US 20220066670A1

a9y United States

12y Patent Application Publication o) Pub. No.: US 2022/0066670 A1

NAIK et al. 43) Pub. Date: Mar. 3, 2022
(54) CLOUD-BASED DISTRIBUTED DATA (52) U.S. CL
STORAGE SYSTEM USING BLOCK-LEVEL CPC ... GOGF 3/0641 (2013.01); HO4L 67/1097
DEDUPLICATION BASED ON BACKUP (2013.01); GO6F 3/0664 (2013.01); GO6F
FREQUENCIES OF INCOMING BACKUP 3/067 (2013.01); GOGF 3/0608 (2013.01)
COPIES
(57) ABSTRACT

(71) Applicant: Commvault Systems, Inc., Tinton

(72) Inventors:

(21) Appl. No.:

(22) Filed:

Falls, NJ (US)

Bharat Pundalik NAIK, Palo Alto, CA
(US); Xiangyu WANG, Fremont, CA
(US); Avinash LAKSHMAN; Fremont,
CA (US)

17/153,674

Jan. 20, 2021

Related U.S. Application Data
(60) Provisional application No. 63/070,162, filed on Aug.

25, 2020.

Publication Classification

Disclosed deduplication techniques at a distributed data
storage system guarantee that space reclamation will not
affect deduplicated data integrity even without perfect syn-
chronization between components. By understanding certain
“behavioral” characteristics and schedule cadences of
backup operations that generate backup copies received at
the distributed data storage system, data blocks that are not
re-written by subsequent backup copies are pro-actively
aged, while promoting continued retention of data blocks
that are re-written. An expiry scheme operates with block-
level granularity. Each unique deduplicated data block is
given an expiry timeframe based on the block’s arrival time
at the distributed data storage system (i.e., when a backup
copy supplies the block) and further based on backup
frequencies of the various virtual disks referencing a unique
system-wide identifier of the block, which is based on the

(51) Imt. ClL block’s hash value. Communications between components
GO6F 3/06 (2006.01) are kept to an as-needed basis. Cloud-based and multi-cloud
HO4L 29/08 (2006.01) configurations are disclosed.

. 102-1) Distributed Data Storage System 100
Hypervisor Storage Proxy s Comprises Storage Proxies And
103A 106-1 Storage Service Nodes
: 5 102-2 Application Nodes
Software Container Stor?ge: rOXy a > With Storage Proxies
“Application Tier”
Bare Metal Storage Proxy s 102-3
105A 108-3 y
Applications, Storage
Proxy, And Storage
1 _ Storage Cluster 110 Service On Same Host
e o~
g 4 N ~
il Storage Service Node Hypetvisor Storage Proxy Storage Service 1241
s 120-1 1038 1064 122-1 4 \
/ Separalely \\

! Scalable \
Storage < ;
Service /

\\ Nodes /
N Storage Service Node Bare Metal Storage Proxy Storage Service | 21y
- 1058 106-K 122-M e
N
~ pN e
~ -

—
- ——

US 2022/0066670 A1

Mar. 3,2022 Sheet 1 of 18

Patent Application Publication

T T T -—— Vi "Old
-7 - [N
g ~ N N
d W2zt 5901 460} N-0Z1 N
/" Wiz /1 | 8oineg abeioig Axoid abeioig [eJo| Bieg apop 8oieg abeioig //
/ SOPON \
/ j ’ CUIVENS \
)) Y 0bei0)S |
9/qeleas /
\ Aoreredss 4
\ p— —— R
-1z / (44} 901 geor 1-0¢1 7/
N d0INBS @ m BIOIS Axoid obeioig JosinjedAH 9pON 80INBg abeIOIS P
N S 7
~ P
1SOH BWES UQ 99INI8S 0Ll Jasno mmlemml\l T
abelo)s puy ‘Axoid
abeiojs ‘suoyeaiddy ~
£-901 VG0l
701 / Axoid obeinig [E}S Bieg
A491] uopeojddy, —
s8/X0id] 9BEIOIS M < . 4 @mw vv0l
sapop uopedyddy 7201 / X0.id ebeiojg JBUIBIUOY) BIBMOS
S NENEISEL S 1-90} Veol
PUY S8IX0id ebeioig Sesuduwion) 1701 / Axoid obeinig J0oSIAIBdAH
00| WeISAS 9beIOIS Bl Painquisi(\~

US 2022/0066670 A1

Mar. 3,2022 Sheet 2 of 18

0oy A

Patent Application Publication

6-0¢1 9-0¢t £-0d1
NSS NSS -
8-0¢1 ¢-0¢l 57T
NSS NSS ol
L-0¢l ¥-0¢1 07T
NSS NSS o

(A
¢-90) o
¢Cel

Axoid 8brioig paziisuieuo)
~ J

aoe(bupndwion

dal 'Old
~
113
> J8Jsn|0
abeio)g
S
€0}
JosinedAy
1-901
b-cel
| (INA Jefjou0))
Axoid abeioig uoneoddy
1€t
WA Ui
1-¢0lL
1SOH INA

US 2022/0066670 A1

Mar. 3,2022 Sheet 3 of 18

Patent Application Publication

"SASGNS SDEIO}S BJeQ PUY SASANS EIepele]y SASGNS UONEZIUCIJOUAS Pod DUSHAWI0Y SpON e0iAies sbeiojs earensnii)} ") 4

ll J
|
|

A 4
4) 4 ™ "
— — |
gl ovl |
wET |
(abrU0IS BIEQ PEOARY polRDlday (ebeU0IS I
‘pauoed + Buissenoid elepejay pajeoyday ‘pauoiiied » |
abei0ig ¥ooig eleq peoiked) + BUISS800.4 BlEpRIBI) Eﬁmmmﬂmgcoa f
MO0 1EH, $39Vd, |
waysAsqng abeiolg ejeq wajsAsqng eiepelsiy "
|
- / - |
A _
lll |
oct
APON /I elepelspy
CITIEIS N
abeiog %3
‘aiemos ng
‘alemyog
P Ax0id sbeio)s |« mﬁ_wh_u.moa
syooig ereq - (‘913 ‘iodpu3 g3 Jeniss et
SdN 79622 1SOSI “6°9) “fg
19)8nj9 8beIO)S Wol4 ‘yoneonddy
SpeoY pUY 04 SAIM A
sjdaass)u Axoid oBEI0)S fl....Nlll&\
o0 A a0t / zel

US 2022/0066670 A1

Mar. 3,2022 Sheet 4 of 18

Patent Application Publication

f - al old
_ |
_ | 09l
| 100 a e a W W N TOW d $S904N0S8Y
_ VL E I\ abeioig
_ |
e
5027 50T £02T
NSS NSS NSS
502} 502} 702}
NSS NSS el . NSS
oI w
W ¥Siq [enHIA]
7021 A T4
NSS NSS NSS

US 2022/0066670 A1

Mar. 3,2022 Sheet 5 of 18

Patent Application Publication

(eoday erepejepy)
6-0¢} NSS

(eoyday ejepeiapy)
(eoydey ejeq)
8021 NSS

{48umQ elepelsiy)
L-0C1 NSS

A

A

G-0C1 NSS

¢-0C1 NSS

(eoidey eeq)

(eoidey ejeq)

My

F-02T NSS M > 1021 NSS
_\"h
\
901) €l
Axoid obeioig M uogesyddy
.
A
ME

31 "Old

~N

oLt
Y Jjsnn
abelols

US 2022/0066670 A1

Mar. 3,2022 Sheet 6 of 18

Patent Application Publication

(eoiidey erepeisjy)
6-0¢F NSS

(eoidey ejepersiy)
(eoyjdey eyeq)
3-0CT NSS

(19UMQ elepelei)
L-0CL NSS

G-0C1 NSS

H
.
'
H
’
.
'
H
.
3
¢

(eoyday eleq)

:::::

¢-0C1 NSS

(eoldey ereq)

¥-0¢lL NSS b-0¢1 NSS
m_m
-
901) zel
Axoid ebeioig d uoneoyddy
dl N
A
- | 4

41 "Old

/

ol
Y jBsnpn
abeloig

US 2022/0066670 A1

Mar. 3,2022 Sheet 7 of 18

Patent Application Publication

UoneDlanpa(] YA S81do) 9] "O|4
Ajoeqg DULIOIS 104 UWIOJIE[d SDEI0}S Ele(] Panquisly DUISH WaISAS JUSWShEUE] SDeJ0lg Eje(] — UORenbyuory ampeg
0907 aomeq bunndwon dnyoeg
.......................... L,
0077 i 907 THET
(pejeoydey ‘pauonnied ‘fenuip) i | Aol |- > 1UsBy BIPO
{ ysig ednpeq weisAg egoly abeiojg -— pjeq dnyoeg .
/: llllllllllllllllllllllllll _‘ lllllllllllllllllllllllllll .-
A
0cl
SSPON 90IAIeg abelolg
Y
Y
el
ejeq Aewiid 913 SNga 473 0%

>
01

‘lew3 63 Jusby eje(

‘ddy

0207 @omeq bunndwod sy

Jobeuep abeiolg

US 2022/0066670 A1

Mar. 3,2022 Sheet 8 of 18

Patent Application Publication

TGHESanpag

IR S81007) dnypeg BULOIS 104 WIOJE|d SDBI0IS BIB(] PaINaUIsIq DUISH WAISAS dMmjoBy — UORBINDIUCY) ampoeyg

00t
(pereoyday ‘pauoniied ‘jenuiA)
ysi@ ednpaq wasAg [eqojo

0ci
SapoN doineg abeiolg

901
Axoid

abeing

¢

Hl "Old

-—— pje(g dnyoeg

0051
WajsAg
dnyoeg

0cii

eleq Atewid

SPON 90IAISS SDEIO}S SUIES UQ PUIPISEY ATIESSEIBN JON STUSUOGUI0,) UOREDNANpa(] - WIOREld S0elois pemaisid W "©)1d

wajsAsqng abeloig ejeq wajsAsang ejepeisiy

US 2022/0066670 A1l
|
|
|
|
|
|
|
|
|
|
|
™
| 2
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
>
I =
|
|
|
)
)
|
|
|
| o
|2
)

|
| lojejnojen yood3
|

1474 082

(PpY) (pJeosiq)
21607 ajM 21607 uonoedwon

Mar. 3,2022 Sheet 9 of 18

e — — — s —— — — — — —— — — — — — s —— — — — —

ﬂ 07 #

,| oboT uogosfon |

g abeqien A
9 Bupoedt aa

Y

(o
@mo,_ Bupoel) qq

e e mmmd ammm e e Amme mmmm v mmee Amme Rmem R AR AmAe Amme A Rees AmAm SRR e e ARme Smem e mme Amen Smme e e e

Patent Application Publication

-
m SPON S9/AI3S 9DBI0TS SUIES UQ DUIpISSY AITESSII8N JON SJUSUOIWog UoTedfanpag — Wiofeld S0eloiS panaisid g "4
o
o
m .\ 061 1\ ol 0cl
m _\ lllllll weishsqng ebeicis meq ™ ~\ T T weshsqng ElEpelsy) { WeisAsang pod ﬁ
| !
m | _ ~ b e |
[T 7001 AR T | 1| mouz=ipody | |
% | FEle ysiq 3siQ |7 s preosig suieluog 09 [raT4RISND | |
— || 1eashud |eoisAyd jeaishyd | | i “) ." X |
= ;
s | o 2 L _
. _ ! oju1spAD09 L - _
> | i } | d |
2 | b L (Jovenoed yoods | |
- _ o e L |
aQ i unoeydaa N o o e ~
2., [_ ;] ©O b
e _ Voo 57 A
nMu _ 25¢ 0%Z _ ” ei1aa _ | Axoid oBeiog “
_ (pPY) (p1asi) Lo P
_ 21607 SjA 21607 uonoedwon _ | 757 | | "
g ! ¥ x .| @'appogda-ol-ysed |y ! 102 |
b S I S _ | Xepuj) ouidg | P (3 appoiaaa |
2 I B . t 1] -o1-yseH xepuy)
= BpPON 8aIMI8S 86eI0)S | 574 | | el I
£ SIUL Jy PBJSOH a1y ! OJUPIOOIGASIPA | _ A !
= (€020 10 "69) 0.4 | _ P |
8 ¥Si(8dnpaqg wejsAs of ~ _ | I
s Buibuojag sieureIuo?) | — i v I
= aBeI0)S JO J9SGnS ﬁ 124 # by —— |
£ _ | 2iBo7 uoposyon |, M |
<« w ” abeqien h { mw@mo._ Bupoel] aaj
= g Bupjoes| 4@ by _
b ~ ! |
< N o e e e e o — o —— — L e e e e - —
[~™

Patent Application Publication = Mar. 3, 2022 Sheet 11 of 18 US 2022/0066670 Al

207, 242
__\

Key Value

Hash Value {DDblockiD, E

FIG. 2C DDCache & DDInfo Column Families

243
__\

Key: UserVdiskMetadataKey

SystemDDdiskContainerlD

DDblockID Hash Value Timestamp

DDblockiD_3 |Hash Enow + 1

DDblocklD_9 |Hash Enow + 1

in Each GC Cycle, A New DDTracker Column Family Tracks For Each User
FIG. 2D Vdisk Every New Write Request Intercepted By Storage Proxy

US 2022/0066670 A1

Mar. 3, 2022 Sheet 12 of 18

Patent Application Publication

Anaxg appolgaa sepdn 3¢ 914

pUY "SaujuT JUN0NISYa(S1epan JoY0BIL (g Ul OJU] SS8001d "MPo[aa PaIa/epul) AaAd 104 JoYoel] (j(bUlutess

U0 paseq (85BUd daid Ho)) 8PAD J5) 4oes U] 55800Id) PUnoIDYoeyg Ag patepdn AWie,] ulinjos) Junoaegad

Jeyoei gq w dwejsaw| Wwoi (suwnjoo Adx3 joy)xepw
baidng4~ baiings
NMILN ysipaesn N [M3L L ofsipaiesn b n3 ysey
+Umg + [MA
e Yood3 Andx3 joy| N ysipaiasn ood3 Audx3 o] | ysipasasn (perepdn) yseyag
Moy . . M $3d . . Andx3 g¥oolaaa
s anrooiaad

qlisureluoDYSIpaQUWeISAS Ady

/| yve

Patent Application Publication

286
__\

Mar. 3, 2022 Sheet 13 of 18

US 2022/0066670 A1

GC Prep Stage Epoch

Name (hostname) h1

Storage Service Node (SSN) |Storage Service Node (SSN)

Name (hostname) h2

1,21, 28

10, 18, 24, 26

Primary Metadata Node Of User Vdisk

Workload Assignments For Discard (GC) Prep Stage. To Update DDRefCount,

The Workload Of Scanning DD Tracker Column Families {each DDTracker

F| G 2F Associated With A User Vdisk) Is Distributed Among Storage Service Nodes
. (SSN) According To This Table (Persisted In Case SSN Fails)

246
__\

Key: SystemDDdisk

SystemDDdiskContainerlD

Epoch x

Epoch y

DDblockID 1,
DDblockID_4,
efc.

DDblockID_3,
DDblockiD_24,
sfc.

F|G_ ZG Garbage Block ID Set (Discard List) Generated In GC Staqe After GC Prep Stage

US 2022/0066670 A1

Mar. 3, 2022 Sheet 14 of 18

Patent Application Publication

»

>

€ 'Old

h .

»

[

»

Joyoes qQq a1epdn j«
+ | O4upO0IEMSIPA Sjepdn [« ON J*
N / STA J«
(¢mouz > [3) ¢ peudx3 @poolgaa si
1/ 1 STA ¢
. +Moud = 3 ojuaq srepdn » 9yoeDQQ sjepdn
9/ W/
J9Yori1 qQ ajepdn j«¢
»| OJUPOOIISIPA jepdr) ON [«
4 / SIAJ¢

(¢moug > [3) copuiaq u paadxg gpoolaaq sl

Y

90[ISN S}

3/

00ZL 51
3aNPaQ WAISAS B0

Bush)
051

r/ Lo«
< ON |«
i
£OIAQ Ul YSEH S| |« ON [¢—
a/ O — ¢8Y2eDQaq Ut yseH s|—

g — Axoo_n._m:vcme arejnoen

, Y — | 7sipAISn 10§ (400]0USR)BILAN AI809Y
0%1 WAISASTNS BIEPEIa| 90] AX0ig sbeioig

WBISASqNG 8beiolg Ble(

Patent Application Publication

Mar. 3, 2022 Sheet 15 of 18

US 2022/0066670 A1

400 Start Discard Preparation Stage
{GC Prep)
Y
At Pod Subsystem, Increment Enow By 2 a 402
(GC Prep Epoch = (3 *N) -1, Where N 2 1)
y
& 404
» For Every User Virtual Disk {uservdisk) Do:
Y A
First-Time Execution Of GC Prep Stage: Generate Assignment Column |/~ 06
Families In Figure 2F & Persist The Table
Y 407
Assign Scan Workload To Storage Service Nodes (SSNs) According To |/
Column Families In Figure 2F
Y
,) 408
Scan DDTracker (Enow-2) (each DDTracker Associated With AUser | |/~
Vdisk) To Update DDRefCount
¥ 410
Discard DDTracker /-
A 4
End

FIG. 4

Patent Application Publication = Mar. 3, 2022 Sheet 16 of 18 US 2022/0066670 Al

408
__________________ L

IScan DDTracker To Update DDRefCount

/— 502
For Each DDblockID In DDTracker Of The Uservdisk, Do:

\ 4

Y
Add Columns In DDRefCount To Populate:

= Uservdisk Column (uservdisk ID), 504

= Epoch When The DDblockID Was Written (from Timestamp /
Column In DDTracker)

» Reference Expiry (Write Epoch Value + Retention Value
Associated With Uservdisk (e.g., Frequency Of Full Backups At
The Uservdisk)

506
Persist DDRefCount /—

Patent Application Publication = Mar. 3, 2022 Sheet 17 of 18 US 2022/0066670 A1

()]
(]
(e

|

Start Data Discard Stage
(GC Stage)

Y

At Pod Subsystem, Increment Enow By 1 /T 602
(GC Epoch =3 * N, Where N = 1)

y

For Every Storage Container Of The Global System Dedupe Disk, The |/ 604
Primary Metadata Node Of The Container ID Does:

Y

Y

Scan DDRefCount To Determine Whether Each DDblockiD Is Both | |/~ 908
Expired And Has Zero Reference Count To Build Discard List

Y

Transmit (Push Or Pull) Discard List To Data Storage Subsystem Hosting |/~ 608
Present Container To Discard Via Compaction Process

End

FIG. 6

Patent Application Publication = Mar. 3, 2022 Sheet 18 of 18 US 2022/0066670 A1

606
|Determine Whether Each DDblockiD Is Both Expired And Has Zero Reference Count)
/- 702
» For Each DDblockID In DDRefCount Do:

A

Decrement Reference Count (e.g., Columns) In DDRefCount If A Uservdisk |/~ 703
Is No Longer Present (Backup Copy Deleted From Platform)

Y

704
In DDRefCount, Are There Any Uservdisks Referencing The DDblockID /—
(i.e., Non-Zero Reference Count)?

Y

706
In DDRefCount, Is Max(Ref Expiry columns) < Enow-1? /—
(alternatively, Is Eu < Enow-17) (i.e., DDblockID Is Expired?)
Y
YES

DDblocklID Is Both Expired And Has Zero Reference Count?

