
(12) United States Patent
Bailey et al.

US0096.1929OB2

US 9,619.290 B2
Apr. 11, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

HARDWARE AND RUNTIME
COORONATED LOAD BALANCING FOR
PARALLEL APPLICATIONS

Applicant: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

Inventors: Peter Bailey, Tucson, AZ (US);
Indrani Paul, Round Rock, TX (US);
Manish Arora, Dublin, CA (US)

Assignee: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/641.220

Filed: Mar. 6, 2015

Prior Publication Data

US 2016/025.9667 A1 Sep. 8, 2016

Int. C.
G06F 9/46 (2006.01)
G06F 9/50 (2006.01)
G06F 9/45 (2006.01)
U.S. C.
CPC G06F 9/505 (2013.01); G06F 8/443

(2013.01); G06F 9/5094 (2013.01)
Field of Classification Search
CPC ... G06F 8/443

USPC 718/104; 717/150, 153, 160
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,317,743 A * 5/1994 Imai G06F 8,452
717/16O

5,416.723 A * 5/1995 Zyl GO8C 1902
T13,300

6,341,371 B1* 1/2002 Tandri..................... G06F 8,452
T12/200

2003/0005404 A1* 1/2003 Bowyer GO6F 17/5045
716, 104

2003/0233648 A1* 12/2003 Earl GO6F 8.65
717/176

2005/0034106 A1* 2/2005 Kornerup G06F 11,323
717 132

2007/0130568 A1* 6/2007 Jung G06F 8.456
T18, 104

2007, 01690.57 A1* 7, 2007 Silvera G06F 8.4452
717/16O

2011/0067014 A1* 3/2011 Song G06F 8.456
717/149

(Continued)

OTHER PUBLICATIONS

Deelman et al., “Improving Lookahead in Parallel Discrete Event
Simulations of Large-scale Applications using Compiler Analysis'.
2001, IEEE.*

(Continued)
Primary Examiner — Phillip H Nguyen
(74) Attorney, Agent, or Firm — Liang & Cheng, PC
(57) ABSTRACT
A method of balancing execution rates for a plurality of
parallel program loops being executed concurrently by a
processor may include estimating a completion time for each
program loop of the plurality of program loops, determining
a difference between the estimated completion time of a first
program loop of the plurality of program loops and the
estimated completion time of a second program loop of the
plurality of program loops, and decreasing the difference by
adjusting an execution rate of the first program loop.

20 Claims, 4 Drawing Sheets

loop balancing
-"

400

is tire loop execubpagate P;
executed aftecimpletion of allprognkops

distaminificanebetween
interoneouisingel "assis." . 8.

ailin fa 411

it. risis
title prabu?e comparatiface with

thresk
43

rashpigtakpore EE bufferinthiding speculative
sign, transition processing cores
tip count, andconfidence V igned to executetheprogram

bit each loop E. 43 EY - E. 315 loor Ea
se plugess |E programopsin decrease the differexce port

rate ofthe pogram
s

complete execution of E.
E. "E"
23 As

US 9,619.290 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0113224 A1* 5, 2011 ISShiki G06F 11.3419
T12/240

2012/0124351 A1* 5/2012 Egger GO6F 15,7867
T12/241

2012/0151463 A1* 6/2012 Kalogeropulos G06F 8.458
717/16O

2014/0344.793 A1* 11/2014 Lee G06F 8,452
717 150

2015/0277874 A1* 10/2015 Haraguchi G06F 8. 443
717/16O

OTHER PUBLICATIONS
Arnold, Dorian C.. et al. "Stack trace analysis for large scale
debugging.” Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International. IEEE, 2007.
Ahn, Dong H., et al. “Scalable temporal order analysis for large
Scale debugging.' High Performance Computing Networking, Stor
age and Analysis, Proceedings of the Conference on. IEEE, 2009.

Tubella, Jordi, and Antonio Gonzalez. “Control speculation in
multithreaded processors through dynamic loop detection.” High
Performance Computer Architecture, 1998. Proceedings., 1998
Fourth International Symposium on. IEEE, 1998.
Gordon-Ross, Ann, and Frank Vahid. “Frequent loop detection
using efficient nonintrusive on-chip hardware.” Computers, IEEE
Transactions on 54.10 (2005): 1203-1215.
De Alba, M., and D. Kaeli. “Path-based hardware loop prediction.”
4th International Conference on Control, Virtual Instrumentation
and Digital Systems. 2002.
Sherwood, Timothy, and Brad Calder. “Loop termination predic
tion.” High Performance Computing. Springer Berlin Heidelberg,
2000.
Li, Jian, Jose F. Martinez, and Michael C. Huang. “The thrifty
barrier: Energy-aware synchronization in shared-memory multipro
cessors.” Software, IEEE Proceedings-. IEEE, 2004.
“Intel(R) 64 and IA-32 Architectures Software Developer's Manual,
vol. 3 (3A, 3B & 3C): System Programming Guide”. Order No.
325384-053US. Jan 2015. 17-1-17-35.

