
(19) United States
US 2005004.4541A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0044541A1
Parthasarathy et al. (43) Pub. Date: Feb. 24, 2005

(54) AUTOMATIC SOFTWARE DOWNLOADING
FROM A COMPUTER NETWORK

(75) Inventors: Srivatsan Parthasarathy, Issaquah,
WA (US); Hadi Partovi, Seattle, WA
(US); Benjamin W. Slivka, Clyde Hill,
WA (US); Charles E. Kindel JR.,
Redmond, WA (US)

Correspondence Address:
KLARQUIST SPARKMAN LLP
121 S.W. SALMON STREET
SUTE 1600
PORTLAND, OR 97204 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 10/946,460

(22) Filed: Sep. 20, 2004

Related U.S. Application Data

(63) Continuation of application No. 10/027.209, filed on
Dec. 21, 2001, now Pat. No. 6,802,061, which is a
continuation of application No. 09/436,185, filed on

Nov. 8, 1999, now Pat. No. 6,347,398, which is a
continuation of application No. 08/764.040, filed on
Dec. 12, 1996, now abandoned.

Publication Classification

(51) Int. Cl. ... G06F 9/44
(52) U.S. Cl. .. 717/173

(57) ABSTRACT

Methods and Systems automatically download computer
Software components from a computer network like the
Internet or an intranet. The methods and Systems can be used
to provide dynamic or interactive multimedia components in
HTML documents with HTML <OBJECTs tags. The
HTML <OBJECT-> tags can contain parameters including
uniform resource locators (URLS) which reference dynamic
or interactive multimedia components on remote computers.
Network browserS and other applications can obtain com
puter Software components from a computer network like
the Internet or an intranet in a uniform, portable, architec
ture-neutral, robust manner. The computer Software compo
nents obtained can be used to provide a variety of new
multimedia functionality to an application program.

56

58

DATA
DOWNLOAD
MODULE

60

SOFTWARE
COMPONENT
DOWNLOAD
MODULE

CODE
VERIFICATION

MODULE

62

CODE
INSTALLATION

MODULE

64

Patent Application Publication Feb. 24, 2005 Sheet 1 of 8 US 2005/0044541 A1

10

< 18
- INPUT

DEVICE

(KEYBOARD,
PONTING

MEMORY SYSTEM

DEVICE,
MODEM,

MAIN NETWORK
MEMORY CONNECTION,

ETC.)

30
OUTPUT
DEVICE

SECONDARY
STORAGE

CONTROL
UNIT (DISPLAY,

PRINTER,
MODEM,
NETWORK

- - - - CONNECTION,
ETC.)

20

FIG. 1

Patent Application Publication Feb. 24, 2005 Sheet 2 of 8 US 2005/0044541 A1

INFORMATION l HTML
DOCUMENT

34

COMPUTER
NETWORK

REMOTE
COMPUTER

40

MODEM LOCAL - 50

54

Patent Application Publication Feb. 24, 2005 Sheet 3 of 8 US 2005/0044541 A1

SOFTWARE
COMPONENT
DOWNLOAD
MODULE

DATA CODE CODE
DOWNLOAD VERIFICATION INSTALLATION
MODULE MODULE MODULE

60 62 64

FIG. 3

Patent Application Publication Feb. 24, 2005 Sheet 4 of 8 US 2005/0044541 A1

66

O no) /
LOCATE

A CONTROL RETURN 78
FILE ON AREMOTE REGISTERED
COMPUTER FROM

A LOCAL
COMPUTER

SOFTWARE
COMPONENTS TO
APPLICATION

DOWNLOAD 70 REGISTER
SOFTWARE INSTALLED 76

COMPONENTS TO SOFTWARE
LOCAL COMPUTER COMPONENTS
USING CONTROL ON LOCAL

FILE 72 COMPUTER

VERIFY
DOWNLOADED
SOFTWARE

COMPONENTS
ON LOCAL
COMPUTER

NSTALL
VERIFIED 74
SOFTWARE
COMPONENTS
ON LOCAL
COMPUTER

FIG. 4

Patent Application Publication Feb. 24, 2005 Sheet 5 of 8 US 2005/0044541 A1

80
-

CHOOSE
APPROPRIATE
CLSD USING
MIME TYPE

CLSD
SPECIFIED2 NO

YES

84
USE DESIRED

COMPONENT NO Ek
REGISTERED 8.
NSTALLED2 PATH

TO
LOCATE
DESIRED

YES COMPONENT

RIGHT
VERSION
NUMBER2

SZCODEURL
NULL2

NO

YES

SZCODEURL

Patent Application Publication Feb. 24, 2005 Sheet 6 of 8

DESRED
COMPONENT

FOUND
USING A URL
FROM 1ST SET
OF URLs?

MORE
URLs iN
1ST SETP

NO

DESIRED
COMPONENT

FOUND
USING CODEBASE

URL?

GET NEXT URL
IN 2ND SET OF

URLs

DESIRED
COMPONENT

FOUND
USNG A URL

ROMA 2ND SET OF
URLs?

F.G. 6

GET NEXT URL
IN 1ST SET OF

102

US 2005/0044541A1

URLS

YES 108

MORE
URLs
IN

SECOND
SET2

Patent Application Publication Feb. 24, 2005 Sheet 7 of 8 US 2005/0044541 A1

112

116 /
INSTALL
PORTABLE CONTROL

FILE
A PORTABLE YES EXECARE ON
EXECUTABLE2 COMPUTER

NO
118

CONTROL
FILEA CABINET OR

INITIALIZATION
FILE 124

GET
NEXT FILE

INSTALL
As FILE

ON LOCAL 2 122 INSTALLED COMPUTER

YES

128

PORTABLE
EXECUTABLE A.OCX OR

.DLL2
YES REGISTER WITH

DIIRegisterServer

NO

TO A

FIG. 7B FIG. 7A

Patent Application Publication Feb. 24, 2005 Sheet 8 of 8 US 2005/0044541 A1

132

RUN WITH
IREGSEVER

PARAMETER TO
REGISTER

PORTABLE
EXECUTABLE A.EXE2 YES

REGISTER ALL
FILES IN INFOR
CAB USING

MODULE USAGE
SECTION OF
REGISTRY
DATABASE

FIG. 7B

US 2005/0044541 A1

AUTOMATIC SOFTWARE DOWNLOADING FROM
A COMPUTER NETWORK

CONTINUING APPLICATION DATA

0001. This application is a continuation of U.S. patent
application No. 10/027,209, to Parthasarathy et al., entitled
“Automatic Software Downloading From a Computer Net
work,' filed Dec. 21, 2001, which is a continuation of U.S.
patent application No. 09/436,185, to Parthasarathy et al.,
entitled, “Automatic Software Downloading From a Com
puter Network," filed Nov. 8, 1999, now U.S. Pat. No.
6,347,398, which is a continuation of U.S. patent application
No. 08/764,040, to Parthasarathy et al., entitled “Automatic
Software Downloading From a Computer Network,” filed
Dec. 12, 1996, abandoned, all of which are hereby incor
porated herein by reference.

TECHNICAL FIELD

0002 The technical field relates to obtaining software via
a computer network.

BACKGROUND AND SUMMARY

0003. The Internet is a worldwide network of cooperating
computer networkS. Connected to the Internet are thousands
of individual computers, each with a variety of application
programs. From a user's point of view, access to the Internet
and its Services typically are accomplished by invoking a
network application program (e.g., a network browser). The
network application program acts as an interface between
the user and the Internet. Network application programs are
typically “client' applications that accept commands from
the user and obtain Internet data and Services by Sending
requests to "server” applications on other computers at other
locations on the Internet.

0004. There are many types of client network applica
tions known in the art including network browserS Such as
the MICROSOFT INTERNET EXPLORER software by
Microsoft Corporation of Redmond, Wash., the NETSCAPE
NAVIGATOR software by Netscape Communications of
Mountain View, Calif., and the MOSAIC software by
National Center for Super Computer Applications (NCSA)
in Champaign-Urbana, Ill. These network browsers send
network requests via the File Transfer Protocol (FTP),
Simple Mail Transfer Protocol (SMTP), HyperText Transfer
Protocol (HTTP), Gopher document protocol and others.
The network requests are used to exchange data with com
puter networkS Such as the Internet.
0005 HTTP is a protocol used to access data on the
World Wide Web. The World Wide Web is an information
Service on the Internet containing documents created in the
Hyper Text Markup Language (HTML). HTML allows
embedded “links” to point to other data or documents, which
may be found on the local computer or other remote Internet
host computers. HTML document links may retrieve the
data by use of HTTP, FTP, Gopher, or other Internet appli
cation protocols. The Virtual Reality Modeling Language
(VRML) is also used to create documents for the World
Wide Web. Specifically, VRML is typically used to create
three-dimensional graphical documents.
0006. The bulk of the information on World Wide Web is
static and non-interactive documents created with HTML.

Feb. 24, 2005

These HTML documents contain text and still images, while
a number contain Short audio and Video clips. AS the content
of information stored on the Internet and World Wide Web
evolves, it is desirable to insert dynamic multimedia com
ponents (e.g., animated buttons, Scrolling banners, blinking
lights, bouncing or Spinning objects, high quality music, and
full motion video) and interactive multimedia components
(e.g., a computer game sent over the Internet and played
against one or more other users, or a remote computer) into
a HTML document, to make the information more attractive
and interesting to a user browsing the HTML document.

0007 Network browsers currently support a number of
dynamic and pseudo-interactive multimedia components
directly. However, there are a number of problems currently
asSociated with using dynamic and pseudo-interactive mul
timedia components in a HTML document. These browsers
may still require a user to initiate any dynamic multimedia
interaction. For example, a user typically must request the
dynamic multimedia interaction by Selecting a remote link
with input from a keyboard, electronic mouse or other
pointing device. Thus, a user cannot be provided dynamic
multimedia automatically without first asking for it. This
again prevents a user from fully enjoying dynamic multi
media components.

0008 Since the World Wide Web and the Internet cur
rently Support a wide variety of information in multiple
formats, a typical network browser cannot directly display
every possible dynamic multimedia format it encounters.
When a network browser encounters a multimedia compo
nent in a HTML document the browser is unable to handle
directly (e.g., color images with a large number of colors,
high quality audio, full motion video), it is common in the
art for the network browser to call a helper application (e.g.,
a help wizard) that can handle the multimedia component.
The multimedia component is handed off to the helper
application for processing (e.g., playing the audio, full
motion video). The constantly changing nature of informa
tion on the Internet and World Wide Web requires that the
network browser be updated constantly with access to new
helper applications. This is a time consuming proceSS for the
network browser creators, and prevents a user from fully
enjoying new multimedia components that might be encoun
tered.

