift amount equivalent
to the calculated differential scale factor. Then, the CPU 30
goes through Steps S334 to S338 to add the data in the data
blocks X and C with their digit places aligned.
On the other hand, the second scale correction process is

performed when the data block C does not contain data with
a larger absolute value. In the second scale correction process,
the CPU 30 goes through Step S342 to calculate a differential
scale factor consisting of the difference between the group
scale factor of each data group in the data block A and the
block scale factor of the data block A and right-shift each data
item in the data group by a shift amount equivalent to the
calculated differential scale factor. Also, the CPU 30 goes
through Step S328 to similarly perform scaling of the data
block B. Then, the CPU30 goes through Steps S330 and S332
to multiply the data in the data blocks A and B and store the
multiplication results in the data block X.

Also, the CPU 30 goes through Step S340 to calculate a
differential scale factor consisting of the difference between
the group scale factor of each data group in the data block C
and the block scale factor of the data block C and right-shift
each data item in the data group by a shift amount equivalent
to the calculated differential scale factor. Thus, the data in the
data block Care corrected by means of scaling with respect to
the data block C before multiplication so that their digit places
will be aligned with those of the data in the data block X.
Then, the CPU30 goes through Steps S334 to S338 to add the
data in the data blocks X and C with their digit places aligned.

In this way, when this embodiment is fed a source program
containing computing expressions written using block float
ing variables, it detects computing expressions for addition in
the source program, expands that part of the detected com
puting expressions which involves addition into instruction
codes which specify addition for data blocks corresponding
to a plurality of block floating variables to be subjected to
addition, embeds the instruction codes in the object program
to be generated, and outputs the object program.

This makes it possible to implement addition in block
floating-point format by simply implementing addition for
mulas using block floating variables without any special pro
gramming operation Such as defining a structure or creating a
special function in the source program. This makes it easier to
describe arithmetic operations in Source programs and sim
pler to write the source programs.

Furthermore, according to this embodiment, the process
specified by the instruction codes produced as a result of
compiling an addition formula involves selecting the block
scale factor of the data block containing data with the maxi
mum absolute value from among the block scale factors of
plural data blocks as a common block scale factor, Scaling
data in the data groups in each of the data blocks based on
scale factors consisting of differences between the group
scale factors of the respective data groups and the common
block scale factor, and performing addition on the scaled data
in the data blocks.

This makes it possible to normalize data within each data
block and across data blocks at the same time by performing
Scaling once per data item in an execution process of an object
program, and thus relatively simplify arithmetic processing.

US 7,478,363 B2
47

Furthermore, when this embodiment is fed a source pro
gram containing computing expressions written using block
floating variables, it detects computing expressions for mul
tiplication-accumulation in the source program, expands that
part of the detected computing expressions which involves
multiplication-accumulation into instruction codes which
specify multiplication-accumulation for a first data block and
second data block which correspond to two block floating
variables to be subjected to multiplication and a third data
block which corresponds to a block floating variable to be
Subjected to addition, and embeds the instruction codes in the
object program to be generated, and outputs the object pro
gram.

This makes it possible to implement multiplication-accu
mulation in block floating-point format by simply describing
multiply-accumulate formulas using block floating variables
without any special programming operation Such as defining
a structure or creating a special function in the source pro
gram. This makes it easier to describe arithmetic operations in
Source programs and simpler to write the Source programs.

Furthermore, according to this embodiment, the process
specified by the instruction codes produced as a result of
compiling a multiply-accumulate formula involves calculat
ing a corrective block scale factor, calculating a differential
scale factor consisting of the difference between the group
scale factor of each data group in the first data block and the
block scale factor of the first data block before multiplication
when the block scale factor of the third data block is larger
than the multiplication-result block scale factor, and right
shifting each data item in the data group based on the differ
ential scale factor plus the corrective block scale factor.

Thus, in an execution process of an object program, Scaling
is performed before multiplication. This eliminates the need
to assign an extra bit length to variables to avoid cancellation
of significant digits, and thus relatively reduces data capacity
required for arithmetic operations. Also, this relatively
decreases the possibility of lowering computational effi
ciency because no bit length conversion is involved.

Incidentally, as shown in FIG. 2, the above embodiment
has adopted a data structure in block floating-point format
according to which k data items are organized into a data
group and two or more data groups are organized into a data
block, which contains the group scale factors of individual
data groups and the block scale factor of the data block, but
this is not restrictive and it is also possible to adopt a data
structure which does not contain any data group or group
scale factor. According to such a data structure, a data block is
composed of two or more data items and contains a block
scale factor. Such a data structure operates in the same man
ner and offers the same effects as the above embodiment.