709
v NO /

If Written After Preceding Discard Cycle, Extend Expiry For DDblockiD In
DDInfo Based On Eu Value (i.e., New Writes Get Extensions)

710
/

DDblockID Is Guaranteed To Be Suitable For GC (okay To Discard) <

Y

/— 712
Add This DDblockID To Discard List For Present Container

!
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
!
|
|
|
|
|
| 708
|
!
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
!
|
|
|
|

US 2022/0066670 Al

CLOUD-BASED DISTRIBUTED DATA
STORAGE SYSTEM USING BLOCK-LEVEL
DEDUPLICATION BASED ON BACKUP
FREQUENCIES OF INCOMING BACKUP
COPIES

INCORPORATION BY REFERENCE TO ANY
PRIORITY APPLICATIONS

[0001] This application claims priority to U.S. Pat. App.
No. 63/070,162 filed on Aug. 25, 2020. Any and all appli-
cations for which a foreign or domestic priority claim is
identified in the Application Data Sheet of the present
application are hereby incorporated by reference in their
entireties under 37 CFR 1.57.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document and/or the
patent disclosure as it appears in the United States Patent and
Trademark Office patent file and/or records, but otherwise
reserves all copyrights whatsoever.

BACKGROUND

[0003] Deduplication in a distributed data storage plat-
form requires tightly coupled communications among com-
ponents to ensure that deduplication tracking is kept current
at the various nodes that form the storage platform. How-
ever, communicating a lot of information frequently among
many components places a substantial burden on network
bandwidth and component cycle time that is needed for
processing data storage and retrieval requests. Therefore, a
solution is needed that scales well to large and very active
data storage platforms while maintaining highly accurate
distributed deduplication tracking with low communications
overhead.

SUMMARY

[0004] The present inventors devised a technological solu-
tion that optimizes deduplicated storage of backup copies at
a distributed data storage platform (hereinafter the “distrib-
uted data storage system”). The present solution is scalable
and guarantees that space reclamation will not affect dedu-
plicated data integrity even without perfect synchronization
between components. The illustrative approach balances the
need for aggressive space reclamation of stale data against
the need to minimize re-writes of existing deduplicated data.
Discarding data too aggressively will slow system perfor-
mance as new data needs to be written that was already on
the distributed data storage system. Conversely, failing to
discard stale data reduces the usable storage of the distrib-
uted data storage system.

[0005] By understanding certain “behavioral” characteris-
tics and schedule cadences of backup operations that gen-
erate backup copies received at the distributed data storage
system, the present approach pro-actively ages data blocks
that are not re-written by subsequent backup copies, while
promoting continued retention of data blocks that are re-
written. Backup copies are typically generated on a substan-
tially regular schedule, e.g., weekly full backups followed
by daily incremental backups. Thus, the contents of full
backup copies effectively replace earlier full and incremen-

Mar. 3, 2022

tal backup copies, e.g., on a weekly basis. Since the illus-
trative distributed data storage system is an append-only
system, unique data blocks that are not supplied again by
later backup copies become stale after several full backup
cycles, because the source data being backed up has changed
and generates different backup data blocks. Eventually, older
backup copies will become stale and the backup system that
generated them will prune them from the distributed data
storage system. At this point, stale data blocks that are no
longer referenced by any backup copies are pro-actively
deleted (“garbage collected”) from the distributed data stor-
age system.

[0006] The present inventors devised an expiry scheme
that operates at block-level granularity on the distributed
data storage system. This approach advantageously over-
comes some prior-art deficiencies in which a single data
block referenced by a single virtual disk would prevent
discarding all other data blocks associated with the entire
virtual disk, thus retaining a lot of stale data. This prior-art
granularity scheme operated at the virtual disk level. The
present approach also overcomes other prior-art deficiencies
in which a new deduplication store was opened periodically,
which automatically expired data blocks in the preceding
deduplication store, but disadvantageously required
re-writes of retained older data blocks already in the system.
[0007] Here, in contrast to these prior-art solutions, each
unique deduplicated data block is given an expiry timeframe
based on the block’s arrival time at the distributed data
storage system (i.e., when a backup copy supplies the data
block) and further based on backup frequencies of the
various virtual disks referencing the data block. The present
solution includes a global (or system-wide) deduplication
repository, which is configured as a virtual disk that is
partitioned and replicated across storage nodes. The global
system deduplication virtual disk (or “system-wide dedupli-
cation virtual disk) is not exposed as a storage target to the
backup system generating the backup copies and is managed
as a strictly internal resource of the distributed data storage
system. By using the system-wide deduplication virtual
disk, the distributed data storage system maximizes dedu-
plication ratios across data sources, i.e., regardless of the
user virtual disk addressed by an incoming backup copy.
However, different user virtual disks may have different
backup schedules. Therefore, the illustrative block-level
expiry approach considers the various backup schedules in
assigning expiry timeframes and deciding when and whether
to discard individual data blocks.

[0008] A periodic “garbage collection” or “GC” or discard
cycle evaluates each deduplicated data block tracked by the
distributed data storage system. Blocks “written” (i.e., sup-
plied by an incoming backup copy) in the preceding cycle
are analyzed for reference counting and expiry timeframes.
Tlustratively, each backup copy received by the distributed
data storage system comprises one or more files, and the
distributed data storage system may address each file to a
distinct user virtual disk. When the backup system prunes
stale backup copies from the distributed data storage system,
the pruning causes the distributed data storage system to
logically delete the various user virtual disks comprising the
backup files associated with the particular backup copy.
[0009] Because of deduplication, not every block that
comes in with a backup copy is actually added to the
distributed data storage system, but the write request is noted
and tracked. A new data block with a new hash value

US 2022/0066670 Al

receives a unique system-wide identifier (e.g., the “dedupe
block identifier” or “DDblockID”) and the new data block is
added to the global deduplication virtual disk. A block that
is “written” one or more times within a preceding cycle will
have its expiry extended at least one more cycle during the
analysis performed by the discard cycle. Should subsequent
“writes” continue, the block’s expiry will be extended again,
thus ensuring that the block stays in the global deduplication
virtual disk because it is still current. But when the subse-
quent writes wane, the block will eventually expire. If there
are no more backup copies (and corresponding user virtual
disks) on the distributed data storage system that reference
the particular data block, the discard cycle identifies the data
block for deletion, and a compaction engine will delete the
block from the distributed data storage system. Should the
expired data block appear again in a later write request, it
will be seen as a new block and written anew to the
distributed data storage system.

[0010] One of the key aspects of the disclosed approach is
that in each discard cycle, the expiry timeframe of a dedu-
plicated data block (DDblockID) may be extended to
accommodate the least frequent full-backup frequency of
any user virtual disk that references the data block. In this
way, all virtual disks referencing the DDblockID are guar-
anteed the data block’s survival at least through the next full
backup operation. This key aspect provides flexibility and
scalability without compromising data integrity. Moreover,
this key aspect maintains the block-level granularity of the
disclosed expiry scheme, which improves the effectiveness
of the discard process.

[0011] The illustrative distributed data storage system
comprises storage proxies that intercept backup copies being
written to the distributed data storage system. Rather than
adding every incoming data block to the distributed data
storage system, the storage proxy applies a deduplication
routine to the data block. The storage proxy uses hashing
(e.g., MDS without limitation) to compute a hash value for
the incoming data block and checks whether the hash value
is present in a local index or data structure at the storage
proxy (e.g., DDCache).

[0012] If the storage proxy does not find the hash value in
DDCache, the storage proxy passes the hash value to a
metadata subsystem on a storage service node and receives
an update therefrom, comprising a DDblockID and expiry
timeframe if the DDblockID is known, i.e., has been previ-
ously added to the system-wide deduplication virtual disk. If
the hash value is new to the metadata subsystem or if the
expiry timeframe for the DDblockID is in the past (i.e.,
expired DDblockID according to the metadata subsystem),
the data block is treated as a new block, and the storage
proxy will store the data block to the system-wide dedupli-
cation virtual disk. The system-wide deduplication virtual
disk is partitioned and duplicated across a plurality of data
storage subsystems that are distinct from the metadata
subsystem. The data storage subsystem assigns a new
DDblockID to the new data block. The metadata subsystem
updates its own tracking data structures, assigns a future
expiry timeframe (“epoch”) to the new DDblockID, and
transmits the DDblockID and its expiry epoch to the storage
proxy for updating its own local index (e.g., DDCache). If
it turns out that the metadata subsystem reported to the
storage proxy that the DDblockID corresponding to the hash

Mar. 3, 2022

value is not expired, the storage proxy updates its DDCache
and the write request is noted in data structures at the
metadata subsystem.

[0013] Otherwise, if the storage proxy found the hash
value of the data block within its own index (e.g.,
DDCache), the storage proxy checks the expiry epoch of the
corresponding DDblockID. If the DDblockID is not expired,
the storage proxy reports the write request to the metadata
subsystem so that it can update its local tracking data
structures. On the other hand, if the storage proxy deter-
mines that the DDblockID has an expired epoch (according
to DDCache), the storage proxy submits the hash value to
the metadata subsystem as if not found in DDCache as
described above.

[0014] Thus, during the I/O cycle of a given data block, its
hash value is calculated, its presence in the global dedupli-
cation virtual disk is determined, and its pre-existing expiry
(if any) determines whether the data block is added to the
global deduplication virtual disk. The index at the storage
proxy (e.g., DDCache) is updated only as needed to mini-
mize updates sent by the metadata subsystem; no attempt is
made to keep DDCache fully synchronized with the tracking
data structures at the metadata subsystem. The metadata
subsystem updates certain local tracking data structures for
every incoming write request. One of these data structures is
the illustrative DDTracker column family, which is updated
for every write request from an incoming backup copy and
enables proper reference counting.

[0015] Illustratively, a discard cycle runs weekly based on
the typical cadence of full backup cycles, but the invention
is not so limited. During a first phase of the discard cycle
(the preparation stage), the metadata subsystem scans each
DDTracker column family and adds the resulting processed
information to a persistent column family used for tracking
DDblockID reference counts (e.g., DDRefCount). For
example, DDblockID_7 that was “written” or addressed to
user virtual disk 1 (e.g., uservdisk_1) is added to DDRef-
Count showing that uservdisk_1 “wrote” DDblockID_7 to
the system during an epoch as indicated by DDTracker.
DDRefCount assigns an expiry to this DDblockID_7
instance based on the full backup frequency of uservdisk_1.
Likewise, another data block having the same DDblockID
(e.g., DDblockID_7), which was “written” or targeted to
another user virtual disk (e.g., uservdisk_N) is added to
DDRefCount showing that uservdisk N “wrote”
DDblockID_7 to the system during a write epoch as indi-
cated by DDTracker. DDRefCount assigns an expiry to this
other DDblockID_7 instance based on the full backup
frequency of uservdisk_N, which may differ from that of
uservdisk_1. Thus, every undeleted DDblockID in the
global deduplication virtual disk has entries (columns) in
DDRefCount corresponding to the various epochs when a
new instance of the data block entered the system and
columns for user virtual disks referencing the DDblockID. A
maximum value of the various expiry columns, i.e., the
longest expiry timeframe assigned to the DDblockID in the
system (e.g., Eu) ensures that the DDblockID will survive
between the sparsest virtual disk backups, and later helps to
determine whether a certain DDblockID should be dis-
carded.

[0016] Once the preparation stage has fully processed all
DDTracker column families and persisted DDRefCount, a
second phase of the discard cycle begins—the “garbage
collection” or discard stage. The second phase checks

US 2022/0066670 Al

whether the user virtual disks in DDRefCount are still
present on the distributed data storage system. When a
backup copy is pruned by the backup system that created it,
the virtual disk(s) created to store the backup copy and/or its
constituent files are deleted from the distributed data storage
system configuration. Thus, backup copy deletions may
result in DDRefCount decrementing the reference counts of
certain DDblockIDs referenced by the corresponding virtual
disks. The second phase further checks the maximum expiry
epoch (e.g., Eu) of every DDblockID in DDRefCount.
DDblockIDs with zero reference counts and expired Eu are
placed by the metadata subsystem on discard lists. Because
the global system deduplication virtual disk is distributed
among a plurality of different storage containers on different
storage service nodes, the discard lists are segregated by
storage container and transmitted to the data storage sub-
system nodes hosting the respective storage containers.
There, the resident compaction engine ensures that the actual
data blocks corresponding to the DDblockID are discarded,
thus freeing up storage space.

[0017] On the other hand, a DDblockID that was “written”
after the last discard cycle, is given an extension of time.
Accordingly, the expiry epoch is incremented by the full
backup frequency of the user virtual disk associated with the
write request. If the maximum expiry epoch (Eu) increases
at this point, the increase is reflected in the local index of the
metadata subsystem (e.g., DDInfo). In this way, subsequent
write requests of this DDblockID will be evaluated with
respect to the updated (later) expiry epoch, thus extending
the lifetime of the DDblockID on the distributed data storage
system based on its being recently “re-written.”

[0018] One of the key advantages of the disclosed opti-
mized deduplication scheme is that it continues to operate
throughout the distributed data storage system even if stor-
age proxies and/or metadata-hosting nodes are down. Thus,
storage proxies and/or metadata nodes that are down cannot
affect the expiry-based aging of deduplicated data blocks
going on in the rest of the system. The present solution
guarantees that stale references to DDblockIDs that may be
lingering in these non-functional components cannot pre-
vent a particular DDblockID from being discarded. When a
storage proxy or metadata subsystem revives after one or
more discard cycles, its local index (e.g., DDCache,
DDInfo) indicates that many, if not all, incoming data blocks
are expired, because expiry epochs have not been updated
while down. This triggers a check-in with an operational
metadata node as explained above. The check-in sets the
record straight according to current expiry information at the
working metadata node, handles the data block appropri-
ately (e.g., new add vs. deduplicated), and provides an
update to the newly revived component if needed. This
scheme guarantees that stale data blocks will not be mis-
takenly referenced by components that revive with out-of-
date tracking indexes. This aspect provides resiliency to the
distributed data storage system without preventing space
reclamation.

[0019] In sum, the present application discloses a techno-
logical improvement that enables system-wide deduplica-
tion with block-level expiry granularity. The useful life of
each deduplicated data block is based on expiry parameters
that relate to backup frequencies of the virtual disks refer-
encing the data block, thus guaranteeing that data blocks are
kept around between full backup cycles and are extended if
still current. Blocks are retained as long as needed to bridge

Mar. 3, 2022

the gap between sparser backup operations. Tracking data
structures are updated only as needed, thus saving process-
ing cycles and network bandwidth. Moreover, the present
solution guarantees that stale references to DDblockIDs
lingering in non-functional components cannot dictate
whether a particular DDblockID is discarded.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1A is a block diagram depicting a distributed
data storage system 100 according to an illustrative embodi-
ment.

[0021] FIG. 1B is a block diagram illustrating some details
of distributed data storage system 100 comprising separately
scalable storage service nodes according to an illustrative
embodiment.

[0022] FIG. 1C is a block diagram depicting certain sub-
systems of the storage service of distributed data storage
system 100, according to an illustrative embodiment.
[0023] FIG. 1D is a block diagram depicting a virtual disk
distributed across a plurality of storage service nodes and
also depicting a plurality of storage resources available at
each storage service node according to an illustrative
embodiment.

[0024] FIG. 1E is a block diagram depicting a typical 1/O
workflow for write operations originating with an applica-
tion.

[0025] FIG. 1F is a block diagram depicting a typical [/O
workflow for read operations originating with an applica-
tion.

[0026] FIG. 1G is a block diagram illustrating a backup
configuration that depicts an illustrative data storage man-
agement system using distributed data storage system 100
for storing secondary (backup) copies according to an illus-
trative embodiment.

[0027] FIG. 1H is a block diagram illustrating a backup
configuration in which a third-party backup system uses the
illustrative distributed data storage system 100 for storing
secondary (backup) copies according to an illustrative
embodiment.

[0028] FIG. 2A is a block diagram depicting components
that play a role in the present deduplication solution accord-
ing to an illustrative embodiment.

[0029] FIG. 2B is a block diagram depicting components
that play a role in the present deduplication solution accord-
ing to an illustrative embodiment.

[0030] FIG. 2C depicts an illustrative embodiment of a
column family (e.g., DDCache, DDInfo) for associating
hash values with corresponding DDblockID and associated
expiry epoch.

[0031] FIG. 2D depicts an illustrative column family for
tracking write requests received by storage proxies, e.g.,
DDTracker.

[0032] FIG. 2E depicts an illustrative column family that
is updated during each discard preparation stage based at
least in part on scanning and processing DDTracker infor-
mation, e.g., DDRefCount.

[0033] FIG. 2F depicts an illustrative column family that
assigns the workload of scanning DDTracker column fami-
lies for the purpose of updating DDRefCount.

[0034] FIG. 2G depicts an illustrative column family that
comprises DDblockID discard lists.

[0035] FIG. 3 depicts a fence diagram that illustrates some
salient operations occurring during an /O cycle of an
incoming data block intercepted by a storage proxy.

US 2022/0066670 Al

[0036] FIG. 4 depicts some salient operations of a method
400 according to an illustrative embodiment.

