
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
1

84
0

76
7

A
2

��&����������
�
(11) EP 1 840 767 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
03.10.2007 Bulletin 2007/40

(21) Application number: 07005845.8

(22) Date of filing: 21.03.2007

(51) Int Cl.: �
G06F 17/30 (2006.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE
SI SK TR
Designated Extension States:
AL BA HR MK YU

(30) Priority: 28.03.2006 US 392326

(71) Applicant: SUN MICROSYSTEMS, INC. �
Santa Clara, CA 95054 (US) �

(72) Inventors:
• Cattell, Roderic G. �

Tiburon, California 94920 (US) �
• Russell, Craig L. �

Moutain View, California 94040 (US) �

(74) Representative: HOFFMANN EITLE
Patent- und Rechtsanwälte
Arabellastrasse 4
81925 München (DE) �

(54) Systems and methods for a distributed cache

(57) Methods, systems, and articles of manufacture
consistent with the present invention provide managing

a distributed database cache. A database cache is pro-
vided. The database cache is distributed over at least
two data processing systems.

EP 1 840 767 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

CROSS-�REFERENCE TO RELATED APPLICATIONS

�[0001] This Application is related to the following U.S.
Patent Applications, which are filed concurrently with this
Application, and which are incorporated herein by refer-
ence to the extent permitted by law: �

Attorney Docket No. 30014200-1126, entitled "Sys-
tems and Methods for a Distributed In-�Memory Da-
tabase;"
Attorney Docket No. 30014200-1128, entitled "Sys-
tems and Methods for a Distributed In-�Memory Da-
tabase and Distributed Cache;" and
Attorney Docket No. 30014200-1129, entitled "Sys-
tems and Methods for Synchronizing Data in a
Cache and Database."

FIELD OF THE INVENTION

�[0002] The present invention relates to computer-�im-
plemented databases, and in particular, to distributed in-
memory databases and database caches.

BACKGROUND OF THE INVENTION

�[0003] As memory becomes less expensive, an in-
creasing number of databases may fit in a computer’s
main memory. These in-�memory databases typically
have been managed by relational database manage-
ment systems ("RDBMS.") However, RDBMS perform-
ance is limited even with large amounts of main memory.
In particular, a program may need to translate an appli-
cation’s object representation of data (e.g., Java™ object
representation) into and out of a relational representation
for the relational database. In addition, RDBMSs gener-
ally cache databases on database servers, requiring sev-
eral layers of software and network protocol to access
from an application. Data is typically not cached in the
same virtual memory as the application, except for small
or short-�lived caches in a database driver. Further, a RD-
BMS is typically optimized for data on disk, not in mem-
ory. For example, a typical RDBMS uses b- �trees, data-
base pages, locking, and logging. These are optimized
to minimize disk access rather than central processing
unit ("CPU") time or memory space.
�[0004] Another problem with traditional RDBMS cach-
es is update speed. There is a bottleneck in the require-
ment to write through to the backing database when a
transaction is committed to the backing database. The
data must be transferred from the client that made the
update all the way through to the server’s disk before
acknowledging the commit.

SUMMARY OF THE INVENTION

�[0005] Methods, systems, and articles of manufacture

consistent with the present invention provide a memory-
based relational data store that can be a cache to a back-
end relational database or as a standalone in-�memory
database. The memory-�based relational data store may
be distributed, for example, over a plurality of data
processing systems or processes. For purposes of this
invention, a data store that is in-�memory is located in
directly-�addressable memory and not on disk. The store
can run in the same virtual memory as an application, or
it can run as a separate process. The data store provides
extremely fast reads, because it avoids the overhead of
RDBMS layers. Further, the data store provides extreme-
ly fast updates, because updates need not be pushed to
disk if the store is mirrored across two machines. A trans-
action commit can be performed by updating both the
primary and standby stores.
�[0006] When the data store acts as a cache for back-
end databases, high commit performance can be
achieved with transactional integrity, compared to con-
ventional single-�system caches that require data to be
transferred from the client that made the update all the
way through to the server’s disk before acknowledging
a commit. Further, when the data store acts as a cache,
it either writes the committed data through to a backing
store, writes the data to a standby replica and thus avoids
write through to a disk, or may delay writing to the backing
store.
�[0007] In accordance with methods consistent with the
present invention, a method in a data processing system
having a plurality of independent sub data processing
systems is provided. The data processing system has a
program for managing a database. The method compris-
es the steps of: providing a database cache; and distrib-
uting the database cache over at least two of the plurality
of sub data processing systems.
�[0008] In accordance with methods consistent with the
present invention, a method in a data processing system
having a plurality of independent sub data processing
systems is provided. The data processing system has a
program for managing a database. The method compris-
es the steps of: providing a database cache that is dis-
tributed over at least two of the plurality of sub data
processing systems; and accessing the database cache
using a plurality of data models.
�[0009] In accordance with methods consistent with the
present invention, a method in a data processing system
having a plurality of independent sub data processing
systems is provided. The data processing system has a
program for managing a database. The method compris-
es the steps of: providing a database cache; and per-
forming transactions between the database cache and a
plurality of databases.
�[0010] In accordance with articles of manufacture con-
sistent with the present invention, a computer-�readable
medium containing instructions that cause a program to
perform a method for managing a database is provided.
The data processing system has a plurality of independ-
ent sub data processing systems. The method comprises

1 2

EP 1 840 767 A2

3

5

10

15

20

25

30

35

40

45

50

55

the steps of: providing a database cache; and distributing
the database cache over at least two of the plurality of
sub data processing systems.
�[0011] In accordance with systems consistent with the
present invention, a data processing system is provided.
The data processing system comprises: a plurality of in-
dependent sub data processing systems, each sub data
processing system having a memory and a processing
unit, wherein a first of the sub data processing systems
has a program that provides a database cache, and dis-
tributes the database cache over at least two of the plu-
rality of sub data processing systems, the processing unit
of the first sub data processing running the program.
�[0012] Other systems, methods, features, and advan-
tages of the invention will become apparent to one with
skill in the art upon examination of the following figures
and detailed description. It is intended that all such ad-
ditional systems, methods, features, and advantages be
included within this description, be within the scope of
the invention, and be protected by the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

�[0013] The accompanying drawings, which are incor-
porated in and constitute a part of this specification, il-
lustrate an implementation of the invention and, together
with the description, serve to explain the advantages and
principles of the invention. In the drawings, �

Figure 1 shows a block diagram illustrating a data
processing system suitable for use with methods and
systems consistent with the present invention;
Figure 2 is a block diagram illustrating a database
host system suitable for use with methods and sys-
tems consistent with the present invention;
Figure 3 is a block diagram illustrating a remote sys-
tem suitable for use with methods and systems con-
sistent with the present invention;
Figure 4 is a block diagram showing illustrative per-
sistence interfaces;
Figure 5 is a block diagram of an illustrative database
table;
Figure 6 is a functional block diagram showing stor-
ing data in a record cache;
Figure 7 is a block diagram of a store and its com-
ponents;
Figure 8 is a block diagram of a first illustrative con-
figuration consistent with the present invention;
Figure 9 is a block diagram of a second illustrative
configuration consistent with the present invention;
Figure 10 is a block diagram of a third illustrative
configuration consistent with the present invention;
Figure 11 is a block diagram of a fourth illustrative
configuration consistent with the present invention;
Figure 12 is a block diagram of a fifth illustrative con-
figuration consistent with the present invention;
Figure 13 is a block diagram of a sixth illustrative

configuration consistent with the present invention;
Figure 14 is a block diagram of a seventh illustrative
configuration consistent with the present invention;
Figure 15 is a block diagram of an eighth illustrative
configuration consistent with the present invention;
Figure 16 is a block diagram of illustrative compo-
nents of the store;
Figure 17 is a sequence diagram showing illustrative
steps for establishing a session in the first illustrative
configuration;
Figure 18 is sequence diagram showing illustrative
steps for beginning a session in the first illustrative
configuration;
Figure 19 is a sequence diagram showing illustrative
steps for inserting a row in the first illustrative con-
figuration;
Figure 20 is a sequence diagram showing illustrative
steps for updating a row in the first illustrative con-
figuration;
Figure 21 is a sequence diagram showing illustrative
steps for deleing a row in the first illustrative config-
uration;
Figures 22A and 22B are sequence diagrams show-
ing illustrative steps for querying the store in the first
illustrative configuration;
Figures 23A and 23B are sequence diagrams show-
ing illustrative steps for committing data in the first
illustrative configuration;
Figure 24 is a sequence diagram showing illustrative
communication between a primary store and a hot
standby store;
Figure 25 is sequence diagram showing additional
steps for inserting a row when there is a replicated
store;
Figure 26 is a sequence diagram showing illustrative
steps for updating a field in a row in a cache when
there is a replicated store;
Figure 27 is a sequence diagram showing illustrative
steps for querying a store when there is a replicated
store;
Figure 28 is a sequence diagram showing illustrative
steps for a two-�phase commit transaction when there
is a replicated store;
Figure 29 is a sequence diagram showing illustrative
steps for a one-�phase commit transaction when
there is a replicated store;
Figure 30 is sequence diagram showing illustrative
steps for a standby cache taking over the role of pri-
mary;
Figure 31 is a sequence diagram showing illustrative
steps for a repair operation;
Figure 32 is a sequence diagram that shows illustra-
tive steps for a recovery operation;
Figures 33A and 33B are sequence diagrams that
depict illustrative steps for communication between
a client and server for a partitioned store; and
Figure 34 is a sequence diagram showing illustrative
steps for inserting a record for a partitioned store.