* cited by examiner

US 9,619.290 B2 Sheet 1 of 4 Apr. 11, 2017 U.S. Patent

[GHRIQ OIH F?T JOSS000Id

Z CHRI[C]OIH

US 9,619.290 B2 Sheet 2 of 4

Quununu

Apr. 11, 2017 U.S. Patent

US 9,619.290 B2 Sheet 3 of 4 Apr. 11, 2017 U.S. Patent

|

|

U.S. Patent US 9,619.290 B2 Apr. 11, 2017 Sheet 4 of 4

loop balancing
1. process

400
identify dependent estimate completion time for
instruction blockin b each pro loop

executable program to be g"
executed after completion of

all programloops
401

determine difference between
a the latestestimated completion

in response to identifying the time and each of the earlier
dependentinstruction block estimated letion times

and in response to a 411
backwards branchin the
program, store program
countervalue of the
b. branchin the

OO Sbuffer
p pig compare each difference with

sleep threshold
413

for each programloop, store
values E. termination
bufferincluding speculative

iteration count, non
speculative iteration count, transition processing core(s)
trip count, and confidence assigned to execute the program

bit loop(s) to sleep state after
405 yes-D letion of the program

RS if difference is greater
than sleep threshold

417

storel O
information :Sthe V
"E' decrease the difference 407 by adjusting execution

rate of the program
loop(s)
421

cause processing core
complete execution of assigned to execute the

programloops, pro loop(s) to exit the
execute dependent sleep state prior to the
instruction block latestestimated completion

423 time
419

FIGURE 4

US 9,619,290 B2
1.

HARDWARE AND RUNTIME
COORONATED LOAD BALANCING FOR

PARALLEL APPLICATIONS

TECHNICAL FIELD

This disclosure relates to the parallel computing and, in
particular, to load balancing of parallel computations.

BACKGROUND

Many modern computing systems are capable of perform
ing parallel computations by executing multiple computa
tions simultaneously. Such computing systems may divide a
large computational task into multiple Smaller calculations
that are solved simultaneously in multiple processing cores.
Typically, parallel applications contain both serial and par
allel regions, resulting in global barriers following parallel
regions, in which multiple parallel threads are executed
simultaneously.
A situation where multiple parallel threads complete at

different times prior to reaching such a global barrier results
in one or more of the threads waiting for the other threads
to complete before further processing can continue. This
may be due to any of a multitude of factors, including
inter-core manufacturing process variation, micro-architec
tural and Scheduling effects, load imbalance inherent to the
application, or interference from other applications or the
operating system that affects threads unequally.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example,
and not by way of limitation, in the figures of the accom
panying drawings.

FIG. 1 illustrates an embodiment of a computing system.
FIG. 2 illustrates an embodiment of a processor imple

menting loop termination buffers and loop progress buffers.
FIG. 3 illustrates a loop termination buffer and a loop

progress buffer, according to an embodiment.
FIG. 4 is a flow diagram illustrating a process for bal

ancing execution rates of parallel program loops, according
to an embodiment.

DETAILED DESCRIPTION

The following description sets forth numerous specific
details such as examples of specific systems, components,
methods, and so forth, in order to provide a good under
standing of the embodiments. It will be apparent to one
skilled in the art, however, that at least some embodiments
may be practiced without these specific details. In other
instances, well-known components or methods are not
described in detail or are presented in a simple block
diagram format in order to avoid unnecessarily obscuring
the embodiments. Thus, the specific details set forth are
merely exemplary. Particular implementations may vary
from these exemplary details and still be contemplated to be
within the spirit and scope of the embodiments.

In a parallel computing system where continued execution
after a global barrier is delayed until after multiple parallel
processing threads have reached the global barrier, optimiz
ing performance of the system may include ensuring that
threads that have already reached the global barrier are ready
to continue execution when the remaining threads reach the
global barrier. In conventional parallel computing systems,
the use of power-saving mechanisms may therefore be

10

15

25

30

35

40

45

50

55

60

65

2
limited to avoid significant latency incurred by causing the
waiting threads to enter and exit sleep states, which could in
turn cause delays in continuing execution after all dependent
threads have reached the global barrier.
One embodiment of a parallel computing system manages

the rate of execution for each of the multiple dependent
parallel threads to minimize the differences in the comple
tion times (i.e., arrival times at the global barrier) of the
parallel threads. Additionally, such a parallel computing
system can also determine whether one or more of the
parallel threads can be allowed to enter a sleep state without
delaying continued execution of the program after all
threads have reached the global barrier. This optimization
can be automatically performed by a runtime system that
predicts the completion time of the threads based on an
analysis of past behavior of the application. Specifically, the
parallel computing system may include hardware that gath
ers parallel loop progress information and automatically
(i.e., without input from the compiler, application, or run
time) adjusts the execution rate of one or more of the
multiple parallel threads and/or causes one or more of the
threads to enter a low power consumption sleep state.

In one embodiment, the runtime system balances the
execution rates of the threads to minimize the differences
between the completion times of the threads by adjusting the
power Supplied to the processing cores of a multiprocessor
that are executing the parallel threads. Such power balancing
could be carried out with the goal of optimizing application
performance under a chip-level power constraint. The com
puting system may also include a mechanism to communi
cate the parallel loop progress information to the runtime
system, enabling the runtime to make these higher-level
decisions regarding power and work distribution between
COCS.