[0037] FIG. 5 depicts some salient operations of block 408
in method 400 according to an illustrative embodiment.

[0038] FIG. 6 depicts some salient operations of a method
600 according to an illustrative embodiment.

[0039] FIG. 7 depicts some salient operations of block 606
in method 600 according to an illustrative embodiment.

DETAILED DESCRIPTION

[0040] Detailed descriptions and examples of systems and
methods according to one or more illustrative embodiments
of the present invention may be found in the section entitled
OPTIMIZED DEDUPLICATION BASED ON BACKUP
FREQUENCY IN A DISTRIBUTED DATA STORAGE
SYSTEM, as well as in the section entitled Example
Embodiments, and also in FIGS. 1G-7 herein. Furthermore,
components and functionality for optimizing deduplication
in a distributed data storage system may be configured
and/or incorporated into the distributed data storage system
described herein in FIGS. 1A-1F.

[0041] Various embodiments described herein are inti-
mately tied to, enabled by, and would not exist except for,
computer technology. For example, hashing, analyzing, and
transmitting data among the disclosed components
described herein cannot reasonably be performed by humans
alone, without the computer technology upon which they are
implemented.

[0042] Generally, the systems and associated components
described herein may be compatible with and/or provide at
least some of the functionality of the systems and corre-
sponding components described in one or more of the
following U.S. patents and patent applications assigned to
Commvault Systems, Inc., each of which is hereby incor-
porated by reference in its entirety herein.

USPTO U.S. Pat. Filing
Title Serial No. No. Date

STORAGE SYSTEM FOR 14/322,813 10,067,722 Jul. 2,
PROVISIONING AND STORING 2014
DATA TO A VIRTUAL DISK

METHOD FOR WRITING DATA 14/322,832 9,875,063 Jul. 2,
TO A VIRTUAL DISK USING A 2014
CONTROLLER VIRTUAL

MACHINE AND DIFFERENT

STORAGE AND

COMMUNICATION PROTOCOLS

DISK FAILURE RECOVERY FOR 14/322,850 9,424,151 Jul. 2,

VIRTUAL DISK WITH POLICIES 2014
CREATING AND REVERTING 14/322,855 9,558,085 Jul. 2,
TO A SNAPSHOT OF A VIRTUAL 2014
DISK

CLONING A VIRTUAL DISK IN 14/322,867 9,798,489 Jul. 2,
A STORAGE PLATFORM 2014
WRITING TO A STORAGE 14/322,868 9,483,205 Jul. 2,
PLATFORM INCLUDING A 2014
PLURALITY OF STORAGE

CLUSTERS

TIME STAMP GENERATION FOR 14/322,871 9,411,534 Jul. 2,
VIRTUAL DISKS 2014

Mar. 3, 2022

-continued
USPTO U.S. Pat. Filing

Title Serial No. No. Date
METHOD FOR WRITING DATA 14/684,086 9,864,530 Apr. 10,
TO VIRTUAL DISK USING A 2015
CONTROLLER VIRTUAL
MACHINE AND DIFFERENT
STORAGE AND

COMMUNICATION PROTOCOLS
ON A SINGLE STORAGE

PLATFORM

DYNAMICALLY SPLITTING A 14/723,380 Abandoned May 27,

RANGE OF A NODE IN A 2015

DISTRIBUTED HASH TABLE

STORAGE SYSTEM WITH PCT/ Expired Jun. 30,

VIRTUAL DISKS US2015/ 2015
38687

GLOBAL DE-DUPLICATION OF 15/155,838 10,846,024 May 16,

VIRTUAL DISKS IN A STORAGE 2016

PLATFORM

DE-DUPLICATION OF CLIENT- 15/156,015 10,795,577 May 16,

SIDE DATA CACHE FOR 2016
VIRTUAL DISKS

PERSISTENT RESERVATIONS 15/163,446 10,248,174 May 24,
FOR VIRTUAL DISK USING 2016
MULTIPLE TARGETS

SYNCHRONIZATION OF 15/834,921 10,740,300 Dec. 7,
METADATA IN A DISTRIBUTED 2017
STORAGE SYSTEM

IN-FLIGHT DATA 15/912,374 10,848,468 Mar. 5,

ENCRYPTION/DECRYPTION 2018
FOR A DISTRIBUTED STORAGE

PLATFORM

PERSISTENT RESERVATIONS 16/274,014 10,691,187 Feb. 12,

FOR VIRTUAL DISK USING 2019
MULTIPLE TARGETS

DISTRIBUTED DATA STORAGE 63/053,414 Jul. 17,
SYSTEM USING ERASURE 2020
CODING ON STORAGE NODES

FEWER THAN DATA PLUS

PARITY FRAGMENTS

DISTRIBUTED DATA STORAGE 63/065,722 Aug. 14,
SYSTEM USING ERASURE 2020
CODING ON STORAGE NODES

FEWER THAN DATA PLUS

PARITY FRAGMENTS

OPTIMIZED DEDUPLICATION 63/070,162 Aug. 25,
BASED ON BACKUP 2020
FREQUENCY IN A

DISTRIBUTED DATA STORAGE

SYSTEM

ANTI-ENTROPY-BASED 63/081,503 Sep. 22,
METADATA RECOVERY IN A 2020
STRONGLY CONSISTENT

DISTRIBUTED DATA STORAGE

SYSTEM

COMMISSIONING AND 63/082,624 Sep. 24,
DECOMMISSIONING 2020
METADATA NODES IN A

RUNNING DISTRIBUTED DATA

STORAGE SYSTEM

CONTAINER DATA MOVER FOR 63/082,631 Sep. 24,
MIGRATING DATA BETWEEN 2020
DISTINCT DISTRIBUTED DATA

STORAGE SYSTEMS

INTEGRATED WITH

APPLICATION ORCHESTRATORS

Distributed Data Storage System

[0043] An example embodiment of the disclosed distrib-
uted data storage system is the Hedvig Distributed Storage
Platform now available from Commvault Systems, Inc. of
Tinton Falls, N.J., USA, and thus some of the terminology
herein originated with the Hedvig product line.

US 2022/0066670 Al

[0044] The illustrative distributed data storage system
comprises a plurality of storage service nodes that form a
storage cluster. Data reads and writes originating from an
application on an application host computing device are
intercepted by a storage proxy, which is co-resident with the
originating application. The storage proxy performs some
pre-processing and analysis functions before making com-
municative contact with the storage cluster. The system
ensures strong consistency of data and metadata written to
the storage service nodes.

Terminology for the Distributed Data Storage System

[0045] Data and Metadata. To enhance the reader’s under-
standing of the present disclosure, the term “metadata” is
distinguished from the term “data” herein, even though both
data and metadata comprise information stored on the illus-
trative distributed data storage system. Accordingly, “data”
will refer to “payload” data, which is typically generated by
an application or other data source that uses the distributed
data storage system for data storage. Thus, the terms “data”,
“payload”, and “payload data” will be used interchangeably
herein. On the other hand, “metadata” will refer to other
information in the distributed data storage system, e.g.,
information about the payload data, about the components
hosting the payload data, about metadata-hosting compo-
nents, about other components of the distributed data storage
system, and also information about the metadata, i.e., “meta-
metadata.”

[0046] Storage Service, e.g., Hedvig Storage Service. The
storage service is a software component that installs on
commodity x86 or ARM servers to transform existing server
and storage assets into a fully-featured elastic storage clus-
ter. The storage service may deploy to an on-premise infra-
structure, to hosted clouds, and/or to public cloud computing
environments to create a single storage cluster.

[0047] Storage Service Node (or storage node), e.g., Hed-
vig Storage Server (HSS), comprises both computing and
storage resources that collectively provide storage service.
The system’s storage service nodes collectively form a
storage cluster. One or more of the following storage service
subsystems of the storage service may be instantiated at and
may operate on a storage service node: (i) distributed
fault-tolerant metadata subsystem providing metadata ser-
vice, e.g., “Hedvig Pages”; (ii) distributed fault-tolerant data
subsystem (or data storage subsystem) providing payload
data storage, e.g., “Hedvig HBlock™; and (iii) distributed
fault-tolerant pod subsystem for generating and maintaining
certain system-level information, e.g., “Hedvig HPod.” The
system stores payload data on certain dedicated storage
resources managed by the data storage subsystem, and stores
metadata on other dedicated storage resources managed by
the metadata subsystem. Thus, another way to distinguish
payload data from metadata in the illustrative system is that
payload data is stored in and maintained by the data storage
subsystem and metadata is stored in and maintained by the
metadata subsystem. The pod subsystem, the metadata sub-
system, and the data storage subsystem are all partitioned
and replicated across various storage service nodes. These
subsystems operate as independent services, they need not
be co-located on the same storage service node, and they
may communicate with a subsystem on another storage
service node as needed.

[0048] Replica. The distributed data storage system rep-
licates data and metadata across multiple storage service

Mar. 3, 2022

nodes. A “replica” or “replica node” is a storage service node
that hosts a replicated copy of data and/or metadata that is
also stored on other replica nodes. Illustratively, metadata
uses a replication factor of 3, though the invention is not so
limited. Thus, with a replication factor of 3 (“RF3”), each
portion of metadata is replicated on three distinct metadata
nodes across the storage cluster.

[0049] Virtual Disk (“vdisk”) and Storage Containers. The
virtual disk is the unit of storage made visible by system 100
to applications and/or application nodes. Every virtual disk
provisioned on the system is partitioned into fixed size
chunks, each of which is called a storage container. Different
replicas are assigned for each storage container. Since rep-
lica assignment occurs at the storage container level—not at
a virtual disk level—the data for a virtual disk is distributed
across a plurality of storage service nodes, thus allowing
increased parallelism during I/Os and/or disk rebuilds. Thus,
virtual disks are distributed and fault-tolerant.

[0050] Storage Pools. Storage pools are logical groupings
of physical disks/drives in a storage service node and are
configured as the protection unit for disk/drive failures and
rebuilds. Within a replica, one or more storage containers are
assigned to a storage pool. A typical storage service node
will host two to four storage pools.

[0051] Metadata Node. An instance of the metadata sub-
system executing on a storage service node is referred to as
a metadata node that provides “metadata service.” The
metadata subsystem executing on a storage service node
stores metadata at the storage service node. The metadata
node communicates with one or more other metadata nodes
to provide a system-wide metadata service. The metadata
subsystem also communicates with pod and/or data storage
subsystems at the same or other storage service nodes. Some
metadata nodes are designated owners of certain virtual
disks whereas others are replicas but not owners. Owner
nodes are invested with certain functionality for managing
the owned virtual disk.

[0052] Metadata Node Identifier or Storage Identifier
(SID) is a unique identifier of the metadata service instance
on a storage service node, i.e., the unique system-wide
identifier of a metadata node.

[0053] Storage Proxy. Each storage proxy is a lightweight
software component that deploys at the application tier, i.e.,
on application servers or hosts. A storage proxy may be
implemented as a virtual machine (VM) or as a software
container (e.g., Docker), or may run on bare metal to provide
storage access to any physical host or VM in the application
tier. As noted, the storage proxy intercepts reads and writes
issued by applications and directs input/output (/O) requests
to the relevant storage service nodes.

[0054] Erasure Coding (EC). In some embodiments, the
illustrative distributed data storage system employs erasure
coding rather than or in addition to replication. EC is one of
the administrable attributes for a virtual disk. The default EC
policy is (4,2), but (8,2) and (8,4) are also supported if a
sufficient number of storage service nodes are available. The
invention is not limited to a particular EC policy unless
otherwise noted herein.

[0055] FIG. 1A is a block diagram depicting a distributed
data storage system 100 according to an illustrative embodi-
ment. The figure depicts: a plurality of application nodes 102
that form an “application tier,” each application node com-
prising a storage proxy 106 and one of components 103 A,
104A, and 105A; and a storage cluster 110 comprising a

US 2022/0066670 Al

plurality of separately scalable storage service nodes 120
and a plurality of specially-equipped compute hosts 121.
[0056] Distributed data storage system 100 (or system
100) comprises storage proxies 106 and storage cluster 110.
System 100 flexibly leverages both hyperscale and hyper-
converged deployment options, sometimes implemented in
the same storage cluster 110 as depicted here. Hyperscale
deployments scale storage resources independently from the
application tier, as shown by storage service nodes 120 (e.g.,
120-1 . . . 120-N). In such hyperscale deployments, storage
capacity and performance scale out horizontally by adding
commodity servers running the illustrative storage service;
application nodes (or hosts) 102 scale separately along with
storage proxy 106. On the other hand, hyperconverged
deployments scale compute and storage in lockstep, with
workloads and applications residing on the same physical
nodes as payload data, as shown by compute hosts 121. In
such hyperconverged deployments, storage proxy 106 and
storage service software 122 are packaged and deployed as
VMs on a compute host 121 with a hypervisor 103 installed.
In some embodiments, system 100 provides plug-ins for
hypervisor and virtualization tools, such as VMware vCen-
ter, to provide a single management interface for a hyper-
converged solution.

[0057] System 100 provides enterprise-grade storage ser-
vices, including deduplication, compression, snapshots,
clones, replication, auto-tiering, multitenancy, and self-heal-
ing of both silent corruption and/or disk/node failures to
support production storage operations, enterprise service
level agreements (SLLAs), and/or robust storage for backed
up data (secondary copies). Thus, system 100 eliminates the
need for enterprises to deploy bolted-on or disparate solu-
tions to deliver a complete set of data services. This sim-
plifies infrastructure and further reduces overall Information
Technology (IT) capital expenditures and operating
expenses. Enterprise storage capabilities can be configured
at the granularity of a virtual disk, providing each data
originator, e.g., application, VM, and/or software container,
with its own unique storage policy. Every storage feature can
be switched on or off to fit the specific needs of any given
workload. Thus, the granular provisioning of features
empowers administrators to avoid the challenges and com-
promises of “one size fits all” storage and helps effectively
support business SLAs, while decreasing operational costs.
[0058] System 100 inherently supports multi-site avail-
ability, which removes the need for additional costly disaster
recovery solutions. The system provides native high avail-
ability storage for applications across geographically dis-
persed data centers by setting a unique replication policy and
replication factor at the virtual disk level.

[0059] System 100 comprises a “shared-nothing” distrib-
uted computing architecture in which each storage service
node is independent and self-sufficient. Thus, system 100
eliminates any single point of failure, allows for self-
healing, provides non-disruptive upgrades, and scales
indefinitely by adding more storage service nodes. Each
storage service node stores and processes metadata and/or
payload data, then communicates with other storage service
nodes for data/metadata distribution according to the repli-
cation factor.

[0060] Storage efficiency in the storage cluster is charac-
terized by a number of features, including: thin provisioning,
deduplication, compression, compaction, and auto-tiering.
Each virtual disk is thinly provisioned by default and does

Mar. 3, 2022

not consume capacity until data is written therein. This
space-efficient dynamic storage allocation capability is espe-
cially useful in DevOps environments that use Docker,
OpenStack, and other cloud platforms where volumes do not
support thin provisioning inherently, but can support it using
the virtual disks of system 100. System 100 provides inline
global deduplication that delivers space savings across the
entire storage cluster. Deduplication is administrable at the
virtual disk level to optimize 1/O and lower the cost of
storing data. As writes occur, the system 100 calculates the
unique fingerprint of data blocks and replaces redundant
data with a small pointer. The deduplication process can be
configured to begin at storage proxy 106, improving write
performance and eliminating redundant data transfers over
the network. System 100 provides inline compression
administrable at the virtual disk level to optimize capacity
usage. The system stores only compressed data on the
storage service nodes. Illustratively, the Snappy compres-
sion library is used, but the invention is not limited to this
implementation. To improve read performance and optimize
storage space, the illustrative system periodically performs
garbage collection to compact redundant blocks and gener-
ate large sequential chunks of data. The illustrative system
balances performance and cost by supporting tiering of data
among high-speed SSDs and lower-tier persistent storage
technologies.

[0061] Application node (or host) 102 (e.g., 102-1, 102-2,
102-3) is any computing device, comprising one or more
hardware processors and computer memory for executing
computer programs, that generates and/or accesses data
stored in storage cluster 110. Application(s) (not shown here
but see, e.g., applications 132 in FIG. 1B) executing on an
application node 102 use storage cluster 110 as a data
storage resource. Application node 102 can take the form of:
a bare metal host 105A for applications with storage proxy
106-3; a virtual machine server with hypervisor 103A and
storage proxy 106-1; a container host hosting software
container 104A and storage proxy 106-2; and/or another
computing device configuration equipped with a storage
proxy 106.

[0062] Hypervisor 103 (e.g., 103A, 103B) is any hyper-
visor, virtual machine monitor, or virtualizer that creates and
runs virtual machines on a virtual machine server or host.
Software container 104A is any operating system virtual-
ization software that shares the kernel of the host computing
device (e.g., 102, 121) that it runs on and allows multiple
isolated user space instances to co-exist. Docker is an
example of software container 104 A. Bare metal 105A refers
to application node 102-3 running as a traditional computing
device without virtualization features. Components 103,
104A, and 105A/B are well known in the art.

[0063] Storage proxy 106 (e.g., 106-1,106-2, 106-3, 106-J
... 106-K) is a lightweight software component that deploys
at the application tier, i.e., on application nodes 102 and/or
compute hosts 121. A storage proxy may be implemented as
a virtual machine 106-1, as a software container (e.g.,
Docker) 106-2, and/or running on bare metal (e.g., 106-3) to
provide storage access to any physical host or VM in the
application tier. The storage proxy acts as a gatekeeper for
all I/O requests to virtual disks configured at storage cluster
110. It acts as a storage protocol converter, load balances 1/0
requests to storage service nodes, caches data fingerprints,
and performs certain deduplication functions. Storage pro-
tocols supported by storage proxy 106 include Internet

US 2022/0066670 Al

Small Computer Systems Interface (iSCSI), Network File
System (NFS), Server Message Block (SMB2) or Common
Internet File System (CIFS), Amazon Simple Storage Ser-
vice (S3), OpenStack Object Store (Swift), without limita-
tion. The storage proxy runs in user space and can be
managed by any virtualization management or orchestration
tool. With storage proxies 106 that run in user space, the
disclosed solution is compatible with any hypervisor, soft-
ware container, operating system, or bare metal computing
environment at the application node. In some virtualized
embodiments where storage proxy 106 is deployed on a
virtual machine, the storage proxy may be referred to as a
“controller virtual machine” (CVM) in contrast to applica-
tion-hosting virtual machines that generate data for and
access data at the storage cluster.