0009. Another frequent problem is that a HTML docu
ment may contain a non-Standard HTML tag that describes
a new dynamic multimedia component. Non-Standard
HTML tags cause users to constantly incorporate new
updates into their browsers to take advantage of the dynamic
multimedia described by the non-standard HTML tags. This
is also a slow and time consuming proceSS and may require
an additional helper application as was described above.

0010 Most network browsers also do not currently Sup
port true interactive multimedia. Most Internet and World
Wide Web sites require a user to fill out and Submit an
electronic form and rely on a Common Gateway Interface
(CGI) application, to invoke a remote Software application
to provide pseudo-interactive multimedia content (e.g., data
base access, Search engines, protocol gateways). The CGI
provides a mechanism for information retrieval, processing
and formatting within a HTML document. CGI applications
are typically Written in a programming language or Scripting
language other than HTML (e.g., C, C++, Perl, UNIX shell

US 2005/0044541 A1

language) and are executed on a remote computer. This
remote execution is typically a slow and cumberSome inter
face process that also requires input (e.g., a mouse click)
from a user.

0011. In accordance with an illustrative embodiment of
the present invention, the problems of handling dynamic and
interactive multimedia in a HTML document are overcome.
A method and System for automatically locating, download
ing, Verifying, registering, installing and displaying a Soft
ware component from a remote computer is provided.
0012. The method is used to automatically locate, down
load, Verify, install, register, and display a computer Soft
ware component obtained from a remote computer. The
System includes a Software component download module for
locating computer Software components with uniform
resource locators (URLs), registering computer Software
components in a registry database, and displaying computer
Software components on a local computer. The Software
component download module also manages other System
modules. A data download module downloads computer
Software components in an asynchronous manner from one
or more remote computers. A code Verification module
Verifies that the downloaded computer Software components
are Safe to install on a local computer by Verifying a digital
Signature and digital certificate Sent with the downloaded
computer Software component. A code installation module
installs the Verified computer Software components on the
local computer. The Software components are not limited to
the display of multimedia information. Almost any software
component can be downloaded, Verified, and installed via
the described method and System, whether it is an
ACTIVEX Control, a NETSCAPE ONE Plugin, a JAVA
class library, a multimedia player, a document viewer, or a
custom control or applet for inclusion on a digital form or a
digital document.
0013 The method and system are used by applications
(e.g., network browsers, network Servers) to automatically
download and install Software components from code
depositories on computer networks (e.g., the Internet, or
local corporate intranets) to provide dynamic and truly
interactive multimedia to a user. The method and System
allow any Software component, including dynamic and
interactive multimedia components, to be described with a
standard tag (e.g., the <OBJECTs tag) in a HTML docu
ment.

0014) When the <OBJECT-> tag is encountered in a
HTML document during browsing with a network browser,
the multimedia Software components referenced by the
<OBJECTs tag are automatically downloaded and dis
played directly on a user's computer. A HTML document
can now provide dynamic multimedia content and true
interactivity, in a uniform, portable, architecture-neutral,
robust manner using the method and System of the present
invention.

0.015 Network browsers will no longer require frequent
updates or help applications to provide dynamic and truly
interactive multimedia to a user. A user browsing an HTML
document can now be provided with dynamic and interac
tive multimedia automatically and take full advantage of the
variety of multimedia provided the World Wide Web, the
Internet, and other computer networkS Such as intranets.
0016. In addition, the method and system of the present
can also be used by applications or devices which are not

Feb. 24, 2005

network browsers (e.g. Set top boxes for television network
computers, Satellite receiver boxes, digital personal assis
tants and wireless personal communications devices) to
automatically locate, download, Verify, install, register and
display virtually any type of computer Software component
on any remote computer connected to a computer network
like the Internet or an intranet. Any application which
desires information from a remote computer can use the
method and System of the present invention by Sending the
proper parameter information to the appropriate interfaces
provided by the method and system.
0017. The foregoing and other features and advantages of
the illustrated embodiment of the present invention will be
more readily apparent from the following detailed descrip
tion, which proceeds with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0018 FIG. 1 is a block diagram of a computer system
used to implement an illustrative embodiment of the present
invention.

0019 FIG. 2 is a block diagram illustrating a network
browsing environment.
0020 FIG. 3 is a block diagram illustrating a system for
the present invention.
0021 FIG. 4 is a flow diagram illustrating a code down
loading method for the present invention.
0022 FIG. 5 is a flow diagram illustrating a code locat
ing method for the present invention.
0023 FIG. 6 is a flow diagram illustrating a network
Search method for the present invention.
0024 FIGS. 7A-7B are a flow diagram illustrating a
registration method for the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

0025 Referring to FIG. 1, an operating environment for
the preferred embodiment of the present invention is a
computer System 10 with a computer 12 that comprises at
least one high speed processing unit (CPU) 14, in conjunc
tion with a memory System 16, an input device 18, and an
output device 20. These elements are interconnected by a
bus structure 22.

0026. The illustrated CPU 14 is of familiar design and
includes an ALU 24 for performing computations, a collec
tion of registers 26 for temporary Storage of data and
instructions, and a control unit 28 for controlling operation
of the System 10. Any of a variety of processors, including
those from Digital Equipment, Sun Microsystems, MIPS,
IBM, Motorola, NEC, Intel, Cyrix, AMD, Nexgen and
others are equally preferred for CPU 14. Although shown
with one CPU 14, computer system 10 may alternatively
include multiple processing units.
0027. The memory system 16 includes main memory 30
and secondary storage 32. Illustrated main memory 30 is
high-speed random access memory (RAM) and read only
memory (ROM). Main memory 30 can include any addi
tional or alternative high Speed memory device or memory
circuitry. Secondary Storage 32 takes the form of long term
Storage, Such as ROM, optical or magnetic disks, organic

US 2005/0044541 A1

memory or any other volatile or non-volatile mass Storage
System. Those skilled in the art will recognize that memory
16 can comprise a variety and/or combination of alternative
components.

0028. The input and output devices 18, 20 are also
familiar. The input device 18 can comprise a keyboard,
mouse, pointing device, audio device (e.g., a microphone,
etc.), or any other device providing input to the computer
System 10. The output device 20 can comprise a display, a
printer, an audio device (e.g., a speaker, etc.), or other device
providing output to the computer System 10. The input/
output devices 18, 20 can also include network connections
(e.g., Internet and intranet connections), modems, or other
devices used for communications with other computer Sys
tems or devices.

0029 AS is familiar to those skilled in the art, the
computer System 10 further includes an operating System
and at least one application program. The operating System
is a set of Software that controls the computer System's
operation and the allocation of resources. The application
program is a Set of Software that performs a task desired by
the user, making use of computer resources made available
through the operating System. Both are resident in the
illustrated memory system 16.
0.030. In accordance with the practices of persons skilled
in the art of computer programming, the present invention is
described below with reference to acts and symbolic repre
sentations of operations that are performed by computer
System 10, unless indicated otherwise. Such acts and opera
tions are Sometimes referred to as being computer-executed.
It will be appreciated that the acts and Symbolically repre
sented operations include the manipulation by the CPU 14 of
electrical Signals representing data bits which causes a
resulting transformation or reduction of the electrical Signal
representation, and the maintenance of data bits at memory
locations in memory System 16 to thereby reconfigure or
otherwise alter the computer System's operation, as well as
other processing of Signals. The memory locations where
data bits are maintained are physical locations that have
particular electrical, magnetic, optical, or organic properties
corresponding to the data bits.
0031. The data bits may also be maintained on a com
puter readable medium including magnetic disks and any
other volatile or non-volatile mass Storage System readable
by the computer 12. The computer readable medium
includes cooperating or interconnected computer readable
media, which exist exclusively on computer System 10 or are
distributed among multiple interconnected computer Sys
tems 10 that may be local or remote.
0032. In an illustrative embodiment of the present inven
tion, the computer system 10 preferably uses the WIN
DOWS 95 client/server operating system. However, other
client/server operating systems (e.g. the MICROSOFT
WINDOWS NT operating system, the OS/2 operating sys
tem by IBM, the MAC OS operating system, the UNIX
operating system, the MICROSOFT WINDOWS CE oper
ating System, etc.) could also be used. A client/server oper
ating System is an operating System which is divided into
multiple processes of two different types: Server processes,
each of which typically implements a Single set of Services,
and client processes, which request a variety of Services
from the Server processes. Object oriented programming is

Feb. 24, 2005

used to design the client/server operating System, and appli
cations that run under the client/operation System, where
objects represent System resources.

0033) For example, the MICROSOFT WINDOWS 95
client/server operating System provides share able resources,
Such as files, memory, processes and threads, which are
implemented as “objects” and are accessed by using “object
services.” As is well known in the art, an “object” is a data
Structure whose physical format is hidden behind a type
definition. Data Structures, also referred to as records or
formats, are organization Schemes applied to data So that it
can be interpreted, and So that Specific operations can be
performed on that data. Such data Structures impose a
physical organization on the collection of data Stored within
computer memory 16 and represent specific electrical, mag
netic or organic elements.
0034. An “object type,” also called an “object class,”
comprises a data-type, Services that operate on instances of
the data type, and a set of object attributes. An "object
attribute” is a field of data in an object that partially defines
that object's State. An "object Service' implements and
manipulates objects, usually by reading or changing the
object attributes. “Object oriented design” is a software
development technique in which a System or component is
expressed using objects.

0035 An object typically has two components: a function
table, containing a pointer to each object member function
(i.e., Sometimes known as an object method) defined in the
object's class, and a data block, containing the current
values for each object variable (i.e., data members, Some
times known as an object property). An application has some
reference to an object through an object pointer. An appli
cation obtains this object reference by using Some type of
function call (direct or implied) in which that function
allocates an object block in computer memory, initializes the
function table, and returns the reference to the computer
memory to an application. The computer memory may be
local or distributed on a remote computer.
0036) The MICROSOFT WINDOWS 95 operating sys
tem allows users to execute more than one program at a time
by organizing the many tasks that it must perform into
“processes.” The operating System allocates a portion of the
computer's resources to each proceSS and ensures that each
process's program is dispatched for execution at the appro
priate time and in the appropriate order.