FIG. 1 illustrates an embodiment of a computing system
100 which may implement the parallel thread power man
agement process as described above. In general, the com
puting system 100 may be embodied as any of a number of
different types of devices, including but not limited to a
laptop or desktop computer, mobile phone, server, etc. The
computing system 100 includes a number of components
102-108 that can communicate with each other through a
bus 101. In computing system 100, each of the components
102-108 is capable of communicating with any of the other
components 102-108 either directly through the bus 101, or
via one or more of the other components 102-108. The
components 101-108 in computing system 100 are con
tained within a single physical casing, such as a laptop or
desktop chassis, or a mobile phone casing. In alternative
embodiments. Some of the components of computing system
100 may be embodied as peripheral devices such that the
entire computing system 100 does not reside within a single
physical casing.
The computing system 100 also includes user interface

devices for receiving information from or providing infor
mation to a user. Specifically, the computing system 100
includes an input device 102. Such as a keyboard, mouse,
touch-screen, or other device for receiving information from
the user. The computing system 100 displays information to
the user via a display 105. Such as a monitor, light-emitting
diode (LED) display, liquid crystal display, or other output
device.
Computing system 100 additionally includes a network

adapter 107 for transmitting and receiving data over a wired
or wireless network. Computing system 100 also includes
one or more peripheral devices 108. The peripheral devices
108 may include mass storage devices, location detection

US 9,619,290 B2
3

devices, sensors, input devices, or other types of devices that
can be used by the computing system 100.

Computing system 100 includes a processor 104 that is
configured to receive and execute instructions 106a that are
stored in the memory subsystem 106. Memory subsystem
106 includes memory devices used by the computing system
100, such as random-access memory (RAM) modules, read
only memory (ROM) modules, hard disks, and other non
transitory computer-readable media. In one embodiment, the
memory Subsystem 106 may include logic to implement one
or more memory retention controllers each corresponding to
a memory region in the memory subsystem 106. The
memory subsystem 106 includes instructions 106a that are
executable by the processor 104.

FIG. 2 illustrates the processor 104 in further detail,
according to an embodiment. The processor 104 is a mul
tiprocessor that includes multiple processing cores 201, 202,
203, and 204. In other embodiments, the processor 104 may
include fewer or more processing cores. When executing a
program 240 having parallel regions, each of the processing
cores 201-204 may be assigned to execute one of the
multiple parallel threads. Each of the parallel threads may
include one or more of the program loops in the program
240.
The processor 104 implements a runtime system 230,

which represents the hardware and software resources that
manage the execution of the program 240 on the processor
104. FIG. 2 illustrates the runtime system 230 as being
included in the processor 104; however, in alternative
embodiments, the runtime system 230 may also include
hardware and/or software resources that are not located
within the processor 104.

The runtime system 230 is coupled with each of the
multiple processing cores 201-204 and to the power man
agement unit (PMU) 205 that controls the power supplied to
the cores 201-204. The PMU 205 is thus capable of adjusting
the execution rate of any of the cores 201-204 and causing
any of the cores 201-204 to enter a low power consumption
sleep state. Each of the processing cores 201-204 is associ
ated with a loop progress buffer (LPB) and a loop termina
tion buffer (LTB) coupled with the runtime system 230. In
processor 104, the processing cores 201, 202, 203, and 204
correspond to loop termination buffers 211, 212, 213, and
214, respectively, and correspond to loop progress buffers
221, 222, 223, and 224, respectively. The LTBs 221-214 and
LPBS 221-224 store information about program loops being
executed by the processor 104.

During execution of the program 240, the runtime system
230 may manage the execution of multiple program loops of
the program 240 in parallel, storing and updating loop
progress information about each of these program loops in
the LPBS 211-214 and the LTBS 221-224. For each of the
program loops, the runtime system 230 predicts an estimated
completion time based on the loop progress information
associated with that program loop.

For example, execution of the program 240 may result in
a first, second, third, and fourth program loops being
executed in parallel on respective cores 201, 202, 203, and
204, where continued execution past a global barrier
depends on completion of all four program loops. In
response to identifying the program loops (e.g., by identi
fying backwards branching instructions), the runtime system
230 stores and maintains updated loop progress information
for each of the loops, and predicts an estimated completion
time for each of the loops based on the loop progress
information and prior to completion of the program loops.

10

15

25

30

35

40

45

50

55

60

65

4
The runtime system 230 also determines differences

between the estimated completion times for the program
loops. When multiple parallel program loops are associated
with the same global barrier, the runtime system 230 iden
tifies the program loop having the latest estimated comple
tion time. The runtime system 230 then calculates the
differences between each of the earlier estimated completion
times and the latest completion time by subtraction. For
example, the runtime system 230 may subtract a timestamp
value representing the estimated completion time of a first
program loop from a timestamp value representing the latest
estimated completion time, associated with to a second
program loop, to obtain a difference value.

For each of the other program loops having an earlier
estimated completion time, if the completion time of the
program loop differs from (i.e., precedes) the latest esti
mated completion time by more than a sleep threshold
duration, the runtime system 230 causes the processing core
assigned to execute the program loop to enter the sleep state.
In one embodiment, the duration indicated by the sleep
threshold is at least as long as the time to enter the sleep state
plus the time to exit the sleep state. For each program loop
for which the sleep state is to be initiated, the runtime system
230 commands the power management unit (PMU) 205 to
transition the processing core assigned to execute the pro
gram loop to a low power consumption sleep state.

Continuing the previous example, if the runtime system
230 predicts that the latest estimated completion time is
associated with the fourth program loop, the difference
values for the other program loops can be calculated by
Subtracting their respective estimated completion times from
the estimated completion time of the fourth program loop.
For each of the program loops associated with a difference
value that is greater than the sleep threshold, the runtime
system 230 commands the PMU 205 to transition the
processing core 201 assigned to execute the program loop to
a sleep state after the program loop has completed.