[0064] Storage cluster 110 comprises the actual storage
resources of system 100, such as storage service nodes 120
and storage services 122 running on compute hosts 121. In
some embodiments, storage cluster 110 is said to comprise
compute hosts 121 and/or storage service nodes 120.
[0065] Storage service node 120 (e.g., 120-1...120-N) is
any commodity server configured with one or more x86 or
ARM hardware processors and with computer memory for
executing the illustrative storage service, which is described
in more detail in FIG. 1C. Storage service node 120 also
comprises storage resources as described in more detail in
FIG. 1D. By running the storage service, the commodity
server is transformed into a full-featured component of
storage cluster 110. System 100 may comprise any number
of storage service nodes 120.

[0066] Compute host 121 (e.g., 121-1 . . . 121-M) is any
computing device, comprising one or more hardware pro-
cessors and computer memory for executing computer pro-
grams, that comprises the functional components of an
application node 102 and of a storage service node 120 in a
“hyperconverged” configuration. In some embodiments,
compute hosts 121 are configured, sometimes in a group,
within an appliance such as the Commvault Hyperscale™ X
backup appliance from Commvault Systems Inc., of Tinton
Falls, N.I., USA.

[0067] FIG. 1B is a block diagram illustrating some details
of distributed data storage system 100 comprising separately
scalable storage service nodes 120 according to an illustra-
tive embodiment. The figure depicts: application node 102-1
embodied as a VM host and hosting hypervisor 103, storage
proxy 106-1 embodied as a controller virtual machine, and
client VM 131 hosting application 132-1; application node
102-2 hosting containerized storage proxy 106-2 and con-
tainerized application 132-2; and storage cluster 110 com-
prising nine (9) distinct physical storage service nodes 120
(e.g., 120-1 . . . 120-9). Virtual machine hosts, virtual
machines, and hypervisors are well known in the art.
[0068] Application 132 (e.g., 132-1, 132-2) is any soft-
ware that executes on its underlying host (e.g., 102-1, 102-2)
and performs a function as a result. The application 132 may
generate data and/or need to access data which is stored in
system 100. Examples of application 132 include email
applications, database management applications, office pro-
ductivity software, backup software, etc., without limitation.
[0069] The bi-directional arrows between each storage
proxy 106 and a storage service node 120 depict the fact that
communications between applications 132 and storage clus-
ter 110 pass through storage proxies 106, each of which
identifies a proper storage service node 120 to communicate

Mar. 3, 2022

with for the present transaction, e.g., storage service node
120-2 for storage proxy 106-1, storage service node 120-4
for storage proxy 106-2.

[0070] FIG. 1C is a block diagram depicting certain sub-
systems of the storage service of distributed data storage
system 100, according to an illustrative embodiment.
Depicted here are: storage proxy 106; application 132; and
a storage service node 120 comprising a pod subsystem 130
(e.g., Hedvig “HPOD”), a metadata subsystem 140 (e.g.,
Hedvig “PAGES”), and a data storage subsystem 150 (e.g.,
Hedvig “HBLOCK?”). Although storage service node 120 as
depicted here comprises an instance of all three storage
service subsystems, any given storage service node 120 need
not comprise all three subsystems. Thus, a subsystem run-
ning on a given storage service node may communicate with
one or more subsystems on another storage service node as
needed to complete a task or workload.

[0071] Storage proxy 106 intercepts reads and writes
issued by applications 132 that are targeted to particular
virtual disks configured in storage cluster 110. Storage proxy
106 provides native block, file, and object storage protocol
support, as follows:

[0072] Block storage—system 100 presents a block-based
virtual disk through a storage proxy 106 as a logical unit
number (LUN). Access to the LUN, with the properties
applied during virtual disk provisioning, such as compres-
sion, deduplication and replication, is given to a host as an
iSCSI target. After the virtual disk is in use, the storage
proxy translates and relays all LUN operations to the under-
lying storage cluster.

[0073] File storage—system 100 presents a file-based vir-
tual disk to one or more storage proxies 106 as an NFS
export, which is then consumed by the hypervisor as an NFS
datastore. Administrators can then provision VMs on that
NFS datastore. The storage proxy acts as an NFS server that
traps NFS requests and translates them into the appropriate
remote procedure call (RPC) calls to the backend storage
service node.

[0074] Object storage—buckets created via the Amazon
S3 AP, or storage containers created via the OpenStack
Swift AP, are translated via the storage proxies 106 and
internally mapped to virtual disks 170 (shown in FIG. 1D).
The storage cluster 110 acts as the object (S3/Swift) target,
which client applications 132 can utilize to store and access
objects.

[0075] Storage Proxy 106 comprises one or more caches
that enable distributed operations and the performing of
storage system operations locally at the application node 102
to accelerate read/write performance and efficiency. An
illustrative metacache stores metadata locally at the storage
proxy, preferably on SSDs. This cache eliminates the need
to traverse the network for metadata lookups, leading to
substantial read acceleration. For virtual disks provisioned
with client-side caching, an illustrative block cache stores
data blocks to local SSD drives to accelerate reads. By
returning blocks directly from the storage proxy, read opera-
tions avoid network hops when accessing recently used data.
For virtual disks provisioned with deduplication, an illus-
trative dedupe cache resides on local SSD media and stores
fingerprint information of certain data blocks written to
storage cluster 110. Based on this cache, the storage proxy
determines whether data blocks have been previously writ-
ten and if so, avoids re-writing these data blocks again.
Storage proxy 106 first queries the dedupe cache and if the

US 2022/0066670 Al

data block is a duplicate, storage proxy 106 updates meta-
data subsystem 140 to map the new data block(s) and
acknowledges the write to originating application 132. Oth-
erwise, storage proxy 106 queries metadata subsystem 140
and if the data block was previously written to storage
cluster 110, the dedupe cache and metadata subsystem 140
are updated accordingly, with an acknowledgement to origi-
nating application 132. Unique new data blocks are written
to the storage cluster as new payload data. More details on
reads and writes are given in FIGS. 1E and 1F.

[0076] A simplified use case workflow comprises: 1. A
virtual disk 170 is administered with storage policies via a
web-based user interface, a command line interface, and/or
a RESTful API (representational state transfer application
programming interface). 2. Block and file virtual disks are
attached to a storage proxy 106, which presents the storage
resource to application hosts, e.g., 102. For object storage,
applications 132 directly interact with the virtual disk via
Amazon S3 or OpenStack Swift protocols. 3. Storage proxy
106 intercepts application 132 I/O through the native storage
protocol and communicates it to the underlying storage
cluster 110 via remote procedure calls (RPCs). 4. The
storage service distributes and replicates data throughout the
storage cluster based on virtual disk policies. 5. The storage
service conducts background processes to auto-tier and
balance across racks, data centers, and/or public clouds
based on virtual disk policies.

[0077] Pod subsystem 130 maintains certain system-wide
information for synchronization purposes and comprises
processing and tracking resources and locally stored infor-
mation. A network of pods 130 throughout storage cluster
110, where each pod comprises three nodes, is used for
managing transactions for metadata updates, distributed-
atomic-counters as a service, tracking system-wide time-
frames such as generations and epochs, etc. More details on
the pod subsystem may be found in U.S. Pat. No. 9,483,205
B2, which is incorporated by reference in its entirety herein.
[0078] Metadata subsystem 140 comprises metadata pro-
cessing resources and partitioned replicated metadata stored
locally at the storage service node. Metadata subsystem 140
receives, processes, and generates metadata. Metadata in
system 100 is partitioned and replicated across a plurality of
metadata nodes. Typically, metadata subsystem 140 is con-
figured with a replication factor of 3 (RF3), and therefore
many of the examples herein will include 3-way replication
scenarios, but the invention is not so limited. Each metadata
subsystem 140 tracks the state of data storage subsystems
150 and of other metadata subsystems 140 in storage cluster
110 to form a global view of the cluster. Metadata subsystem
140 is responsible for optimal replica assignment and tracks
writes in storage cluster 110.

[0079] Metadata synchronization logic (or “anti-entropy
engine” (AE) not shown here) runs in metadata subsystem
140. The metadata synchronization logic compares replicas
of metadata across metadata nodes and ensures that the
replicas agree on a superset of the metadata therein to avoid
losing metadata. During storage and compaction of meta-
data-carrying string-sorted tables (SSTs), a consistent file
identification scheme is used across all metadata nodes.
When an application node writes to and reads from a virtual
disk on distributed data storage system 100, metadata is
generated and stored in replicas on different metadata nodes.
A modified log-structured merge tree is used to store and
compact the metadata SST files. A fingerprint file is created

Mar. 3, 2022

for each metadata SST file that includes a start-length-hash
value triple for each region of the metadata SST file. To
synchronize, fingerprint files of two metadata SST files are
compared, and if any hash values are missing from a
fingerprint file then key-value-timestamp triples correspond-
ing to these missing hash values are sent to the metadata SST
file that is missing them. An example of metadata synchro-
nization logic is described in U.S. Pat. No. 10,740,300,
which is incorporated by reference in its entirety herein.

[0080] Data storage subsystem 150 receives, processes,
and stores payload data written to storage cluster 110. Thus,
data storage subsystem 150 is responsible for replicating
data to other data storage subsystems 150 on other storage
service nodes and striping data within and across storage
pools. Data storage subsystem 150 comprises storage pro-
cessing for payload data blocks (e.g., I/O, compaction,
garbage collection, etc.) and stores partitioned replicated
payload data at the storage service node.

[0081] The bold bi-directional arrows in the present figure
show that metadata is communicated between storage proxy
106 and metadata subsystem 140, whereas data blocks are
transmitted to/from data storage subsystem 150. Depending
on the configuration, metadata subsystem 140 may operate
on a first storage service node 120 or storage service 122 and
data storage subsystem 150 may operate on another distinct
storage service node 120 or storage service 122. See also
FIGS. 1E and 1F.

[0082] FIG. 1D is a block diagram depicting a virtual disk
distributed across a plurality of storage service nodes and
also depicting a plurality of storage resources available at
each storage service node according to an illustrative
embodiment. The present figure depicts: nine storage service
nodes 120 (120-1 . . . 120-09); a virtual disk 170 that
comprises data distributed over four of the storage service
nodes—120-1, 120-2, 120-4, and 120-5; and storage
resources 160 configured within storage service node 120-9.

[0083] Each storage service node 120 (or compute host
121) is typically configured with computing resources (e.g.,
hardware processors and computer memory) for providing
storage services and with a number of storage resources 160,
e.g., hard disk drives (HDD) shown here as storage disk
shapes, solid state storage drives (SSD) (e.g., flash memory
technology) shown here as square shapes, etc. The illustra-
tive system uses commit logs, which are preferably stored on
SSD before they are flushed to another disk/drive for per-
sistent storage. Metadata commit logs are stored on dedi-
cated metadata-commit-log drives “MCL”, whereas pay-
load-data commit logs are stored on distinct dedicated
data-commit-log drives “DCL.” As an example depicted in
the present figure, pod system information is stored in
storage resource “P” which is preferably SSD technology for
faster read/write performance; the metadata commit log is
stored in storage resource “MCL” which is preferably SSD
technology; metadata is then flushed from the commit log to
persistent storage “M” (SSD and/or HDD); the data commit
log is stored in storage resource “DCL” which is preferably
SSD technology; payload data is then flushed from the data
commit log to persistent storage “D” (typically HDD). The
storage resources 160 depicted in the present figures are
shown here as non-limiting examples to ease the reader’s
understanding; the numbers and types of storage technolo-
gies among storage resources 160 will vary according to
different implementations.

US 2022/0066670 Al

[0084] To accelerate read operations, client-side caching
of data is used on SSDs accessible by storage proxy 106.
Data is also cached on SSDs at storage service nodes. For
caching, the system supports the use of Peripheral Compo-
nent Interconnect Express (PCle) and Non-Volatile Memory
Express (NVMe) SSDs. All writes are executed in memory
and flash (SSD/NVMe) and flushed sequentially to persis-
tent storage. Persistent storage uses flash technology (e.g.,
multi-level cell (MLC) and/or 3D NAND SSD) and/or
spinning disk technology (e.g., HDD)). Options are admin-
istrable at the virtual disk level.

[0085] Virtual disk (“vdisk™) 170 is the data storage rep-
resentation of system 100 that is visible to and accessible by
applications 132 as data storage resources. Virtual disk 170
is also referred to herein as “user virtual disk” 170 to reflect
that it is visible to applications 132 as a data storage
resource. In other words, each application 132 will use one
or more virtual disks 170 for data storage without having
knowledge of how system 100 as a whole is organized and
configured. Every virtual disk 170 provisioned on the sys-
tem is partitioned into fixed size chunks, each of which is
called a storage container. Different replicas are assigned for
each storage container. Since replica assignment occurs at
the storage container level—not at a virtual disk level—the
data for a virtual disk is distributed across a plurality of
storage service nodes, thus allowing increased parallelism
during I/Os and/or disk rebuilds. Thus, the virtual disks are
distributed and fault-tolerant. Notably, the replication factor
alone (e.g., RF3) does not limit how many storage service
nodes 120 may comprise payload data of a given virtual disk
170. Thus, different containers of the virtual disk may be
stored and replicated on different storage service nodes,
adding up to more total storage service nodes associated
with the virtual disk than the replication factor of the virtual
disk.

[0086] Any number of virtual disks 170 may be spun up,
each one thinly provisioned and instantly available. Illus-
trative user-configurable attributes for virtual disk 170
include without limitation: Name—a unique name to iden-
tify the virtual disk. Size—to set the desired virtual disk size.
System 100 supports single block and NFS virtual disks of
unlimited size. Disk Type—to specify the type of storage
protocol to use for the virtual disk: block or file (NFS).
Object containers/buckets are provisioned directly from
OpenStack via Swift, via the Amazon S3 AP, etc. Workload
Type—for NFS disk type, options include default, propri-
etary, or object storage target (OST) workload types. For
proprietary and OST, if Enable Deduplication is selected, a
Retention Policy can be added as well. For block disk type,
the only option is default. Retention Policy—specifies a
duration for proprietary and OST workloads, e.g., two
weeks, one month, etc. Encryption—to encrypt both data at
rest and data in flight for the virtual disk. Enable Dedupli-
cation—to enable inline global deduplication. Clustered File
System—to indicate that the virtual disk will be used with a
clustered file system. When selected, system 100 enables
concurrent read/write operations from multiple VMs or
hosts. Description—to provide an optional brief description
of the virtual disk. Compressed—to enable virtual disk
compression to reduce data size. Client-Side Caching—to
cache data to local SSD or PCle devices at the application
tier to accelerate read performance. CSV—to enable Cluster

Mar. 3, 2022

Shared Volumes for failover (or high availability) clustering.
A CSV is a shared disk containing a Windows NT File
System (NTFS) or Resilient

[0087] File System (ReFS) volume that is made accessible
for read and write operations by all nodes within a Windows
Server failover cluster. Replication Policy—to set the policy
for how data will replicate across the cluster: Agnostic, Rack
Aware, or Data Center Aware. Replication Factor (RF)—to
designate the number of replicas for each virtual disk.
Replication factor is tunable, typically ranging from one to
six, without limitation. Block Size—to set a block virtual
disk size to 512 bytes, 4 k or 64 k. File (NFS)-based virtual
disks have a standard 512 size, and object-based virtual
disks have a standard 64K size. Residence—to select the
type of media on which the data is to reside: HDD, SSD. The
present figure depicts only one virtual disk 170 for illustra-
tive purposes, but system 100 has no limits on how many
virtual disks it may support.

[0088] FIG. 1E is a block diagram depicting a typical I/O
workflow for write operations originating with an applica-
tion. This figure depicts an application 132 writing to storage
cluster 110, illustratively writing to a virtual disk 170
configured with Replication Factor=3 (RF3).

[0089] At step W, storage proxy 106 intercepts a write
command issued by application 132, comprising one or
more payload data blocks to be written to a virtual disk 170
in storage cluster 110. At step 1W, storage proxy 106
determines the replica nodes 120 for the data blocks to be
written and transmits the data blocks to one of the replica
nodes 120, e.g., 120-4. If the virtual disk is enabled for
deduplication, storage proxy 106 calculates a data block
fingerprint, queries the dedupe cache and, if necessary,
further queries metadata subsystem 140 (at the virtual disk’s
metadata owner node, e.g., 120-7), and either makes a
metadata update or proceeds with a new write. At step 2W,
data storage subsystem 150 on replica node 120-4 receives
and writes the data blocks locally and forwards them to other
designated replica nodes, e.g., 120-1 and 120-8. At step 3W,
storage proxy 106 sends a write acknowledgment back to the
originating application 132 after a quorum of data storage
subsystem 150 replicas have completed step 2W. For RF3,
two acknowledged successful writes are needed from the
three (RF3) replicas to satisfy the quorum (RF/2+1=3/2+
1=2). Two of the three replicas are written synchronously,
and one may be written asynchronously. At step 4W, storage
proxy 106 causes an atomic write to be made into metadata
subsystem 140 at metadata owner node 120-7, after which
the write is deemed successful. At step SW, metadata sub-
system 140 replicates the metadata from node 120-7 to
designated metadata replica nodes, e.g., 120-8 and 120-9.
[0090] FIG. 1F is a block diagram depicting a typical I/O
workflow for read operations originating with an applica-
tion. This figure depicts an application 132 reading from
storage cluster 110, illustratively reading from a virtual disk
170 configured with RF3.

[0091] At step R, storage proxy 106 intercepts a read
request issued by application 132 for one or more data
blocks from a virtual disk 170 in storage cluster 110. At step
1R, storage proxy 106 queries the local metacache for a
particular data block to be read and if the information is not
found in the local metacache, at step 1R’ storage proxy 106
consults metadata subsystem 140 (e.g., at the vdisk’s des-
ignated metadata owner node 120-7). At step 2R, storage
proxy 106 sends the data block details to one of the closest

US 2022/0066670 Al

data storage subsystems 150, based on observed latency,
e.g., storage service node 120-4. At step 3R, data storage
subsystem 150 reads the data block(s) and transmits the
block(s) back, if found, to storage proxy 106. If the read
operation fails due to any error, the read is attempted from
another replica. At step 4R, storage proxy 106 serves the
requested data block(s) to application 132. If client-side
caching is enabled for the targeted virtual disk 170 during
provisioning, storage proxy 106 queries the local block
cache at step 1R to fetch the data block(s), and if found
therein serves the data block(s) to application 132 at step 4R,
thereby bypassing data storage subsystem 150 at the storage
service nodes(s) and eliminating the need to traverse the
network to reach storage cluster 110.