0037. In an illustrative embodiment of the present inven
tion, processes are implemented as objects. A process object
comprises the following elements: an executable program; a
private address space; System resources (e.g., communica
tion ports and files) that the operating System allocates to the
process as the program executes, and at least one “thread of
execution.” A “thread” is the entity within a process that the
operating System kernel Schedules for execution. AS is well
known in the art, each thread has an associated “context'
which is the volatile data associated with the execution of
the thread. A thread's context includes the contents of
System registers and the virtual address belonging to the
thread’s process. Thus, the actual data comprising a threads
context varies as it executes.

0.038. The Component Object Model (COM) and Distrib
uted Component Object Model (DCOM) are models used

US 2005/0044541 A1

for object oriented programming. The COM and DCOM
Specifies how objects within a single application or between
applications (e.g. client/server applications) interact and
communicate by defining a set of Standard interfaces. Inter
faces are groupings of Semantically related functions
through which a client application accesses the Services of a
Server application.
0039) Object Linking and Embedding (OLE), such as
OLE Version 2 by the Microsoft Corporation of Redmond,
Wash., and ACTIVEX (network activation controls) tech
nology are based in part on the Component Object Model
and allows the creation of objects of different formats which
operate on data through defined interfaces, rather than
operating on the applications responsible for the data.
ACTIVEX technology is based in part on OLE technologies.
The object data can be embedded within an object, or linked
to it, So that only a link reference to the data is Stored in the
object.

0040. In a browsing environment 34 of an illustrative
embodiment of the present invention shown in FIG. 2, a
local computer 36 (e.g., computer system 10 shown in FIG.
1) runs software, referred to herein as a “browser,” for
unified browsing of electronic documents and other data
from local sources (e.g., the memory system 16 of FIG. 1)
and from a computer network 38 (e.g., the Internet, an
intranet). The browser can be integrated with the operating
System Software, or can be a separate application Software.
The browser is typically an object oriented application. The
illustrated remote computer network 38 is the Internet,
which is described in the Background and Summary Section
above. In the illustrated browsing environment 34, the local
computer 36 connects to the computer network 38 over a
telephone line 40 with a modem 42. Other physical connec
tions to the computer network alternatively can be used,
such as an ISDN, T1, DS1 or other high speed telecommu
nications connections and appropriate connection device, a
television cable and modem, a Satellite link, an optical fiber
link, an Ethernet or other local area network technology wire
and adapter card, radio or optical transmission devices, etc.
The invention can alternatively be embodied in a browsing
environment for other public or private computer networks,
Such as a computer network of a commercial on-line Service
or an internal corporate local area network (LAN), an
intranet, or like computer network.
0041 Documents for browsing with the illustrated
browser can reside as files of a file System Stored in the
computer's Secondary Storage 32 (FIG. 1), or reside as
resources at a remote computer 44 (also referred to as a
“site” or “store') connected to the computer network 38,
Such as a World Wide Web site on the Internet. The illus
trated document 46 residing at the Site or Store 44 conforms
with HTML standards, and may include extensions and
enhancements of HTML standards. However, the illustrated
browser also can browse documents having other data
formats (e.g., Virtual Reality Modeling Language (VMRL),
MICROSOFTWORD documents, etc.) from the local com
puter 36 or remote computer 44. In conformance with
HTML, the illustrated document 46 can incorporate other
additional information content 48, Such as images, audio,
Video, executable programs, etc. which also reside at the
remote computer 44 or other remote computers. The docu
ment 46 and information 48 preferably are stored as files in
a file system of the remote computer 44. The document 46

Feb. 24, 2005

incorporates the information 48 using HTML tags and
Uniform Resource Locators (URLs) that specify the location
of files or other Internet resources containing the images on
the computer network 38. However, other locating formats
can also be used.

0042. When used for browsing documents, the illustrated
browser displays the document in a window 50 or area of the
local computer's 36 display 20 allocated to the browser by
the operating system. The illustrated window 50 comprises
a document display area 52 and user interface controls 54.
The browser displays the document within the document
display area 52 of the window 50. However, other display
types could also be used. The computers 36, 44 can also be
network computers (NCs) which include only selected com
ponents of computer System 10.
0043. The browser and other client applications within
the local computer 34 preferably work with documents
(which have data formats other than those native to the
browser or client application) by encapsulating the docu
ment's data into an associated object, and integrating with
the object using pre-defined interfaces as described more
fully below. This allows full use of all the features described
below.

0044 Alternatively, the browser or other client applica
tion can work with a document by launching an application
program associated with the document and causing the
asSociated application program to load the document and
perform a specified operation on the document. In the
MICROSOFT WINDOWS 95 operating system, this is done
by looking up the application program associated with the
document's file name extension in the System registry, (e.g.,
“...doc" for MICROSOFT WORD documents, “..vsd” for
Shapeware's VISIO drawings, etc.) and a text String com
mand for directing the program to perform a desired opera
tion. The application program asSociated with a document
also may be identified in the MICROSOFT WINDOWS
operating System by matching a bit pattern at Specific offset
into the file as also specified in the System registry. The
browser or other client application patches the document's
file name into the text String command and invokes the
operating System's shell execute Service to execute the
command. Shell execute is a well known MICROSOFT
WINDOWS operating system service which issues a text
String as a command to the operating System's command
interpreter (i.e., the “command.com” program in the
MICROSOFT WINDOWS operating system).
004.5 The text string generally is in the form of an
MS-DOS command, which specifies a path and file name of
the associated application program's executable file, a flag
for Specifying the desired operation, and the document's
path and file name. The command interpreter responds by
parsing the text String, loading the application program
Specified in the text String, and passing the flag and the
document's path and file name as command line arguments
into the application program. The application program then
“opens’ (i.e., loads) the document and performs the opera
tion Specified by the flag.

0046 AS was described above, it is desirable to add
interactive or dynamic behavior to a document 46 written in
HTML and other formats by obtaining software components
from one or more remote computers. As is shown in FIG. 3,
an illustrative embodiment of the present invention includes

US 2005/0044541 A1

an automatic software download system 56 with a software
component download module 58, a data download module
60, a code verification module 62, and a code installation
module 64.

0047. When a request is made to download a desired
Software component Stored on a remote computer 44, the
Software component download module 58 determines if the
desired Software component is already installed on the local
computer 36. If the desired software component is already
installed on the local computer 36, then the desired software
component on the local computer 34 is checked to see if a
more recent version is available. If a more recent version of
the desired Software component is available, or if the desired
computer Software component is not available on the local
computer 34, then it is downloaded in an asynchronous
manner by the data download module 60. The software
component download module 58 uses a Uniform Resource
Locator (URL) or a network Search path to locate a desired
Software component. The URL and network search path will
be explained below.
0.048 Any software components downloaded to the local
computer 36 are verified with the code verification module
62. The code Verification module 62 checks a digital Signa
ture in a digital certificate included in the downloaded
Software component to ensure the downloaded Software
component is Safe (e.g., computer virus and corruption free)
on the local computer 34. The digital certificate is used to
inform a user who created the Software component and
signed it with the digital signature. After it is verified by the
code Verification module 62, the downloaded computer
Software component is installed on the local computer 34 by
the code installation module 64.

0049. In an illustrative embodiment of the present inven
tion, system 56 includes a software interface CoGetClas
sObjectFrom Url for the software component download
module 58, a Software interface URL Moniker for the data
download module 60, a software interface WinVerifyTrust
for the code verification module 62, and a Software interface
ICodeInstall for the code installation module 64.

0050. In an illustrative embodiment of the present inven
tion, the Software interfaces and corresponding Software
subroutines just described are available in the Internet
Component Download Application Program Interface (API)
for the MICROSOFT WINDOWS 95 Operation System by
Microsoft Corporation of Redmond, Wash. The details of
each of these interfaces will be explained below. However,
the modules of system 56 may also be implemented as
hardware modules, or a combination of Software and hard
ware modules. In addition, other Software Subroutines, inter
faces, and operating Systems could also be used for System
56.

0051) The system 56 is used with method 66 as is shown
in FIG. 4 for automatically locating 68, downloading 70,
verifying 72, installing 74, registering 76, and returning 78
computer Software components obtained from a computer
network 36 like the Internet. However, method 66 and
System 56 are not limited to downloading Software compo
nents for HTML documents. Almost any type of computer
Software components can be obtained from a local or remote
computer using System 56 and method 66 for many types of
files or documents.

0.052 In an illustrative embodiment of the present inven
tion, computer Software components (e.g., a control file) are

Feb. 24, 2005

automatically located 68 using one of two designators: a
URL or a network search path. The URL or network search
path are used to first locate 68 a control file on a remote
computer. The control file can be a single portable execut
able file or a file (e.g., a cabinet or initialization file) which
contains one or more remote executable files, library files
(e.g., Dynamic Link Library (DLL) files), or references to
one or more remote executable files or library files. The
control file is used to determine the location of the Software
components on one or more remote computers 44 to down
load to the local computer 36.
0053. In an illustrative embodiment of the present inven
tion, the control file is used to locate object oriented Software
components including: Object Linking and Embedding
(OLE) components, ACTIVEX (network activation) com
ponents, VISUAL BASIC components, NETSCAPE ONE
Plug-ins, JAVA components or others to provide dynamic or
interactive multimedia to a user. Moreover, Software com
ponents can be downloaded to provide functionality other
than dynamic or interactive multimedia and the components
need not be in the form of object-oriented Software compo
nentS.

0054 Downloaded software components are automati
cally verified 72 by checking a digital Signature and a digital
certificate contained within the Software components (e.g.,
with WinVerifyTrust). However, security measures other
than digital Signatures and digital certificates could also be
used to Verify a Software component. In another embodi
ment of the present invention, the Software verification Step
72 is optional. For example, on a corporate intranet, where
all Software components behind a corporate firewall are
automatically trusted and need no verification. The verified
Software components are then automatically installed 74
(e.g., with ICodelnstall) in various directories of a file
system on the local computer 34. After installation the
Software components are registered 76 (e.g., with DllReg
isterServer or Module Usage) in a registry database on the
local computer 34. The registry database is used to keep
track of which Software components are installed on the
local computer 34. In another embodiment of the present
invention, the registration Step 76 is optional. After regis
tration, Selected Software components are returned 78 to a
requesting application. Further details of method 66 will be
explained below.
0055. In an illustrative embodiment of the present inven
tion, a network browser Such as the MICROSOFT INTER
NET EXPLORER version 3.0, uses system 56 and method
66 to download and install object oriented Software com
ponents used for dynamic or interactive multimedia in
HTML documents 46. However, other applications can use
system 56 and method 66 to download and install executable
Software components from one or more remote computers.
0056 To use dynamic or interactive multimedia in
HTML documents, HTML <OBJECTs tags are used. One or
more HTML <OBJECTs tags are embedded into a docu
ment written in HTML or some other programming or
Scripting language which permits HTML references. The
<OBJECTs tags typically point to object-oriented computer
Software components or Some other file format that is
executable or references an executable file.