Besides, in the above embodiment, the process shown in
FIG. 4 has been cited as an example of the process which
constitutes part of the object program and results from
expanding that part of the computing expressions in block
floating-point format which involves addition. In this case,
since the Scaling and addition of the data blocks A, B, and C
are separate from each other, the results of scaling must be
saved once in memory or the like. The following processes
may be employed alternatively.
A first process involves performing a sequence of pro

cesses on all the data groups in the data blocks A, B, and C.
where the sequence of processes consists of Scaling of data
within each data group in the data block A, Scaling of data
within each data group in the data block B, Scaling of data
within each data group in the data block C, addition of data in
these data groups, and normalization of the results of addi
tion.

10

15

25

30

35

40

45

50

55

60

65

48
A second process involves performing a sequence of pro

cesses on all the data groups in the data blocks A, B, and C.
where the sequence of processes consists of Scaling of data
within each data group in the data block A, Scaling of data
within each data group in the data block B, addition of data in
these data groups, scaling of data within each data group in
the data block C, addition of the scaled data in the data group
in the data block C to the addition results of the data groups in
the data blocks A and B, and normalization of the results of
addition.

This makes it possible to perform arithmetic operations
without storing data in memory or the like, and thereby
improve computational efficiency.

Besides, although what is compiled in the above embodi
ment is an addition formula and multiply-accumulate formula
in block floating-point format, this is not restrictive and it is
also possible to compile a multiplication formula in block
floating-point format. For example, a source program Such as
the one shown in FIG. 6 may be compiled into an object
program such as the one shown in FIG. 7.
The source program in FIG. 6 implements a multiplication

formula given by Equation (7) below and consists of pro
cesses in Steps S400 to S410 as shown in FIG. 6. FIG. 6 shows
a source program which describes a multiplication formula in
block floating-point format. Incidentally, unlike the above
embodiment, according to this data structure in block float
ing-point format, a data block contains two or more data items
and a block scale factor, but no data group.

ra.times.b.times.c (7)

Steps S400 and S402 are global functions. Step S400
defines the number of data items in a data block and Step S402
secures block floating variables a, b, c, and r.

Steps S.404 to S410 are local functions. Step S404 secures
a variable i of an integer type, Step S406 performs an arith
metic operation “ra.times.b’ on each data item in the block
floating variables a, b, and r, and Step S408 performs an
arithmetic operation “r-r.times.c' on each data item in block
floating variables candr. Then, in Step S410, the sequence of
processes is finished and the processing returns to the begin
ning.
The object program in FIG. 7 results from compiling the

Source program shown in FIG. 6 and consists of processes in
Steps S500 to S520 as shown in FIG. 7. FIG. 7 shows the
object program obtained by compiling the Source program
shown in FIG. 6.

Steps S500 and S502 are global functions. Step S500
defines the number of data items in a data block and Step S502
secures data blocks a, b, c, and r which correspond to block
floating variables a, b, c, and r.

Steps S504 to S520 are local functions. Step S504 initial
izes registers, Step S506 calculates a multiplication-result
block scale factor by adding the block scale factors of the data
blocks a and b, and Step S508 sets pointers to the data blocks
a, b, and r.

Step S510 performs an arithmetic operation “ra.times.b'
on each data item in the data blocks a, b, and r. This arithmetic
operation involves reading each data item in the data block a
with the data item right-shifted by a shift amount equivalent to
the block scale factor of the data block a (specified by func
tion bfp load man (P0++M1, SFBO)) reading each data
item in the data block b with the data item right-shifted by a
shift amount equivalent to the block scale factor of the data
block b (specified by function bfp load man(P1 ++M1,
SFG 1)), multiplying the data items in data blocks a and b by
each other, and storing the multiplication results in the data
block r.

US 7,478,363 B2
49

Step S512 stores the multiplication-result block scale fac
torcalculated at Step S506 in the block scale factor of the data
block r. Steps S514 to S520 perform an arithmetic operation
“r r.times.c' on data blocks c and r in the same manner as
Steps 506 to S512.