[0092] System Resiliency. System 100 is designed to
survive disk, node, rack, and data center outages without
application downtime and with minimal performance
impact. These resiliency features include: high availability,
non-disruptive upgrades (NDU), disk failures, replication,
and snapshots and clones.

[0093] High availability (HA). A preferable minimum of
three storage service node should be provisioned for an
implementation of the illustrative system. Redundancy can
be set as agnostic, at the rack level, or at data center level.
The system initiates transparent failover in case of failure.
During node, rack, or site failures, reads and writes continue
as usual from/to remaining operational replicas. To protect
against a single point of failure, storage proxies 106 install
as a high availability active/passive pair (“HA pair,” not
shown). A virtual IP address (VIP) assigned to the HA pair
redirects traffic automatically to the active storage proxy 106
at any given time. If one storage proxy 106 instance is lost
or interrupted, operations fail over seamlessly to the passive
instance to maintain availability. This happens without
requiring intervention by applications, administrators, or
users. During provisioning, administrators can indicate that
an application host 102/121 will use a clustered file system.
This automatically sets internal configuration parameters to
ensure seamless failover when using VM migration to a
secondary physical host running its own storage proxy 106.
During live VM migration, such as VMware vMotion or
Microsoft Hyper-V, any necessary block and file storage
“follows” guest VMs to another host.

[0094] Non-disruptive upgrades (NDUs). The illustrative
system supports non-disruptive software upgrades by stag-
ing and rolling the upgrade across individual components
using the highly available nature of distributed data storage
system 100 to eliminate any downtime or data unavailability.
Storage service nodes 120 and storage services 122 undergo
upgrades first one node at a time. Meanwhile, any /O
continues to be serviced from alternate available nodes, e.g.,
replicas. Storage proxies 106 are upgraded next, starting
with the passive storage proxy in HA pairs. After the passive
storage proxy upgrade is complete, it is made active, and the
formerly active storage proxy 106 is upgraded and resumes
service as the passive of the HA pair. This process eliminates
any interruption to reads or writes during the upgrade
procedure.

[0095] Disk Failures. The illustrative system supports effi-
cient data and metadata rebuilds that are initiated automati-
cally when there is a disk failure. Payload data is rebuilt
from other data replicas and using information in the meta-
data subsystem. The metadata rebuild self-heals within the
metadata service.

Mar. 3, 2022

[0096] Replication. The illustrative system uses a combi-
nation of synchronous and asynchronous replication pro-
cesses to distribute and protect data across the cluster and
provide near-zero recovery point objectives (RPO) and
recovery time objectives (RTO). For example, two of three
replicas are written synchronously, and one is written asyn-
chronously. The system supports any number of active data
centers in a single storage cluster 110, using a tunable
replication factor and replication policy options. The repli-
cation factor designates the number of replicas to create for
each virtual disk, and the replication policy defines the
destination for the replicas across the cluster. Replicas occur
at the storage container level of a virtual disk 170. For
example, if a 100 GB virtual disk with RF3 is created, the
entire 100 GBs are not stored as contiguous chunks on three
storage service nodes. Instead, the 100 GBs are divided
among several storage containers, and replicas of each
storage container are spread across different storage pools on
different storage service nodes within the storage cluster. For
additional disaster recovery protection against rack and data
center failures, the illustrative system supports replication
policies that span multiple racks or data centers using
structured 1P addressing, DNS naming/suffix, and/or cus-
tomer-defined snitch endpoints. For “agnostic” replication
policies, data is spread across the storage cluster using a
best-effort to improve availability. For “rack aware” repli-
cation policies, data is spread across as many physically
distinct racks as possible within in a single data center. For
“data center aware” replication policies, data replicates to
additional physical sites, which can include private and/or
hosted data centers and public clouds. In a disaster recovery
example, where the Replication Policy=Data Center Aware
and the Replication Factor=3, the illustrative system divides
the data into storage containers and ensures that three copies
(RF3) of each storage container are spread to geographically
dispersed physical sites, e.g., Data Centers A, B, and C. At
any time, if a data copy fails, re-replication is automatically
initiated from replicas across the data centers.

[0097] Snapshots And Clones. In addition to replication
policies, data management tasks include taking snapshots
and making “zero-copy” clones of virtual disks. There is no
limit to the number of snapshots or clones that can be
created. Snapshots and clones are space-efficient, requiring
capacity only for changed blocks.

[0098] Encryption. The illustrative system provides soft-
ware-based encryption with the Encrypt360 feature. This
enables encryption of data at the point of ingestion (at
storage proxy 106). Data encrypted in this way remains
protected in flight between storage proxy 106 and storage
service nodes 120/storage service 122, in flight among
storage service nodes as part of replication, in-use at storage
proxy 106, and at rest while in storage. Any encryption
scheme may be implemented, preferably 256-bit AES. Addi-
tionally, any third-party key management system can be
attached.

[0099] Ecosystem Integration. The illustrative system
works with and provides a secure distributed data storage
system for a variety of data-generating platforms, including
systems that generate primary (production) data and systems
that generate backup data from primary sources. VMware.
The illustrative system features a vCenter plug-in that
enables provisioning, management, snapshotting, and clon-
ing of virtual disks 170 directly from the vSphere Web
Client. Additionally, the system incorporates support for the

US 2022/0066670 Al

VMware vSphere Storage APIs Array Integration (VAAI).
Docker. The illustrative system provides persistent storage
for Docker software containers through a volume plugin.
The volume plugin enables a user to create a persistent
Docker volume backed by a virtual disk 170. Different
options, such as deduplication, compression, replication
factor, and/or block size, may be set for each Docker
volume, using “volume options” in the Docker Universal
Control Plane (UCP) or using the “docker volume” com-
mand line. The virtual disk can then be attached to any host.
The volume plugin also creates a file system on this virtual
disk and mounts it using the path provided by the user. The
file system type can also be configured by the user. All I/O
to the Docker volume goes to virtual disk 170. As the
software container moves in the environment, virtual disk
170 will automatically be made available to any host, and
data will be persisted using the policies chosen during
volume creation. For container orchestration platforms, such
as Kubernetes and OpenShift, the illustrative system 100
provides persistent storage for software containers through a
proprietary dynamic provisioner and via other technologies
that interoperate with the orchestration platform(s). Open-
Stack. The illustrative system delivers block, file, and object
storage for OpenStack all from a single platform via native
Cinder and Swift integration. The system supports granular
administration, per-volume (Cinder) or per-container
(Swift), for capabilities such as compression, deduplication,
snapshots, and/or clones. OpenStack administrators can pro-
vision the full set of storage capabilities of system 100 in
OpenStack Horizon via OpenStack’s QoS functionality. As
with VMware, administrators need not use system 100’s
native web user interfaces and/or RESTful API, and storage
can be managed from within the OpenStack interface.

[0100] Multitenancy. The illustrative system supports the
use of rack-aware and data center-aware replication policies
for customers who must satisfy regulatory compliance and
restrict certain data by region or site. These capabilities
provide the backbone of a multitenant architecture, which is
supported with three forms of architectural isolation: LUN
masking, dedicated storage proxies, and complete physical
isolation. Using the LUN masking option, different tenants
are hosted on a shared infrastructure with logical separation.
Logical separation is achieved by presenting virtual disks
only to a certain VM and/or physical application host (IP
range). Quality of Service (QoS) is delivered at the VM
level. Using the dedicated storage proxies option, storage
access is provided with a dedicated storage proxy 106 per
tenant. Storage proxies can be deployed on a dedicated
physical host or a shared host. This provides storage as a
shared infrastructure, while compute is dedicated to each
tenant. Quality of Service (QoS) is at the VM level. Using
the complete physical isolation option, different tenants are
hosted on dedicated storage clusters (each running their own
storage service and storage proxies) to provide complete
logical and physical separation between tenants. For all of
these multitenant architectures, each tenant can have unique
virtual disks with tenant-specific storage policies, because
the illustrative system configures policies at the virtual disk
level. Policies can be grouped to create classes of service
(CoS).

[0101] Thus, the illustrative distributed data storage sys-
tem 100 scales seamlessly and linearly from a few nodes to
thousands of nodes using virtual disks as the user-visible
storage resource provided by the system. Enterprise storage

Mar. 3, 2022

capabilities are configurable at the virtual disk level. The
storage service nodes can be configured in a plurality of
physical computing environments, e.g., data centers, private
clouds, and/or public clouds without limitation. Likewise,
the storage proxies may execute in the same or different
computing environment from the storage service nodes, e.g.,
within the same cloud computing environment, different
cloud computing environments, different cloud availability
zones, and/or in a non-cloud data center, thus enabling
cloud-to-cloud and/or multi-cloud services, as well as non-
cloud and/or hybrid service environments.

Optimized Deduplication Based on Backup Frequency in a
Distributed Data Storage System

[0102] FIG. 1G is a block diagram illustrating a backup
configuration that depicts an illustrative data storage man-
agement system using distributed data storage system 100
for storing secondary (backup) copies according to an illus-
trative embodiment. The figure depicts: storage service
nodes 120 configured with a global system deduplication
virtual disk 1700; client computing device 1020 hosting
application(s) 132 and data agent(s) 1420; backup comput-
ing device 1060 hosting media agent(s) 1440 and storage
proxy 106; and storage manager 1400. An example of the
illustrative data storage management system is the Com-
mvault Complete™ Backup and Recovery software solution
from Commvault Systems, Inc. of Tinton Falls, N.J., USA.
Hereinafter, secondary copies, which are distinguishable
from primary (application-native) data, will be referred to as
“backup copies” for simplicity and to ease the reader’s
understanding of the present disclosure.

[0103] Client computing device 1020 and backup com-
puting device 1060 each comprise one or more hardware
processors and computer memory for executing computer
programs. Likewise, storage manager 1400 is hosted by
and/or comprises one or more hardware processors and
computer memory for executing computer programs. These
components may operate in any computing environment,
e.g., non-cloud data center, hybrid cloud, private cloud,
and/or public cloud without limitation.

[0104] Components of the data storage management sys-
tem include storage manager 1400, one or more data agents
1420, and one or more media agents 1440. Primary data
1120 generated and used by client applications 132 is
captured by a data agent 1420, transmitted to a media agent
1440, and converted into one or more backup copies that are
sent to distributed data storage system 100 (via storage
proxy 106) for storage. Control and management of the
backup process is performed by storage manager 1400.
[0105] Storage manager 1400 is a centralized storage
and/or information manager that is configured to perform
certain control functions and also to store certain critical
information about the data storage management system—
hence storage manager 1400 is said to manage the data
storage management system. Storage manager 1400 com-
municates with, instructs, and/or controls data agents 1420
and media agents 1440. According to certain embodiments,
storage manager 1400 provides one or more of the following
functions:

[0106] communicating with data agents 1420 and media
agents 1440, including transmitting instructions, mes-
sages, and/or queries, as well as receiving status
reports, index information, messages, and/or queries,
and responding to same;

US 2022/0066670 Al

[0107] initiating execution of storage and/or informa-
tion management operations;

[0108] initiating restore and recovery operations;

[0109] allocating secondary storage resources for sec-
ondary copy operations, e.g., distributed data storage
system 100;

[0110] reporting, searching, and/or classification of
data;
[0111] monitoring completion of and status reporting

related to storage operations, information management
operations, and jobs;

[0112] tracking age information relating to backup cop-
ies and initiating data pruning when appropriate;

[0113] protecting metadata of the data storage manage-
ment system,

[0114] implementing job management, schedule man-
agement, event management, alert management,
reporting, job history maintenance, user security man-
agement, disaster recovery management, and/or user
interfacing for system administrators and/or end users
of the data storage management system; etc.

[0115] Data agent 1420 is a component of the data storage
management system and is generally directed by storage
manager 1400 to participate in creating or restoring backup
copies. A variety of different applications 132 can operate on
a given client computing device 1020, including operating
systems, file systems, database applications, e-mail applica-
tions, and virtual machines, just to name a few. And, as part
of the process of creating and restoring backup copies, the
client computing device 1020 may be tasked with processing
and preparing the primary data 1120 generated by these
various applications 132. Moreover, the nature of the pro-
cessing/preparation can differ among application types, e.g.,
due to inherent structural, state, and formatting differences
among applications 132 and/or the operating system of
client computing device 1020. Each data agent 1420 is
therefore advantageously configured to participate in storage
operations and/or information management operations based
on the type of primary data 1120 that is being protected at
a client-specific and/or application-specific level. Data agent
1420 may be a computer software program (e.g., in the form
of a set of executable binary files) that executes on the same
client computing device 1020 as the associated application
132 that data agent 1420 is configured to protect or on an
associated computing device. For instance, data agent 1420
may take part in copying, archiving, migrating, and/or
replicating of certain primary data 1120. Data agent 1420
may receive control information from storage manager
1400, such as commands to transfer copies of data objects
and/or metadata to one or more media agents 1440. Data
agent 1420 also may format, compress, deduplicate, and/or
encrypt certain primary data 1120, as well as capture appli-
cation-related metadata before transmitting the processed
data to media agent 1440. Data agent 1420 also may receive
instructions from storage manager 1400 to restore (or assist
in restoring) a backup copy such that the restored data may
be properly accessed by application 132 as primary data
1120 in an application-native format. Each data agent 1420
may be specialized for a particular application 132.

[0116] Media agent 1440 is a component of the data
storage management system and is generally directed by
storage manager 1400 in creating and restoring backup
copies such as backup copies stored at distributed data
storage system 100. Whereas storage manager 1400 gener-

12

Mar. 3, 2022

ally manages the data storage management system as a
whole, media agent 1440 provides a portal to certain sec-
ondary storage resources, such as distributed data storage
system 100 by having specialized features for communicat-
ing therewith, e.g., via storage proxy 106. Media agent 1440
may be a software program (e.g., in the form of a set of
executable binary files) that executes on a backup computing
device 1060. Media agent 1440 generally manages, coordi-
nates, and facilitates the transmission of data between a data
agent 1420 and secondary storage resources (e.g., system
100) associated with media agent 1440. For instance, other
components in the system may interact with media agent
1440 to gain access to data stored on distributed data storage
system 100, (e.g., to browse, read, write, modify, delete, or
restore data).

[0117] The configuration depicted in the present figure
uses distributed data storage system 100 as the storage target
for backup copies. Backup copies generated by the data
storage management system are transmitted by each media
agent 1440 to a user virtual disk 170 (not shown here, but see
virtual disk 170 in FIG. 1D), which is defined on the
distributed storage system as the storage target for the
backup copy. Hereinafter, virtual disks 170 will be referred
to as “user virtual disks” 170 to distinguish them more
clearly from the global deduplication virtual disk 1700.
Storage proxy 106 intercepts the write requests issued by the
media agent 1440 and applies deduplication to the incoming
data blocks as described herein.

[0118] The storage service nodes 120 comprise physical
data storage resources as shown in another figure. The
illustrative global system deduplication virtual disk 1700 is
configured as a virtual disk that is partitioned and replicated
across a plurality of storage service nodes 120/122. Thus, the
global system deduplication virtual disk 1700 is treated as a
single logically-centralized repository of deduplicated data
blocks across the distributed storage system, but physical
storage is both partitioned and replicated across a plurality
of storage service nodes 120/122.

[0119] The global system deduplication virtual disk (or
“system-wide deduplication virtual disk) 1700 is parti-
tioned into fixed size virtual chunks, each of which is called
a storage container (illustratively embodied as a Hedvig
Container). Different replicas are assigned for each storage
container. Since replica assignment occurs at the storage
container level, the data for a virtual disk such as the global
system deduplication virtual disk 1700 is spread across the
storage cluster. Replicas are chosen by metadata subsystem
140 according to replication factor and replication policy
settings to support the application’s data protection needs.
See also FIG. 2B.

[0120] FIG. 1H is a block diagram illustrating a backup
configuration in which a third-party backup system uses the
illustrative distributed data storage system 100 for storing
secondary (backup) copies according to an illustrative
embodiment. This figure is analogous to FIG. 1G, except
that backup copies originate with a third-party backup
system 1500 rather than from the illustrative data storage
management system of FIG. 1G. Accordingly, backup data
is generated by backup system 1500 and addressed to a user
virtual disk 170, which is defined on the distributed storage
system as the storage target for the backup copy. Storage
proxy 106 intercepts the write requests and applies dedu-
plication to the incoming data blocks as described herein.

US 2022/0066670 Al

[0121] FIG. 2A is a block diagram depicting components
that play a role in the present deduplication solution accord-
ing to an illustrative embodiment. The present figure depicts:
storage proxy 106 comprising deduplication tracking logic
206; pod subsystem 130 comprising epoch calculator 230;
metadata subsystem 140 comprising deduplication tracking
and garbage collection logic 240; and data storage subsys-
tem comprising compaction logic 250 and write logic 252.
Notably, the pod, metadata, and data storage subsystems
components need not reside on the same storage service
node, and may be deployed on various different storage
service nodes. More details are given in FIG. 2B.

[0122] FIG. 2B is a block diagram depicting certain com-
ponents that play a role in the present deduplication solution,
providing additional details about the components depicted
in FIG. 2A.

[0123] Storage proxy 106 comprises deduplication man-
agement and tracking logic (e.g., “DD tracking logic™) 206
and an index (e.g., “DDCache”) 207 for tracking hash values
and DDblockIDs with their associated expiry epochs. See
also FIG. 2C. The DDCache 207 is where the DD tracking
logic 206 checks whether a hash value computed for an
incoming data block can be found, and if so, identifies a
unique DDblockID and an expiry epoch for it. DD tracking
logic 206 at storage proxy 106 illustratively performs the
functionality of the storage proxy as depicted in FIG. 3.