3 4

EP 1 840 767 A2

4

5

10

15

20

25

30

35

40

45

50

55

DETAILED DESCRIPTION OF THE INVENTION

�[0014] Reference will now be made in detail to an im-
plementation consistent with the present invention as il-
lustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used through-
out the drawings and the following description to refer to
the same or like parts.
�[0015] Methods, systems, and articles of manufacture
consistent with the present invention provide a memory-
based relational data store that can act as a cache to a
backend relational database or as a standalone in-�mem-
ory database. The store can run in the same virtual mem-
ory as an application, or it can run as a separate process.
Figure 1 depicts a block diagram of a data processing
system 100 suitable for use with methods and systems
consistent with the present invention. Data processing
system 100 is referred to hereinafter as "the system."
The system includes one or more database host systems
102, 104, and 106, such as servers. The database host
computers can be accessed by one or more remote sys-
tems 108 and 110 (e.g., client workstations) via a network
112. The network is a network suitable for use with meth-
ods and systems consistent with the present invention,
such as a local area network or wide area network. In
the illustrative embodiment, the network is a local area
network.
�[0016] Figures 2 and 3 depict more detailed views of
illustrative database host systems and remote systems,
respectively. Figure 2 depicts a more detailed view of a
database host system, such as database host system
102. The database host system is, for example, a Sun
SPARC® data processing system running the Solaris®
operating system. One having skill in the art will appre-
ciate that hardware and programs other than those de-
scribed in the illustrative examples can be implemented.
Sun, SPARC, Java, the Sun logo, Solaris, StarOffice,
and Sun ONE are trademarks or registered trademarks
of Sun Microsystems, Inc., Palo Alto, CA, in the United
States and other countries. Other names used herein are
the property of their respective owners.
�[0017] The illustrative database host system compris-
es a central processing unit (CPU) 202, an input/�output
(I/O) unit 204, a display device 206, a secondary storage
device 208, and a memory 210. The database host sys-
tem may further comprise standard input devices such
as a keyboard, a mouse or a speech processing means
(each not illustrated). Memory 210 may comprise a da-
tabase program 212 and a store 214 which may act as
a cache for a backend relational database 216 or may
act as an in-�memory database. Store 214 may comprise
one or more sub-�stores, each of which can act as a cache
or as an in-�memory database. As will be described in
more detail below, the cache 214 may be distributed
across one or more database host systems or processes.
In this case, there is a cache component in main memory
on each relevant database host system. One of skill in
the art will appreciate that each program and module

described herein can be a stand-�alone program and can
reside in memory on a data processing system other than
the described system. The program and modules may
comprise or may be included in one or more code sec-
tions containing instructions for performing their respec-
tive operations. While the programs and modules are de-
scribed as being implemented as software, the present
implementation may be implemented as a combination
of hardware and software or hardware alone. Also, one
having skill in the art will appreciate that the programs
and modules may comprise or may be included in a data
processing device, which may be a client or a server,
communicating with described system.
�[0018] Although aspects of methods, systems, and ar-
ticles of manufacture consistent with the present inven-
tion are depicted as being stored in memory, one having
skill in the art will appreciate that these aspects may be
stored on or read from other computer-�readable media,
such as secondary storage devices, like hard disks, flop-
py disks, and CD- �ROM; a carrier wave received from a
network such as the Internet; or other forms of ROM or
RAM either currently known or later developed. Further,
although specific components of system 100 have been
described, one skilled in the art will appreciate that a data
processing system suitable for use with methods, sys-
tems, and articles of manufacture consistent with the
present invention may contain additional or different com-
ponents.
�[0019] One having skill in the art will appreciate that
the database host systems and remote systems can
themselves also be implemented as client-�server data
processing systems. In that case, a program or module
can be stored on, for example, a database host system
as a client, while some or all of the steps of the processing
of the program or module described below can be carried
out on a remote server, which is accessed by the data-
base host system over the network. The remote server
can comprise components similar to those described
above with respect to the database host system, such
as a CPU, an I/O, a memory, a secondary storage, and
a display device.
�[0020] Figure 3 depicts an illustrative remote system,
such as remote system 108 or 110. In the illustrated ex-
ample, remote system 108 is represented. The remote
system can be, for example, a Sun SPARC® data
processing system running the Solaris® operating sys-
tem. The partner system comprises a central processing
unit (CPU) 302, an input/�output (I/O) unit 304, a display
device 306, a secondary storage device 308, and a mem-
ory 310. The remote system may further comprise stand-
ard input devices such as a keyboard, a mouse or a
speech processing means (each not illustrated). Memory
310 may comprise a database program 314 and data
316. Memory 310 may comprise a database program
314 and a store 316 which may act as a cache for a
backend relational database 316 or may act as an in-
memory database. Store 316 may comprise one or more
sub-�stores, each of which can act as a cache or as an

5 6

EP 1 840 767 A2

5

5

10

15

20

25

30

35

40

45

50

55

in-�memory database. As will be described in more detail
below, the cache 316 may be distributed across one or
more database host systems or processes. In this case,
there is a cache component in main memory on each
relevant database host system.
�[0021] As shown in Figure 4, one or more persistence
interfaces 402, 404, and 406 may be used to access store
408. In the illustrative example, the persistence interfac-
es include Java Data Objects ("JDO") 402, EJB Container
Managed Persistence ("CMP") 404, and Java Database
Connectivity ("JDBC") 406. Other persistence interfaces
may be used, such as the JAXB persistence interface.
Persistence interfaces are known to one having skill in
the art and will not be described in more detail herein.
The persistence interface uses a cache programmatic
interface ("CPI") 410 to access store 408. A user of the
CPI, such as JDO, CMP, or JDBC, is referred to as a
"CPI adaptor" herein.
�[0022] The store’s data model is an in-�memory rela-
tional model. The value of this approach is that it is port-
able across virtual machines and can be mapped directly
to a relational database schema when the store is used
as a cache. Using this approach enables methods, sys-
tems, and articles of manufacture consistent with the
present invention to take advantage of the strengths of
the relational model in terms of flexibility and expressive
power without having to pay the cost and complexity in-
curred by algorithms and data structures that traditional
relational databases are forced to use to reduce the
number of disk accesses.
�[0023] In the illustrative example, the store is relational
and does not perform object-�relational mapping. There-
fore, a CPI adaptor (e.g., a JDO or CMP CPI adaptor)
that exposes an object interface to its users, performs
object- �relational mapping of data that is sent to the store
or that has been retrieved from the store via the CPI adap-
tor. Object-�relational mapping is known in the art and will
not be described further herein. A description of object-
relational mapping may be found in Christian Bauer, et
al., Hibernate in Action, ISBN 193239415X, which is in-
corporated herein by reference. Further, data may be
stored in standard relational form, using tables and rows.
�[0024] Figure 5 depicts an illustrative table 502. Rows
504-510 are each assigned a unique id. The unique id
may be viewed as a primary key for that row. This unique
id may be provided by the CPI adaptor, or it may be gen-
erated by the user, such as the programmer. The data
in a row is comprised of a row id and a collection of fields.
In the illustrative example, row 1 includes row id 512 and
fields 514-518; row 2 includes row id 520 and fields
522-526; row 3 includes row id 528 and fields 530-534;
and row 4 includes row id 536 and field 538-542. The
fields can include a variety of data and datatypes. For
example, the fields may support text, integers, and Java
types, including primitive types and wrappers, arrays of
primitive types and wrappers, Date (such as java.sql and
java.util Date types), String, and Serializable, or more
complex types that are stored as binary large objects or

character large objects.
�[0025] Records can be stored in a variety of manners.
In a first illustrative approach, each record is stored as
an object array, where each field of the record is an ele-
ment in the array. In the illustrative example, an illustra-
tive CPI adaptor uses Java types and thus the access of
fields in a record can be very fast, and would not require
conversion or data copy. In a second illustrative ap-
proach, each record is stored in a compact byte array.
The array may have a header, which provides offsets for
each field, and each field is stored as a series of bytes
rather than as a Java object. For this approach, the CPI
adaptor converts between a byte array representation
and a Java object representation. This approach saves
space compared to the first approach, and also provides
for fast recovery and repair by allowing the creation of a
map of the data image into a local shared memory seg-
ment. Further, by using remote direct memory access
("RDMA"), the data image can be sent to another proc-
ess’ memory space to enable fast cross- �machine recov-
ery. Faster recovery can improve the availability of the
system. For example, communication between compo-
nents of a cache or in-�memory database may be imple-
mented using RDMA.
�[0026] A third illustrative approach is a hybrid of the
first and second approaches. Referring to Figure 6 as an
example, in the third approach, a record object 602 is
used to read and write fields within a record. The record
object provides an external interface to the underlying
record storage. Access to record data is through the
record object. The record object stores committed
records in a byte array format in a record byte array 604.
The record object includes an object array, which is re-
ferred to herein as a record cache 606. Each element of
record cache 606 represents a field in record byte array
604.
�[0027] Within a transaction, when a field is first ac-
cessed, either for a read or a write, the record object
converts the field into its Java object representation, and
this is "cached" within the record cache. Subsequent ac-
cesses to that field are done to this cached version. This
cached representation represents the "after image" of a
record for a given transaction. Fields in the record that
have not been accessed have null references in the
record cache, as represented by the diagonal line
through the array element. Fields that have been ac-
cessed have references to Java objects for that field.
These objects are referred to herein as field objects. In
the illustrative example, fields 1 and 3 have been ac-
cessed. Field 3 has been modified, and is marked as dirty
(as represented by the solid and dashed lines). As shown,
the record cache provides the after image for this record
within the transaction.
�[0028] The record object creates a separate record
cache for each transaction. In an alternative embodi-
ment, unmodified field objects may be shared across
transactions.
�[0029] Figure 7 is a block diagram that depicts a high-

7 8

EP 1 840 767 A2

6

5

10

15

20

25

30

35

40

45

50

55

level overview of the store and its components. The lines
represent associations and the numbers at the ends of
the lines represent cardinality. In the illustrative example,
store 214 contains one or more sub-�stores 702. Sub-
store 702 has one or more store partitions 704. A sub-
store may act as a cache to a remote relational store 706.
Each sub-�store can be configured independently. For ex-
ample, a first sub-�store may be configured as a single
virtual memory cache to a backing database and another
may be configured as a replicated store with no backing
database. Illustrative configurations are described in
more detail below.
�[0030] Each sub-�cache includes a set of one or more
tables 708. If the sub-�store is acting as a cache, each
table is mapped to a specific table in the remote store.
Each table has zero or more rows 710. If the sub-�store
is acting as a cache, then each row is mapped to a specific
row in the remote store.
�[0031] A sub-�store is divided into one or more store
partitions 704. In a simple configuration there may be
one partition, but in a distributed configuration there may
be multiple partitions to achieve better scalability and
availability. Each partition may replicate its data to a mir-
ror partition 712. This provides enhanced durability
(when there is no backing remote store) and availability.
�[0032] The store may be configured with a variety of
configurations. For example: data can be cached for a
remote database or stored in-�memory; data may be rep-
licated and/or partitioned; or the store may reside in the
same virtual memory as an application, or in a separate
virtual memory using a client/�server model. There are a
number of possible combinations of these features. Six
illustrative configurations are described below. Each of
these illustrative configurations can be applied independ-
ently to each sub-�store. Data in a particular sub-�store
can be associated with a given sub-�store based on the
overall quality of service desired for that data, in terms
of performance, availability, and durability. For example,
a data may be set that is volatile and does not need to
be stored in a database, but which is desired to be highly
available. In that case, the data may be located in a rep-
licated store.