0057 The HTML <OBJECTs tag has multiple attributes
including: DATA, CODEBASE, CLASSID, TYPE, ID, and

US 2005/0044541 A1

CLASS attributes. The DATA attribute specifies a Uniform
Resource Locator (URL) referencing an object's data. The
CODEBASE attribute is an optional attribute used when the
object references a desired Software component program.
Besides the actual location of the desired Software compo
nent, the “CODEBASE" URL in the <OBJECTs tag may
also include an optional version number using the following
Syntax:

0.058 “CODEBASE=http://www.foo.com/
bar.ocxi Version=a,b,c,d”. Where “a,b' in "#Version=a,b,c,
d’ represent the desired version of a Software component on
a remote Server, and “c,d” represent the desired version of a
local software component. The method 66 will download 70
and process (72-78) the software component pointed to by
the CODEBASE attribute only if the specified version
number of the remote Software component is more recent
than any existing version of the same Software component
currently installed on the local computer 34. If a version
number is not specified for a Software component, it is
assumed that any version installed on the local computer 34
is proper to use. The CODEBASE attribute can also be a
URL fragment with the syntax
0059) “CODEBASE=#Version=-1.-1.-1.-1". Specify
ing only "#Version=-1.-1.-1.-1” for the CODEBASE
attribute causes a network Search path to be used to find the
latest version of a desired Software component. The network
search path will be explained below.
0060. The CLASSID attribute is used to specify an object
identifier. On each computer (36.44) connected to the com
puter network 38, for example, the operating System registry
(also called the registration database) is used to store rel
evant information about object oriented components accord
ing to their CLaSs IDentifier (CLSID). An object registers its
CLSID in the operating System registry database to enable
client applications (e.g., a network browser) to locate and
load the executable code associated with the objects. The
HTML <OBJECTS CLASSID is equivalent to the object
oriented CLSID.

0061 The CLSIDs are also given the alias “GUID,”
which stands for Globally Unique IDentifiers. Each object
class is represented by a CLSID, a 128-bit (16-byte) number
that is assumed to be unique on computer network acroSS
space and time. A CLSID is a 16-byte value with a specific
structural definition that has an ASCII representation shown
below as a group of hexadecimal digits within braces Such
as “{42754850-16b7-11ce-90eb-00aa(003d 7352}” (The
groupings of the heX digits and the hyphens are part of the
ASCII representation as well). Application programs Such as
the network browser manipulate the Structural definition
(e.g., the C/C++structural definition) of the CLSID. The
CLSID is used as the HTML (OBJECT CLASSID.

0062) The TYPE attribute specifies the Internet media
type for the OBJECT data. The ID attribute is used to define
a document-wide identifier. The CLASS attribute is used for
applying a pre-determined style to an OBJECT element.
Remaining <OBJECT-> tag attributes, like “ID, STYLE,
DIR, ALIGN, WIDTH, HEIGHT, BORDER, HSPACE and
USPACE' are known attributes in HTML and, although
previously used in a manner different from the present
invention, are generally described in HTML 3: Electronic
Publishing on the World Wide Web by Dave Ragget, Jenny
Lam, and Ian Alexander, Addison-Wesley, 1996.

Feb. 24, 2005

0063) An example <OBJECTs tag in a HTML document
for an ACTIVEX Control is shown below.

&OBJECT
CLASSID="classid:663CFEE:1A9B-22DC-AB3C-08.0036F12502

CODEBASE="http://www.microsoft.com/test.ocxhFileVersion=0,0.4.2
>

</OBJECT

0.064 where the CLASSID “663CFEE:1A9B-22DC
AB3C-08.0036F12502” shows an object identifier (i.e.,
CLSID) for the ACTIVEX Control “test.ocx”, the CODE
BASE attribute gives the URL “http://www.msn.com/test
.ocx' which specifies where to find the ACTIVEX Control
file. </OBJECTs signifies the end of the <OBJECTs tag. If
the ACTIVEX Control is not present on the local computer,
or if the ACTIVEX Control is already stored on the local
computer and has a version earlier than 4.2, then it will be
downloaded to the local computer which will replace the
current version on the local computer.
0065. After embedding one or more HTML <OBJECTs
tags in a document written in HTML and storing the
document on a remote computer 44 connected to a computer
network 38 (e.g., the Internet, an intranet) the document 46
is browsed with a network browser from the local computer
34.

0066. When an HTML <OBJECT-> tag is encountered in
the document by the network browser, the <OBJECT-> tag is
parsed to pull out <OBJECTs tag attributes (e.g., the
CLASSID, CODEBASE, etc.). The network browser passes
the <OBJECT-> tag attributes to the software component
download module 58 via the CoGetClassObjectFrom URL
interface. If a network browser is not used, other applica
tions could use method 66 and system 56 by sending the
proper parameters to the CoGetClassObjectFrom URL inter
face.

0067. In an illustrative embodiment of the present inven
tion, the single interface CoGetClassObjectFrom URL man
ages method 66 and system 56. However, multiple interfaces
could also be used. Any application that wishes to download
almost any Software component from a remote computer 44
connected to a computer network 38 like the Internet can do
So by passing the appropriate parameters to the CoGetClas
sObjectFrom URL interface.
0068. The interface to the CoGetClassObjectFrom URL
interface is shown below.

0069. STDAPI CoGetClassObjectFrom URL (

0070) in REFCLSID relsid,

0.071)

0072)

0073)

0074)

0075)

0076)

0.077

0078

in LPCWSTR szCodeURL,

in DWORD dwFileVersionMS,

in DWORD dwFileVersion LS,

in LPCWSTR szContentTYPE,
in LPBINDCTX pBindCtx,

in DWORD dwClsContext,
in LPVOID pvReserved,

in REFIID rid,

US 2005/0044541 A1

0079) out VOID **ppv); Where in are input
parameters and out are output parameters. CoGet
ClassObjectFrom URL accepts the following argu

Feb. 24, 2005

0081. As is shown in FIG. 5, the CoGetClassObjectFro
mURL interface uses method 80 to locate a control file on
a remote computer 44. If it specifies 82 a CLSID, CoGet
ClassObjectFrom URL checks to see if the desired software

CLSID of the object that needs to be installed. If value is
CLSID NULL, then SzContentType is used to determine

mentS.

Argument Type Description

rclsid REFCLSD

the CLSID.
SzCodeCJRL LPCWSTR URL pointing to the code for the object. This may point to

an executable, to an INF file, or to a CAB file. If this
value is NULL, then Internet Component Download will
still attempt to download the desired code from an object
store server on a Internet Search Path.

dwRileVersionMS DWORD Major version number for the object that
needs to be installed. If this value and the next are both
0xFFFFFFFF, then it is assumed that the latest version of
the code is always desired, an attempt to download new
code will be made.

dwRileVersionLS DWORD Minor version number for the object that
needs to be installed. If this value and the previous one are
both 0xFFFFFFFF, then it is assumed that the latest
version of the code is always desired, an attempt to
download new code will be made.

SzContentType LPCWSTR MIME type that needs to be understood
by the installed object. If relsid is CLSID NULL, this
string is used to determine the CLSID of the object that
must be installed. Note: this parameter is only useful
when trying to download a viewer for a particular media
type, if the MIME type of the media is known but the
CLSD is not.

pBindCtx LPBINDCTX A bind context to use for downloading/installing
component code. The client should register its
IBindStatus.Callback in this bind context to receive
callbacks during the download and installation process.

dwClsContext DWORD Values taken from the CLSCTX enumeration specifying
the execution context for the class object.

pvReserved LPVOID
rid REFID

IClassFactory).
ppv VOID**

Returns S OK

Reserved value, must be set to NULL.
The interface to obtain on the factory object (typically

Pointer in which to store the interface pointer upon return
if the call is synchronous.
Success. ppv contains the requested interface pointer.

MK S ASYNCHRONOUS Component code will be downloaded and installed
asynchronously. The client will receive notifications
through the IBIndStatusCallback interface it has registered
on pBindCtx.

E NOINTERFACE The desired interface pointer is not available. Other
CoGetClassObject error return values are also possible
here.

0080. In an illustrative embodiment of the present inven
tion, the values for parameters passed to the CoGetClassOb
jectFrom URL interface are read directly from an HTML
<OBJECTs tag. For example, the SzCode URL, dwfile Ver
sionMS, and dwfile Version LS are specified inside an
<OBJECTs tag with “CODEBASE=http://www.foo.com/
bar.ocxi Version=a,b,c,d” where SzCodeURL is “http://ww
w.foo.com/bar.ocx'.dwFileVersionMS is “a,b’, the major
version of a file on a remote server (e.g., a Software provider
such as Microsoft), and dwFile VersionLS is “c,d”, the
version of a file on the local computer. The CoGetClassOb
jectFrom URL interface is responsible for managing method
66 and system 56. A software component requested with
method 66 is typically a factory class object. A class factory
generates actual object class instances of an object and is
known to those skilled in the art.

component (i.e., the control file) is registered and installed
84 on the local computer 36 with the right version number
86. If it does not specify a CLSID (i.e., has a value of
CLSID NULL), CoGetClassObjectFrom URL will choose
the appropriate CLSID by interpreting the Multipurpose
Internet Mail Extension (MIME) 88 type specified in the
SzContentType parameter. MIME provides a standard
mechanism for messages to be exchanged over computers
connected to the Internet. See Internet Standard Document.
RFC 1521 for specific details on MIME.

0082 If the desired software component is registered and
installed on the local computer, and if the version number is
correct, then the desired Software component is obtained
from the local computer 36. If the desired software compo
nent is not registered and installed on the local computer, or
if the version number is incorrect, then the desired Software
component is obtained from the remote computer 44.