For those processing cores that have been transitioned
into a low power consumption sleep state by this process, the
runtime system 230 transitions the processing core out of the
sleep state prior to the latest estimated completion time. The
start of the transition of the processing cores out of the sleep
state precedes the latest estimated completion time by a
sleep exit threshold, which corresponds to the expected time
for the processing core to be ready to execute the next
instruction after exiting the sleep state. The processing core
can then be ready to continue execution as soon as possible
after all dependent program loops have been completed.
When the difference between the estimated completion

time of a program loop and the latest estimated completion
time is less than the sleep threshold, the runtime system 230
commands the PMU 205 to adjust the execution rates of the
program loop in order to decrease the difference between the
estimated completion times, with the goal of minimizing this
difference. For example, if the fourth program loop executed
in core 204 has the latest estimated completion time and the
first program loop executed in core 201 has an estimated
completion time that precedes the latest estimated comple
tion time of the fourth program loop by less than the sleep
threshold duration, then the runtime system 230 commands
the PMU 205 to increase the execution rate of the fourth
program loop by Supplying more power to core 204.

Alternatively, the PMU 205 may reduce the amount of
power supplied to core 201 to decrease the execution rate of
the first program loop, or the PMU 205 may increase the
power to core 204 while simultaneously reducing the power
supplied to core 201, thus redistributing power between the

US 9,619,290 B2
5

cores in order to balance the execution rates of the first and
fourth program loops. In one embodiment, the PMU 205
may redistribute power between multiple cores 201-204 in
order to adjust the execution rates of the multiple program
loops executing on the cores 201-204. The rebalancing of 5
execution rates may be based on estimating the relationship
between the power Supplied to a processing core and the
resulting performance of the processing core; for example,
the runtime system 230 may calculate the amount of power
to Supply to a particular core based on data correlating
different power levels to the resulting execution rates for that
type of core.

In one embodiment, the runtime system 230 recalculates
the estimated completion times for the program loops having
adjusted execution rates one or more times during the
execution of the program loops, and readjusts the execution
rates of the program loops according to the updated esti
mated completion times. Thus, during the course of the
processor 104 executing the multiple parallel threads, if the
runtime system 230 detects that one of the parallel threads
is outpacing any of the others, the runtime system 230 and
PMU 205 can rebalance power between cores to minimize
synchronization time at the global barrier for a given power
consumption constraint.

FIG. 3 illustrates a loop termination buffer (LTB) 211 and
a loop progress buffer (LPB) 221, according to an embodi
ment. The LTB 211 and the LPB 221 store loop progress
information for threads being executed in the processing
core 201 and makes the loop progress information available
to the runtime system 230. The other LTBs 212-214 and
LPBS 222-224 also provide the runtime system 230 with
loop progress information for their respective processing
cores 202-204. The loop progress information allows the
runtime system 230 to predict loop completion times and to
adjust the execution rates of the parallel threads or transition
one or more of the processing cores executing the parallel
threads to low power consumption sleep states. In one
embodiment, the LTBs 212-214 and LPBs 222-224 operate
according to similar principles as the LTB211 and LPB 221
described below.

In one embodiment, the LTB 211 is a hardware structure
that can store loop termination information for each of a
number of program loops of the program 240 that are being
executed in the processing core 201. The stored loop termi
nation information includes a tag 311, a speculative iteration
count SpecIter 312, a non-speculative iteration count
NonSpec 313, a trip count 314, and a confidence bit 315.
The tag field 311 stores a program counter of a branch that
uniquely identifies the program loop. The fields of the LTB
211 are updated by the runtime system 230 during execution
of the program 240.

In one embodiment, the first encounter of a backwards
conditional branch in the program 240 (i.e., a branch speci
fying a negative displacement) causes the runtime system
230 to add the program counter value of the branch to the tag
field 331. The program loop is thus added as an entry in the
LTB 211, and the remaining fields 312-315 are each initial
ized to 0. The fields are then updated based on whether or
not the backwards conditional branch is taken and based on
comparisons between the fields.
The SpecIter field 312 is used in conjunction with the

NonSpec field 313 to track the number of iterations of the
program loop (i.e., the number of times the branch has been
taken consecutively). A branch misprediction may cause the
same loop to be fetched before the original branch resolves
as not taken; thus, the SpecIter field 312 is used to count
the iterations of the loop executed due to the branch pre

10

15

25

30

35

40

45

50

55

60

65

6
diction and can be overwritten with the NonSpec 313 value
when the original branch resolves and thus determines the
branch prediction to be incorrect.
The Trip field 314 stores the number of times the branch

was taken before the last instance where the branch was not
taken, and can be derived from the iteration counters 312
and 313 when the branch is resolved as not taken. The
Confidence bit 315 indicates that the same trip count has
been observed at least twice consecutively.
The loop termination information stored in the LTB211

is used by the runtime system 230 to predict when a program
loop that is currently being executed will terminate. For
example, a difference between the NonSpec 313 value and
the Trip 314 value, when the Confidence bit 315 is asserted,
can be used to estimate the number of remaining iterations
of the loop to be executed before the loop terminates.