Illustrative Configuration 1: Cache in a Single Virtual
Memory

�[0033] Referring to Figure 8 as an example, in this con-
figuration, the sub-�store 802 runs in the same virtual
memory as the database application 804 and acts as a
cache to a backend relational database 806. This pro-
vides the database application with beneficially fast read
performance. Smart synchronization strategies, which
are described below, can provide improvements in write
performance.

Illustrative Configuration 2: Replicated In-�Memory Da-
tabase

�[0034] This illustrative configuration is depicted in Fig-
ure 9 and is preferably implemented in a fault tolerant
environment with redundant hardware and power sup-
plies. Under such conditions, methods, systems, and ar-
ticles of manufacture consistent with the present inven-
tion can provide at least as good mean-�time-�between-
failure for two in-�memory copies of data as with a single
disk drive. Accordingly, when the data is stored exclu-
sively in memory, significant improvements in write per-
formance are achieved compared to when data is stored
on disk. Replicated sub-�stores 902 and 904 act as in-
memory databases. Each sub- �store exists in the same
virtual memory as a respective database application 906
and 908.

Illustrative Configuration 3: Database Cache Plus In-�
Memory Database

�[0035] In this configuration, some data may be mapped
to a backend database, while other data may be stored
in an in-�memory database. In the illustrative example of
Figure 10, the in-�memory database is replicated. Accord-
ingly, the example of Figure 10 is a combination of the
first and second illustrative configurations. Replicated
sub-�stores 1002 and 1004 act as in-�memory databases.
Each sub-�store exists in the same virtual memory as a
respective database application 1006 and 1008. Cache
stores 1010 and 1012, which are located in the same
virtual memory as their respective database application
1006 and 1008, act as a cache to a backend relational
database 1014.

Illustrative Configuration 4: Client/�Server In- �Memory Da-
tabase

�[0036] When the sub-�store is used as an in-�memory
database, it may be desirable to run the sub-�store outside
of the database application processes, so that one data-
base application does not have to play the role of "server"
to all the other database applications. As shown in Figure
11, in this case, a client version of the CPI 1102-1106 is
resident in each respective database application
1108-1112, while the data exists in the replicated sub-
stores 1114 and 1116. The CPI client may use a load
balancing technique to balance connections across the
cache replicas.
�[0037] In an embodiment, the remote sub-�store may
appear like a remote database store, such that the client-
side code is essentially a local cache to the remote sub-
store. In an alternative embodiment, data on the client
may instead be cached for the length of the transaction.

Illustrative Configuration 5: Partitioned Cache

�[0038] When the data in the sub-�store is distributed

9 10

EP 1 840 767 A2

7

5

10

15

20

25

30

35

40

45

50

55

across multiple processes, horizontal scalability can be
achieved. In an illustrative example, each row belongs
to a single partition, which is determined by a partitioning
function on the row id. The sub-�store can quickly deter-
mine where a row exists using this partitioning function.
The partitioning function may be a suitable partitioning
function, such as hashing on a primary key. In another
illustrative example, partitions may overlap, for example,
through a combination of partitioning and replication. The
partitioning function then defines where the primary copy
of each row is stored, while replicas of the row are stored
in other partitions.
�[0039] As shown in Figure 12, in this configuration, the
sub-�stores 1202-1206 preferably run outside the virtual
memory of the database application processes 1208, in
client/�server mode. A CPI client 1210 resides in the same
virtual memory as the database application process. In
the illustrative example, the sub-�stores transact with a
single database. Transactions against a partitioned
cache may involve multiple partitions. If a partitioned sub-
store acts as a cache, then a transaction may span mul-
tiple database connections, perhaps across multiple ma-
chines. This results in a distributed transaction.

Illustrative Configuration 6: Replicated Cache

�[0040] This configuration provides high availability and
durability for a cache where the update strategy involves
deferred writes to the backing database. Reads are as
fast as in a non- �replicated cache, while writes are repli-
cated to another cache. In case of failure to the primary
cache, deferred writes are performed by the replica.
�[0041] This illustrative configuration is depicted in Fig-
ure 13. Database application 1302 uses replicated cach-
es 1306 and 1308 via CPI client 1304. The replicated
caches transact with database 1310.

Illustrative Configuration 7: Database Cache with Multi-
ple Backend Databases

�[0042] As shown in Figure 14, when the data store
1406 acts as a cache for backend databases 1408, 1410,
1412, the backend databases may comprise one or more
remote databases, at least one of which may be an in-
memory database. To the user of the cache, the several
databases appear as one database. In the illustrative ex-
ample, database application 1402 uses cache 1406 via
CPI client 1404. Although Figure 14 shows a single
cache, the cache may be distributed. That is, the cache
may be a partitioned or replicated cache.
�[0043] This configuration provides high performance
and scalability. Databases can be split into multiple da-
tabases for growth, integration, or workload reasons, for
example. The cache provides for access to data from
applications without changing the applications to account
for the multiplicity of databases.

Illustrative Configuration 8: Partitioned In-�Memory Da-
tabase

�[0044] Partitioning provides horizontal scalability.
Since the partitioned database is memory resident, it
does not have to use disk-�based structures and algo-
rithms. Figure 15 shows a distributed, replicated config-
uration with the caches 1502-1516 in-�process with the
database applications 1518-1524 and no backend rela-
tional database. This configuration provides high read
and write performance, scalability, and high availability.
Illustrative Configuration 8 provides the benefits of scal-
ability and availability, with the high performance of an
in-�memory database.
�[0045] A partitioned sub- �store requires a partitioning
scheme that is used to determine which partition a record
belongs to. In the illustrative example, the partitioning
scheme is the high availability database ("HADB") hash
partition scheme. The HADB partitioning scheme is de-
scribed, for example, in Svein Olaf Hvasshovd, et al.,
The Clustra telecom database: high availability, high
throughput, and real- �time response, Proceedings of the
21st International Conference on Very Large Databases,
Zurich, Switzerland, pp. 469-477, September 1995,
which is incorporated herein by reference. Alternatively,
different partitioning schemes may be used. The parti-
tioned sub-�store requires a distributed query mechanism.
In the illustrative example, the query algorithms and tech-
niques used in the above-�described HADB partitioning
scheme are used.
�[0046] Each of the above-�described illustrative config-
urations is described in more detail below. Initially, a de-
scription of synchronization strategies, isolation levels,
and components of the store is described below. When
a remote backing database is used, the user may con-
figure different synchronization strategies between a
sub-�store and the remote backing database. This allows
the user to control disparity between the sub-�store and
the remote backing database. For example, a synchro-
nization strategy may effect a push to the backing data-
base whenever there is a write. In another example, a
trigger in the database may update the cache, so that
the cache is updated at all times. These illustrative ex-
amples may be used in combination with other synchro-
nization strategies.
�[0047] For configurations that use a remote backing
database, users may configure different synchronization
strategies between a sub-�store and the remote backing
store. The backing store could be a backend database
or a remote sub-�store (for example, in client/�server mode
where the client is a cache to an in- �memory database).
These strategies may be applied on a per-�request basis,
where a request is a specific operation performed by the
CPI adaptor on a sub-�store within the context of a trans-
action. The synchronization strategy can be set for a
transaction, a particular request, or on a specific table or
set of tables.
�[0048] Further, a store may use different synchroniza-

11 12

EP 1 840 767 A2

8

5

10

15

20

25

30

35

40

45

50

55

tion strategies for different data. For example, a cache
or a part of a cache may use the optimistic synchroniza-
tion strategy for some data, pessimistic for other data,
and lazy for other data. The data strategies may be dis-
tinguished by criteria, such as by data type or by run-�time
optimization by access patterns. Further, the synchroni-
zation strategies may be selected according to an algo-
rithm. For example, the synchronization strategy may be
selected based on field data. In another example, selec-
tion may be based on a predicate consisting of an ex-
pression containing values of fields. For example, for
stored data that describes employees’ state of residence,
an optimistic synchronization strategy may be used for
residents of California and a pessimistic synchronization
strategy may be used for residents of other states.
�[0049] The synchronization strategy may be chosen
manually or the system may automatically choose the
synchronization strategy. The strategy may be chosen
manually or statically, for example, by a system admin-
istrator or on a per-�table or per- �request basis. For exam-
ple, the system administrator may specify a strategy for
particular fields, rows, tables, or parts of tables.
�[0050] The system may automatically choose the syn-
chronization strategy, for example, by analyzing usage
statistics. For example, the system may analyze access
patterns to identify one of the following illustrative situa-
tions: which tables, columns, or rows are heavily updated
by transactions; which ones are updated through partic-
ular systems; or which ones are infrequently updated.
Based on the access patterns, the system may imple-
ment particular strategies. For example, if data is rarely
updated, the system may use a lazy, optimistic strategy.
If updates are typically through a particular system, the
system may assume that that system’s cache includes
the truth and overwrite the backing store from it. In an-
other example, if data is heavily updated from many ma-
chines, the system may use either a pessimistic locking
on that data, or use an incremental merge strategy when
the updates are typically increments to numeric values.
�[0051] Illustrative synchronization strategies are de-
scribed below in order of least conservative to most con-
servative. The write strategies are strategies that may be
applied at the time of transaction commit. The read strat-
egies are strategies that may be applied whenever data
is accessed from the backing store.
�[0052] Illustrative write strategies are described below.
Although the synchronization strategy is applied inde-
pendently for each request, write strategies are evaluat-
ed at commit time. For requests, a row that is modified
by a given request is "tagged" with the write strategy for
the request.
�[0053] Lazy: In this strategy, data is written to the back-
ing store in a "lazy" mode - that is, outside the scope of
the transaction in which the request was made. This can
be used, for example, where someone wants a single-
machine version of a store, where the backing database
provides some level of durability and database applica-
tion access is through the store. In other examples, data