US 2005/0044541 A1

0083) To obtain the desired software component from the
remote computer 44, the SZCodeURL parameter is checked
90. If the SzCode URL parameter is not NULL, then an
attempt is made to locate the desired Software component
with the URL stored in SzCodeURL. If the URL is valid 92,
the desired software component will be downloaded 70
(FIG. 4) to the local computer 36. If the SzCodeURL is
NULL, or the specified URL is invalid, a then a network
search path is used to locate the Software component 94. The
network Search path is Specified as shown below.

CodeBaseSearchPath = <URL>, <URL>: ... <URL>:
CODEBASE URL:

0084. This search path is made accessible to the CoGet
ClassObjectFrom URL interface. For example, using
MICROSOFT INTERNET EXPLORER 3.0 running on the
MICROSOFT WINDOWS 95 operating system, the search
path is Stored in the System registry. On other operating
Systems or with other Software applications, this Search path
may be Stored elsewhere as long as it is accessible to the
CoGet ClassObjectFrom URL interface. On MICROSOFT
WINDOWS operating systems, the network search path is
Specified in a String in the registry database under they key:

HKEY LOCAL MACHINE\Software\Microsoft\Windows\
CurrentVersion\Internet Settings\CodeBaseSearchPath

0085. However, other registry database keys could also
be used. The value for this key is a string of SZ/Code URL
parameterS.

0086) Each of URLs URL through URL in the network
search path are absolute URLs pointing to HTTP servers
acting as “Object Stores'44. However, other formats could
also be used for the network Search String.
0087 As is shown in FIG. 6, the CoGetClassObjectFro
muRL interface using method 96 will first try locating 68
(FIG. 4) the desired control file using URL through URL
(98-102). If the desired control file cannot be located using
URL through URL, CoGetClassObjectFrom URL will try
the location specified in the SZCodeURL parameter (e.g.,
corresponding to the CODEBASE attribute in the
<OBJECTs tag) 104. If the desired control file cannot be
located using the SzCode URL search path, CoGetClassOb
jectFrom URL will try the locations specified in locations
URL through URL (106-110). If this search fails, then the desired control file cannot be located. The network search
using a network Search path will use the first Successful
response from a Server and will not Subsequently continue
Searching for newer versions of components. However,
newer versions of Software components can also be searched
for.

0088. If the CODEBASE keyword is not included in the
Code BaseSearchPath key, then calls to CoGetClassObject
From URL will not check the SzCodeURL location for down
loading code. By removing the CODEBASE keyword from
the CodeBaseSearchPath, corporate intranet administrators
can effectively disable corporate users from accessing any
remote computer to obtain a computer Software component
specified by a HTML <OBJECTs tag. This also allows

Feb. 24, 2005

registration of default Object Store locations 44 on the
World Wide Web, where browsers can find code when no
CODEBASE location is explicitly specified. In addition, by
removing the CODEBASE keyword from the Code Bas
eSearchPath and pointing URL through URL to intranet
Sites, corporate intranet administrators can effectively dis
able corporate users from accessing Software components
from any computers outside a local intranet.
0089. In an alternative embodiment of the present inven
tion, the network Search path can be used in an alternative
way: the URLs in the network search path (98-102,106-110)
will be searched for a control file after trying the location
specified in the SzCodeURL parameter for CoGetClassOb
jectFrom URL, (e.g., after trying the location specified in the
CODEBASE attribute 104 from a HTML <OBJECT-TAG).
0090. In an illustrative embodiment of the present inven
tion, an Object Store on the network search path is an HTTP
Server that Services requests for a desired control file.
CoGetClassObjectFrom URL will try to locate the control
file from the various Object Stores in the search path.
Specifically, an Object Store will receive an HTTP POST
request with data in the format below:

CLSID={class id}
Version=a,b,c,d

MIMETYPE=mimetype

0091 All the values above are optional, although at least
one of CLSID or MIMETYPE parameters must be present.
The Object Store parses this information, checks an internal
database, and either fails, or redirects the HTTP request to
the control file on the next remote computer in the network
Search path.
0092. The HTTP POST parameters are processed by the
Object Store as follows: If CLSID is provided with no
version number, then the most recent object matching the
CLSID will be returned. If the CLSID is provided with
Version, then the object matching the CLSID and with the
highest version number greater than or equal to Version will
be provided. If no object is available that matches the
CLSID with a large enough version number, then the HTTP
error (e.g., the 404 error) will be returned. MIMETYPE will
be ignored when CLSID is provided.

0093) If no CLSID is provided, but MIMETYPE is
provided, then the first object found in the database that
matches the MIMETYPE will be returned. Version, if pro
vided, is treated as described above. If neither CLSID or
MIMETYPE is provided then the HTTP error return code
“400 Bad Request” will be returned.

0094) In addition to the HTTP POST data described
above, queries to Object Stores may also include HTTP
headers for ACCEPT (MIME type) and ACCEPT-LAN
GUAGE, thus Specifying the desired platforms and lan
guage-localized implementation for a component. HTTP
headers are typically added to all HTTP requests made by
method 66 and system 56. This allows Object Stores to serve
different code implementations for differing platforms or
even different languages.

0.095 The illustrated and alternative embodiments of the
present invention described above assume that all computer
Software Storage ServerS Searched with the network Search
path are active HTTP servers capable of handling HTTP
POST requests and querying an object database to find the
desired Software components. In another alternative embodi

US 2005/0044541 A1

ment of the present invention, non-HTTP servers can also be
used in the network Search path (e.g., FTP servers and
Standard file servers).
0096. The control file located 68 on a remote computer
can be, for example, a portable executable file, a cabinet file,
or an initialization file. A portable executable (PE) is a single
executable file that is downloaded, Verified, registered and
installed on the user computer according to method 66. The
portable executable is typically an OLE control or
ACTIVEX (network activation) control file (e.g., OCX), a
Dynamic Link Library file (e.g., DLL), or a executable file
(.EXE). OLE control, ACTIVEX, Dynamic Link Library,
and executable files are known to those skilled in art.

0097. A single portable executable file is the simplest
way to package a Software component to provide dynamic or
interactive multimedia. However, when a Single portable
executable is used, the file is typically not compressed, and
the Software component will not be platform independent
unless an HTTP server negotiates a platform independent
format. The HTTP server negotiation will be explained in
detail below.

0098. A cabinet file (e.g., CAB) can be used for the
control file. The cabinet file contains one or more files, all of
which are downloaded together in a compressed “cabinet.”
One file in the cabinet is an initialization file (e.g., INF)
providing further installation information. This INF file
may refer to files in the cabinet as well to files at other URLs.
Using a cabinet file requires authoring of a .INF and
packaging of a CAB file, but in return it provides file
compression. File compression is completed with Lempel
Ziv compression, which is known in the art. However, other
compression formats could also be used.
0099 Cabinet files can be created with the DIANTZ.EXE
tool by Microsoft Corporation. However, other cabinet file
creation tools can also be used. The DIANTZ.EXE tool
takes a directive file (e.g., DDF), which specifies how to
create a cabinet file, and creates a cabinet file. The DIANTZ
.EXE is used with the following command line:
01.00 DIANTZ.EXE /f directive file.ddf where the “/f”
attribute tells the DIANTZ.EXE tool to use the file “direc
tive file.ddlf to create the cabinet file. An example directive
file, CIRC3.DDF is shown below.

01.01 ; DIAMOND directive file for CIRC3.OCX+
CIRC3INF

.OPTION EXPLICIT; Generate errors on variable
typos

Set CabinetNameTemplate=CIRC3Z.CAB

:** The files specified below are stored, compressed, in
cabinet files

..Set Cabinet=on

. Set Compress=on
circ3.INF

circ3.OCX

0102) The example directive file shown above would be
used to create a cabinet file (e.g., “...Set Cabinet=on”) con
taining two compressed (e.g., “...Set Compress=on') files:
circ3.INF and circ3.OCX where “circ3.INF" is the single
initialization file and “circ3.OCX is the desired Software
component for dynamic or interactive multimedia. The
.OCX file extension signifies an OLE control or ACTIVEX

Feb. 24, 2005

(network activation control) file. Comments are designated
with a semi-colon “”. As was discussed above for the
portable executable, the cabinet file will also not be platform
independent, except with HTTP server negotiation which
will be explained below.
0103) A stand-alone initialization file (INF) can also be
used for the control file. This file specifies various files that
need to be downloaded and setup. The syntax of the INF file
allows URLS pointing to files to download, and provides
platform independence by enumerating choices for various
platforms. An example initialization file is shown below.

:Sample INF file for CIRC3.OCX
Add.Code
circ3.ocx=circ3.ocx

random.dll=random.dll

mfc40.dll=mfc40.dll

circ3.ocx
lines below specify that the specified circ3.ocx (clsid,
version) needs to be installed on
;the system. If doesn't exist already, can be down
loaded from the given location (a CAB)
note: if “thiscab' is specified instead of the file loca
tion, it is assumed that the
desired file is present in the same CAB cabinet that
the INF originated from
otherwise, if the location pointed to is a different
.CAB, the new cabinet is also downloaded and
; unpacked in order to extract the desired file
file=http://www.code.com/circ3/circ3.cab

FileVersion=0,0,1,2

random.dll
lines below specify that the random.dll needs to be
installed in the system
if this doesn't exist already, it can be downloaded from
the given location.
file=http://www.code.com/circ3/random.dll

Note that the FileVersion is option, and it may also be
left empty, meaning that any version is ok.
FileVersion=

DestDir=10

:DestDir can be set to 10 or 11 (LDID WIN or
LDID SYS by INF convention)
;this places files in \windows or \windows\System,
respectively

;if no dest dir specified (typical case), code is installed
in the fixed occache directory.
mfc40.dll
;leaving the file location empty specifies that the instal
lation

needs mfc40 (version 4.0.0.5), but it should not be
downloaded.

;if this file is not already present on the client machine,
component download fails
file=clsid=

FileVersion=4,0,0,5

foo.ocx
;leaving the file location empty specifies that the instal
lation

US 2005/0044541 A1

;needs the specified foo.ocx (clsid, version), but it
should not be downloaded.

;if this file is not already present on the client machine,
component download fails
file=clsid=

{DEADBEEF-592F-101B-85CE-00608CEC297B }
FileVersion=1,0,0,143

0104. The sample .INF file shown above can be used to
install the files "circ3.ocx, random.dll, mfc40.dll, and
foo.ocx' where the OCX file extension signifies an OLE
control or ACTIVEX control (network activation) file and
the DLL file extension signifies a Dynamic Link Library
file. OLE controls, ACTIVEX controls and Dynamic Link
Library files are known to those skilled in the art.