Besides, although in the example described above, all the
variables a, b, c, and rare block floating variables, this is not
restrictive and it is also possible to implement arithmetic
operations for a mixture of block floating variables and fixed
point variables. For example, a source program Such as the
one shown in FIG.8 may be compiled into an object program
such as the one shown in FIG. 9.
The source program in FIG. 8 implements a multiplication

formula given by Equation (7) above and consists of pro
cesses in Steps S600 to S610 as shown in FIG.8. FIG.8 shows
a source program which describes a multiplication formula in
block floating-point format. Incidentally, unlike the above
embodiment, according to this data structure in block float
ing-point format, a data block contains two or more data items
and a block scale factor, but no data group.

Steps S600 and S602 are global functions. Step S600
defines the number of data items in a data block and Step S602
secures the block floating variables a, b, and r and a fixed
point variable c.

Steps S604 to S610 are local functions. Step S604 secures
a variable i of an integer type, Step S606 performs an arith
metic operation “ra.times.b’ on each data item in the block
floating variables a, b, and r, and Step S608 performs an
arithmetic operation “r-r.times.c' on each data item in the
block floating variable a and fixed-point variable c. Then, in
Step S610, the sequence of processes is finished and the
processing returns to the beginning.
The object program in FIG. 9 results from compiling the

Source program shown in FIG. 8 and consists of processes in
Steps S700 to S720 as shown in FIG. 9. FIG. 9 shows the
object program obtained by compiling the Source program
shown in FIG. 8.

Steps S700 and S702 are global functions. Step S700
defines the number of data items in a data block and Step S702
secures data blocks a, b, and r which correspond to the block
floating variables a, b, and r as well as secures a fixed-point
array c which corresponds to the fixed-point variable c.

Steps S704 to S720 are local functions. Step S704 initial
izes registers, Step S706 calculates a multiplication-result
block scale factor by adding the block scale factors of the data
blocks a and b, and Step S708 sets pointers to the data blocks
a, b, and r.

Step S710 performs an arithmetic operation “ra.times.b”
on each data item in the data blocks a, b, and r. This arithmetic
operation involves reading each data item in the data block a
with the data item right-shifted by a shift amount equivalent to
the block scale factor of the data block a (specified by func
tion bfp load man(*P0++M1.SFBO)), reading each data
item in the data block b with the data item right-shifted by a
shift amount equivalent to the block scale factor of the data
block b (specified by function bfp load man(P1 ++M1,
SFB1)), multiplying the data items in data blocks a and b by
each other, and storing the multiplication results in the data
block r.

Step S712 stores the multiplication-result block scale fac
torcalculated at Step S706 in the block scale factor of the data
block r.

Step S714 calculates the block scalefactor of the data block
r as a multiplication-result block scale factor and Step S716
sets a pointer to the data block rand pointer to the fixed-point
array c.

10

15

25

30

35

40

45

50

55

60

65

50
Step S718 performs an arithmetic operation “r-r.times.c'

on each data item in the data block rand fixed-point array c.
This arithmetic operation involves reading each data item in
the data block r with the data item right-shifted by a shift
amount equivalent to the block scale factor of the data block
r (specified by function bfp load man(*P0++M1.SF-B0)),
reading each data item in the fixed-point array c without a data
shift (specified by function load man(P1++M1)), multiply
ing the data items in data blocka and fixed-point array c, and
storing the multiplication results in the data block r.

Step S720 stores the multiplication-result block scale fac
torcalculated at Step S714 in the block scale factor of the data
block r.

Besides, what is compiled in the above embodiment is an
addition formula and multiply-accumulate formula in block
floating-point format. Regarding compilation of a multiply
accumulate formula, more specifically, it is also possible to
compile a source program Such as the one shown in FIG. 10
into an object program Such as the one shown in FIG. 11.
The source program in FIG. 10 implements a multiply

accumulate formula given by Equation (8) below and consists
of processes in Steps S800 to S806 as shown in FIG. 10. FIG.
10 shows a source program which describes a multiply-accu
mulate formula in block floating-point format. Incidentally,
this data structure in block floating-point format is the same as
that of the above embodiment.

Step S800 secures the block floating variables a, b, and r
and Step S802 repeats the processes of Steps S804 and S806
N+1 times. Step S804 initializes data r(n) and Step S806
performs the arithmetic operation of Equation (8) on each
data item in the block floating variables a and b. Then, the
sequence of processes is finished and the processing returns
to the beginning.
The object program in FIG. 11 results from compiling the

Source program shown in FIG. 10 and consists of processes in
Steps S810 to S850 as shown in FIG. 11. FIG. 11 shows the
object program obtained by compiling the Source program
shown in FIG. 10.