may be written in accordance with conflict resolution
rules.
�[0054] Overwrite: Data tagged with this strategy over-
writes data in the remote store. When the overwrite strat-
egy is used, it is preferable that the sub- �store is the only
item modifying the data for the affected rows.
�[0055] Optimistic: Prior to committing the transaction,
the store checks to see if the rows tagged with this strat-
egy have been updated in the remote store since they
were read into the cache. If they have been updated, the
store rolls back the transaction. This provides enhanced
concurrency if there are multiple applications accessing
the same data.
�[0056] Write-�Locked: The first time a row is modified,
a write lock may be obtained in the remote store.
�[0057] Checked: Prior to committing the transaction,
the store checks to make sure that rows in the cache
touched in the transaction, even rows that were read and
not modified, are consistent with the database, and rolls
back the transaction if they are not. For example, this
strategy is useful when the user makes changes to rows
based on the values in other rows, even though these
rows have not changed.
�[0058] Further, updates may be applied to the cache
and synchronization of the database may be deferred.
For example, some or all of the cache may be updated,
while database synchronization is deferred until a later
time. When the database is synchronized, the synchro-
nization may be performed using resolution rules. Illus-
trative resolution rules are described in more detail be-
low.
�[0059] In another example of deferred synchroniza-
tion, the store may assume for at least some data that
the truth is in the cache, and overwrite the data in the
database later. Accordingly, the cache returns to the user
quickly after writing the cache. Alternatively, the store
may assume that the truth is in the database, and perform
fast reads on the cache. In this case, the store may accept
data that is possibly out of date.
�[0060] Further, when the database is updated, but not
via the cache, this may trigger a synchronous or asyn-
chronous write-�back to the cache to keep the cache up
to date.
�[0061] Illustrative read strategies are described below.
�[0062] Optimistic: When reading an object, the store
assumes the data in the cache is correct and does not
check with the database to see if more up-�to- �date data
is available.
�[0063] Pessimistic: When reading a row, the store
throws away the cache row and reads it from the remote
store, but does not lock the row in the remote store.
�[0064] Read-�Locked: This strategy is similar to the
pessimistic read strategy, but also a read lock is acquired
on the row in the remote store. Accordingly, no synchro-
nization check is required at commit time.
�[0065] Exclusive-�Locked: The store acquires an exclu-
sive lock on the row (vs. a read lock) when a row is ac-
cessed

13 14

EP 1 840 767 A2

9

5

10

15

20

25

30

35

40

45

50

55

�[0066] Each request has a specific synchronization
strategy. The user can set the synchronization strategy
for a transaction, a particular request, or for a given table
or set of tables. The synchronization strategy to be used
for a given request may be determined by the following
illustrative rules: �

- If a strategy is specified for a specific request, this
overrides the strategy specified for the transaction.

- If a strategy is specified for a specific table, this over-
rides the strategy specified for request or the trans-
action. There is an exception to this rule. Because
the Checked write strategy applies to rows affected
by the transaction, then as soon as the Checked write
strategy is encountered anywhere within the trans-
action, the entire transaction strategy runs at the
Checked write strategy.

�[0067] When the remote store is a Structured Query
Language ("SQL") database, database locks may be ac-
complished through the standard American National
Standards Institute ("ANSI") isolation levels. A descrip-
tion of ANSI isolation levels may be found, for example,
in ANSI X3.135-1992, "Database Language SQL," which
is incorporated herein by reference. In the illustrative em-
bodiment, the synchronization strategies are implement-
ed using isolation levels. For a given cache transaction,
a single connection is established with the database, with
a specific isolation level, for operations that involve ob-
taining database locks. This situation is referred to as a
"transaction connection" below. Some requests within
the cache transaction may have a read strategy that does
not require a database lock, and so they may use an
independent connection running outside the scope of the
current cache transaction. Illustrative scenarios are de-
scribed below for how the illustrative synchronization
strategies are implemented using isolation levels.
�[0068] Lazy Write: In one illustrative example, in a
background thread, the store obtains a connection to the
database and sets the isolation level to READ_�COMMIT-
TED. The store submits modified rows, checking to see
if the data has been modified in the database since it was
read from the cache by the application.
�[0069] In another example of a lazy write, data is writ-
ten when updates go through a particular cache, for ex-
ample with read- �mostly access from other caches. This
allows transactions to proceed at cache speed as the
backing database is updated in the background. In yet
another example, data is written when all updates to a
particular table or group of tables or groups of columns
all go through a particular machine’s cache, so that there
is one writer for each group of data. This also allows
transactions to proceed at cache speed. In a further ex-
ample, data is written when it is not important that queries
be based on the latest version of the data being streamed
to the back end. For example, if 1 % of the data is being
changed each day, and the queries are decision support
queries that can be based on approximate data. This

example allows updates on the back end to be done in
large batches and in the background when there is lesser
load.
�[0070] If there are conflicts, the store may use conflict
resolution mechanisms to resolve conflicts automatically,
or to allow the user to resolve them manually. For exam-
ple, a database administrator could specify on a per-�table
or per-�column basis which resolution rules should be ap-
plied. Resolution rules may be applied when it is discov-
ered, in synchronization of a cache with a back-�end da-
tabase (which could also be a cache), that the same
record has been modified both places. Illustrative conflict
resolution rules are identified below:�

- Field merge: Allow updates to a record from two dif-
ferent transactions as long as they did not change
the same fields. Updates from both transactions are
applied to the different fields of the record.

- Field group merge: Allow updates to a record from
different transactions as long as they did not change
fields in the same field group. The field group may
be defined, for example, by an administrator, an API,
or metadata. For example, an update to the zip code
in one transaction may conflict with an update to the
city in another transaction, if the city and zip code
were defined to be in the same field group.

- Priority overwrite: Establish a priority (cache over-
rides database, or vice versa) establishing which up-
date to a record takes precedence. The other update
may be thrown away.

- Application/�user priority overwrite: Track which up-
dates are made by which applications or users (e.g.,
with an additional field on records), and give prece-
dence to updates with a higher specified priority.

- Most-�recent priority overwrite: Accept the changes
that were made most recently, discarding the older
record updates. This may be performed using a time
stamp or some other mechanism that identifies when
record updates were performed.

- Undo/ �Redo merge: Specify a list of allowed transac-
tions (e.g., Add Customer, Place Order, Delete Em-
ployee), and track which updates are made by which
transactions. Keep enough information to "back out"
of one of the transactions, and then re-�apply it to the
current database (using the field values from con-
flicting transactions) to get serialization.

- Additive merge: For fields that are always increment-
ed, e.g. Total Sales for a customer, or Order Count,
compute the total increment since last synchroniza-
tion in both the cache and the backing data store,
and add the sum to the field value. For example, if
the Order Count has increased from 1000 to 1055
in the database, and 1000 to 1015 in the cache, set
the Order Count to 1070.

- Application escalation: When a record has been up-
dated in both the cache and the backing database,
call a procedure supplied by the database adminis-
trator to resolve the conflict. This procedure would

15 16

EP 1 840 767 A2

10

5

10

15

20

25

30

35

40

45

50

55

be implemented using application-�specific knowl-
edge about how to combine the updates.

- User-�administrator escalation: Conflicting record up-
dates are resolved by a human operator, who is pro-
vided with information regarding the conflict and
asked which updates to keep.

�[0071] Overwrite Write synchronization strategy:
When the transaction is committed in the cache, the store
uses the transaction connection if it exists or obtains a
new connection with the isolation level to READ_ �COM-
MITTED. The store submits changes to rows tagged with
this strategy without checking to see if the data has been
modified since it was read into the cache.
�[0072] Optimistic Write: When the transaction is com-
mitted in the cache, the store submits the changes using
the transaction connection if it exists or obtain a new con-
nection with an isolation level of READ_�COMMITTED.
The store ensures that the rows tagged with this strategy
have not been modified since they were read into the
cache. The operation may be aborted if there is a conflict,
such as when a tagged row has been modified. Alterna-
tively, resolution rules, such as those described above
for Lazy Write, may be applied to resolve the conflict.
�[0073] Checked Write: When the transaction is com-
mitted in the cache, the store submits the changes using
the transaction connection if it exists or obtain a new con-
nection with an isolation level of READ_�COMMITTED.
The store validates that rows touched by the transaction
have not been modified in the remote store. The opera-
tion is aborted if there is a conflict, such as when a tagged
row has been modified.
�[0074] Optimistic Read: If the data is in the cache, the
store reads it from the cache. If it is not in the cache, the
store obtains an independent connection with READ_
COMMITTED isolation level, reads the data, and releas-
es the connection.
�[0075] Pessimistic Read: The store obtains an inde-
pendent connection with READ_ �COMMITTED isolation
level, reads the data, and releases the connection.
�[0076] Read- �Locked Read: The store uses the trans-
action connection if it exists, or obtains a new one with
READ_ �COMMITTED isolation level. The store reads the
data with this connection but do not release the connec-
tion, it is now the transaction connection.
�[0077] Exclusive- �Locked Read: If the transaction con-
nection exists, the store checks to see if the isolation
level is SERIALIZABLE. If it is not, then this request can
not be correctly serviced within the context of this trans-
action; so the store issues an exception. The CPI adaptor
can then choose to either not perform this request or roll
back the transaction.
�[0078] If the transaction connection does not exist, the
store obtains a new connection with the isolation level
set to SERIALIZABLE, and reads the data. The store
does not release the connection, it is now the transaction
connection. Subsequent requests that use the transac-
tion connection will operate at the SERIALIZABLE isola-

tion level.
�[0079] Figure 16 shows an overview of illustrative com-
ponents of the store. The dashed arrows represent de-
pendencies. Descriptions of each component are pre-
sented below. One having skill in the art will appreciate
that additional or alternative components may be imple-
mented.
�[0080] CPI adaptor 1602 is not a component of the
store, but is an external user of the store. As described
above, CPI adaptors may be provided to implement/�plug
in to particular persistence APIs, such as JDO, CMP,
JDBC, and JAXB. A session store 1604 provides an entry
point for the CPI adaptor into a store. It contains context
for the current conversation with the store. In particular
it keeps track of transactional context. A store manager
1606 is responsible for managing a particular store. It
stores the rows and is responsible for maintaining trans-
actional consistency within the store. It is also responsi-
ble for coordinating data with remote repositories, be they
other stores or a database. When a store needs to par-
ticipate in global transactions, the store manager can act
as an XA resource adapter -- it will provide an implemen-
tation of the XAResource interface. In a replicated or par-
titioned environment there will be multiple store manag-
ers. There is one store manager for each virtual memory
participating in the distributed store. These individual vir-
tual memories running in a distributed store are called
nodes herein.� A cluster manager 1608 is an external pro-
gram or module that is responsible for coordinating the
multiple nodes in a distributed store. In the preferred em-
bodiment, the cluster manager is the Sun Cluster product
manufactured by Sun Microsystems, Inc. Alternatively,
a different cluster manager may be used. The cluster
manager detects the health of a node, initiates takeover,
recovery and repair, and implements policies for network
partitioning.
�[0081] A query processor 1610 takes query trees pro-
vided by the CPI adaptor, generates a query plan, and
executes the query. The query processor works with the
store manager to obtain metadata and to acquire cache
objects as may be needed. A metadata module 1612
stores the metadata for the store. The stored metadata
includes, for example, the store schema, the mapping to
the remote store, and partition information. Additional or
alternative metadata can also be stored. A remote store
1614 is an abstraction that allows a consistent approach
when the data for a given cache table is owned remotely
rather than locally. The remote store can be to another
store (native remote store 1616) or it can be to a backend
database (SQL remote store 1618.) When a backend
database is used, a driver 1622 allows communication
to the backend database. In the illustrative embodiment,
the driver is a JDBC driver, however, other drivers may
be used.
�[0082] The node communication module 1620 is re-
sponsible for communication between nodes. This mod-
ule replicates data from a primary partition to a standby
partition, routes a request from one node to another (e.g.,