0105. The INF file has instructions to install each of the
necessary files, and comments are again designated with a
semi-colon “;”. For example, the INF file specifies that the
“circ3.ocx' file needs to be installed on the local computer
with “clsid={9DBAFCCF-592F-101B-85CE
00608CEC297B}.”“FileVersion=0,0,1,2” is used to check a
local version of a file to see if it is earlier than Version 1.2.
If it is, it will be downloaded to the local computer. The
“circ3.ocx' can be downloaded from a remote computer in
a cabinet file using the URL “file=http://www.code.com/
circ3/circ3.cab. The “FileVersion=’ attribute for the “ran
dom.dll” file is empty, so that any version of this file is ok.
The “file=" attribute is empty for “mfc40.dll” and “foo.ocx”
which signifies that these files should not be downloaded to
the local computer. If these files don't exist on the local
computer, then the downloading fails.

0106 The initialization file also provides platform inde
pendence for HTTP and non-HTTP servers which store the
desired Software components. It is possible to create plat
form-independent Setup Scripts that pull desired Software
components from different locations depending on the
desired platform. A sample platform-independent INF file
would include a text Such as the following:

circ3.ocx
lines below specify that the specified circ3.ocx (clsid,
version) needs to be installed

01.07 on
;the system. If doesn't exist already, can be down
loaded from the given location (a CAB)
file-win32-x86=file://products/release/circ3/x86/
circ3.cab

file-win32-mips=file://products/release/circ3/mips/
circ3.cab

file-mac-ppc=ignore

;the ignore keyword means that this file is not needed
for this platform

FileVersion=1,2,.O.O

0108). The “file-x-y” syntax used in the INF file is
expanded to “file-%opersys%/-%.cpu%”, (e.g., “file-win32
mips” where 9% opersys%="win32” and %.cpu%="mips')
allowing the INF file to specify multiple locations where
various platform-dependent modules can be found and
downloaded. Valid values for %opersys% and %cpu%
attributes are explained below.

10
Feb. 24, 2005

0109) The following MIME types will be used to describe
PEs (portable executables-.EXE, DLL, OCX), cabinet files
(CAB), and setup scripts (INF):

File description MIME Type

PE (portable executable) -
.EXE, DLL, OCX
Cabinet files - CAB application/x-cabinet-%opersys%-%cpu%
Setup scripts - INF (platform application/x-setupscript
independent)

application/x-pe-%opersys%-%cpu%

0110. The %opersys% and %cpu% attribute values
shown below will specify the operating system and CPU for
the desired platform desired software components will be
executed on. For example, the MIME type for a Win32
cabinet file running on an INTEL x86-architecture processor
(whether manufactured by Intel Corporation or another
company) would be application/x-cabinet-win32-x86. The
following are valid values for % operSys% and %.cpu%:

Meaning

Valid values for %opersys%

win32 32-bit MICROSOFT WINDOWS
operating systems (MICROSOFT
WINDOWS 95 or MICROSOFT
WINDOWS NT)

aC APPLE MACINTOSH operating system
<others will be defined as necessary
Valid values for %epu%

x86 INTEL x86 family of processors
ppc MOTOROLAPOWERPC architecture
mips MIPS architecture processors
alpha DEC Alpha architecture

0111 However, more or fewer values could also be used.

0.112. When the desired software component is on a
non-HTTP server (e.g., at an intranet or local LAN location),
a .INF file can be used to achieve platform independence by
specifying different URLs for files to be downloaded for
different platforms.

0113) Platform independence for HTTP servers that store
the desired Software components is also provided without
using an initialization file. An HTTP ACCEPT header
MIME request type is used to provide platform indepen
dence. The MIME request type specifies which platform the
code is to run on, thus allowing platform independence when
the CODEBASE attribute or the network search path is used.

0114. After locating 68 (FIG. 4) a desired information
file, the necessary software components are downloaded 70
(FIG. 4)with a data download module 60(FIG. 3). The
CoGetClassObjectFrom URL interface uses the URL moni
ker interface to download 70 the necessary Software com
ponents asynchronously from one or more remote computers
44. However, other interfaces could also be used to down
load the necessary Software components. The URL moniker

US 2005/0044541 A1

interface is described in greater detail in URLMON.DOC
and ASYNCMONDOC in the ACTIVEX Software Devel
opment Kit (SDK) by Microsoft.
0115 The URL moniker interface uses the IBindStatus
Callback interface, which is implemented in an application
program like the network browser, to pass Status information
back to the application program. The IBindStatusCallback
interface enables the browser to tell the user when the
download 70, verification 72, registration 74, and installa
tion 76 Steps are complete.
0116. The client of the CoGetClassObjectFrom URL
interface (e.g., the network browser) will receive notification
about the download/install process via the provided IBind
StatusCallback interface. During the download process, the
following additional values (from the BINDSTATUS enu
meration of MICROSOFT WINDOWS 95, for example)
may be passed back as the ulStatusCode parameter for
IBindStatusCallback: OnProgress.

Value Description

BINDSTATUS
BEGINDOWNLOADCOMPONENTS

Feb. 24, 2005

user wants to install the Software components. However,
other interfaces could also be used to verify and install the
necessary Software components. ICodeInstall is imple
mented by the downloading client (e.g., the network
browser), and is used whenever installation of Software
components needs Some Service (e.g., verification) before
the download can be negotiated correctly.

0119) A code install operation 74 requires additional
Services from the client in order to complete the negotiation
necessary for a download operation 70. Such services are
requested using IBindStatusCallback::QueryInterface. The
specific interface requested in IBindStatusCallback::Query
Interface is ICodeInstall. This interface is implemented by a
client application (e.g., a network browser). The ICodeIn
stall interface has two member functions: NeedVerfica
tionUI and OnCodeInstallProblem. The ICodeInstall inter
face and functions are shown below.

The download operation has begun downloading code for software
components that will be installed before the object may be
instantiated. The SzStatusText accompanying
IBindStatusCallback::OnProgress provides the display name of the
component being downloaded.

BINDSTATUS
INSTALLINGCOMPONENTS

The download operation has downloaded code and is installing it.
The szStatusText accompanying IBindStatusCallback::OnProgress
provides the display name of the component being installed.

BINDSTATUS
ENDDOWNLOADCOMPONENTS

The download operation has finished downloading and installing all
necessary code. The SzStatusText accompanying
IBindStatusCallbackOnProgress provides the display name of the
newly installed component.

0.117) Since the downloading 70 of software components
occurs asynchronously, the CoGetClassObjectFrom URL
interface will often return immediately with a return value of
E PENDING. At this point, the IBindStatusCall Back
mechanism is used to communicate the Status of the down
load operation to the client (e.g., the network browser). To
participate in this communication, the client implements
IBindStatusCallback and registers this interface in p3indCtX
passed into CoGetClassObjectFrom URL using Regis
terBindStatusCallback. The client can expect to be called
with callback notifications for OnStartBinding (providing an
IBinding for controlling the download), OnProgress (report
ing progress), On Object Available (which returns the desired
object interface pointer), and OnStopBinding (which returns
error codes in case of an error). For further negotiations, the
client also implements ICodeInstall to install the desired
Software component as is described below. However, other
downloading and callback processes can also be used.
0118. After downloading 70 the necessary software com
ponents to the local computer 36, the Software components
are verified 72 with a code verification module 62. CoGet
ClassObjectFrom URL uses the WinVeriftyTrust interface
and the ICodeInstall interface to ensure the necessary Soft
ware components are Safe and trusted, and to ensure that the

interface ICodeInstall : IUnknown {
HRESULTNeedVeificationUI(

out HWND* phwind);
HRESULT OnCodeInstallProblem (

in ULONG ulStatusCode,
in LPCWSTR szldestination,
in LPCWSTR szSource,
in DWORD dwReserved);

0120 ICodeInstall:NeedVerification UI is called to dis
play User Interface (UI) for verification of downloaded
code. When a client is called with this function, it has the
opportunity to clear a message queue of its parent window
before allowing UI to be displayed. If the client does not
wish to display UI, code Verification may continue, but
components may fail to be installed. The parameters for
ICodeInstall:NeedVerificationUI are explained below.

US 2005/0044541 A1
12

0121 HRESULTNeedVerificationUI(out HWND*
phwind);

Argument Type Description

phwind HWND* Client-provided HWND of the parent window for
displaying code verification UI. If this parameter is
NULL, the desktop window is used. If the value is
INVALID HANDLE VALUE, or if the return value is
S FALSE, then no code verification UI will be displayed,
and certain necessary components may not be installed.

Returns S OK Success.
S FALSE No window is available.
E INVALIDARG. The argument is invalid.

0122) ICodeInstall:OnCodeInstallProblem is called
when there is a problem with code installation. This notifi
cation gives the client a chance to resolve the problem, often
by displaying UI, or by aborting the code installation pro
cess. The parameters for ICodeInstall: OnCodeInstall
Problem are explained below.

Feb. 24, 2005

0123. HRESULT OnCodeInstallProblem(
0124 in ULONG ulStatusCode,
0125 in LPCWSTR szlDestination,
0126 in LPCWSTR szSource,
O127 in DWORD dwReserved);

Description

Status code describing what problem occurred. A member
of CIP STATUS.
The name of the existing file that was causing a problem.
This may be the name of an existing file that needs to be
overwritten, the name of a directory causing access
problems, or the name of a drive that is full.
Name of the new file to replace the existing file (if

Reserved for future use
Continue the installation process. If there was an "access
denied or disk-full problem, retry the installation. If there
was an existing file (newer or older version), overwrite it.
Skip this particular file, but continue with the rest of the
code installation process. Note: this is the typical response
for the CIP NEWER VERSION EXISTS case.
Abort the code installation process.
The given arguments are invalid.

0128. The ulStatusCode parameter above is one of the

Argument Type

ulStatus.Code ULONG

SZDestination LPCWSTR

SZSource LPCWSTR
applicable).

dwReserved DWORD
Returns S OK

S FALSE

E ABORT
E INVALIDARG

following values:

Value

CIP DRIVE FULL
CIP ACCESS DENIED

Description

The drive specified in SZDestination is full.
Access to the file specified in SZDestination is denied. The
client is required to take a sequence of steps to possibly
correct the situation. The client could check its own state
to see if the file in question or the component it belongs to
is in use by the client and close the file or release the
component and call COM to free unused libraries in the
process. If it cannot locate the file or component, it should
display UI to the user suggesting that they close other
applications in the system to retry the operation. The
operation can be retried by returning S OK. Returning
S FALSE will ignore this file and proceed with the rest of
the installation. Any error returns will cause the code
download to abort.