In one embodiment, a loop progress buffer (LPB) 221
extends the LTB 211 and includes additional fields for
storing loop progress information, which is updated by the
runtime system 230 during execution of the program 240.
For each of multiple program loops being executed by the
processor 104, the loop progress information may include
fields for completed instructions 321, expected instructions
322, a last start cycle field 323, a completed cycles field 324,
and an expected total cycle count field 325. The LPB 221
may also be used to track power information for each of the
program loops being monitored, such as estimated power
consumption 326 for each program loop and the power state
327 for each program loop (e.g., power being Supplied to the
core assigned to execute the program loop iteration).
The completed instructions field 321 stores the number of

instructions that have been completed during execution of a
program loop that is currently being executed. The com
pleted instructions field is updated by the runtime system
230, which resets the field 321 to “0” at the start of each
program loop, then increments the field 321 for each instruc
tion that is executed until the end of the program loop. In an
alternative embodiment, the number of instructions may be
calculated or estimated based on other features of the
program loop. Such as the branch displacement of the loop.
The runtime system 230 may update the expected instruc

tions field 322 based on the final value of the completed
instructions field 321 upon reaching the end of the program
loop. In one embodiment, the final number of completed
instructions 321 for the loop may simply be copied to the
expected instructions field 322. Alternatively, the expected
instructions 322 field may be updated based on multiple
completed instruction count 321 values; for example, the
expected instructions 322 may be updated over time to
reflect a running average number of completed instructions
321 for the program loop over several iterations.
The runtime system 230 also records a timestamp value

indicating the time when the program loop was last entered.
This timestamp value is stored in the last start cycle field
323, and may be recorded in response to taking the branch
instruction of the program loop.
The completed cycles field 324 stores the number of clock

cycles that have elapsed during the current execution of the
program loop, while the expected cycles field 325 stores the
total number of clock cycles that is expected to have elapsed
by the time the program loop has completed execution. The
expected cycles value 325 may be calculated based on prior
executions of the same program loop. For example, the
value stored in the completed cycles field 324 may have
been copied to the expected cycles field 325 upon comple
tion of the prior program loop. In one embodiment, the

US 9,619,290 B2
7

expected cycles value 325 is calculated based on an average
of cycle counts for multiple previous executions of the same
program loop.

FIG. 3 additionally illustrates a control logic 330, which
may be implemented as part of the runtime system 230,
according to one embodiment. The control logic 330 uses
the loop progress information stored in the LPB 221 and
other LPBs 222-224 to monitor program loops in threads
being executed on the multiple corresponding processing
cores. In one embodiment, the processing cores may be
running threads belonging to the same “single program,
multiple data” (SPMD) process (e.g. Open Multi-Processing
threads).

In one embodiment, the control logic 330 as part of the
runtime system 230 is configured to estimate the completion
time for each of the monitored program loops based on the
loop termination information in the LTB 211 and the loop
progress information in the LPB 221. In one embodiment,
the control logic 330 assumes regular patterns of loop
behavior between Successive executions of the program
loops in order to predict the behavior of future executions of
the program loops. For example, the control logic 330 may
estimate the number of remaining loop iterations for a
currently executing program loop based on the number of
total iterations observed for past executions of the same
program loop, or based on an average of the observed total
iterations for multiple past executions.
The loop termination estimate output 335 of the control

logic 330 indicates the estimated completion time for each
of the loops being tracked. In one embodiment, the LTB211
and LPB 221 include 32 entries, for monitoring up to 32
program loops; accordingly, the loop termination estimate
output 335 indicates up to 32 estimated completion times.
The calculation of the estimated completion time for a

program loop may account for the number of instructions to
be executed for the loop, the number of clock cycles for
executing the instructions at a previous power state, and the
current power State under which the program loop is being
executed. For instance, the control logic 330 may determine
the completion time of a program loop by Subtracting the
completed instructions 321 from the expected instructions
322 for the loop to determine the remaining instructions for
the loop, then calculate the remaining clock cycles until the
loop completes based on the rate of execution of instructions
at the current power state. The control logic 330 can then add
the duration corresponding to the remaining clock cycles to
the current timestamp TSC 331 to determine the estimated
completion time.

In one embodiment, the control logic 330 determines the
estimated completion time for a program loop by Subtracting
the completed cycles value 324 of the loop from the
expected cycles value 325 for that loop, to obtain a remain
ing cycles value. The control logic 330 can then add the
duration corresponding to the remaining cycles to the cur
rent timestamp TSC 331 to determine the estimated comple
tion time. In one embodiment, the estimated completion
time may also be presented in a timestamp format.

Alternatively, the control logic 330 may determine the
estimated completion time for the program loop relative to
the current program counter value, which may be received
by the control logic 330 at the program counter input 332.

The branch prediction output 333 of the control logic 330
indicates whether the next branch is predicted to be taken for
the currently executing loop iteration. In one embodiment,
the control logic 330 predicts whether the branch will be
taken based on the information in the LTB211. For example,
the control logic 330 may predict that the next branch will

5

10

15

25

30

35

40

45

50

55

60

65

8
be taken for each loop iteration until the iteration counters
312 and 313 match the trip field 314 with the confidence bit
Set.
While the confidence bit 315 indicates a measure of

certainty for the Trip value 314, the confidence output 334
of the control logic 330 may indicate a measure of certainty
of one or more of the other outputs from the control logic
330, such as the branch prediction output 333 or the loop
termination estimate 335. The confidence value 334 may be
calculated based on the information in the LTB211 and the
LPB 221, and may also be affected by the accuracy of past
predictions determined from this information. In one
embodiment, the confidence output value 334 is a single bit;
alternatively, the confidence output value 334 may be a
larger integer value, or may include multiple values to
indicate a level of certainty associated with multiple loop
termination estimates or multiple branch predictions.

In some embodiments the control logic 330 or other parts
of the runtime system 230 uses the information in the LTB
211 and the LPB 221 to calculate other information about the
monitored program loops. For example, the runtime system
230 may identify the program loops that have the greatest
number of instructions or cycles, and/or identify the pro
gram loops having variable or constant numbers of itera
tions. The runtime 230 may also determine power consump
tion information, such as the power efficiency of each of the
processing cores 201-204 or may identify program loops
that cause the violation of local power constraints.