17 18

EP 1 840 767 A2

11

5

10

15

20

25

30

35

40

45

50

55

when a given node receives an update row for a row
belonging to a partition on another node), and adminis-
ters other inter- �node communications.
�[0083] A runtime module 1624 provides an underlying
framework for the various components of the store. The
runtime module provides services such as network com-
munication, threading, logging, debug/�trace, internation-
alization, and security. These services may be imple-
mented using, e.g., Java 2 Runtime, which is manufac-
tured by Sun Microsystems, Inc.
�[0084] A transaction coordinator 1626 regulates trans-
actions between the various modules to ensure that
transaction steps occur in the proper sequence.
�[0085] Eight illustrative configuration were introduced
above. A more detailed description of the illustrative con-
figurations is presented below, including a description of
the interactions between the various modules of the
store. The interactions are described with reference to
sequence diagrams. One having skill in the art will ap-
preciate that the sequences are illustrative, and that al-
ternative sequences may be implemented.

Illustrative configuration 1: Cache in a Single Virtual
Memory

�[0086] The following scenarios relate to a store running
as a cache running in a single virtual memory (i.e., not
partitioned or replicated), with a backing store (e.g., an
SQL store.)
�[0087] Figure 17 shows a sequence diagram for a sce-
nario of establishing a session. To communicate with a
particular sub- �store, the CPI adaptor establishes a ses-
sion with the sub-�store. The CPI adaptor does so by ask-
ing the store to create a store session by specifying the
sub-�store name (step 1702). The session factory finds
that sub-�store based on the name provided by the CPI
adaptor (step 1704). The session factory then requests
the store session module to create a session to the sub-
store (step 1706) and returns the session to the CPI adap-
tor (step 1708).
�[0088] After a session has been established with the
sub-�store, the CPI adaptor can transact with the sub-
store. In the preferred embodiment, the CPI adaptor ex-
plicitly indicates the beginning and end of transactions.
Alternatively, transactions can be automatically commit-
ted. Figure 18 depicts a sequence diagram for beginning
a transaction. At this point, the store session is running
within a specific transactional context. A transaction has
not been started with the remote store. A transaction is
started with the remote store as necessary depending
upon the rows being read or modified and the synchro-
nization strategy associated with those rows.
�[0089] The CPI adaptor first requests the store session
to begin the transaction (step 1802). The store session,
in turn, requests the transaction coordinator for a trans-
action object (step 1804). The transaction object provides
a handle to represent a transaction. Then, the transaction
coordinator instantiates the transaction object and re-

turns it to the store session (step 1806). After receiving
the transaction object, the store session forwards the
transaction object to the CPI adaptor (step 1808).
�[0090] The CPI adaptor can engage in various opera-
tions with the store, such as inserting rows, deleting rows,
committing data, and other types of operations. Figure
19 shows a sequence diagram for the case of inserting
a row in the cache. First, the CPI adaptor requests to
insert a row in a particular table by identifying the table
name (step 1902). The store session receives the CPI
adaptor’s request and forwards the request to the store
(step 1904). Then, the store inserts a row into the table
and locks the row (step 1906). After inserting the row into
the table, the store creates a row object (step 1908). The
a row object is used to represent the row to the CPI adap-
tor. It also tracks changes to the row and acts as an "after
image" of the row. In the illustrative example, the under-
lying row data is not changed until the transaction is com-
mitted. � This allows the store to roll back a transaction in
case there is some type of failure. It also allows the store
to send the changes made to a standby replica.
�[0091] The store sends the row object to the store ses-
sion (step 1910), which forwards the row object to the
CPI adaptor (step 1912). The row object that is returned
to the CPI adaptor is empty and uninitialized, except for
the row id. The CPI adaptor may fill in the values in the
object as part of this transaction. The store session locks
the underlying row so another transaction cannot see the
row in its semi-�initialized state.
�[0092] Figure 20 shows a sequence diagram for an
illustrative transaction for updating a field in a row in the
cache. In the illustrative example, when a field is updated,
the modification is made in the row object but is not ap-
plied to the underlying row until the transaction commits.
First, the CPI adaptor sends a request to update a field
to the row object (step 2002). The request identifies the
field (e.g., by the field’s number) and includes the value
to be entered into the field. Then, the row object marks
the row as dirty (step 2004) and sets the value in the field
(step 2006). The row object then notifies the CPI adaptor
that the row has been updated (step 2008).
�[0093] Figure 21 depicts a sequence diagram for a de-
lete row transaction. In the illustrative example, the un-
derlying row is not deleted -- instead, the row object is
marked as deleted. When the transaction is applied, the
row is then deleted from the store. As shown in Figure
21, the CPI adaptor sends a request to the row object to
delete a row (step 2102). The row object then marks the
row as deleted (step 2104). Then, the row object notifies
the CPI adaptor that the row has been marked as deleted
(step 2106).
�[0094] The CPI adaptor can also query the store for
data. For example, the CPI adaptor can request to obtain
one or more rows from the store. In the illustrative exam-
ple, the CPI adaptor submits a query to the store using
a data structure called a query tree. This tree is built by
an interpreter within the CPI adapter, such as an SQL
interpreter, a JDO query processor, an JAXB query in-

19 20

EP 1 840 767 A2

12

5

10

15

20

25

30

35

40

45

50

55

terpreter, or a CMP execution engine. Query trees and
interpreters that build query trees are known in the art
and will not be described in more detail herein. By using
a query tree, the CPI adapter’s queries can be language
independent and do not require implementation of a que-
ry language.
�[0095] The query tree is processed by the query proc-
essor. For a store configured as a cache, if the data is in
the cache and the affected tables have a synchronization
strategy that does not require checking the remote store
for updated data, then the query processor performs the
query against the data in the cache. However, if a syn-
chronization strategy requires it, then changes may be
flushed to the remote store and the query submitted to
the remote store for execution. Alternatively, data may
be fetched from the backing store into the cache, and a
query may be executed on the cache if at least some of
the data is in the remote store. Further, the query may
be executed on a combination of the cache and the da-
tabase. In this later example, the query may be split into
two parts and the results may be merged. A further de-
scription of this example may be found for example in
U.S. Patent No. 6,243,710, which is incorporated herein
by reference.
�[0096] The query processor runs against data that is
consistent with the current transaction. This means it
works with both the data stored in row objects (e.g., rows
that have been modified as part of a transaction) and the
data in the underlying rows themselves (e.g., rows that
have not been modified as part of a transaction).
�[0097] Figure 22 depicts a sequence diagram for an
illustrative query. In the illustrative example, the CPI
adaptor prepares the query, including a query tree, and
sends the query to the store session (step 2202). The
store session forwards the query to the query processor
(step 2204). After receiving the query, the query proces-
sor requests metadata from the store to compile and op-
timize the query (step 2206). The metadata describes,
for example, the number of columns in tables, the types
of columns, and which columns have indices. The store
obtains the relevant metadata and returns the metadata
to the query processor (step 2208).
�[0098] The query processor analyzes the metadata to
determine whether to execute the query in the remote
store (step 2210). In the illustrative example, the query
is executed in the remote store if the synchronization
strategy requires it or if at least some of the data is in the
remote store. When the query is to be executed in the
remote store, the query processor flushes the affected
tables to the remote store via the store (step 2212). The
store receives the query processor’s instruction to flush
the affected tables and forwards the instruction to the
remote store (step 2214). The query processor also sub-
mits the query to the remote store, via the store, for ex-
ecution (step 2216). The store receives the query and
forwards the query to the remote store (step 2218). After
receiving the query, the remote store executes the query
and returns the results to the store (step 2220). The store

updates the cache from the results (step 2222) and re-
turns the obtained row object to the query processor (step
2224).
�[0099] If the query processor determines that the query
can be run locally in the store instead of in the remote
store (step 2226), then the query processor processes
the query locally (step 2228). The query processor re-
quests the relevant rows from the store (step 2230),
which in turn returns one or more row objects with the
data (step 2232).
�[0100] After receiving the row objects that include the
data, either from the remote store in step 2224 or from
the store in step 2232, the query processor returns the
row objects to the store session (step 2234). The store
session forwards the row objects to the CPI adaptor (step
2236).
�[0101] Figure 23 depicts a sequence diagram for an
illustrative commit transaction. The store keeps track of
operations that have been performed within a current
transaction, and just prior to commit these operations are
applied to the remote store. This is a more efficient so-
lution than applying the changes piecemeal throughout
the life of the transaction. As shown in Figure 23, the
illustrative transaction commit may occur in four phases:
beforeCompletion, prepare, commit, and afterComple-
tion. These phases may be driven by an external trans-
action coordinator. For example, the CPI Adapter may
be registered to receive synchronization events (be-
foreCompletion and afterCompletion) and the JDBC driv-
er may be registered as an XAResource and will receive
the prepare and commit events.
�[0102] When the CPI adaptor receives a beforeCom-
pletion event from the transaction coordinator (step
2302), the CPI adaptor forwards a beforeCompletion call
to the store session (step 2304). The store session for-
wards the call to the store (step 2306), which flushes the
affected rows to the remote store (step 2308). In turn,
the remote store instructs the driver (e.g., the JDBC driv-
er) to flush the affected rows (step 2310). When the flush
is completed, the driver signals the remote store that it
is clear to return (step 2312). The store passes the return
OK to the store session (step 2314), which in turn passes
the return OK to the CPI adaptor (step 2316). Then, the
CPI adaptor informs the transaction coordinator that the
affected rows have been flushed (step 2318).
�[0103] Then, the driver receives the commit message
from the transaction coordinator (step 2320), and com-
mits the transaction (step 2322). Although it is not shown
in Figure 23, a prepare event may also occur. For exam-
ple, a transaction manager may prepare each resource
if there are multiple resources. However, if there is one
resource, there may be no need to prepare the resource.
When the commit is completed, the driver signals a return
OK to the transaction coordinator (step 2324).
�[0104] The store then receives the after Completion
call from the CPI adaptor, and the changes are applied
and locks held for this transaction within the store are
released. That is, the transaction coordinator sends the