In Step S810, the object program reads the block scale
factors of data blocks a(k) and b(n). In Step S812, the object
program calculates the Sum of the block scale factors of the
two data blocks as an interim scale factor. In Step S814, the
object program initializes the block scale factor of the data
block r(n) to a value determined from the data with the mini
mumabsolute value and the interim Scale factor (e.g., the Sum
of the two). Then, the object program goes to Step S816.

In Step S816, the object program sets write position of the
data block r(n) to the first data group. In Step S818, the object
program sets read position of the data block b(n) to the first
data group. In Step S820, the object program sets read posi
tion of the data blocka(k) to the first data group. In Step S822,
the object program reads the group scale factor of the data
blocka (k). Then, the object program goes to Step S824.

In Step S824, the object program calculates the differential
scale factor between the group scale factor and the block scale
factor of the data blocka(k). In Step S826, the object program
reads each data item in the data group and right-shifts it based
on the differential scale factor. In Step S828, the object pro
gram sets the read position of the data block ack) to the next
data group. In Step S830, the object program right-shifts the
data in the data group in the data blockb(n) (the same process
as in Steps S822 to S826). Then, the object program goes to
Step S832.

In Step S832, the object program sets the read position of
the data block b(n) to the next data group. In Step S834, the

US 7,478,363 B2
51

object program multiplies and accumulates the data in the
data blocks a(k) and b(n). In Step S836, the object program
judges whether ack) has been processed up to k=K. If it is
found that ack) has been processed up to k=K (Yes), the object
program goes to Step S838, where it scales the multiply
accumulate results, writes them into the data block r(n), and
then goes to Step S840.

In Step S840, the object program calculates and writes the
group scale factor of the multiply-accumulate results based
on the number of shifts needed during the Scaling and the
interim scale factor (e.g., the sum of the two). In Step S842,
the object program sets the write position of the data block
r(n) to the next data group. In Step S844, the object program
compares the block scale factor of the data block r(n) and the
group scale factor and updates the block scale factor to the
scale factor which contains the data with the maximum abso
lute value. Then, the object program goes to Step S846.

In Step S846, the object program judges whether r(n) has
been processed up to n=N. If it is found that r (n) has been
processed up to n=N (Yes), the object program goes to Step
S848, where it stores the block scale factor of the data block
r(n). Then, the object program finishes the sequence of pro
cesses and returns the processing to the beginning.
On the other hand, if it is found in Step S846 that r(n) has

not been processed up to n N (No), the object program goes
to Step S850, where it sets the read position of the data block
b(n) to the data group which corresponds to the current value
of n in the data block r(n). Then, the object program goes to
Step S820.
On the other hand, if it is found in Step S836 that ack) has

not been processed up to k-K (No), the object program goes
to Step S822.

Besides, although in the example described above, all the
variables a, b, and rare block floating variables, this is not
restrictive and it is also possible to implement arithmetic
operations for a mixture of block floating variables and fixed
point variables. For example, a source program Such as the
one shown in FIG. 12 may be compiled into an object pro
gram such as the one shown in FIG. 13.
The Source program in FIG. 12 implements a multiply

accumulate formula given by Equation (9) below and consists
of processes in Steps S900 to S906 as shown in FIG. 12. FIG.
12 shows a source program which describes a multiply-accu
mulate formula in block floating-point format. 3ron)—k=OKa
(k)b(n-k)nN(9)

Step S900 secures a fixed-point variable a and block float
ing variables b and r, and Step S902 repeats the processes of
Steps S904 and S906N times. Step S904 initializes data block
r(n) and Step S906 performs the arithmetic operation of
Equation (9) on each data item in the fixed-point variable a
and block floating variable b. Then, the sequence of processes
is finished and the processing returns to the beginning.
The object program in FIG. 13 results from compiling the

Source program shown in FIG. 12 and consists of processes in
Steps S910 to S950 as shown in FIG. 13. FIG. 13 shows the
object program obtained by compiling the Source program
shown in FIG. 12.

In Step S910, the object program reads the block scale
factors of data block and b(n). In Step S912, the object pro
gram calculates the block scale factor as an interim Scale
factor. In Step S914, the object program initializes the block
scale factor of the data block r(n) to a value determined from
the data with the minimum absolute value and the interim
scale factor (e.g., the sum of the two). Then, the object pro
gram goes to Step S916.

In Step S916, the object program sets write position of the
data block r(n) to the first data group. In Step S918, the object

10

15

25

30

35

40

45

50

55

60

65

52
program sets read position of the data block b(n) to the first
data group. In Step S920, the object program sets read posi
tion of the data blocka(k) to the first data group. In Step S922,
the object program reads the data items in the data group.
Then, the object program goes to Step S924.