[0124] Pod subsystem 130 uses an illustrative epoch cal-
culator function 230 to provide a cluster-level epoch value
231 used for the illustrative discard or GC cycle. The current
epoch value 231 is referred to herein as Enow. In every
discard cycle, Enow is incremented during the discard
preparation stage (+2) and incremented again during every
discard stage (+1). Accordingly, the numerical values of
Enow use the following pattern: Enow=0, 2(+2 GC Prep),
3(+1 GC), 5(+2 GC Prep), 6(+1 GC), 8, 9, etc. The scheme
for setting the current epoch, Enow, is also depicted in block
401 of FIGS. 4 and 6.

[0125] Metadata subsystem 140 comprises deduplication
management, tracking, and GC logic (e.g., the “DD tracking
and garbage collection logic”) 240. Metadata subsystem 140
also maintains several data structures, illustratively orga-
nized as column families, e.g., VdiskBlocklInfo 241, DDInfo
242, DDTracker 243, DDRefCount 244, GCCyclelnfo 245,
and Container-Specific Discard Lists 246. See also FIGS.
2C-2G. DD tracking and garbage collection logic 240 illus-
tratively performs the functionality of metadata subsystem
140 as depicted in FIG. 3, as well as significant portions of
methods 400 and 600 as depicted in FIGS. 4 and 6, respec-
tively.

[0126] Data storage subsystem 150 comprises write logic
252 for adding new DDblockIDs to the global system
deduplication virtual disk 1700, or more specifically, for
writing new data blocks to the storage container(s) 260
hosted by the particular storage service node, e.g., C1, C2,
C3, which are numbered 260-1, 260-2, and 260-3, respec-
tively. See also FIG. 3. Data storage subsystem 150 receives
container-specific discard lists 246 from metadata subsystem
140. Data storage subsystem 150 also comprises compaction
logic 250 that removes the DDblockIDs received in the
discard lists from the storage containers 260 at the storage
service node 120/122. See also FIG. 6. Thus, each storage
service node 120/122 that hosts one or more storage con-
tainers 260 belonging to the global system deduplication

Mar. 3, 2022

virtual disk 1700 is responsible for adding new blocks to and
deleting blocks from those storage containers.

[0127] FIG. 2C depicts an illustrative column family for
associating hash values with corresponding DDblockID and
an associated expiry epoch, e.g., DDCache 207, DDInfo
242. This functions as an index of hash values. The
DDCache 207 configured at a storage proxy 106 is config-
ured according to this illustrative column family. Likewise,
the DDInfo 242 configured at metadata subsystem 140 is
also configured according to this column family. Informa-
tion from DDInfo 242 is sometimes updated into DDCache
207 as needed. See also FIG. 3. Expiry extensions for certain
DDblockIDs are updated into DDInfo 242 as needed during
the GC phase of the discard cycle. See also FIG. 7.

[0128] FIG. 2D depicts an illustrative column family for
tracking write requests received by storage proxies, e.g.,
DDTracker 243. In each discard cycle, a new DDTracker
243 column family tracks, for each user virtual disk 170,
every new write request intercepted by storage proxies 106.
The data is organized by storage container 260 belonging to
the global system deduplication virtual disk 1700. For each
DDblockID, its corresponding hash value is included, and
the DDblockID receives a timestamp of Enow+1. Notably,
the DDTracker 243 tables are discarded after their informa-
tion is scanned and used for updating the DDRefCount 244
table family. See also FIG. 4. Thus, DDTracker 243 provides
information on write requests that came in during a certain
discard cycle and DDTracker 243 is re-populated in the next
discard cycle.

[0129] FIG. 2E depicts an illustrative column family that
is updated during each discard preparation stage based on
scanning and processing DDTracker 243 information, e.g.,
DDRefCount 244. The information is organized according
to storage containers 260 of the global system deduplication
virtual disk 1700, and then by DDblockID. Columns for
each user virtual disk 170 referencing the DDblockID are
added. For every undeleted DDblockID, the preparation
stage processes information in DDTracker 243, updates
DDRefCount 244 entries, and updates the DDblockID
expiry column. The reference write epoch (Ref W Epoch)
columns are populated from the timestamp column in
DDTracker 243. The reference expiry value (Ref Expiry)
columns add to the write epoch a frequency for executing
full backups of the particular user virtual disk 170 that
references the DDblockID.

[0130] The expiry value assigned to the DDblockID (Eu)
is the maximum value of the various Ref Expiry columns.
Thus, the various backup frequencies of the various user
virtual disks 170 are taken into consideration here. The Eu
value is considered when deciding whether to discard a
DDblockID. See also block 706 in FIG. 7. The Eu value is
updated into DDInfo 242, if necessary, to extend the life of
a DDblockID. See also block 709 in FIG. 7. The DDRef-
Count 244 column families are persisted across discard
cycles, unlike DDTracker 243.

[0131] FIG. 2F depicts an illustrative column family that
assigns the workload of scanning DDTracker 243 column
families (each DDTracker 243 associated with a specific
user virtual disk 170) for the purpose of updating DDRef-
Count 244. Various storage service nodes 120/122 are
assigned the task. This table is generated on a first-time
execution of the discard preparation stage and is persisted
for future and repeated use in other discard cycles. See also
block 406 in FIG. 4.

US 2022/0066670 Al

[0132] FIG. 2G depicts an illustrative column family that
comprises DDblockID discard lists 246. These discard lists
246 are generated from the DDRefCount 244 column fami-
lies during the discard (GC) stage, which follows the discard
preparation stage. For each storage container 260 belonging
to the global system deduplication virtual disk 1700, discard
lists 246 are added, one discard list 246 per epoch when the
discard list 246 was generated. The reason for multiple
epochs showing up here is that the compaction logic or
process 250 that actually discards DDblockIDs occurs asyn-
chronously from any particular discard cycle, so it is pos-
sible for multiple lists 246 to accumulate before the com-
paction process 250 is triggered on any given storage service
node.

[0133] In regard to the column families depicted in FIGS.
2C-2G, the depictions are illustrative and the invention is not
so0 limited. In other embodiments, the data may be differently
organized and the various stages responsible for generating
and processing the data may also differ from what is
depicted and described herein.

[0134] FIG. 3 depicts a fence diagram that illustrates some
salient operations occurring during an I/O cycle of an
incoming data block intercepted by a storage proxy 106. The
fence diagram depicts operations at storage proxy 106 in the
left-hand column (e.g., using DD tracking logic 206 and
DDCache 207), operations at a metadata subsystem 140 in
the center column (e.g., using DD tracking and garbage
collection logic 240 and a number of data structures, e.g.,
241, 242, 243), and operations at a data storage subsystem
150 in the right-hand column (e.g., using write logic 252)
adding to the global system deduplication virtual disk 1700,
which is a replicated and partitioned virtual disk.

[0135] Atblock A, storage proxy 106 receives a data block
(usrblock) targeting a user virtual disk 170 (e.g., usrvdisk_
1). At block B, storage proxy 106 calculates a hash value for
the received data block. At block C, storage proxy 106
determines whether the calculated hash value is in the
DDCache index 207. If yes, control passes to block L;
otherwise, control passes to block D.

[0136] At block D, metadata subsystem 140 receives the
hash value from storage proxy 106 and checks whether the
hash value is in the DDInfo index 242. If yes, in the event
that the metadata subsystem finds the hash value received
from the storage proxy in DDInfo 242, metadata subsystem
140 responds to storage proxy 106 in the affirmative, pro-
viding the DDblockID and its associated expiry Ej according
to DDInfo 242 and then control passes to block J. In the
event metadata subsystem 140 has no record of the hash
value in DDInfo 242, it responds in the negative to storage
proxy 106; in this case, storage proxy 106 causes the data
block to be added to the global system deduplication virtual
disk 1700 at block E.

[0137] At block E, data storage subsystem 150 writes the
new data block (usrblock) to the global system deduplication
virtual disk 1700 and a new and unique deduplication block
identifier (DDblockID) is assigned to the new data block at
this point. Illustratively, 4 KB is the data block size stored
at distributed data storage system 100 and hence each
DDblockID refers to a 4 KB data block. Henceforth, for
simplicity, we shall refer to data blocks in distributed data
storage system 100 using the term “DDblockID,” though it
will be clear from context that the data block is stored in its
entirety in the global system deduplication virtual disk 1700
and is tracked or referenced elsewhere by its DDblockID.

Mar. 3, 2022

Control then passes to blocks F and G. At block F, metadata
subsystem 140 updates the VdiskBlockInfo 241 column
family and the DDTracker 243 column family to reflect the
write request and the DDblockID being added to the dis-
tributed data storage system. At block G, metadata subsys-
tem 140 adds the new DDblockID to DDInfo 242 and
assigns an expiry epoch (Ej) to DDblockID by adding 7 (as
an illustrative example) to the value of the current epoch
Enow. The increment of 7 is illustrative and stems from the
fact that, because every discard cycle increments the epoch
by a total of 3, it is desirable to give the data block at least
two full discard cycles of initial lifetime (2x3=6). Since the
timestamp epoch in DDTracker 243 is set to Enow+1, when
6 is added the increment becomes 7. Hence, at block G,
Ej=Enow+7. Metadata subsystem 140 transmits this infor-
mation to storage proxy 106. At block H, storage proxy 106
updates its DDCache 207 by associating the hash value with
the DDblockID and expiry epoch Ej. At this point, the I/O
cycle for this data block is complete.

[0138] Block J is reached when storage proxy 106 receives
a DDblockID and associated expiry Ej from metadata sub-
system 140 (from DDInfo 242) at block D. At block I,
storage proxy 106 determines whether the DDblockID is
expired according to the information received from metadata
subsystem 140, i.e., whether Fj is earlier than Enow. If the
DDblockID is expired, storage proxy 106 treats the incom-
ing data block as a new data block to be added to the
distributed data storage system and control passes to block
E, which is described in more detail above. On the other
hand, if at block J storage proxy 106 determines that the
information received from DDInfo 242 indicates an unex-
pired DDblockID, the usrblock qualifies for deduplication
and is not added to the global deduplication virtual disk
1700. Instead, at block H, storage proxy 106 updates its
DDCache 207 by associating the hash value with the
DDblockID and expiry epoch Fj received from DDInfo 242.
Furthermore, at block F, metadata subsystem 140 updates
the VdiskBlockInfo 241 column family and the DDTracker
243 column family to reflect the write request of the
DDblockID. At this point, the I/O cycle for this data block
is complete.

[0139] Block L is reached in the event that, at block C,
storage proxy 106 finds the calculated hash value of usr-
block in its DDCache 207. In DDCache 207, the hash value
is associated with a DDblockID having an expiry epoch Ej
and control passes to block L. At block L, storage proxy 106
determines, based on DDCache 207, whether the
DDblockID is expired, i.e., whether its expiry epoch Ej is
earlier than Enow. If DDCache 207 indicates that the
DDblockID is expired, storage proxy 106 treats the incom-
ing data block as if it weren’t found in DDCache 207 and
control passes to block D. Otherwise, if DDCache 207
indicates that the DDblockID is not expired, control passes
to block M. Block M is the same as block F, i.e., metadata
subsystem 140 updates the VdiskBlockInfo 241 column
family and the DDTracker 243 column family to reflect the
fact that a write request was received in the current epoch for
this DDblockID. At this point, the /O cycle for usrblock
ends with block M.

[0140] FIG. 4 depicts some salient operations of a method
400 according to an illustrative embodiment. Method 400
illustrates the first phase of a discard cycle, the discard
preparation (“GC prep”) stage. Method 400 is performed by
one or more components of the illustrative distributed data

US 2022/0066670 Al

storage system 100. The operations of metadata subsystem
140 in method 400 are illustratively performed by DD
tracking and garbage collection logic 240.

[0141] Block 401 depicts the scheme for setting the cur-
rent epoch, Enow, to aid in the reader’s understanding of the
depicted method. In every discard cycle, Enow is incre-
mented during the discard preparation stage (+2) and incre-
mented again during every discard stage (+1). Accordingly,
the numerical values of Enow use the following pattern:
Enow=0, 2(+2 GC Prep), 3(+1 GC), 5(+2 GC Prep), 6(+1
GCQ), 8, 9, etc. This pattern is shown at the top of FIG. 4 in
block 401 and results from the operation at block 402.
Iustratively, epoch calculator 230 tracks and calculates
Enow.

[0142] At block 402, at the beginning of a discard prepa-
ration stage, the pod subsystem (e.g., using epoch calculator
230) increments the current epoch value by 2. The general
formula is GC Prep Epoch=(3*N)-1, where Nz=1 and N is a
discard cycle that includes the preparation stage and the
discard stage.

[0143] At block 404, a loop is initiated for each user
(user-defined) virtual disk configured on the distributed data
storage system. The loop includes blocks 406-410.

[0144] At block 406, on a first-time execution of the
discard preparation stage, metadata subsystem 140 generates
the data structure in FIG. 2F, e.g., column family 286, which
comprises certain workload assignments. Accordingly, the
workload of scanning DDTracker 243 column families (see
FIG. 2D) in each GC prep stage is assigned to a particular
storage service node 120/122. Thanks to consistent hashing,
the primary metadata node associated with each user virtual
disk 170 is a deterministic hostname that receives the
workload assignment and will carry out this workload going
forward. The present data structure 286 is persisted, so that
it can be used in the event that its host storage service node
fails.

[0145] At block 407, the metadata node assigns the scan
workload to one or more storage service nodes 120/122
according to data structure 286 in FIG. 2F.

[0146] At block 408, the assigned storage service node(s)
120/122, using a respective metadata subsystem 140, scan
the DDTracker 243 column families (generated in epoch
Enow-2 or Enow-3, if any). Since a write request can come
in at any time, such as during a preparation stage, this
scheme ensures that all such write requests are scanned
during the next preparation stage. Thus, no write requests are
left out of DDTracker 243 and therefore no write requests
are left unscanned. Each DDTracker 243 column family is
associated with a particular user virtual disk 170 (see FIG.
2D). The scan results are used to update DDRefCount 244
column families. See also FIG. 2E. More details on block
408 are given in a subsequent figure.

[0147] At block 410, after the scanning task is completed,
the DDTracker 243 column families are discarded and
control returns to block 404.

[0148] FIG. 5 depicts some salient operations of block 408
in method 400 according to an illustrative embodiment. This
block is performed by the primary metadata node associated
with each user virtual disk 170 according to data structure
286 in FIG. 2F.

[0149] At block 502, a loop is initiated for each
DDblockID in the DDTracker 243 being scanned. The loop
includes block 504.

Mar. 3, 2022

[0150] At block 504, columns are added to DDRefCount
244 to: (i) populate the user virtual disk 170 (uservdisk)
column; (ii) from the timestamp entry in DDTracker 243,
populate the epoch value associated with the timeframe
when the write request was received for the DDblockID,
e.g., BEw; and (iii) assign an expiry epoch to the present
reference based on the full backup frequency of the user
virtual disk 170, e.g., Ew plus the full backup frequency of
the user virtual disk 170. See also FIG. 2E. Control passes
back to block 502.

[0151] At block 506, after DDRefCount 244 is fully
updated from the DDTracker 243 scans, DDRefCount 244 is
persisted. DDRefCount 244 will be used later during the
second phase of the discard cycle.

[0152] FIG. 6 depicts some salient operations of a method
600 according to an illustrative embodiment. Method 600
illustrates the second phase of the discard cycle, the discard
(“GC”) stage. Method 600 is performed by one or more
components of the illustrative distributed data storage sys-
tem 100 unless otherwise noted. The operations of metadata
subsystem 140 in method 600 are illustratively performed by
the DD tracking and garbage collection logic 240.

[0153] Block 401 depicts the scheme for setting the cur-
rent epoch, Enow, to aid in the reader’s understanding of the
depicted method. See also FIG. 4.

[0154] At block 602, at the beginning of a discard (GC)
stage, pod subsystem 130 (e.g., using epoch calculator 230)
increments the current epoch Enow value by 1. The general
formula is GC Epoch=(3*N), where Nz=1 and N is a discard
cycle that includes the preparation stage and the discard
stage.

[0155] At block 604, a loop is initiated for each storage
container 260 belonging to the global system deduplication
virtual disk 1700. The loop includes blocks 606-608, which
are executed by metadata subsystem 140 in the primary
metadata node associated with the respective storage con-
tainer 260.

[0156] At block 606, metadata subsystem 140 scans
DDRefCount 244 to determine whether each DDblockID is
both expired and has a zero reference count, in order to build
the discard list 246 for the storage container 260. More
details are given in a subsequent figure.

[0157] At block 608, the discard list 246 for the storage
container 260 is pushed by metadata subsystem 140 to data
storage subsystem 150 that hosts the storage container 260,
possibly on another storage service node 120/122 distinct
from the one hosting metadata subsystem 140. At data
storage subsystem 150, a compaction process 250 will
discard the DDblockIDs when it executes. In some embodi-
ments, data storage subsystem 150 pulls the container dis-
card list(s) 246 from metadata subsystem 140 asynchro-
nously, when it has processing cycle time available. This
alternative approach ensures that storage service nodes
120/122 do not get overwhelmed by the garbage cleanup
task and instead can pull the discard lists 246 whenever they
deem fit. This approach also ensures that if a storage service
node 120/122 is down when a discard list 246 is pushed
thereto, the storage service node can still obtain the discard
list 246 and purge the blocks later. See also FIG. 2B. Control
passes back to block 604.

[0158] FIG. 7 depicts some salient operations of block 606
in method 600 according to an illustrative embodiment. This

US 2022/0066670 Al

block is performed by the metadata subsystem in the pri-
mary metadata node associated with the respective storage
container.

[0159] At block 702, a loop is initiated for each
DDblockID in the DDRefCount 244 column family. The
loop includes blocks 703-712.

[0160] At block 703, the reference count and/or entries in
DDRefCount 244 are decremented to account for the dele-
tion of a user virtual disk 170 from distributed data storage
system 100. Illustratively, each backup copy received by
distributed data storage system 100 comprises one or more
files, and the distributed data storage system addresses each
file to a file-specific user virtual disk 170. When the backup
system that generated the backup copies prunes a stale
backup copy from the distributed data storage system, the
result is that the distributed data storage system deletes the
various user virtual disks 170 associated with the stale
backup copy. Thus, if user virtual disks 170 are deleted, they
no longer reference certain DDblockIDs and this change is
reflected in DDRefCount 244 at this point. Therefore, it is
possible that a DDblockID may reach a point when no user
virtual disks 170 make reference to it anymore.