For each of the processing cores 201-204, the runtime
system 230 can control the PMU 205 to adjust the execution
rate for the core based on the loop termination estimate 335,
the confidence value 334, and other values calculated based
on the corresponding LTBs 211-214 and/or LPBS 221-214.
For example, the runtime system 230 may use the loop
termination information for each of the loops executing on
the cores 201-204 to determine which of the cores need to
be allocated more or less power to speed or slow the rate of
execution. The runtime system 230 then adjusts the execu
tion rates of the cores 201-204 in order to minimize the
differences in the completion times of the program loops
being executed in parallel.

FIG. 4 is a flow diagram illustrating a process 400 for
balancing the execution rates of multiple parallel program
loops to minimize the differences in their completion times
prior to a global barrier, according to an embodiment. The
loop balancing process 400 may be executed by the runtime
system 230, using the loop termination information and the
loop progress information stored in the LTBs 211-214 and
the LPBs 221-224, respectively.

Process 400 begins at block 401. At block 401, the
runtime system 230 identifies at least one dependent serial
instruction block in the program 240 to be executed after the
completion of multiple parallel program loops of the pro
gram 240. In other words, the execution of the dependent
instruction block does not begin until all of the multiple
parallel program loops have completed (i.e., a global barrier
is reached). From block 401, the process 400 continues at
block 403.
At block 403, the runtime system 230 stores a program

counter value of a backwards branch in the program in
response to encountering the backwards branch in the pro
gram 240. In one embodiment, the runtime system 230
stores the program counter value of the backwards branch in
the tag 311 field of one of the LTBs 211-214 corresponding
to the processing core executing the branch to establish an
entry for monitoring the progress of the program loop
associated with the branch. For example, the runtime system

US 9,619,290 B2

230 stores the program counter value of a backwards branch
being executed by core 201 in the tag 311 field of the LTB
211, which corresponds to core 201. The other fields 312
315 in the LTB211 and 321-327 in the LPB 221 comprising
the entry are also initialized. From block 403, the process
400 continues at block 405.

At block 405, the runtime system 230 stores loop termi
nation information in the fields 311-315 of the LTB 211. In
addition to the program counter of a branch associated with
the loop stored in the tag field 311, the loop termination
information stored in the LTB 211 also includes the specu
lative iteration count 312, non-speculative iteration count
313, trip count 314, and confidence bit 315. Loop termina
tion information is similarly stored in the other LTBs 212
214 for loops being executed in the other cores 202-204.

At block 407, the runtime system 230 additionally stores
loop progress information for each of the program loops in
the LPB 221. In one embodiment, the storing of loop
progress information may be performed when one or more
dependent instruction blocks has been identified, as pro
vided at block 401. The runtime system 230 similarly stores
loop progress information in other LPBs 222-224 for loops
being executed in the other cores 202-204. Thus, in one
embodiment, the runtime system 230 stores and updates
loop progress information in the LPBS 221-224 only for
multiple parallel loops that precede a global barrier, while
storing and updating loop termination information in the
LTBs 211-214 for both parallel and non-parallel loops.
Alternatively, the loop progress information may be stored
and updated even for non-parallel loops.

In one embodiment, the loop progress information stored
in the LPBs 221-224 includes the total number of expected
instructions 322, a current number of completed cycles 324,
and a number of total expected cycles 325 for each of the
monitored program loops. The LPBs 221-224 may addition
ally store power information, such as the power consump
tion 326 of the program loop and the power state 327 of the
processing core that is executing the loop. From block 407,
the process 400 continues at block 409.

At block 409, the runtime system 230 estimates a comple
tion time for each of the parallel program loops preceding
the global barrier. The estimated completion time is deter
mined based on the information stored in the LTBs 211-214
and in the LPBs 221-224. From block 409, the process 400
continues at block 411.

At block 411, the runtime system 230 identifies the latest
of the estimated completion times, then determines a dif
ference between the latest estimated completion time and
each of the earlier estimated completion times. The runtime
system 230 can then decrease these differences in the
estimated completion times by adjusting the execution rates
of the program loops. In one embodiment, adjusting the
execution rates includes Supplying additional power to cores
executing the program loops having later estimated comple
tion times and/or decreasing the amount of power Supplied
to the cores executing program loops having earlier esti
mated completion times. For program loops having an
estimated completion time that more than a threshold
amount earlier than the latest estimated completion time, the
adjustment of the execution rate may include transitioning
the program loop to a power saving sleep state.

Accordingly, at block 415, the runtime system 230 evalu
ates each of the calculated differences from block 411 to
determine whether the difference is greater than a sleep
threshold. In one embodiment, the sleep threshold is a
duration value that is greater than or equal to the time for a
processing core to enter and then exit the sleep state.

10

15

25

30

35

40

45

50

55

60

65

10
For each program loop corresponding to a difference at

block 415 that is not greater than the sleep threshold, the
process 400 continues at block 421. At block 421, the
runtime system 230 adjusts the execution rate of the pro
gram loops by individually adjusting the amount of power
Supplied to each of the processing cores executing the
program loops. For example, the runtime system 230 may
increase the power Supplied to cores executing loops that
have later estimated completion times and/or decrease the
power Supplied to cores executing loops that have earlier
estimated completion times in order to increase or decrease,
respectively, the rates of execution for the loops. By these
operations, the runtime system 230 minimizes, or at least
decreases, the differences between the estimated completion
times of all of the program loops.