In Step S924, the object program sets the read position of
the data block ack) to the next data group. In Step S926, the
object program reads the group scale factor of the data block
b(n). In Step S928, the object program calculates the differ
ential scale factor between the group scale factor and the
block scale factor of the data block b (n). In Step S930, the
object program reads each data item in the data group and
right-shifts it based on the differential scale factor. Then, the
object program goes to Step S932.

In Step S932, the object program sets the read position of
the data block b(n) to the next data group. In Step S934, the
object program multiplies and accumulates the data in the
data blocks a(k) and b(n). In Step S936, the object program
judges whether ack) has been processed up to k=K. If it is
found that ack) has been processed up to k=K (Yes), the object
program goes to Step S938, where it scales the multiply
accumulate results, writes them into the data block r(n), and
then goes to Step S940.

In Step S940, the object program calculates and writes the
group scale factor of the multiply-accumulate results based
on the number of shifts needed during the Scaling and the
interim scale factor (e.g., the sum of the two). In Step S942,
the object program sets the write position of the data block
r(n) to the next data group. In Step S944, the object program
compares the block scale factor of the data block r(n) and the
group scale factor and updates the block scale factor to the
scalefactor which contains the data with the maximum abso
lute value. Then, the object program goes to Step S946.

In Step S946, the object program judges whether r(n) has
been processed up to n=N. If it is found that r(n) has been
processed up to n=N (Yes), the object program goes to Step
S948, where it stores the block scale factor of the data block
r(n). Then, the object program finishes the sequence of pro
cesses and returns the processing to the beginning.
On the other hand, if it is found in Step S946 that r(n) has

not been processed up to n N (No), the object program goes
to Step S950, where it sets the read position of the data block
b(n) to the data group which corresponds to the current value
of n in the data block r(n). Then, the object program goes to
Step S920.
On the other hand, if it is found in Step S936 that a(k) has

not been processed up to k-K (No), the object program goes
to Step S922.

Besides, although what is compiled in the above embodi
ment is a source program which describes an addition for
mula using block floating variables, this is not restrictive and
it is also possible to compile a source program which
describes an addition formula using block floating variables
and a fixed-point variable as with the above example of mul
tiplication which uses block floating variables and a fixed
point variable (FIGS. 8 and 9).

Besides, although in the above embodiment, a source pro
gram which describes an addition formula using block float
ing variables is compiled to implement addition in block
floating-point format, this is not restrictive and it is also
possible to compile a source program which describes a Sub
traction formula using block floating variables in the same
manner as in the above embodiment to implement Subtraction
in block floating-point format.

Also, although in the above embodiment, a Source program
which describes a multiplication formula using block floating
variables is compiled to implement multiplication (multipli

US 7,478,363 B2
53

cation out of multiplication-accumulation) in block floating
point format, this is not restrictive and it is also possible to
compile a source program which describes a division formula
using block floating variables in the same manner as in the
above embodiment to implement division in block floating
point format.

Also, although in the above embodiment, each block float
ing variable is defined by specifying a variable name, the
number of data groups, and the number of data items in each
data group as shown in Equation (3), this is not restrictive and
it is possible to define block floating variables by specifying
only variable names without specifying the number of data
groups or the number of data items in each data group if the
number of data groups or the number of data items are defined
commonly or in a fixed manner. This will make it simpler to
write source programs.

Also, although in the above embodiment, the object pro
grams generated are executable by the computer 100, this is
not restrictive and an object program executable by a digital
signal processor (hereinafter referred to simply as a DSP)
such as the one shown in FIG. 14 may be generated on the
computer 100. In the example of FIG. 14, an object program
compiled on the computer 100 is executed by control logic.
FIG. 14 is a block diagram showing a configuration of a DSP.

Also, although in the above embodiment, digit places are
aligned by right-shifting each data item in the data block with
a smaller block scale factor out of two data blocks to be
subjected to addition, this is not restrictive and it is also
possible to align digit places by left-shifting each data item in
the data block with a larger block scale factor out of two data
blocks to be subjected to addition.

Also, although in the above embodiment, the control pro
gram prestored in the ROM 32 is executed to implement the
processes of the flowchart in FIG. 3, this is not restrictive and
it is also possible to run programs of the above procedures by
loading them to the RAM 34 from a storage medium which
stores the programs.
The storage medium here maybe any storage medium,

provided it is computer-readable, regardless of what reading
method it uses: electronic, magnetic, or optical. It may be a
semiconductor storage medium Such as RAM or ROM; mag
netic storage medium such as an FD or HD; optical storage
medium such as a CD, CDV. LD, or DVD; or magneto-optical
storage medium Such as an MO.