21 22

EP 1 840 767 A2

13

5

10

15

20

25

30

35

40

45

50

55

afterCompletion call to the CPI adaptor (step 2326). The
CPI adaptor forwards the call to the store session (step
2328), which in turn forwards the call to the store (step
2330). The store applies the changes and releases the
locks (step 2332). Then, the store sends a return OK to
the store session (step 2334), which forwards the return
OK to the CPI adaptor (step 2336). The CPI adaptor then
signals the return OK to the transaction coordinator to
identify that the commit transaction has been completed
(step 2338).

Illustrative configurations 2 and 3: Replicated In-�Memory
Database and Database Cache Plus In- �Memory Data-
base:

�[0105] In the illustrative configuration, a replicated
store is a logical store with two physical elements: a pri-
mary and hot standby. Although the primary store and
the hot standby store are each described as a store, they
are perceived by the database application as a single
logical store.
�[0106] Figure 24 is a sequence diagram that shows
illustrative communication between a primary store and
a hot standby store. The illustrative node communication
subsystem provides buffered, asynchronous communi-
cation. Messages sent to the node communication sub-
system from the store do not need to be immediately sent
across the network. The node communication subsystem
may, for example, buffer messages and send the buff-
ered messages to the replica when it is full. Further, mes-
sages sent to the node communication subsystem from
the store and messages sent between replicas over the
network are transmitted asynchronously and do not re-
quire immediate acknowledgment.
�[0107] In Figure 24, half-�arrows indicate asynchronous
messages. The illustrative scenario shows messages for
a single transaction, however, the node communication
subsystem may receive messages for multiple simulta-
neous transactions, potentially from multiple stores with-
in the same node. The primary store sends a begin trans-
action message to the primary node communication in-
stance (step 2402). The illustrative begin transaction
message identifies the transaction to the primary node
communication instance. After sending the begin trans-
action message in step 2402, the primary store sends a
first update row message to the primary node communi-
cation instance (step 2404). The first update row mes-
sage identifies the transaction and the row to update in
the backup store. In the example, the primary store ef-
fects two updates to the same row by sending a second
update row message (step 2406). As described below,
the two update row messages result in a single update
row message on the standby replica, because there are
two updates to the same row. After sending the update
row messages, the primary store sends a "done" mes-
sage to the primary node communication instance to in-
dicate that there are no additional update messages (step
2408).

�[0108] The primary node communication instance
buffers the update messages in the illustrative example
and then sends them to the standby node communication
instance (step 2410). The standby node communication
instance initiates the update of the standby store by send-
ing a begin transaction message (step 2412). Then, the
standby node communication instance also sends an up-
date row message (step 2414). This update row message
includes both changes to the relevant row. The "done"
message is incorporated into the last change record us-
ing an "islast" parameter. This provides a small reduction
in the number of network messages, and may prevent
an extra packet being sent over the network.
�[0109] The standby store acknowledges the begin
transaction message (step 2416), updates the row as
described in the update message, and acknowledges
that the row is being updated (step 2418). The standby
node communication instance forwards the acknowl-
edgement message to the primary node communication
instance (2420), which in turn forwards the acknowledge-
ment to the primary store (step 2422). Then, the primary
store issues a commit message to commit the update
(step 2424). Commit transactions are described below.
�[0110] Figure 25 is a sequence diagram showing ad-
ditional steps for inserting a row. In the illustrative exam-
ple, the additional steps comprise posting the insert
record to the node communication system for each in-
serted row. The store session sends an insert row mes-
sage to the store (step 2502). Then, the store forwards
the message to the node communication subsystem
(step 2504).
�[0111] When a row is updated, the store sends an up-
date record message to the node communication sub-
system. As described above, multiple updates to the
same row are "combined" into a single update message
to the standby replica. Figure 26 is a sequence diagram
showing illustrative steps for updating a field in a row in
a cache. In the illustrative example, when a field is up-
dated, the modification is made in the row object but is
not applied to the underlying row until the transaction
commits. First, the CPI adaptor sends a request to update
a field to the row object (step 2602). The request identifies
the field (e.g., by the field’s number) and includes the
value to be entered into the field. Then, the row object
marks the row as dirty (step 2604) and sets the value in
the field (step 2606). The row object then sends a row
update message to the node communication subsystem
(step 2608) and notifies the CPI adaptor that the row has
been updated (step 2610).
�[0112] When querying in this configuration, the system
does not have to interact with a backing store. The cache
keeps track of whether information is stored in the cache
or in the backing store. If the information is in the cache,
then the system does not have to interact with the backing
store. Figure 27 is a sequence diagram that shows an
illustrative query transaction. In the illustrative example,
the CPI adaptor prepares the query, including a query
tree, and sends the query to the store session (step

23 24

EP 1 840 767 A2

14

5

10

15

20

25

30

35

40

45

50

55

2702). The store session forwards the query to the query
processor (step 2704). After receiving the query, the que-
ry processor requests metadata from the store to compile
and optimize the query (step 2706). The store obtains
the relevant metadata and returns the metadata to the
query processor (step 2708).
�[0113] The query processor determines whether there
are additional rows to obtain (step 2710). If there are
additional rows to obtain, the query processor requests
the relevant rows from the store (step 2712), which in
turn returns one or more row objects with the data (step
2714). If there are no additional rows to obtain, the query
processor processes the rows (step 2716) and creates
a result set (step 2718). Process rows may include, for
example, selecting a subset of data from the rows and
determining which rows satisfy the query. The result set
may be, for example, the selected and combined rows.
After creating the result set, the query processor sends
the result set to the store session (step 2720), which for-
wards the result set to the CPI adaptor (step 2722).
�[0114] In the client/ �server configuration, transactions
may be committed in either two phases or one phase.
Similar to the commit transaction described with respect
to Figure 23, the illustrative transaction commit for the
client/�server configuration may occur in four phases: be-
foreCompletion, prepare, commit, and afterCompletion.
These phases may be driven by an external transaction
coordinator. For committing transactions in two phases,
a store may be registered as an XA resource manager
with the external transaction coordinator. The CPI adapt-
er implements the synchronization interface and is reg-
istered with the external transaction coordinator so it can
receive before Completion and afterCompletion events.
As shown in Figure 28, the transaction coordinator sends
a before Completion event to the CPI adaptor (step
2802). The CPI adaptor forwards the beforeCompletion
event to the store session (step 2804), which in turn for-
wards the event to the primary store (step 2808). Then,
the primary store sends a "done" message to the primary
node communication instance (step 2810). It does not
need to wait for acknowledgment from the standby cache
but can return immediately to the caller. After sending
the done message, the primary store sends a return OK
message to the store session (step 2812). The store ses-
sion forwards the return OK message to the CPI adaptor
(step 2814), which in turn forwards the return OK mes-
sage to the transaction coordinator (step 2816).
�[0115] In the prepare phase, the transaction coordina-
tor sends a prepare message to the primary store (step
2818). When the primary store receives the prepare mes-
sage from the transaction coordinator, it waits for a done
acknowledgment from the standby replica (step 2820).
Once it has this acknowledgment, it returns a vote commit
message to the transaction coordinator, as now it knows
that the standby is prepared to commit the transaction.
�[0116] The transaction coordinator initiates the commit
phase by sending a commit message to the primary store
(step 2826). Then, the primary store sends an asynchro-

nous commit message to the primary node communica-
tion instance (step 2828). Since the primary store’s com-
mit message is asynchronous, it does not have to wait
for a response from the standby store. When the standby
store acknowledges the last change record for the trans-
action, it will commit the transaction. The primary store
then marks the data as committed and releases locks on
the data (step 2830), and then sends a return OK mes-
sage to the transaction coordinator to signal that the com-
mit has been completed (step 2832).
�[0117] After the commit phase has ended, the trans-
action coordinator sends an afterCompletion message
to the CPI adaptor to initiate the afterCompletion phase
(step 2834). The CPI adaptor forwards the afterComple-
tion message to the store session (step 2836), which in
turn forwards the message to the primary store (step
2838). The primary store acknowledges the afterCom-
pletion message by sending a return OK message back
to the transaction coordinator (step 2840) via the store
session (step 2842) and the CPI adaptor (step 2844).
�[0118] In another illustrative example, an external
transaction coordinator is not involved and the CPI adap-
tor is responsible for committing the transaction. In this
case, the CPI adaptor submits the commit request, and
the session store initiates the four commit phases. As
shown in Figure 29, the CPI adaptor asks the store ses-
sion to commit the data (step 2902). The store session
sends a beforeCompletion message to the store (step
2904). After receiving a return OK from the store (step
2906), the store session sends a commit message to the
store (step 2908).� The store signals that the data has
been committed by sending another return OK message
to the store session (step 2910). In the afterCompletion
phase, the store session sends an afterCompletion mes-
sage to the store (step 2912) and receives back a return
OK message from the store (step 2914). In response,
the store session forwards the return OK message to the
CPI adaptor to signal that the afterCompletion phase is
done (step 2916).
�[0119] When the primary replica becomes unavailable,
the standby cache may take over the role of primary. How
this is initiated depends on whether or not the store is
running in its own separate process (e.g., as a server) or
whether it is running embedded in an application process.
If the store is running in- �process with the application, then
the application detects whether the primary has become
unavailable and notifies the standby replica that it needs
to take over as the primary. The reason for this is because
the application failure detection and takeover is entwined
with store failure detection and takeover in the illustrative
example. In this case, the application provides an imple-
mentation of the node manager and communicates with
the store through a node manager interface to notify the
standby store that it needs to take over as the primary
replica.
�[0120] If the store is running in client/ �server mode, then
a node manager that is separate from the application
detects whether the primary is unavailable and notifies