US 2005/0044541 A1

Value

CIP OLDER VERSION EXISTS

CIP NEWER VERSION EXISTS

CIP NAME CONFLICT

13

-continued

Description

An existing file (older version) specified in
SZDestination needs to be overwritten by the file specified
in SZSource.
A file exists (specified in SZDestination) that is a
newer version of a file to be installed (specified in
SzSource)
A file exists (specified in SZDestination) that has a naming
conflict with a file to be installed (specified in SzSource).
The existing file is neither a newer nor an older version of
the new file - they are mismatched but have the same file

Feb. 24, 2005

ale.

CIP TRUST VERIFICATION
COMPONENT MISSING

The code installation process cannot find the necessary
component (e.g., WinVerifyTrust) for verifying trust in
downloaded code. SzSource specifies the name of the file
that cannot be certified. The client should display UI
asking the user whether or not to install the untrusted
code, and should then return E ABORT to abort the
download, S OK to continue anyway, or S FALSE to
skip this file but continue (usually dangerous).

CIP NEED REBOOT The self-extracting EXE or hook (either
Win32 INF section or a custom setup program hook run
using the run = <cmd-lines) in the hook section updated
components in use that can only be used after a reboot.
The client should display UI and Shutdown windows if
the user agrees to reboot the machine for the changes to
take effect. The INF filename or command line of the
EXE that caused the reboot is in SZDestination. Returning
E ABORT will abort the download.

CIP EXE SELF REGISTERATION The EXE that was spawned to self-register (may also be a
TIMEOUT self-extracting EXE) is still pending completion. This is

usually called out when the client calls IBinding::Abort()
while waiting for the self-extracting EXE to complete.
The command line of the EXE is available in
SZDestination. The client should display UI to the user to
warn that installation on the page is incomplete. The
return value of S OK from the callback will cause a
continued wait for the EXE to complete. S FALSE will
abandon the EXE and proceed with the rest of the
installation. Any error returns will cause abortion of the
code download.

CIP UNSAFE TO ABORT Code download is in setup phase and one or more
components may have already been installed irreversibly
rendering unknown the state of the setup of the
component in question. This notification is issued when
the client calls IBinding::Abort() while in setup phase.
The return value of S OK will cause Abort() to return
with S FALSE and the code download will continue. Any
other return will cause the code download to abort and the
state of the component is not guaranteed.

0129. After the necessary Software components are
downloaded, the WinVeriftyTrust interface checks to see if
the downloaded components possess a digital Signature.
However, other verification interfaces could also be used. If
the downloaded Software components posses a digital Sig
nature, the WinVeriftyTrust interface validates the digital
Signature and its corresponding digital certificate. The digi
tal certificate describes who issued the Software component
and who created the digital signature. If the downloaded
Software components do not possess a digital Signature, or if
the corresponding Signature was not issued by a trusted
authority, WinVeriftyTrust gives the client-side (e.g., net
work browser) user the option of whether or not to trust the
code and install it on the local computer 36. Before asking
for verification on its own, WinVerifyTrust uses ICodeIn
stall::NeedVerification UI to confirm that it is appropriate to
display the appropriate UI for the user of the local computer
34.

0130. After the code has been verified 72, the control file
is installed 74 on the local computer 34 with a code
installation module 64. As is shown in FIGS. 7A-7B,
method 112 installs 74 and registers 76 the control file. If the
control file is a single portable executable file (e.g., .EXE,
OCX, DLL) 114, the single portable executable file is
installed 116 on the local computer 34 by CoGetClassOb
jectFrom URL. If the control file is not a single portable
executable 118 (i.e., the file is a .INF or a CAB file), then
each of the files referenced in the initialization or cabinet file
are installed 120-124 on the local computer 34.

0131. In an illustrative embodiment of the present inven
tion, most of the downloaded Software components are
installed in a permanent cache Store in an operating System
directory called “windows\occache.” However, other direc
tories could also be used. Some components (e.g., helper
DLLs that need to be on the system PATH but currently are
not) will also be installed in the “\windows” and

US 2005/0044541 A1
14

“\windows\System directories. However, other directories
could also be used. If there are any problems during instal
lation (e.g., a full disk, access violations, existing older/
newer version of a file, etc.), the code install interface
function ICodeInstall: OnCodeInstallProblem is called to
make the user aware of the problem.
0132) If the portable executable file is an OCX or a DLL

file 126, it is registered by calling the DllRegisterServer
interface 128. The DllRegisterServer interface is an inter
face which registers a Software component in the registry
database of the operating System. However, other registering
interfaces could also be used. If the portable executable file
is a .EXE file 130 (FIG. 7B), the .EXE is registered during
execution with the run-time parameter of “/RegServer 132.
This run-time parameter registers the .EXE file in the
registry database of the operating System.
0133. In an illustrative embodiment of the present inven
tion, Self-registering Software components are used because
the INF format does not provide Syntax for changing
registry information (for Security reasons). For OCXS,
.DLLs, and .EXES marked as “OleSelfRegister” in the
Version resource, Self-registration will be attempted. For
.DLLs and OCXs, this means loading the DLL library and
calling DllRegisterServer. For .EXEs, this means running
the .EXE with the run-time parameter of “/RegServer'. This
ensures that Software components implemented as local
Servers (e.g. winword.exe) are registered correctly. If an
object is not marked as “OleSelfRegister” but registration is
necessary, or if it is desired to over-ride the “OleSelflegister”
flag, the following lines can be added to an INF file:

foo.ocx
RegisterServer=no; don't register even if marked Ole
SelfRegister

0134) or
RegisterServer=yes; register this even if not marked
OleSelfRegister. This is the
typical workaround for getting old
;controls to register

0135 Software components that are a self-extracting
.EXE may remain unregistered because the “OleSelfRegis
ter' flag is ignored if the URL points directly at a .EXE file.
In this case it is assumed that this is a Self-registering .EXE,
and this enables Self-extracting .EXES to work correctly as
long as they ignore the "/RegServer” command-line param
eter. Supporting Self-extracting.EXES enables very complex

Key name

<Fully Qualified

Feb. 24, 2005

Setup mechanisms to be launched automatically. However, if
a Self-extracting.EXE is called via this mechanism, then any
components that it installs will not be automatically tracked.
Such components are permanently installed and may not be
available for future cleanup. Every client (e.g., the network
browser) of a software module (e.g., OCX, DLL, EXE) is
expected to increment and decrement the existing Shared
DLLS Section in the registry database when the components
are registered to allow the operating System to keep track of
how many clients are sharing the Software components.

0136. Returning to FIG. 7B, if the file is a INF or CAB
file, all downloaded Software components are registered
using a new Section in the registry database called Module
Usage 136 that keeps track of such components. The Mod
uleUsage Section in the registry holds a list of “owners' and
“clients' for each software module. Thus, the registry can
keep track of how many clients a module has (i.e., the
Shared DLL count), as well as what Software applications
executing on the local computer are using the Software
module. The registry entries for ModuleUsage use the
following Syntax:

ModuleUsage
<Fully Qualified Path&File Name>

.FileVersion=a,b,c,d

.Owner = Friendly Name/ID of Owner
<Client ID > = <info peculiar to this client>
<Client ID > = <info peculiar to this client>

0.137 AModule Usage section in a sample registry might
be:

Under My Computer HKEY LOCAL MACHINE\Software\Microsoft\
Windows\CurrentVersion:

ModuleUsage
c:\windows/system/mfc40.dll

.FileVersion=1,40,0

.Owner ={CLSID of main object rclsid passed to
CoGetClassObjectFrom URL}
{CLSID of main object relsid passed to CoGetClassObject
FromURL=<any info, or defaults
Another AppD= <any info, or defaults

0.138. The parameters of ModuleUsage are as follows:

Description

This is the full path of the shared module. This name has to use “f's
Path&File Name> instead of “\'s because the “\ is an invalid char in a key name.
Owner

File Version
<Client IDs

The application that installs the shared module and creates the
original ModuleUsage section will put some identifier in the Owner
key section. If the DLL already existed on the system then and this
Module Usage key did not exist then the Owner key should be set
to “Unknown and the DLL should not be removed on uninstall.
The owner should always also enlist itself as a client.
The version number for the shared module.
ID of a client who is using the shared module. The value
corresponding to each client key contains client specific
information. When the client is Internet Component Download, the
<Client IDs is {CLSID of main object rclsid passed to
CoGetClassObjectFrom URL, and the client-specific information is

US 2005/0044541 A1

-continued

Key name Description

Feb. 24, 2005

a number which serves as a reference count. For other clients, the
client-specific information should be the full path of the client, so
that if the client is accidentally deleted it is possible to do garbage
collection.

0.139. To permit code caching, the “Shared DLLs” section
in the registry database is not used exclusively since refer
ence counts are often incorrectly inflated. For example, any
application that is re-installed on the local computer
increases the reference count in the Shared DLLS Section of
the registry database even though the Software component
already had been incremented previously. However, in an
illustrative embodiment of the present invention, every
client (e.g., network browser) of a Software module is
expected to increment and decrement the existing Shared
DLLS Section in the registry database as well (a client only
increments this value once when it adds itself as a client
under ModuleUsage). This is to allow a migration path for
applications currently implementing only Shared DLLS
Scheme.

0140. The ModuleUsage registry information comple
ments the reference counts in the Shared DLLs section by
remembering which clients are actually using a shared
module. The Shared DLLs counting scheme is correct when
used with ModuleUsage registry information and allows
caching of downloaded code in the permanent cache Store.
Furthermore, when downloading files, the ModuleUsage
registry information is used as an efficient shortcut for
verifying whether a file needs to be overwritten because it is
an out-of-date version. In another embodiment of the present
invention, the registering Step 76 is optional.

0141 Downloaded code installed in the permanent cache
Store can be removed manually or automatically. In one
embodiment of this invention, a user is allowed to clean up
downloaded code, either through the UI of the application
program (e.g., the network browser) or via UI exposed by
the operating system itself (e.g. the MICROSOFT WIN
DOWS 95 “shell. In another alternative embodiment of the
present invention, ModuleUsage information is used by the
CoGetClassObjectFrom URL interface to automatically
detect old or unused downloaded code, and automatically
delete Such code from the permanent cache Store.