Also, although in the above embodiment, a compiler appa
ratus, compiler program, and object program generating
method according to the present invention are applied to a
case in which a source program containing computing
expressions written in block floating-point format is trans
lated on a computer 100 into an object program executable by
the computer 100 as shown in FIG. 1, this is not restrictive and
they may also be applied to other cases without departing
from the spirit and scope of the present invention.

INDUSTRIAL APPLICABILITY

As described above, the compiler apparatus according to
an embodiment of the present invention can compile block
floating-point variables.

Furthermore, the compiler apparatus according to a further
embodiment of the present invention can implement block
floating-point operations by simply describing computing
expressions using block floating variables without any special
programming operation Such as defining a structure or creat
ing a special function in the Source program. This makes it
easier to describe arithmetic operations in Source programs
and simpler to write the Source programs.

10

15

25

30

35

40

45

50

55

60

65

54
Furthermore, the compiler apparatus according to yet

another embodiment of the present invention can compile
hierarchical block floating-point variables.

Furthermore, the compiler apparatus according to a further
embodiment of the present invention can implement block
floating-point operations by simply describing computing
expressions using block floating variables without any special
programming operation Such as defining a structure or creat
ing a special function in the Source program. This makes it
easier to describe arithmetic operations in Source programs
and simpler to write the Source programs.

Furthermore, the compiler apparatus according to an
embodiment of the present invention can implement multi
plication or division in block floating-point format by simply
describing a multiplication formula or division formula using
block floating variables without any special programming
operation Such as defining a structure or creating a special
function in the source program. This makes it easier to
describe arithmetic operations in Source programs and sim
pler to write the source programs.

Furthermore, the compiler apparatus according to another
embodiment of the present invention can implement addition
or Subtraction in block floating-point format by simply
describing an addition formula or Subtraction formula using
block floating variables without any special programming
operation Such as defining a structure or creating a special
function in the source program. This makes it easier to
describe arithmetic operations in Source programs and sim
pler to write the source programs. Also, the compiler appara
tus can normalize data within each data block and across data
blocks at the same time by performing Scaling once per data
item in an execution process of an object program, and thus
relatively simplify arithmetic processing.

Furthermore, the compiler apparatus according to another
embodiment of the present invention can implement multi
plication-accumulation in block floating-point format by
simply describing multiply-accumulate formulas using block
floating variables without any special programming opera
tion Such as defining a structure or creating a special function
in the Source program. This makes it easier to describe arith
metic operations in source programs and simpler to write the
Source programs. Thus, in an execution process of an object
program, Scaling is performed before multiplication. This
eliminates the need to assign an extra bit length to variables to
avoid cancellation of significant digits, and thus relatively
reduces data capacity required for arithmetic operations.
Also, this relatively decreases the possibility of lowering
computational efficiency because no bit length conversion is
involved.
The invention claimed is:
1. An object program generating method being able to

perform block floating compiling process by using a Central
Processing Unit (CPU) for translating a given source program
into an object program by performing the block floating com
piling process when the source program contains computing
expressions which are written using block floating variables
of a Block Floating data type, characterized in that:

each of the block floating variables constitutes a data block
containing one or more data items and the data block is
a variable which represents a data structure containing a
block scale factor of the data block,

the block floating compiling process by using the CPU
comprising:

a computing expression detecting step of detecting the
computing expressions in the Source program input from
the storage device by detecting and outputting as detec
tion results:

US 7,478,363 B2
55

operators in the expressions,
the data type of input operand for the operators, and
the data type of output operand for the operators;

a computing expression expanding step of expanding the
computing expressions detected in the computing
expression detecting step into predetermined instruction
codes, the expanding step based upon:
the detected operators, and
data type information detected from the input operand

for the operators in the detection results:
an instruction code conversion step of converting the

instruction codes produced in the computing expression
expanding step into the object program, by converting
and outputting:
instruction codes which specify a process of feeding

block floating type data into a computing unit for
performing a shifting process, if the input operand is
block floating type data, based on at least one of the
operational block scale factor and the block scale
factor of an input operand, and

instruction codes which specify a process of calculating,
if the input operand contain block floating type data,
an operational block scale factor from the block scale
factors of input data blocks.