25 26

EP 1 840 767 A2

15

5

10

15

20

25

30

35

40

45

50

55

the standby that it needs to take over.
�[0121] Once a standby has been notified it needs to
take over as the primary, it rolls back incomplete trans-
actions. It also keeps open transactions for which it had
prepared to commit by sending the done message to the
primary replica. For these transactions, it will commit or
roll back once it receives instructions from the transaction
coordinator.
�[0122] Figure 30 is a sequence diagram that shows
illustrative steps for a standby cache taking over the role
of primary. This may occur, for example, on crash of the
primary. First, the cluster manager notifies the standby
store that it needs to take over as primary (step 3002).
The standby store rolls back uncompleted transactions
(step 3004), and sends a return OK message when com-
pleted (step 3006).
�[0123] Then, the cluster manager registers the stand-
by store as an XA resource with the transaction coordi-
nator (step 3008). After registering the standby store, the
transaction coordinator acknowledges that the standby
store has been registered as the primary (step 3010).
The transaction coordinator then determines whether
there are committed transactions for which the standby
has prepared to commit (step 3012). For each of these
transactions, the transaction coordinator instructs the
standby store to commit (step 3014). In response, the
standby store commits each completed transaction (step
3016), and returns a return OK message to the transac-
tion coordinator (step 3018).
�[0124] The transaction coordinator also determines
whether there are uncommitted transactions for which
the standby store has prepared to commit (step 3020).
For each of these transactions, the transaction coordi-
nator instructs the standby store to rollback (step 3022).
In response, the standby store rolls back each completed
transaction (step 3024), and returns a return OK mes-
sage to the transaction coordinator (step 3026).
�[0125] The node then takes on the role of primary and
begins accepting requests from CPI Adaptors. In an il-
lustrative example, it does not replicate transactions until
it detects that a replica is available again. At that point,
it participates in a recovery process and then begins rep-
licating to the new standby replica.
�[0126] Similarly, in the case where the secondary
crashes, the primary does not replicate transactions until
it detects that a replica is available again. At that point,
it participates in a recovery process and then begins rep-
licating to the new standby replica.
�[0127] In the illustrative example, there are two ways
for a node to recover. The first is called repair, where the
standby node gets a full copy of the data from the primary
replica. The second is called recovery, where the standby
is able to get at least some of its data from a local copy
stored in local shared memory. Recovery may be faster
than repair, except perhaps in deployments where RDMA
is available. Recovery therefore may be attempted first,
before falling back to repair.
�[0128] Figure 31 is a sequence diagram that shows

illustrative steps for a repair operation. First, the node
manager initializes the store by indicating it is the standby
and letting it know the location of the primary (step 3102).
Then, the standby contacts the primary to obtain a snap-
shot of the current data in the store (step 3104). In re-
sponse, the primary sends the data to the standby (step
3106). The primary then sends subsequent transactions
that have occurred since the snapshot was taken (step
3108). The standby signals to the node manager that the
data has been received (step 3110). The standby is then
considered up- �to-�date.
�[0129] In the recovery scenario, a local copy of the
data is available in shared memory or some other local
storage, and the node can recovery from the local copy.
As shown in Figure 32, prior to loading the data, the store
first ensures that the local copy is consistent. If the local
copy is not consistent, then the store falls back to repair-
ing from the primary replica. The node manager initiates
replication by placing the store in standby and letting it
know the location of the primary (step 3202). The standby
then checks the consistency of the local copy of the data
(step 3204). If the local copy of the data is inconsistent,
then the store repairs from the primary replica (step
3206). Otherwise, the store recovers from the local copy
(step 3208). To recover from the local copy, the store
loads the data from its local storage location, such as
shared memory (step 3210). Then, the store requests
transactions that may have been missed from the primary
(step 3212). The request identifies the last transaction,
so that the primary may identify missed transactions. The
primary returns missed transactions (step 3214) and sub-
sequent transactions (step 3216) to the store. The store
notifies the node manager that recovery has been com-
pleted by sending a return OK message (step 3218).
Transfer time can be decreased during recovery, for ex-
ample, by implementing recovery using RDMA.
�[0130] In a situation where there is replication, there
is the risk of network partitioning, where both replicas are
up and running but they have lost communication with
each other. Each replica may then assume the role of
primary, and there is a risk of data conflicts if transactions
are allowed to continue against both replicas. Methods,
systems, and articles of manufacture consistent with the
present invention avoid data conflicts by having the node
manager implement one or more policies to handle net-
work partitioning. In various embodiments, the illustrative
policies include: the node with the most recent transac-
tion wins, and the other node repairs from this node; the
node with the most activity wins; an attempt to merge is
made, and conflicts are logged or otherwise reported, so
that the user can manually resolve these conflicts; the
user manually decides which node wins; the user initiates
a merge, and interactively resolves conflicts; and avoid-
ing partitioning by using a quorum algorithm in which a
replica will not become primary unless it knows that it
can communicate with a quorum of other nodes.

27 28

EP 1 840 767 A2

16

5

10

15

20

25

30

35

40

45

50

55

Illustrative configuration 4: Client/�Server in Memory Da-
tabase

�[0131] The client/ �server scenario relates to a single
virtual memory cache (i.e., not partitioned or replicated),
where the backing store is a sub-�store rather than a da-
tabase. The above-�described semantics of a single vir-
tual memory cache apply to a cache client. Having a sub-
store client behave as a local cache to a sub-�store server
not only simplifies the internal architecture; it also ena-
bles the local client to have similar performance charac-
teristics to a single virtual memory cache. This configu-
ration provides significantly better performance than a
cache to a traditional SQL database, because the local
cache does not have to pay the cost of translating to SQL,
and the sub-�store server may store its data in memory.
�[0132] When the remote store is a replicated store, the
client is provided with information about both the primary
and the replica, and is able to transparently reconnect to
the replica if the primary fails. Failover and retry are dis-
cussed above.

Illustrative Configurations 5-8: Partitioned Cache, Rep-
licated Cache, Cache Plus Multiple Databases, and Par-
titioned In-�Memory Database

�[0133] A distributed store may be a partitioned store
or a distributed store, or both. The distributed store may
be a cache or an in- �memory database, or both. For ex-
ample, a partitioned in-�memory database may be a cache
for another in- �memory database or backing store. A par-
titioned store is one in which the data for a single logical
store is partitioned across multiple physical partitions in
order to obtain better scalability. When a partitioned store
is used as a cache, this may provide high scalability.
When a store is replicated, this may provide high avail-
ability.
�[0134] When a client connects to a partitioned store to
establish a session, the client connects to a particular
node. In a partitioned store that is also replicated, a node
may host the primary replica for a partition and the stand-
by replica for another partition. When a client connects
to a node, the server side of the native remote store sub-
system establishes a store session with primary partition
for that node. Requests for the client are then dispatched
to that store session. The client may connect to any one
of a number of nodes.
�[0135] A partitioned store may act as a server, or as a
remote store, for an embedded client cache store running
in the same virtual memory as an application. In this sce-
nario, the remote store receives changes just prior to the
transaction being committed. The client-�server commu-
nications between a client and a remote store may be
optimized to take advantage of this functionality and pro-
vide an interface that allows for a batch of inserts and
updates to be communicated with as few network round-
trips as possible. Further, a distributed cache or in-�mem-
ory database may be configured to be a backing store

for another distributed cache.
�[0136] Figure 33 is a sequence diagram that depicts
illustrative steps for communication between a client and
server. In the illustrative example, modified rows for a
transaction are sent in a single network message. Fur-
ther, the communications between the store and client
remote store and between the client and server remote
stores are asynchronous. In the illustrative example, the
store on the client is registered as an XA resource and
receives the prepare and commit commands from the
transaction coordinator. Therefore, the partitioned store
is treated as a single resource from the perspective of
the client’s transaction coordinator.
�[0137] The store session initiates communication by
sending a beforeCompletion message to the store (step
3302). The store identifies to the client native remote
store the affected rows that are to be flushed (step 3306),
and sends a return OK message to the store session
(step 3304). Then, the client native remote store notifies
the server native remote store of the changes made to
the rows (step 3308). Changes may include, for example,
inserts, updates, and deletions of rows. The server native
remote store determines whether there are rows to insert
(step 3310). For each inserted row, the server native re-
mote store instructs the remote store session of the in-
serted row (step 3312). For each updated row (step
3318), the server native remote store instructs the remote
store session of the updated row (step 3320). Further,
for each deleted row (step 3322), the server native re-
mote store instructs the remote store session of the de-
leted row (step 3324). Then, the server native remote
store returns a done acknowledgement message to the
client native remote store (step 3326).
�[0138] The transaction coordinator sends a prepare
command to the store (step 3314), which waits for a done
acknowledgement message from the client native re-
mote store (step 3316). After receiving the done acknowl-
edgement from the server native remote store in step
3326, the client native remote store sends the done ac-
knowledgement message to the store (step 3328). Then,
the store sends a return OK message to the transaction
coordinator to signal tha the prepare phase is completed
(step 3330).
�[0139] During the commit phase, the transaction coor-
dinator sends a commit message to the store (step 3332).
The store then forwards the commit message to the client
native remote store (step 3334), which also forwards the
commit message to the server native remote store (step
3336). In turn, the server native remote store instructs
the remote store session to commit the data (step 3338).
After committing the data, the remote store session
sends a return OK message to the server native remote
store (step 3344). Then, the server native remote session
store sends a commit acknowledgement message to the
client native remote session store (step 3346), which in
turn sends a commit acknowledgement message to the
store (step 3348).
�[0140] If a partitioned store acts as a cache to a back-