For each program loop having a difference at block 415
that is greater than the sleep threshold, the process 400
continues at block 417. Thus, each of the program loops for
which the process 400 arrives at block 417 is expected to
complete with sufficient time to enter and exit the sleep state
before the last program loop in the parallel section com
pletes, according to the latest estimated completion time
identified at block 411. The runtime system 230 transitions
the processing cores assigned to execute these program
loops to low power consumption sleep states after comple
tion of their respective program loops. From block 417, the
process 400 continues at block 419.
At block 419, the runtime system 230 causes the process

ing cores that have been transitioned to a sleep state at block
417 to exit their respective sleep states prior to the latest
estimated completion time. This allows the cores to be ready
to execute the dependent serial instruction block upon
completion of the last parallel thread in the parallel section.
In one embodiment, each of the processing cores are tran
sitioned out of the sleep state at a time preceding the latest
estimated completion time by at least a sleep exit duration.
The sleep exit duration represents the duration between the
time at which the exit from sleep state is initiated and the
time at which the core is ready to execute the next instruc
tion.

In one embodiment, the balancing of power Supplied to
the processing cores 201-204 as provided at block 421 can
be influenced by the number of processing cores that are
transitioned to the sleep state at block 417. For example,
cores that are placed in the sleep state may correspond to a
certain amount of power savings that may be redistributed to
the non-sleeping cores. These adjustments may be made
according to a predetermined local power constraint or
power consumption budget that applies to the processing
cores, to the entire chip, or to another grouping of compo
nentS.

At block 423, the runtime system 230 completes execu
tion of the parallel program loops, then executes the depen
dent instruction block upon reaching the global barrier.
From block 423, the process 400 continues back to block
401. Thus, the process 400 repeats for the next group of
parallel threads, which may correspond to the dependent
instruction block executed at block 423 or to a subsequent
instruction block.

In one embodiment, the runtime system 230 is imple
mented primarily in hardware (e.g., the processor 104);
accordingly, the process 400 is executed primarily by hard
ware components. Alternatively, Some or all of the opera
tions of process 400 may be implemented using software
(e.g., implemented in an operating System), or using a
combination of software and hardware.

US 9,619,290 B2
11

As used herein, the term “coupled to may mean coupled
directly or indirectly through one or more intervening com
ponents. Any of the signals provided over various buses
described herein may be time multiplexed with other signals
and provided over one or more common buses. Additionally,
the interconnection between circuit components or blocks
may be shown as buses or as single signal lines. Each of the
buses may alternatively be one or more single signal lines
and each of the single signal lines may alternatively be
buses.

Certain embodiments may be implemented as a computer
program product that may include instructions stored on a
non-transitory computer-readable medium. These instruc
tions may be used to program a general-purpose or special
purpose processor to perform the described operations. A
computer-readable medium includes any mechanism for
storing or transmitting information in a form (e.g., Software,
processing application) readable by a machine (e.g., a com
puter). The non-transitory computer-readable storage
medium may include, but is not limited to, magnetic storage
medium (e.g., floppy diskette); optical storage medium (e.g.,
CD-ROM); magneto-optical storage medium; read-only
memory (ROM); random-access memory (RAM); erasable
programmable memory (e.g., EPROM and EEPROM); flash
memory, or another type of medium Suitable for storing
electronic instructions.

Additionally, some embodiments may be practiced in
distributed computing environments where the computer
readable medium is stored on and/or executed by more than
one computer system. In addition, the information trans
ferred between computer systems may either be pulled or
pushed across the transmission medium connecting the
computer systems.

Generally, a data structure representing the processor 104
and/or portions thereof carried on the computer-readable
storage medium may be a database or other data structure
which can be read by a program and used, directly or
indirectly, to fabricate the hardware comprising the the
processor 104. For example, the data structure may be a
behavioral-level description or register-transfer level (RTL)
description of the hardware functionality in a high level
design language (HDL) such as Verilog or VHDL. The
description may be read by a synthesis tool which may
synthesize the description to produce a netlist comprising a
list of gates from a synthesis library. The netlist comprises
a set of gates which also represent the functionality of the
hardware comprising the the processor 104. The netlist may
then be placed and routed to produce a data set describing
geometric shapes to be applied to masks. The masks may
then be used in various semiconductor fabrication steps to
produce a semiconductor circuit or circuits corresponding to
the processor 104. Alternatively, the database on the com
puter-readable storage medium may be the netlist (with or
without the synthesis library) or the data set, as desired, or
Graphic Data System (GDS) II data.

Although the operations of the method(s) herein are
shown and described in a particular order, the order of the
operations of each method may be altered so that certain
operations may be performed in an inverse order or so that
certain operation may be performed, at least in part, con
currently with other operations. In another embodiment,
instructions or sub-operations of distinct operations may be
in an intermittent and/or alternating manner.

In the foregoing specification, the embodiments have
been described with reference to specific exemplary embodi
ments thereof. It will, however, be evident that various
modifications and changes may be made thereto without

10

15

25

30

35

40

45

50

55

60

65

12
departing from the broader spirit and scope of the embodi
ments as set forth in the appended claims. The specification
and drawings are, accordingly, to be regarded in an illus
trative sense rather than a restrictive sense.