2. The object program generating method according to
claim 1, characterized in that:

the computing expression expanding step expands any
block floating type data fed to a computing unit into
instruction codes which specify a computational process
based on the operators; and

the computing expression expanding step produces
instruction codes which specify a data output process for
calculating an interim block scale factor from the block
Scale factors of input data blocks, normalizing compu
tational results which correspond to an output operand,
and calculating block scale factors from the interim
block scale factor if the output operand is block floating
type data.

3. An object program generating method being able to
perform block floating compiling process by using a Central
Processing Unit (CPU) for translating a given source program
into an object program by performing the block floating com
piling process when the source program contains computing
expressions which are written using block floating variables
of a Block Floating data type in a storage device, character
ized in that:

each of the block floating variables constitutes a data block
containing one or more data groups, each of which in
turn contains one or more data items and one group Scale
factor, the data block being a variable which represents a
data structure containing a block scale factor of the data
block, the block floating compiling process by using the
CPU comprising:

a computing expression detecting step of detecting the
computing expressions in the Source program input from
the storage device by detecting and outputting as detec
tion results:
operators in the expressions,
the data type of input operand for the operators, and
the data type of output operand for the operators;

a computing expression expanding step of expanding the
computing expressions detected in the computing
expression detecting step into predetermined instruction
codes, the expanding step based upon:
the detected operators, and
data type information detected from the input operand

for the operators in the detection results:

10

15

25

30

35

40

45

50

55

60

65

56
an instruction code conversion step of converting the

instruction codes produced in the computing expression
expanding step into the object program, by converting
and outputting:
instruction codes which specify a process of feeding

block floating type data into a computing unit for
performing a shifting process, if the input operand is
block floating type data, based on at least one of the
operational block scale factor and the block scale
factor of an input operand, and

instruction codes which specify a process of calculating,
if the input operand contain block floating type data,
an operational block scale factor from the block scale
factors of input data blocks.

4. The object program generating method according to
claim 3, characterized in that:

the computing expression expanding step expands any
block floating type data fed to a computing unit into
instruction codes which specify a computational process
based on the operators; and

the computing expression expanding step produces
instruction codes which specify a data output process for
calculating an interim block scale factor from the block
Scale factors of input data blocks, group-normalizing
computational results which correspond to an output
operand, calculating final group scale factors based on
either or both of updated group scale factors calculated
as a result of the group normalization and/or the interim
block scale factor, and calculating a block scale factor
from the calculated group scale factors if the output
operand is block floating type data.

5. An object program generating method being able to
perform block floating compiling process using a Central
Processing Unit (CPU) for translating a given source program
into an object program by performing the block floating com
piling process when the source program contains computing
expressions which are written using block floating variables
in a storage device, characterized in that:

each of the block floating variables constitutes a data block
containing one or more data items and the data block is
a variable which represents a data structure containing a
block scale factor of the data block, the block floating
compiling process by using the CPU comprising:
a computing expression detecting step of detecting the

computing expressions input from the storage device
detecting and outputting as detection results:
multiplication in the Source program, and division in

the Source program,
a computing expression expanding step of expanding the

computing expressions detected in the computing
expression detecting step into predetermined instruc
tion codes, the expanding step based upon the
detected operators;

an instruction code embedding step of embedding the
instruction codes produced in the computing expres
sion expanding step in the object program;

at multiplication or division part of the computing expres
sions detected in the computing expression detecting
step, the computing expression expanding step expands
that part which involves multiplication or division into
instruction codes which specify multiplication or divi
sion for data blocks corresponding to the block floating
variables to be subjected to multiplication or division;
and

the process specified by the instruction codes performs
multiplication or division on data in the data blocks,
produces the computational result as a computational

US 7,478,363 B2
57

result data block, and calculates the block scale factor of
the computational-result data block based on the block
scale factors of the data blocks.

6. An object program generating method being able to
perform block floating compiling process by using a Central
Processing Unit (CPU) for translating a given source program
into an object program by performing the block floating com
piling process when the source program contains computing
expressions which are written using block floating variables
in a storage device, characterized in that:

each of the block floating variables constitutes a data block
containing one or more data items and the data block is
a variable which represents a data structure containing a
block scale factor of the data block;

the block floating compiling process by using the CPU
comprising:
a computing expression detecting step of detecting the

computing expressions input from the storage device
for detecting and outputting as detection results:
addition in the Source program, and
Subtraction in the Source program,

a computing expression expanding step of expanding the
computing expressions detected in the computing
expression detecting step into predetermined instruc
tion codes, the expanding step based upon the
detected operators, and

an instruction code embedding step of embedding the
instruction codes produced in the computing expres
sion expanding step in the object program;

at addition or subtraction part of the computing expres
sions detected in the computing expression detecting
step, the computing expression expanding step expands
that part which involves addition or subtraction into
instruction codes which specify addition or subtraction
for data blocks corresponding to the block floating vari
ables to be subjected to addition or subtraction; and

the process specified by the instruction codes selects the
block scale factor of the data block containing data with
the maximum absolute value as a common block scale
factor,

Scales data in the data blocks based on the common block
Scale factor, and performs addition or Subtraction on the
Scaled data in the data blocks.