0142. In another embodiment of the present invention,
Software can be located 68, downloaded 70 and installed 74,
with the verifying 72 and registering 76 steps optional. This
allows a user to control more of the automatic code down
loading method with other Software applications chosen by
the user.

0143 For example, a “hook” mechanism is provided to
override or customize steps of method 66. In the illustrative
embodiment of the present invention, there are two types of
hooks: Unconditional (e.g., for a setup program) and Con
ditional (e.g., for a version of an existing Software compo
nent) hooks. Unconditional hooks are hooks that are always
executed. Conditional Hooks are executed only when a
certain selected condition evaluates to TRUE. Hooks are
added to the INF file described above.

0144) Unconditional hooks are used in Setup Hooks
Section of the INF file. For Unconditional Hooks, the
“CODEBASE=" attribute points to a cabinet file “foo.cab”
that contains a “foosetup.exe”, “foo.ocx and “foo.inf.” file.
The setup file “foosetup.exe” run with the “/q parameter
will install the “foo.ocx' file silently in the
“windows\occache” directory described above.
0145 For Unconditional hooks, an example initialization

file “foo.inf includes the following:
Add.Code
Setup Hooks
hook1=hook1

hook1
run=%EXTRACT DIR%\foosetup.exe fa

0146 When the cabinet file foo.cab is opened, it is
verified and then the INF file is processed. Since the
Add. Code Section is empty, the Setup Hooks Section is
processed. The files in the cabinet file “foo.cab' are installed
in a unique temporary directory and the command line listed
in the “run=" attribute is executed (i.e., run=
%EXTRACT DIR%\foosetup.exe ?q). All the files left in
the temporary directory after the completion of “fooSetu
p.eXe' including “fooSetup.exe' are discarded. However,
other commands could also be used for the Unconditional
Hooks.

0147 Conditional Hooks are run only when a certain
condition is evaluated as TRUE. This is typically when the
Add. Code section points at a certain Software component
and that Software component is not available on the client
computer. The above example for Unconditional Hooks
could be rewritten using Conditional Hooks.
0148 For Conditional Hooks the “CODEBASE=”
attribute also points to a cabinet file “foo.cab' that contains
a “foosetup.exe”, “foo.ocx and “foo.inf file. The file setup
file “foosetup.exe' run with the “/q parameter also installs
the file “foo.ocx silently in the “windows\occache' direc
tory as was described above.
014.9 For Conditional Hooks, an example initialization

file “foo.inf includes the following:
Add.Code

foo.ocx

hook=hook1

hook1
run=%EXTRACT DIR%\foosetup.exe fa

0150. When the INF is opened, it is processed using the
Add. Code attribute. When the foo.ocx section is pro
cessed, the Clsid, (e.g. for "foo.ocx') is used to determine if

US 2005/0044541 A1

it is registered or available on the client computer by
checking the operating System registry. If “foo.ocx is not
registered on the client computer, the hook mentioned in the
hook1 parameter is executed. The execution of hook1
Section is identical to the description of the hook as an
Unconditional Hook, but occurs only after checking the
CLSID of “foo.ocx.” However, other commands could also
be used for the Conditional Hooks.

0151 Conditional Hooks can be used to make the veri
fying 72 and registering 76 steps of method 66 conditional
(i.e., optional). This allows a user to use method 66 and
System 56 to Simply locate, download, and install a desired
Software component without verification or registration. The
Verification and/or registration Steps could be accomplished
by methods different than those described in connection with
method 66 and system 56 giving the user greater flexibility
over the use of the Software components downloaded and
installed on the local computer.
0152. In another embodiment of the present invention,
the HTML tag <EMBED> is also used to add multi-media
or interactive behavior to HTML documents with method 66
and system 56. The <EMBED> tag has three attributes,
SRC, WIDTH, and HEIGHT, and may also contain optional
parameters that can be sent to a Software component (e.g., a
Netscape ONE plug-in) handling the embedded data type.
The SRC attribute specifies the URL of the source docu
ment. The WIDTH attribute specifies the width of the
embedded document in pixels. The HEIGHT attribute speci
fies the height of the embedded document in pixels. There
can also be a number of optional parameters passed to a
plug-in component with the <EMBED> tag, with PARAM
ETERNAME=<PARAMETER VALUE> (e.g., the param
eters described for the <OBJECT-> tag above). For more
information on the <EMBED> tag, see the HTML 3 Elec
tronic Publishing on the World Wide Web book cited above.
0153. When the <EMBED> object tag is encountered in
the document by the network browser, the <EMBED> tag is
parsed to pull out the <EMBED> tag attributes, and the
attributes are used with method 66 and system 56 in a
manner similar to that described for the <OBJECTs tag
above.

0154) The present invention is not limited to the HTML
<OBJECTs and <EMBED> tags. Other HTML tags can also
be used to provide method 66 and system 56. In addition, the
present invention is not limited to computer system 10 or the
browsing environment 34. The invention can also be used in
a Set-top box, Such as those which provide interfaces to cable
television and other television networks, in a Satellite control
box, Such as those which provide interfaces to digital and
other Satellite transmission Services. The present invention
may also be used in pagers, cellular telephones, personal
assistants and other wireleSS personal communications
devices.

O155 When all of the desired computer software com
ponents have been located 68, downloaded 70, verified 72,
installed 74, and registered 76, any appropriate Software
components are returned 78 to the client application (e.g.,
the network browser) which made the request for the com
puter Software components. The Software components
returned to the client application are then displayed in the
document display area 52 on the display device 20 of the
local computer 36.

Feb. 24, 2005

0156. In an illustrative embodiment of the present inven
tion, the MICROSOFT INTERNET EXPLORER 3.0 net
work browser by Microsoft uses system 56 and method 66
(and methods 80, 96 and 112) to browse HTML documents
46 on the Internet 38. The Software interfaces and corre
sponding software subroutines just described for methods 66
(and methods 80, 96 and 112), and system 56 are available
in the Internet Component Download Application Program
Interface (API) for the MICROSOFT WINDOWS 95 oper
ating System by MicroSoft Corporation.
O157 HTML documents typically contain one or more
HTML <OBJECT-> or <EMBED> tags. When an HTML
<OBJECTs or <EMBED> tag is encountered during brows
ing, MICROSOFT INTERNET EXPLORER parses the
appropriate parameters out of the <OBJECTs and
<EMBED> tags and passes them to the CoGetClassObject
From URL interface as was described above. The HTML
<OBJECTs or <EMBED> tags typically point to object
oriented applications which provide dynamic or interactive
multimedia to an HTML document.

0158 However, other applications which are not network
browsers, and do not parse HTML documents with
<OBJECTs or <EMBED> tags can also use system 56 and
methods 66 to download any type of computer software
component from a local or remote computer by passing
appropriate parameters to CoGetClassObjectFrom URL
interface. The computer Software components need not
provide dynamic or interactive multimedia to a client appli
cation. In addition interfaces other than CoGetClassObject
From URL could also be used.

0159. It should be understood that the programs, pro
cesses, and methods described herein are not related or
limited to any particular type of computer apparatus, unless
indicated otherwise. Various types of general purpose or
Specialized computer apparatus may be used with or perform
operations in accordance with the teachings described
herein.

0160 In view of the wide variety of embodiments to
which the principles of our invention can be applied, it
should be understood that the illustrated embodiments are
exemplary only, and should not be taken as limiting the
Scope of our invention. Rather, we claim as our invention all
Such embodiments as come within the Scope and Spirit of the
following claims and equivalents thereto.

We Claim:
1. A method of automatically downloading Software on a

local device from one or more computers, the local device
and the one or more computers being connected to a
computer network, the method comprising:

encountering an invocation of the Software, wherein the
invocation comprises an identity of the Software and a
Version indication of the Software, and

responsive to encountering an invocation of Software,
downloading the Software from the one or more remote
computers according to the identity and version indi
cation.

2. One or more computer-readable media having com
puter-executable instructions for performing the method of
claim 1.

US 2005/0044541 A1

3. The method of claim 1, wherein the invocation is
operable to indicate one out of a plurality of identities and
one out of a plurality of versions per identity.

4. The method of claim 3, wherein the invocation is
operable to indicate more than one out of a plurality of
versions per identity.

5. The method of claim 1, further comprising:
invoking the Software.
6. The method of claim 1, further comprising:
automatically installing the Software.
7. The method of claim 1, wherein the Software comprises

one or more Software components.
8. The method of claim 1, wherein the invocation is in a

hypertext OBJECT tag.
9. The method of claim 1, wherein the invocation is

operable to prevent downloading of Software from outside a
local network.

10. The method of claim 1, wherein the invocation
comprises at least one Source for the Software on the
computer network.

11. The method of claim 1, wherein the invocation com
prises at least one means for locating the Software on the
computer network.

12. The method of claim 1, wherein the encountering
encounters the invocation in a web page.

13. The method of claim 1, further comprising:
locating the Software via a network Search path.
14. The method of claim 13, wherein the network Search

path comprises an ordered Sequence of a plurality of net
work addresses.

15. The method of claim 13, wherein the network Search
path comprises a location Specified in the invocation.

16. The method of claim 13, wherein the network Search
path is operable to omit a location specified in the invoca
tion.

17. The method of claim 1, wherein the version indication
indicates a latest available version of the Software.

Feb. 24, 2005

18. The method of claim 17, wherein the latest available
version of the Software is indicated via a Sentinel value.

19. A method of invoking software, the method compris
ing:

encountering an invocation of the Software, wherein the
invocation comprises an identity of the Software and a
Version indication of the Software;

responsive to encountering an invocation of Software,
determining whether there is a version of the Software
existing on a local device that Satisfies the version
indication; and

responsive to determining that there is a version of the
Software existing on the local device that Satisfies the
Version indication, invoking the version of the Software
existing on the local device that Satisfies the version
indication.

20. In a computer-readable medium, an invocation of
Software comprising:

an identity of the Software; and

a version indicator for the Software;

whereby, when encountered by a local device, the invo
cation initiates execution of a version of the Software
according to the version indicator, and, if a version of
the Software according to the version indicator is not
available on the local device, downloading the Software
to the local device prior to execution.

21. The computer-readable medium of claim 20 wherein
the version indicator indicates to obtain a latest version of
the Software without Specifying a particular version.

22. The computer-readable medium of claim 20 wherein
the invocation further comprises a location from which the
Software can be obtained via a network.