What is claimed is:
1. A method, comprising:
estimating a completion time for each program loop of a

plurality of program loops executed by a processor,
determining a difference between the estimated comple

tion time of a first program loop of the plurality of
program loops and the estimated completion time of a
second program loop of the plurality of program loops,
wherein the first program loop is executed concurrently
with the second program loop; and

decreasing the difference by adjusting an execution rate of
the first program loop.

2. The method of claim 1, further comprising storing loop
progress information for each of the plurality of program
loops in one or more loop progress buffers, wherein the
estimated completion time for each program loop of the
plurality of program loops is determined based on the loop
progress information.

3. The method of claim 2, wherein the plurality of
program loops is defined in an executable program executed
by the processor, and wherein the method further comprises:

identifying a dependent instruction block in the execut
able program to be executed after completion of all of
the program loops of the plurality of program loops;
and

in response to identifying the dependent instruction block
and in response to a backwards branch in the program
corresponding to the first program loop, storing a
program counter value of the backwards branch in the
one or more loop progress buffers.

4. The method of claim 2, wherein for each program loop
of the plurality of program loops, the loop progress infor
mation comprises a number of instructions, a number of
completed cycles, and a number of expected total cycles for
the program loop.

5. The method of claim 2, wherein for each program loop
of the plurality of program loops, the loop progress infor
mation comprises a power state of a processing core execut
ing the program loop and an estimated power consumption
for the program loop.

6. The method of claim 2, further comprising:
for each program loop of the plurality of program loops,

storing values in one or more loop termination buffers
including a speculative iteration count, a non-specula
tive iteration count, a trip count, and a confidence bit,
wherein estimating the completion time is based on the
values stored in the one or more loop termination
buffers.

7. The method of claim 1, wherein the processor com
prises a plurality of processing cores, and wherein adjusting
the execution rate of the first program loop comprises
adjusting an amount of power Supplied to a processing core
executing the first program loop.

8. The method of claim 1, further comprising:
comparing the difference with a sleep threshold; and
transitioning a processing core assigned to execute the

first program loop to a sleep state after completion of
the first program loop if the difference is greater than
the sleep threshold, wherein the first program loop has
an earlier estimated completion time than the second
program loop.

US 9,619,290 B2
13

9. The method of claim 8, wherein the sleep threshold is
longer than a duration for the first program loop to enter the
sleep state plus a duration for the first program loop to exit
the sleep state.

10. The method of claim 8, further comprising causing the 5
processing core assigned to execute the first program loop to
exit the sleep state prior to the estimated completion time of
the second loop.

11. An apparatus, comprising:
one or more loop progress buffers configured to store loop 10

progress information for each of a plurality of program
loops executed by a set of processing cores;

a runtime system coupled with one or more loop progress
buffers and configured to:

estimate a completion time for each of the plurality of 15
program loops based on the loop progress information;

determine a difference between the estimated completion
time of a first program loop of the plurality of program
loops and the estimated completion time of a second
program loop of the plurality of program loops, 20
wherein the first program loop is executed concurrently
with the second program loop; and

a power management unit coupled with the runtime
System, wherein the power management unit is config
ured to decrease the difference by adjusting an execu- 25
tion rate of the first program loop.

12. The apparatus of claim 11, wherein the set of pro
cessing cores comprises multiple processing cores each
configured to execute one of the plurality of program loops.

13. The apparatus of claim 12, wherein the power man- 30
agement unit is further configured to adjust the execution
rate of the first program loop by redistributing power
between two or more of the multiple processing cores.

14. The apparatus of claim 12, wherein the power man
agement unit is further configured to cause at least one of the 35
multiple cores to enter a sleep state based on the difference
between the estimated completion time of the first program
loop and the estimated completion time of the second
program loop.

15. The apparatus of claim 11, wherein for each program 40
loop of the plurality of program loops, the loop progress
information comprises a number of instructions, a number of
completed cycles, and a number of expected total cycles, a
power state of a processing core executing the program loop,
and an estimated power consumption for the program loop.

14
16. The apparatus of claim 11, further comprising one or

more loop termination buffers coupled with the runtime
system, wherein the one or more loop termination buffers are
configured to, for each of the plurality of program loops,
Store loop termination information comprising a speculative
iteration count, a non-speculative iteration count, a trip
count, and a confidence bit, wherein the runtime system is
further configured to estimate the completion time based on
the loop termination information.

17. A non-transitory computer-readable medium storing
instructions that when executed by a processor, cause the
processor to perform a method comprising:

estimating a completion time for each program loop of a
plurality of program loops executed by the processor;

determining a difference between the estimated comple
tion time of a first program loop of the plurality of
program loops and the estimated completion time of a
second program loop of the plurality of program loops,
wherein the first program loop is executed concurrently
with the second program loop; and

decreasing the difference by adjusting an execution rate of
the first program loop.

18. The non-transitory computer-readable medium of
claim 17, wherein the method further comprises storing loop
progress information for each of the plurality of program
loops in one or more loop progress buffers, wherein the
estimated completion time for each program loop of the
plurality of program loops is determined based on the loop
progress information.

19. The non-transitory computer-readable medium of
claim 17, wherein the processor comprises a plurality of
processing cores, and wherein adjusting the execution rate
of the first program loop comprises adjusting an amount of
power supplied to a processing core executing the first
program loop.

20. The non-transitory computer-readable medium of
claim 17, wherein the method further comprises:

comparing the difference with a sleep threshold; and
transitioning a processing core assigned to execute the

first program loop to a sleep state after completion of
the first program loop if the difference is greater than
the sleep threshold, wherein the first program loop has
an earlier estimated completion time than the second
program loop.