7. An object program generating method being able to
perform block floating compiling process by using a Central
Processing Unit (CPU) for translating a given source program
into an object program by performing the block floating com
piling process when the source program contains computing
expressions which are written using block floating variables
in a storage device, characterized in that:

each of the block floating variables constitutes a data block
containing one or more data items and the data block is
a variable which represents a data structure containing a
block scale factor of the data block;

the block floating compiling process by using the CPU
comprising:

a computing expression detecting step of detecting the
computing expressions for multiplication-accumulation
in the Source program input from the storage device by a
computing expression detecting means,

a computing expression expanding step of expanding the
computing expressions detected in the computing
expression detecting step into predetermined instruction
codes by a computing expression expanding means, and

5

10

15

25

30

35

40

45

50

55

60

65

58
an instruction code embedding step of embedding the

instruction codes produced in the computing expression
expanding step in the object program by an instruction
code embedding means;

at multiplication-accumulation part of the computing
expressions detected in the computing expression
detecting step, the computing expression expanding step
expands that part which involves multiplication-accu
mulation into instruction codes which specify multipli
cation-accumulation for a first data block and second
data block which correspond to two block floating vari
ables to be subjected to multiplication and a third data
block which corresponds to a block floating variable to
be subjected to addition or subtraction; and

the process specified by the instruction codes comprises a
first Scaling process for Scaling data in the first data block
based on a given Scale factor, a second scaling process
for Scaling data in the third data block based on a given
Scale factor, a multiplication process for multiplying the
second data block by the first data block from the first
Scaling process, and a computational process for per
forming addition or subtraction using the multiplica
tion-result data block from the multiplication process
and the third data block from the second scaling process
further calculates a corrective block scale factor which is
a difference between a multiplication-result block scale
factor and the block scale factor of the third data block,
the multiplication-result block scale factor being the
sum of the block scale factors of the first data block and
the second data block, and gives the corrective block
Scale factor to the first Scaling process, feeds data from
the first data block to the first scaling process, gives no
Scale factor to the second Scaling process, and feeds data
from the third data block to the second scaling process.

8. The object program generating method according to
claim 7, characterized in that the process specified by the
instruction codes performs either:

a first scale correction process for giving the corrective
block scale factor to the first scaling process, feeding
data from the first data block to the first Scaling process,
giving no scale factor to the second scaling process, and
feeding data from the third data block to the second
Scaling process; or

a second scale correction process for giving the corrective
block scale factor to the second scaling process, feeding
data from the third data block to the second scaling
process, giving no scale factor to the first scaling pro
cess, and feeding data from the first data block to the first
Scaling process.

9. The object program generating method according to
claim 7, characterized in that:

the process specified by the instruction codes selectively
performs either the first scale correction process or the
second scale correction process based on magnitude
relation between the multiplication-result block scale
factor and the block scale factor of the third data block.

10. The object program generating method according to
claim 9, characterized in that:

the first scaling process shifts inputted data to lower-order
bits by a shift amount equivalent to a given scale factor;

the second scaling process shifts inputted data to lower
order bits by a shift amount equivalent to a given scale
factor; and

the process specified by the instruction codes performs the
first scale correction process when the block scale factor
of the third data block is larger than the multiplication
result block scale factor, and performs the second scale

US 7,478,363 B2
59

correction process when the multiplication-result block
scale factor is larger than the block scale factor of the
third data block.

11. The object program generating method according to
claim 9, characterized in that:

the first Scaling process shifts inputted data to higher-order
bits by a shift amount equivalent to a given scale factor;

the second Scaling process shifts inputted data to higher
order bits by a shift amount equivalent to a given scale
factor; and

5

60
the process specified by the instruction codes performs the

second scale correction process when the block scale
factor of the third data block is larger than the multipli
cation-result block scale factor, and performs the first
Scale correction process when the multiplication-result
block scale factor is larger than the block scale factor of
the third data block.