29 30

EP 1 840 767 A2

17

5

10

15

20

25

30

35

40

45

50

55

end database, then the partitioned store would imple-
ment the commit message as a distributed transaction
spanning, for example, JDBC connections across multi-
ple machines, using a distributed transaction coordina-
tor. However, from the client’s perspective, and from the
perspective of the transaction coordinator servicing the
client, it would still appear as a single resource commit-
ting a single transaction. In this illustrative example, there
are two levels of transaction coordinators participating in
this transaction.
�[0141] When the store on a given node receives a re-
quest to insert a record, it uses the partitioning algorithm
to determine which partition owns the given record, and
sends it to the store for that partition. For simplicity, Figure
34 shows this as a direct message, however, one having
skill in the art will appreciate that the message is sent
through the node communication subsystem, which buff-
ers multiple messages before sending a buffer to the tar-
get node, which then forwards the messages to the store
for the target partition. As shown in Figure 34, the store
session sends the insert record message to the store
(step 3402). The store then determines which partition
owns the given record (step 3404), and sends insert
record message to the store for that partition (step 3406).
�[0142] Further, the distributed cache may provide fast-
er writes by returning to the client after recording the up-
dates in memory on two or more independent machines.
The updates can then be pushed back to the database
in the background.
�[0143] The scenario for inserting a record is similar for
updating and deleting records. That is, the request is for-
warded through the node communication subsystem to
the appropriate node for that record.
�[0144] The query processor may handle queries in dif-
ferent manners in the partitioned store depending on the
type of query. If the query is a primary key lookup, then
the query processor finds the partition that owns the rel-
evant record and forwards the query to the node owning
that record. If the query selects an ordered list of records
based on the primary key, then the query processor se-
lects the appropriate records from each partition and then
combines them into a final result set that it sends to the
client. However, if the query is more complicated, involv-
ing joins, ordering and filtering that is not based on the
primary key, then the query processor creates a tempo-
rary data space where it is able to gather data from mul-
tiple partitions and merge them together into a result set.
The processes for handling these types of queries are
known in the art, such as the processes used by HADB,
and will not be described in more detail herein.
�[0145] A transaction in a partitioned database is a dis-
tributed transaction, and a two-�phase commit approach
may be used to commit the transaction.
�[0146] A partitioned store can be highly available if it
is also replicated. In the illustrative example, the behavior
and mechanisms for takeover, repair, and recovery are
the same for a replicated store with multiple partitions as
with a replicated store with a single partition. However,

in a partitioned store, the store is running as a server,
and therefore a node manager is provided.
�[0147] As described above, in the illustrative example,
the HADB partitioning scheme may be implemented to
determine to which partition a record belongs. The HABD
partitioning scheme locates items based on characteris-
tics. For example, HADB partitioning may partition using
a hash function that is based on a primary key, which is
a unique identifier for rows in a database, comprising a
column or a group of columns, that is used to determine
the partition in which a row of data is stored. For example,
the primary key may be a project name or employee
number. In an illustrative example, when the primary key
is an employee number, data for a first group of employ-
ees may be partitioned to a first cache, while data for a
different group of employees may be partitioned to a sec-
ond cache. Further, the store may keep track of the ver-
sion of data in a cache or database. For example, the
store may associate a version number or time stamp with
data entries.
�[0148] As discussed above, the CPI adaptor may ex-
pose an object interface to its clients, and may perform
object- �relational mapping of data that is sent to the store
or that has been retrieved from the store via the CPI adap-
tor. Therefore, the CPI adaptor may provide an object
view to the client while caching relational data. For ex-
ample, the CPI adaptor may provide a JAXB view and
perform JAXB- �relational mapping. Further, the relational
cache may be optimized for object-�relational mapping,
such as by pre- �computing foreign key references or in
an alternative manner.
�[0149] A plurality of CPI adaptors may be implemented
to provide access to a cache via a plurality of data models
simultaneously. For example, different CPI adaptors may
provide object access, SQL access, and JAXB access
to the cache. One or more of the CPI adaptors may pro-
vide different mappings, for example, for different class-
es. For example, a CPI adaptor may provide different
views of the same employee table for employee1 class
and employee2 class. Further, the CPI adaptors may ac-
cess an in-�memory database via a plurality of data mod-
els or mappings. For example, when a distributed cache
is used in connection with a distributed in-�memory data-
base, data may be partitioned based on data type or ta-
ble. Different data models may be used within the same
cache or in-�memory database as well as between cache
and in-�memory database partitions.
�[0150] Thus, methods, systems, and articles of man-
ufacture consistent with the present invention provide a
memory-�based relational data store that can act as a
cache to a backend relational database or as a stan-
dalone in-�memory database. The store can run as a
cache in the same virtual memory as an application, or
it can run as a separate process. The data store provides
extremely fast reads, because it avoids the overhead of
RDBMS layers. Further, the data store provides extreme-
ly fast updates, because updates need not be pushed to
disk if the store is mirrored across two machines. A trans-

31 32

EP 1 840 767 A2

18

5

10

15

20

25

30

35

40

45

50

55

action commit can be performed by updating both the
primary and standby stores.
�[0151] When the data store acts as a cache for one or
more backend databases, a high commit performance
can be achieved with transactional integrity, compared
to conventional single-�system caches that require data
to be transferred from the client that made the update all
the way through to the server’s disk before acknowledg-
ing a commit. When the data store acts as a standalone
in-�memory database, it either writes the committed data
through to a backing store or writes the data to a standby
replica and thus avoids write through to a disk.
�[0152] The foregoing description of an implementation
of the invention has been presented for purposes of il-
lustration and description. It is not exhaustive and does
not limit the invention to the precise form disclosed. Mod-
ifications and variations are possible in light of the above
teachings or may be acquired from practicing the inven-
tion. For example, the described implementation in-
cludes software but the present implementation may be
implemented as a combination of hardware and software
or hardware alone. The invention may be implemented
with both object-�oriented and non-�object-�oriented pro-
gramming systems. The scope of the invention is defined
by the claims and their equivalents.

Claims

1. A method in a data processing system having a plu-
rality of independent sub data processing systems,
the data processing system having a program for
managing a database, the method comprising the
steps of: �

providing a database cache; and
distributing the database cache over at least two
of the plurality of sub data processing systems.

2. The method of claim 1, further comprising the steps
of:�

storing information in at least one of the data-
base and the database cache in a relational for-
mat; and
mapping the information to a non-�relational data
model.

3. The method of claim 1, wherein a first information in
the database cache is associated with a first syn-
chronization strategy and a second information in
the database cache is associated with a second syn-
chronization strategy.

4. The method of claim 1, further comprising the step of:�

synchronizing the database with information in
the database cache asynchronous to commit-

ting a transaction.

5. The method of claim 1, further comprising the step of:�

synchronizing the database with information in
the database cache using a resolution rule.

6. The method of claim 1, further comprising the steps
of:�

updating a first information in the database; and
updating the cache with the first information re-
sponsive to updating the first information in the
database.

7. The method of claim 1, further comprising the step of:�

updating a first information in the database
cache on at least two of the plurality of data
processing systems.

8. The method of claim 1, further comprising the step of:�

after updating an information in the database
cache, updating the database with the informa-
tion.

9. The method of claim 8, wherein the database is up-
dated with the information without determining
whether the information in the database cache is a
most-�recent version of the information.

10. The method of claim 8, further comprising the step of:�

prior to committing a transaction, determining
whether at least one of the database cache and
the database contains a current information.

11. The method of claim 1, wherein the database cache
is a database for another database cache.

12. The method of claim 1, wherein the database is an
in-�memory database.

13. The method of claim 1, wherein communication be-
tween components of the database cache is per-
formed using remote direct memory access.

14. The method of claim 1, wherein distributing the da-
tabase cache comprises partitioning the database
cache over the at least two sub data processing sys-
tems.

15. The method of claim 1, wherein distributing the da-
tabase cache comprises replicating the database
cache over at least two of the sub data processing
systems.

33 34

EP 1 840 767 A2

19

5

10

15

20

25

30

35

40

45

50

55

16. The method of claim 1, wherein distributing the da-
tabase cache comprises partitioning the database
cache over the at least two sub data processing sys-
tems, and replicating at least one of the partitions
over at least two of the sub data processing systems.

17. The method of claim 1, further comprising the step of:�

accessing the database cache using a plurality
of data models.

18. A method in a data processing system having a plu-
rality of independent sub data processing systems,
the data processing system having a program for
managing a database, the method comprising the
steps of: �

providing a database cache; and
performing transactions between the database
cache and a plurality of databases.

19. A computer-�readable medium containing instruc-
tions that cause a program to perform a method for
managing a database, the data processing system
having a plurality of independent sub data process-
ing systems, the method comprising the steps of:�

providing a database cache; and
distributing the database cache over at least two
of the plurality of sub data processing systems.

20. The computer- �readable medium of claim 19, where-
in distributing the database cache comprises parti-
tioning the database cache over the at least two sub
data processing systems, and replicating at least one
of the partitions over at least two of the sub data
processing systems.

35 36

EP 1 840 767 A2

20

EP 1 840 767 A2

21

EP 1 840 767 A2

22

EP 1 840 767 A2

23

EP 1 840 767 A2

24

EP 1 840 767 A2

25

EP 1 840 767 A2

26

EP 1 840 767 A2

27

EP 1 840 767 A2

28

EP 1 840 767 A2

29

EP 1 840 767 A2

30

EP 1 840 767 A2

31

EP 1 840 767 A2

32

EP 1 840 767 A2

33

EP 1 840 767 A2

34

EP 1 840 767 A2

35

EP 1 840 767 A2

36

EP 1 840 767 A2

37

EP 1 840 767 A2

38

EP 1 840 767 A2

39

EP 1 840 767 A2

40

EP 1 840 767 A2

41

EP 1 840 767 A2

42

EP 1 840 767 A2

43

EP 1 840 767 A2

44

EP 1 840 767 A2

45

EP 1 840 767 A2

46

EP 1 840 767 A2

47

EP 1 840 767 A2

48

EP 1 840 767 A2

49

EP 1 840 767 A2

50

EP 1 840 767 A2

51

EP 1 840 767 A2

52

EP 1 840 767 A2

53

EP 1 840 767 A2

54

EP 1 840 767 A2

55

EP 1 840 767 A2

56

EP 1 840 767 A2

57

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6243710 B [0095]

Non-patent literature cited in the description

• CHRISTIAN BAUER et al. Hibernate in Action
[0023]

• SVEIN OLAF HVASSHOVD et al. The Clustra tele-
com database: high availability, high throughput, and
real-time response. Proceedings of the 21st Interna-
tional Conference on Very Large Databases, Sep-
tember 1995, 469-477 [0045]

	bibliography
	description
	claims
	drawings