[0161] At block 704, metadata subsystem 140 determines
whether there are any references to the DDblockID in
DDRefCount 244. As long there are, the DDblockID is not
discarded.

[0162] At block 706, a maximum expiry epoch (e.g., Eu)
is calculated for the DDblockID based on the reference
expiry columns associated with the user virtual disks 170
that reference the DDblockID. Alternatively, the Eu value is
extracted from DDRefCount 244, where Fu=Max(Ref
Expiry columns). See also FIG. 2E. At this point, metadata
subsystem 140 determines whether Eu is earlier than Enow-
1. If so, the DDblockID is marked expired.

[0163] Atblock 708, which is a decision point, if metadata
subsystem 140 determines that a given DDblockID is both
expired (block 706) and carries a zero reference count (block

704), control passes to block 710; otherwise control passes
to block 709.

[0164] Block 709 is reached when a DDblockID does not
meet the requirements for being discarded, i.e., it has a
non-zero reference count and/or is not expired. Here, the
discard cycle considers whether an extension should be
added to the expiry of the present DDblockID. If a new write
request for the present DDblockID came in after the pre-
ceding analysis cycle (i.e., after the last time this evaluation
was made), the DDblockID should be extended, because it
is still current and actively being written by incoming
backup copies. Accordingly, the Eu value from DDRefCount
244 is now populated into the DDInfo index 242, replacing
the existing Ej expiry with the later Eu value (i.e., Eu>Ej).
No replacement is needed or made if Ej Eu. Thus, here, a
recently “written” data block has an opportunity for an
extension to its expiry epoch long enough to span the
sparsest full backups of all the user virtual disks 170 still
referencing the DDblockID. Control passes back to block
702.

[0165] Block 710 is reached when a DDblockID that is
both expired (block 706) and has no valid reference counts
from any wuser virtual disks 170 (block 704). This
DDblockID is now guaranteed to be suitable to discard from
distributed data storage system 100.

Mar. 3, 2022

[0166] At block 712, the DDblockID is added to the
discard list 246 for the storage container 260 being analyzed.
See also FIG. 2G. Control passes back to block 702.
[0167] In regard to the figures described herein, other
embodiments are possible within the scope of the present
invention, such that the above-recited components, steps,
blocks, operations, messages, requests, queries, and/or
instructions are differently arranged, sequenced, sub-di-
vided, organized, and/or combined. In some embodiments, a
different component may initiate or execute a given opera-
tion.

Example Embodiments

[0168] Some example enumerated embodiments of the
present invention are recited in this section in the form of
methods, systems, and non-transitory computer-readable
media, without limitation.

[0169] According to an example embodiment, a distrib-
uted data storage system comprises: a storage proxy that
executes on a first computing device; a first storage service
node that hosts a metadata subsystem; a second storage
service node that stores a plurality of deduplicated data
blocks, wherein a system-wide deduplication virtual disk
comprises the plurality of deduplicated data blocks, and
wherein the system-wide deduplication virtual disk is dis-
tributed across a plurality of storage service nodes of the
distributed data storage system, including the second storage
service node; wherein the storage proxy is configured to:
intercept write requests addressed to one or more user virtual
disks configured on the distributed data storage system,
which are distinct from the system-wide deduplication vir-
tual disk, wherein a first one of the write requests comprises
a first data block addressed to a first user virtual disk, and
cause the first data block to be stored in the system-wide
deduplication virtual disk, at least at the second storage
service node; and wherein the metadata subsystem is con-
figured to: assign an expiry timeframe to a first unique
system-wide identifier (the first DDblockID) that is based on
a hash value of and is associated with the first data block,
wherein the expiry timeframe is based at least in part on an
arrival timeframe of the first one of the write requests at the
storage proxy and is further based on a frequency of full
backup operations configured for the first user virtual disk,
and cause the second storage service node to delete the first
data block from the system-wide deduplication virtual disk,
based on determining that (i) a current timeframe is later
than the expiry timeframe of the first DDblockID and (ii) no
user virtual disk in the distributed data storage system makes
reference to the first DDblockID.

[0170] The above-recited embodiment wherein the meta-
data subsystem is further configured to: cause the first data
block to be deleted from the system-wide deduplication
virtual disk, including from the second storage service node,
even when second data blocks referenced by the first user
virtual disk and associated with a second DDblockID, which
is distinct from the first DDblockID, are retained after the
expiry timeframe of the first DDblockID. The above-recited
embodiment configured with system-wide block-level dedu-
plication and block-level expiry granularity. The above-
recited embodiment wherein the expiry timeframe for the
first DDblockID is further based on a maximum value of (i)
the frequency of full backup operations configured for the
first user virtual disk and (ii) one or more frequencies of full
backup operations corresponding to one or more other user

US 2022/0066670 Al

virtual disks referencing the first DDblockID. The above-
recited embodiment wherein the expiry timeframe is further
based on a maximum value of (i) the frequency of full
backup operations configured for the first user virtual disk
and (ii) one or more frequencies of full backup operations
corresponding to one or more other user virtual disks
referencing second data blocks having a same hash value as
the first data block. The above-recited embodiment wherein
the metadata subsystem is further configured to: update a
data structure that tracks write requests addressed to the first
user virtual disk, including the first one of the write requests
that comprises the first data block. The above-recited
embodiment wherein the metadata subsystem is further
configured to: if a second data block received in a second
one of the write requests is determined to have a same hash
value as the first data block, is associated with the first
DDblockID, and arrived at the storage proxy after a preced-
ing discard cycle executed by the metadata subsystem,
extend the expiry timeframe of the first DDblockID to span
a sparsest full backup frequency of all user virtual disks
referencing the first DDblockID. The above-recited embodi-
ment wherein the metadata subsystem is further configured
to: receive the hash value of the first data block from the
storage proxy, determine that the hash value is associated
with the first DDblockID, and update a data structure that
tracks write requests addressed to the first user virtual disk,
including the first one of the write requests that comprises
the first data block. The above-recited embodiment wherein
the first data block is associated with the first DDblockID
based on a hash value of the first data block; wherein the
storage proxy is further configured to check whether the
expiry timeframe is less than a current timeframe; and
wherein the metadata subsystem is further configured to:
update a data structure that tracks write requests addressed
to the first user virtual disk, including the first one of the
write requests that comprises the first data block. The
above-recited embodiment wherein the first data block is
part of a backup copy, which is addressed to at least the first
user virtual disk. The above-recited embodiment wherein
the first data block is part of a backup copy addressed to the
distributed data storage system; wherein when the backup
copy is pruned, each distinct user virtual disk configured for
the backup copy is logically removed from the distributed
data storage system, which causes references to data blocks
of the backup copy to be removed from the distributed data
storage system; and wherein the metadata subsystem is
further configured to: retain a second data block supplied by
the backup copy if at least one other user virtual disk, not
associated with the backup copy, references a DDblockID
associated with the second data block.

[0171] According to another example embodiment, a dis-
tributed data storage system for storing backup copies with
deduplication comprises: a first storage service node that
hosts a metadata subsystem; a second storage service node
that stores deduplicated data blocks, wherein a system-wide
deduplication virtual disk is distributed across a plurality of
storage service nodes of the distributed data storage system,
including the second storage service node, wherein the
system-wide deduplication virtual disk comprises the dedu-
plicated data blocks, and wherein each deduplicated data
block in the system-wide deduplication virtual disk is asso-
ciated with a corresponding unique system-wide identifier;
wherein the metadata subsystem is configured to: track data
blocks addressed to user virtual disks configured in the

Mar. 3, 2022

distributed data storage system, including a first data block
in a first write request addressed to a first user virtual disk,
which is distinct from the system-wide deduplication virtual
disk; associate the first data block with a first unique
system-wide identifier (the first DDblockID) based on a hash
value of the first data block, assign an expiry timeframe to
the first DDblockID, wherein the expiry timeframe is based
at least in part on an arrival timeframe of the first write
request at a storage proxy and is further based on a fre-
quency of full backup operations configured for the first user
virtual disk, for a second data block, which arrived in a
second write request after a preceding discard cycle
executed by the metadata subsystem, wherein the second
data block has a same hash value as the first data block
which is associated with the first DDblockID, extend the
expiry timeframe of the first DDblockID to span a sparsest
full backup frequency of all user virtual disks referencing
the first DDblockID.

[0172] The above-recited embodiment wherein the meta-
data subsystem is further configured to: cause a data block
having the hash value of the first data block and associated
with the first DDblockID to be retained in the system-wide
deduplication virtual disk, based on determining that at least
one of: (i) a current timeframe is earlier than the expiry
timeframe of the first DDblockID and (ii) at least one user
virtual disk in the distributed data storage system makes
reference to the first DDblockID. The above-recited embodi-
ment wherein the metadata subsystem is further configured
to: cause a data block having the hash value of the first data
block and associated with the first DDblockID to be deleted
from the system-wide deduplication virtual disk, including
from the second storage service node, based on determining
that: (a) a current timeframe is later than the expiry time-
frame of the first DDblockID and (b) no user virtual disk on
the distributed data storage system makes reference to the
first DDblockID. The above-recited embodiment wherein
the first user virtual disk is configured for deduplication
using block-level expiry granularity. The above-recited
embodiment wherein the expiry timeframe is further based
on a maximum value of (i) the frequency of full backup
operations configured for the first user virtual disk and (ii)
one or more frequencies of full backup operations corre-
sponding to one or more other user virtual disks referencing
the first DDblockID. The above-recited embodiment
wherein the expiry timeframe is further based on a maxi-
mum value of (i) the frequency of full backup operations
configured for the first user virtual disk and (ii) one or more
frequencies of full backup operations corresponding to one
or more other user virtual disks referencing second data
blocks having a same hash value as the first data block. The
above-recited embodiment wherein the storage proxy is
further configured to check whether the expiry timeframe is
less than the current timeframe. The above-recited embodi-
ment wherein the first data block is part of a backup copy,
which is addressed to at least the first user virtual disk. The
above-recited embodiment wherein the first data block is
part of a backup copy addressed to the distributed data
storage system, wherein pruning the backup copy causes
references to data blocks of the backup copy to be removed
from the distributed data storage system; and wherein the
metadata subsystem is further configured to: retain a second
data block supplied by the backup copy if at least one other

US 2022/0066670 Al

user virtual disk, not associated with the backup copy,
references a DDblockID associated with the second data
block.

[0173] According to an illustrative embodiment, a method
for providing deduplication with block-level expiry granu-
larity in a cloud-based distributed data storage system com-
prises: in a first cloud computing environment, configuring
a first storage service node that hosts a metadata subsystem
of the distributed data storage system, and further config-
uring a second storage service node that hosts a data storage
subsystem of the distributed data storage subsystem,
wherein the distributed data storage subsystem comprises a
system-wide deduplication virtual disk that is distributed
across a plurality of storage service nodes of the distributed
data storage system, including the second storage service
node, and wherein the system-wide deduplication virtual
disk stores deduplicated data blocks; by the first storage
service node hosting the metadata subsystem, assigning an
expiry timeframe to a first unique system-wide identifier (the
first DDblockID) that is based on a hash value of, and is
associated with, a first data block stored in the system-wide
deduplication virtual disk, wherein the expiry timeframe is
based at least in part on: an arrival timeframe of the first data
block at the distributed data storage system, and is further
based on a full backup frequency configured for a first user
virtual disk addressed by a write request comprising the first
data block; and by the first storage service node hosting the
metadata subsystem, if a second data block, which is
received in a second write request addressing a second user
virtual disk after a preceding discard cycle executed by the
metadata subsystem, is determined to have a same hash
value as the first data block and is associated with the first
DDblockID, extending the expiry timeframe of the first
DDblockID to span a sparsest full backup frequency of all
user virtual disks referencing the first DDblockID, including
the first user virtual disk and the second user virtual disk.

[0174] The above-recited embodiment further comprising:
by the first storage service node hosting the metadata
subsystem, causing the second storage service node to delete
the first data block from the system-wide deduplication
virtual disk, based on determining that (i) a current time-
frame is later than the expiry timeframe of the first
DDblockID and (ii) no user virtual disk in the distributed
data storage system makes reference to the first DDblockID.
The above-recited embodiment further comprising: by the
second storage service node hosting the data storage sub-
system, deleting the first data block from the system-wide
deduplication virtual disk, based on a determination by the
metadata subsystem that (i) a current timeframe is later than
the expiry timeframe of the first DDblockID and (ii) no user
virtual disk in the distributed data storage system makes
reference to the first DDblockID. The above-recited embodi-
ment further comprising: by a compaction logic of the data
storage subsystem, deleting the first data block from the
system-wide deduplication virtual disk, based on a determi-
nation by the metadata subsystem that (i) a current time-
frame is later than the expiry timeframe of the first
DDblockID and (ii) no user virtual disk in the distributed
data storage system makes reference to the first DDblockID.
The above-recited embodiment wherein the first data block
is part of a backup copy addressed to the distributed data
storage system, wherein pruning the backup copy causes
references to data blocks of the backup copy to be removed
from the distributed data storage system; and retaining a

Mar. 3, 2022

third data block supplied by the backup copy if at least one
other user virtual disk, not associated with the backup copy,
references a DDblockID associated with the third data block.
The above-recited embodiment wherein the first data block
is part of a backup copy addressed to the distributed data
storage system; wherein when the backup copy is pruned,
each distinct user virtual disk configured for the backup
copy is logically removed from the distributed data storage
system, which causes references to data blocks of the backup
copy to be removed from the distributed data storage sys-
tem; and by the metadata subsystem causing a third data
block supplied by the backup copy to be retained in the
system-wide deduplication virtual disk if at least one other
user virtual disk, not associated with the backup copy,
references a DDblockID associated with the third data block.
The above-recited embodiment wherein the first data block
is part of a backup copy addressed to the distributed data
storage system, and wherein the backup copy is generated in
one of: within the first cloud computing environment, and
outside the first cloud computing environment. The above-
recited embodiment wherein the expiry timeframe for the
first DDblockID is further based on a maximum value of (i)
the full backup frequency configured for the first user virtual
disk and (ii) one or more full backup frequencies corre-
sponding to one or more other user virtual disks referencing
the first DDblockID. The above-recited embodiment
wherein the expiry timeframe is further based on a maxi-
mum value of (i) the full backup frequency configured for
the first user virtual disk and (ii) one or more full backup
frequencies corresponding to one or more other user virtual
disks referencing second data blocks having a same hash
value as the first data block. The above-recited embodiment
further comprising: by a storage proxy that executes on a
first computing device that is operational outside the first
cloud computing environment: intercepting write requests
addressed to one or more user virtual disks configured on the
distributed data storage system, which are distinct from the
system-wide deduplication virtual disk, including intercept-
ing the write request comprising the first data block, and
causing the first data block to be stored in the system-wide
deduplication virtual disk, at least at the second storage
service node. The above-recited embodiment further com-
prising: by a storage proxy that executes on a first computing
device that is operational within the first cloud computing
environment: intercepting write requests addressed to one or
more user virtual disks configured on the distributed data
storage system, which are distinct from the system-wide
deduplication virtual disk, including intercepting the write
request comprising the first data block, and causing the first
data block to be stored in the system-wide deduplication
virtual disk, at least at the second storage service node. The
above-recited embodiment further comprising: by a storage
proxy that executes on a first computing device, intercepting
write requests addressed to one or more user virtual disks
configured on the distributed data storage system, which are
distinct from the system-wide deduplication virtual disk,
including intercepting the write request comprising the first
data block; and by the metadata subsystem: receiving the
hash value of the first data block from the storage proxy,
determining that the hash value is associated with the first
DDblockID, and updating a data structure that tracks write
requests addressed to the first user virtual disk, including the
write request that comprises the first data block. The above-
recited embodiment further comprising: by a storage proxy

US 2022/0066670 Al

that executes on a first computing device, intercepting write
requests addressed to one or more user virtual disks config-
ured on the distributed data storage system, which are
distinct from the system-wide deduplication virtual disk,
including intercepting the write request comprising the first
data block; and by the metadata subsystem: receiving the
hash value of the first data block from the storage proxy,
determining that the hash value is associated with the first
DDblockID, and updating a data structure that tracks write
requests addressed to the first user virtual disk, including the
write request that comprises the first data block.

[0175] According to another illustrative embodiment, a
method for providing deduplication with block-level expiry
granularity in a distributed data storage system comprises: in
a first cloud computing environment comprising a first
storage service node that hosts a metadata subsystem of the
distributed data storage system, and further comprising a
second storage service node that hosts a data storage sub-
system of the distributed data storage subsystem, wherein
the distributed data storage subsystem is configured with a
system-wide deduplication virtual disk that is distributed
across a plurality of storage service nodes of the distributed
data storage system, including the second storage service
node, and wherein the system-wide deduplication virtual
disk stores deduplicated data blocks: by the metadata sub-
system at first storage service node, assigning an expiry
timeframe to a first unique system-wide identifier (the first
DDblockID), wherein the first DDblockID is based on a
hash value of, and is associated with, a first data block stored
in the system-wide deduplication virtual disk, wherein the
expiry timeframe is based at least in part on: an arrival
timeframe of the first data block at the distributed data
storage system, and spans a full backup frequency config-
ured for a first user virtual disk addressed by a write request
comprising the first data block, wherein the first user virtual
disk is distinct from the system-wide deduplication virtual
disk; and by the metadata subsystem executing a discard
cycle: determining that a second data block, which was
received in a second write request addressing a second user
virtual disk and arrived at the distributed data storage system
after a preceding discard cycle has a same hash value as the
first data block, associating the second data block with the
first DDblockID based on the same hash value, and extend-
ing the expiry timeframe of the first DDblockID to span a
sparsest full backup frequency of all user virtual disks
referencing the first DDblockID, including the first user
virtual disk and the second user virtual disk.

[0176] The above-recited embodiment wherein the assign-
ing of the expiry timeframe occurs during an input-output
cycle of the first data block, which is distinct from the
discard cycle. The above-recited embodiment further com-
prising: by the metadata subsystem executing a discard
cycle, causing the second storage service node to delete the
first data block from the system-wide deduplication virtual
disk, based on the metadata subsystem determining that (i)
a current timeframe is later than the expiry timeframe of the
first DDblockID and (ii) no user virtual disk in the distrib-
uted data storage system makes reference to the first
DDblockID. The above-recited embodiment further com-
prising: by the second storage service node hosting the data
storage subsystem, deleting the first data block from the
system-wide deduplication virtual disk, based on a determi-
nation by the metadata subsystem that (i) a current time-
frame is later than the expiry timeframe of the first

Mar. 3, 2022

DDblockID and (ii) no user virtual disk in the distributed
data storage system makes reference to the first DDblockID.
The above-recited embodiment wherein the first data block
is part of a backup copy addressed to the distributed data
storage system, wherein pruning the backup copy causes
references to data blocks of the backup copy to be removed
from the distributed data storage system; and retaining a
third data block supplied by the backup copy if at least one
other user virtual disk, not associated with the backup copy,
references a DDblockID associated with the third data block.
The above-recited embodiment wherein the first data block
is part of a backup copy addressed to the distributed data
storage system, and wherein the backup copy is generated in
one of: within the first cloud computing environment, and
outside the first cloud computing environment. The above-
recited embodiment further comprising: by a storage proxy
that executes on a first computing device that is one of:
operational outside the first cloud computing environment,
and operational within the first cloud computing environ-
ment: intercepting write requests addressed to one or more
user virtual disks configured on the distributed data storage
system, which are distinct from the system-wide deduplica-
tion virtual disk, including intercepting the write request
comprising the first data block, and causing the first data
block to be stored in the system-wide deduplication virtual
disk, at least at the second storage service node.

[0177] According to another illustrative embodiment, a
system comprises a distributed data storage platform having
system-wide deduplication with block-level expiry granu-
larity. The above-recited embodiment wherein the useful life
of each deduplicated data block is based on expiry param-
eters that relate to backup frequencies of the virtual disks
referencing the data block, thus guaranteeing that data
blocks are kept around between full backup cycles and are
extended if still current. The above-recited embodiment
wherein data blocks are retained as long as needed to bridge
the gap between sparser backup operations. The above-
recited embodiment wherein tracking data structures are
updated only as needed, thus saving processing cycles and
network bandwidth. The above-recited embodiment wherein
the distributed data storage platform guarantees that stale
references to DDblockIDs lingering in non-functional com-
ponents cannot dictate whether a particular DDblockID is
discarded.

[0178] In other embodiments according to the present
invention, a system or systems operates according to one or
more of the methods and/or computer-readable media
recited in the preceding paragraphs. In yet other embodi-
ments, a method or methods operates according to one or
more of the systems and/or computer-readable media recited
in the preceding paragraphs. In yet more embodiments, a
non-transitory computer-readable medium or media causes
one or more computing devices having one or more proces-
sors and computer-readable memory to operate according to
one or more of the systems and/or methods recited in the
preceding paragraphs.

Terminology

[0179] Conditional language, such as, among others,
“can,” “could,” “might,” or “may,” unless specifically stated
otherwise, or otherwise understood within the context as
used, is generally intended to convey that certain embodi-
ments include, while other embodiments do not include,
certain features, elements and/or steps. Thus, such condi-

US 2022/0066670 Al

tional language is not generally intended to imply that
features, elements and/or steps are in any way required for
one or more embodiments or that one or more embodiments
necessarily include logic for deciding, with or without user
input or prompting, whether these features, elements and/or
steps are included or are to be performed in any particular
embodiment.

[0180] Unless the context clearly requires otherwise,
throughout the description and the claims, the words “com-
prise,” “comprising,” and the like are to be construed in an
inclusive sense, as opposed to an exclusive or exhaustive
sense, i.e., in the sense of “including, but not limited to.” As
used herein, the terms “connected,” “coupled,” or any vari-
ant thereof means any connection or coupling, either direct
or indirect, between two or more elements; the coupling or
connection between the elements can be physical, logical, or
a combination thereof. Additionally, the words “herein,”
“above,” “below,” and words of similar import, when used
in this application, refer to this application as a whole and
not to any particular portions of this application. Where the
context permits, words using the singular or plural number
may also include the plural or singular number respectively.
The word “or” in reference to a list of two or more items,
covers all of the following interpretations of the word: any
one of the items in the list, all of the items in the list, and any
combination of the items in the list. Likewise the term
“and/or” in reference to a list of two or more items, covers
all of the following interpretations of the word: any one of
the items in the list, all of the items in the list, and any
combination of the items in the list.

[0181] In some embodiments, certain operations, acts,
events, or functions of any of the algorithms described
herein can be performed in a different sequence, can be
added, merged, or left out altogether (e.g., not all are
necessary for the practice of the algorithms). In certain
embodiments, operations, acts, functions, or events can be
performed concurrently, e.g., through multi-threaded pro-
cessing, interrupt processing, or multiple processors or pro-
cessor cores or on other parallel architectures, rather than
sequentially.

[0182] Systems and modules described herein may com-
prise software, firmware, hardware, or any combination(s)
of software, firmware, or hardware suitable for the purposes
described. Software and other modules may reside and
execute on servers, workstations, personal computers, com-
puterized tablets, PDAs, and other computing devices suit-
able for the purposes described herein. Software and other
modules may be accessible via local computer memory, via
a network, via a browser, or via other means suitable for the
purposes described herein. Data structures described herein
may comprise computer files, variables, programming
arrays, programming structures, or any electronic informa-
tion storage schemes or methods, or any combinations
thereof, suitable for the purposes described herein. User
interface elements described herein may comprise elements
from graphical user interfaces, interactive voice response,
command line interfaces, and other suitable interfaces.
[0183] Further, processing of the various components of
the illustrated systems can be distributed across multiple
machines, networks, and other computing resources. Two or
more components of a system can be combined into fewer
components. Various components of the illustrated systems
can be implemented in one or more virtual machines, rather
than in dedicated computer hardware systems and/or com-

Mar. 3, 2022

puting devices. Likewise, the data repositories shown can
represent physical and/or logical data storage, including,
e.g., storage area networks or other distributed storage
systems. Moreover, in some embodiments the connections
between the components shown represent possible paths of
data flow, rather than actual connections between hardware.
While some examples of possible connections are shown,
any of the subset of the components shown can communi-
cate with any other subset of components in various imple-
mentations.

[0184] Embodiments are also described above with refer-
ence to flow chart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts. Each block of the flow chart illustrations and/or block
diagrams, and combinations of blocks in the flow chart
illustrations and/or block diagrams, may be implemented by
computer program instructions. Such instructions may be
provided to a processor of a general purpose computer,
special purpose computer, specially-equipped computer
(e.g., comprising a high-performance database server, a
graphics subsystem, etc.) or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor(s) of the com-
puter or other programmable data processing apparatus,
create means for implementing the acts specified in the flow
chart and/or block diagram block or blocks. These computer
program instructions may also be stored in a non-transitory
computer-readable memory that can direct a computer or
other programmable data processing apparatus to operate in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including instruction means which implement the acts
specified in the flow chart and/or block diagram block or
blocks. The computer program instructions may also be
loaded to a computing device or other programmable data
processing apparatus to cause operations to be performed on
the computing device or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computing device or other
programmable apparatus provide steps for implementing the
acts specified in the flow chart and/or block diagram block
or blocks.

[0185] Any patents and applications and other references
noted above, including any that may be listed in accompa-
nying filing papers, are incorporated herein by reference.
Aspects of the invention can be modified, if necessary, to
employ the systems, functions, and concepts of the various
references described above to provide yet further implemen-
tations of the invention. These and other changes can be
made to the invention in light of the above Detailed Descrip-
tion. While the above description describes certain examples
of the invention, and describes the best mode contemplated,
no matter how detailed the above appears in text, the
invention can be practiced in many ways. Details of the
system may vary considerably in its specific implementa-
tion, while still being encompassed by the invention dis-
closed herein. As noted above, particular terminology used
when describing certain features or aspects of the invention
should not be taken to imply that the terminology is being
redefined herein to be restricted to any specific characteris-
tics, features, or aspects of the invention with which that
terminology is associated. In general, the terms used in the
following claims should not be construed to limit the inven-
tion to the specific examples disclosed in the specification,

US 2022/0066670 Al

unless the above Detailed Description section explicitly
defines such terms. Accordingly, the actual scope of the
invention encompasses not only the disclosed examples, but
also all equivalent ways of practicing or implementing the
invention under the claims.

[0186] To reduce the number of claims, certain aspects of
the invention are presented below in certain claim forms, but
the applicant contemplates other aspects of the invention in
any number of claim forms. For example, while only one
aspect of the invention is recited as a means-plus-function
claim under 35 U.S.C. sec 112(f) (AIA), other aspects may
likewise be embodied as a means-plus-function claim, or in
other forms, such as being embodied in a computer-readable
medium. Any claims intended to be treated under 35 U.S.C.
§ 112(f) will begin with the words “means for,” but use of
the term “for” in any other context is not intended to invoke
treatment under 35 U.S.C. § 112(f). Accordingly, the appli-
cant reserves the right to pursue additional claims after filing
this application, in either this application or in a continuing
application.

What is claimed is:

1. A method for providing deduplication with block-level
expiry granularity in a cloud-based distributed data storage
system, the method comprising:

in a first cloud computing environment, configuring a first

storage service node that hosts a metadata subsystem of
the distributed data storage system, and further config-
uring a second storage service node that hosts a data
storage subsystem of the distributed data storage sub-
system,

wherein the distributed data storage subsystem comprises

a system-wide deduplication virtual disk that is distrib-
uted across a plurality of storage service nodes of the
distributed data storage system, including the second
storage service node;

by the first storage service node hosting the metadata

subsystem, assigning an expiry timeframe to a first
unique system-wide identifier (the first DDblockID)
that is associated with a first data block stored in the
system-wide deduplication virtual disk,

wherein the expiry timeframe is based on: an arrival

timeframe of the first data block at the distributed data
storage system, and is further based on a full backup
frequency configured for a first user virtual disk
addressed by a write request comprising the first data
block; and

for a second data block, which is received in a second

write request addressing a second user virtual disk after
a preceding discard cycle executed by the metadata
subsystem, and which is determined to have a same
hash value as the first data block and is associated with
the first DDblockID,

by the first storage service node hosting the metadata

subsystem, extending the expiry timeframe of the first
DDblockID to span a sparsest full backup frequency of
all user virtual disks referencing the first DDblockID,
including the first user virtual disk and the second user
virtual disk.

2. The method of claim 1, further comprising:

by the first storage service node hosting the metadata

subsystem, causing the second storage service node to
delete the first data block from the system-wide dedu-
plication virtual disk, based on determining that (i) a
current timeframe is later than the expiry timeframe of

Mar. 3, 2022

the first DDblockID and (ii) no user virtual disk in the
distributed data storage system makes reference to the
first DDblockID.

3. The method of claim 1, further comprising:

by the second storage service node hosting the data

storage subsystem, deleting the first data block from the
system-wide deduplication virtual disk, based on a
determination by the metadata subsystem that (i) a
current timeframe is later than the expiry timeframe of
the first DDblockID and (ii) no user virtual disk in the
distributed data storage system makes reference to the
first DDblockID.

4. The method of claim 1, further comprising:

by a compaction logic of the data storage subsystem,

deleting the first data block from the system-wide
deduplication virtual disk, based on a determination by
the metadata subsystem that (i) a current timeframe is
later than the expiry timeframe of the first DDblockID
and (ii) no user virtual disk in the distributed data
storage system makes reference to the first DDblockID.

5. The method of claim 1, wherein the first data block is
part of a backup copy addressed to the distributed data
storage system,

wherein pruning the backup copy causes references to

data blocks of the backup copy to be removed from the
distributed data storage system; and

retaining a third data block supplied by the backup copy

if at least one other user virtual disk, not associated
with the backup copy, references a DDblockID asso-
ciated with the third data block.

6. The method of claim 1, wherein the first data block is
part of a backup copy addressed to the distributed data
storage system,

wherein when the backup copy is pruned, each distinct

user virtual disk configured for the backup copy is
logically removed from the distributed data storage
system, which causes references to data blocks of the
backup copy to be removed from the distributed data
storage system; and

by the metadata subsystem causing a third data block

supplied by the backup copy to be retained in the
system-wide deduplication virtual disk if at least one
other user virtual disk, not associated with the backup
copy, references a DDblockID associated with the third
data block.

7. The method of claim 1, wherein the first data block is
part of a backup copy addressed to the distributed data
storage system, and wherein the backup copy is generated in
one of: within the first cloud computing environment, and
outside the first cloud computing environment.

8. The method of claim 1, wherein the expiry timeframe
for the first DDblockID is further based on a maximum value
of (i) the full backup frequency configured for the first user
virtual disk and (ii) one or more full backup frequencies
corresponding to one or more other user virtual disks
referencing the first DDblockID.

9. The distributed data storage system of claim 1, wherein
the expiry timeframe is further based on a maximum value
of (i) the full backup frequency configured for the first user
virtual disk and (ii) one or more full backup frequencies
corresponding to one or more other user virtual disks
referencing second data blocks having a same hash value as
the first data block.

US 2022/0066670 Al

10. The method of claim 1 further comprising:

by a storage proxy that executes on a first computing
device that is operational outside the first cloud com-
puting environment:

intercepting write requests addressed to one or more user
virtual disks configured on the distributed data storage
system, which are distinct from the system-wide dedu-
plication virtual disk, including intercepting the write
request comprising the first data block, and

causing the first data block to be stored in the system-wide
deduplication virtual disk, at least at the second storage
service node.

11. The method of claim 1 further comprising:

by a storage proxy that executes on a first computing
device that is operational within the first cloud com-
puting environment:

intercepting write requests addressed to one or more user
virtual disks configured on the distributed data storage
system, which are distinct from the system-wide dedu-
plication virtual disk, including intercepting the write
request comprising the first data block, and

causing the first data block to be stored in the system-wide
deduplication virtual disk, at least at the second storage
service node.

12. The method of claim 1, further comprising:

by a storage proxy that executes on a first computing
device, intercepting write requests addressed to one or
more user virtual disks configured on the distributed
data storage system, which are distinct from the sys-
tem-wide deduplication virtual disk, including inter-
cepting the write request comprising the first data
block; and

by the metadata subsystem:

receiving a hash value of the first data block from the
storage proxy, determining that the hash value of the
first data block is associated with the first DDblockID,
and

updating a data structure that tracks write requests
addressed to the first user virtual disk, including the
write request that comprises the first data block.

13. The method of claim 1, further comprising:

by a storage proxy that executes on a first computing
device, intercepting write requests addressed to one or
more user virtual disks configured on the distributed
data storage system, which are distinct from the sys-
tem-wide deduplication virtual disk, including inter-
cepting the write request comprising the first data
block; and

by the metadata subsystem:

receiving the hash value of the first data block from the
storage proxy,

determining that the hash value of the first data block is
associated with the first DDblockID, and

updating a data structure that tracks write requests
addressed to the first user virtual disk, including the
write request that comprises the first data block.

14. A method for providing deduplication with block-

level expiry granularity in a cloud-based distributed data

storage system, the method comprising:

in a first cloud computing environment comprising a first
storage service node that hosts a metadata subsystem of
the distributed data storage system, and further com-
prising a second storage service node that hosts a data
storage subsystem of the distributed data storage sub-

22

Mar. 3, 2022

system, wherein a system-wide deduplication virtual
disk is distributed across a plurality of storage service
nodes of the distributed data storage system, including
the second storage service node, and wherein the sys-
tem-wide deduplication virtual disk stores deduplicated
data blocks:
by the metadata subsystem at the first storage service
node, assigning an expiry timeframe to a first unique
system-wide identifier (the first DDblockID), wherein
the first DDblockID is associated with a first data block
stored in the system-wide deduplication virtual disk,
wherein the expiry timeframe is based on: an arrival
timeframe of the first data block at the distributed data
storage system, and spans a full backup frequency
configured for a first user virtual disk addressed by a
write request comprising the first data block, wherein
the first user virtual disk is distinct from the system-
wide deduplication virtual disk; and
by the metadata subsystem executing a discard cycle:
determining that a second data block, which was received
in a second write request addressing a second user
virtual disk and which arrived at the distributed data
storage system after a preceding discard cycle, has a
same hash value as the first data block,
associating the second data block with the
DDblockID based on the same hash value, and
extending the expiry timeframe of the first DDblockID to
span a sparsest full backup frequency of all user virtual
disks referencing the first DDblockID, including the
first user virtual disk and the second user virtual disk.
15. The method of claim 14, wherein the assigning of the

first

expiry timeframe occurs during an input-output cycle of the
first data block, which is distinct from the discard cycle.

16. The method of claim 14, further comprising:

by the metadata subsystem executing a discard cycle,
causing the second storage service node to delete the
first data block from the system-wide deduplication
virtual disk, based on the metadata subsystem deter-
mining that (i) a current timeframe is later than the
expiry timeframe of the first DDblockID and (ii) no
user virtual disk in the distributed data storage system
makes reference to the first DDblockID.

17. The method of claim 14, further comprising:

by the second storage service node hosting the data
storage subsystem, deleting the first data block from the
system-wide deduplication virtual disk, based on a
determination by the metadata subsystem that (i) a
current timeframe is later than the expiry timeframe of
the first DDblockID and (ii) no user virtual disk in the
distributed data storage system makes reference to the
first DDblockID.

18. The method of claim 14, wherein the first data block

is part of a backup copy addressed to the distributed data
storage system,

wherein pruning the backup copy causes references to
data blocks of the backup copy to be removed from the
distributed data storage system; and

retaining, in the system-wide deduplication virtual disk, a
third data block supplied by the backup copy if at least
one other user virtual disk, not associated with the
backup copy, references a DDblockID associated with
the third data block.

19. The method of claim 14, wherein the first data block

is part of a backup copy addressed to the distributed data

US 2022/0066670 Al Mar. 3, 2022
23

storage system, and wherein the backup copy is generated in
one of: within the first cloud computing environment, and
outside the first cloud computing environment.
20. The method of claim 19 further comprising:
by a storage proxy that executes on a first computing
device that is one of: operational outside the first cloud
computing environment, and operational within the
first cloud computing environment:
intercepting write requests addressed to one or more user
virtual disks configured on the distributed data storage
system, which are distinct from the system-wide dedu-
plication virtual disk, including intercepting the write
request comprising the first data block, and
causing the first data block to be stored in the system-wide
deduplication virtual disk, at least at the second storage
service node.

