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HARDWARE AND RUNTIME 
COORONATED LOAD BALANCING FOR 

PARALLEL APPLICATIONS 

TECHNICAL FIELD 

This disclosure relates to the parallel computing and, in 
particular, to load balancing of parallel computations. 

BACKGROUND 

Many modern computing systems are capable of perform 
ing parallel computations by executing multiple computa 
tions simultaneously. Such computing systems may divide a 
large computational task into multiple Smaller calculations 
that are solved simultaneously in multiple processing cores. 
Typically, parallel applications contain both serial and par 
allel regions, resulting in global barriers following parallel 
regions, in which multiple parallel threads are executed 
simultaneously. 
A situation where multiple parallel threads complete at 

different times prior to reaching such a global barrier results 
in one or more of the threads waiting for the other threads 
to complete before further processing can continue. This 
may be due to any of a multitude of factors, including 
inter-core manufacturing process variation, micro-architec 
tural and Scheduling effects, load imbalance inherent to the 
application, or interference from other applications or the 
operating system that affects threads unequally. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present disclosure is illustrated by way of example, 
and not by way of limitation, in the figures of the accom 
panying drawings. 

FIG. 1 illustrates an embodiment of a computing system. 
FIG. 2 illustrates an embodiment of a processor imple 

menting loop termination buffers and loop progress buffers. 
FIG. 3 illustrates a loop termination buffer and a loop 

progress buffer, according to an embodiment. 
FIG. 4 is a flow diagram illustrating a process for bal 

ancing execution rates of parallel program loops, according 
to an embodiment. 

DETAILED DESCRIPTION 

The following description sets forth numerous specific 
details such as examples of specific systems, components, 
methods, and so forth, in order to provide a good under 
standing of the embodiments. It will be apparent to one 
skilled in the art, however, that at least some embodiments 
may be practiced without these specific details. In other 
instances, well-known components or methods are not 
described in detail or are presented in a simple block 
diagram format in order to avoid unnecessarily obscuring 
the embodiments. Thus, the specific details set forth are 
merely exemplary. Particular implementations may vary 
from these exemplary details and still be contemplated to be 
within the spirit and scope of the embodiments. 

In a parallel computing system where continued execution 
after a global barrier is delayed until after multiple parallel 
processing threads have reached the global barrier, optimiz 
ing performance of the system may include ensuring that 
threads that have already reached the global barrier are ready 
to continue execution when the remaining threads reach the 
global barrier. In conventional parallel computing systems, 
the use of power-saving mechanisms may therefore be 
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2 
limited to avoid significant latency incurred by causing the 
waiting threads to enter and exit sleep states, which could in 
turn cause delays in continuing execution after all dependent 
threads have reached the global barrier. 
One embodiment of a parallel computing system manages 

the rate of execution for each of the multiple dependent 
parallel threads to minimize the differences in the comple 
tion times (i.e., arrival times at the global barrier) of the 
parallel threads. Additionally, such a parallel computing 
system can also determine whether one or more of the 
parallel threads can be allowed to enter a sleep state without 
delaying continued execution of the program after all 
threads have reached the global barrier. This optimization 
can be automatically performed by a runtime system that 
predicts the completion time of the threads based on an 
analysis of past behavior of the application. Specifically, the 
parallel computing system may include hardware that gath 
ers parallel loop progress information and automatically 
(i.e., without input from the compiler, application, or run 
time) adjusts the execution rate of one or more of the 
multiple parallel threads and/or causes one or more of the 
threads to enter a low power consumption sleep state. 

In one embodiment, the runtime system balances the 
execution rates of the threads to minimize the differences 
between the completion times of the threads by adjusting the 
power Supplied to the processing cores of a multiprocessor 
that are executing the parallel threads. Such power balancing 
could be carried out with the goal of optimizing application 
performance under a chip-level power constraint. The com 
puting system may also include a mechanism to communi 
cate the parallel loop progress information to the runtime 
system, enabling the runtime to make these higher-level 
decisions regarding power and work distribution between 
COCS. 

FIG. 1 illustrates an embodiment of a computing system 
100 which may implement the parallel thread power man 
agement process as described above. In general, the com 
puting system 100 may be embodied as any of a number of 
different types of devices, including but not limited to a 
laptop or desktop computer, mobile phone, server, etc. The 
computing system 100 includes a number of components 
102-108 that can communicate with each other through a 
bus 101. In computing system 100, each of the components 
102-108 is capable of communicating with any of the other 
components 102-108 either directly through the bus 101, or 
via one or more of the other components 102-108. The 
components 101-108 in computing system 100 are con 
tained within a single physical casing, such as a laptop or 
desktop chassis, or a mobile phone casing. In alternative 
embodiments. Some of the components of computing system 
100 may be embodied as peripheral devices such that the 
entire computing system 100 does not reside within a single 
physical casing. 
The computing system 100 also includes user interface 

devices for receiving information from or providing infor 
mation to a user. Specifically, the computing system 100 
includes an input device 102. Such as a keyboard, mouse, 
touch-screen, or other device for receiving information from 
the user. The computing system 100 displays information to 
the user via a display 105. Such as a monitor, light-emitting 
diode (LED) display, liquid crystal display, or other output 
device. 
Computing system 100 additionally includes a network 

adapter 107 for transmitting and receiving data over a wired 
or wireless network. Computing system 100 also includes 
one or more peripheral devices 108. The peripheral devices 
108 may include mass storage devices, location detection 
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devices, sensors, input devices, or other types of devices that 
can be used by the computing system 100. 

Computing system 100 includes a processor 104 that is 
configured to receive and execute instructions 106a that are 
stored in the memory subsystem 106. Memory subsystem 
106 includes memory devices used by the computing system 
100, such as random-access memory (RAM) modules, read 
only memory (ROM) modules, hard disks, and other non 
transitory computer-readable media. In one embodiment, the 
memory Subsystem 106 may include logic to implement one 
or more memory retention controllers each corresponding to 
a memory region in the memory subsystem 106. The 
memory subsystem 106 includes instructions 106a that are 
executable by the processor 104. 

FIG. 2 illustrates the processor 104 in further detail, 
according to an embodiment. The processor 104 is a mul 
tiprocessor that includes multiple processing cores 201, 202, 
203, and 204. In other embodiments, the processor 104 may 
include fewer or more processing cores. When executing a 
program 240 having parallel regions, each of the processing 
cores 201-204 may be assigned to execute one of the 
multiple parallel threads. Each of the parallel threads may 
include one or more of the program loops in the program 
240. 
The processor 104 implements a runtime system 230, 

which represents the hardware and software resources that 
manage the execution of the program 240 on the processor 
104. FIG. 2 illustrates the runtime system 230 as being 
included in the processor 104; however, in alternative 
embodiments, the runtime system 230 may also include 
hardware and/or software resources that are not located 
within the processor 104. 

The runtime system 230 is coupled with each of the 
multiple processing cores 201-204 and to the power man 
agement unit (PMU) 205 that controls the power supplied to 
the cores 201-204. The PMU 205 is thus capable of adjusting 
the execution rate of any of the cores 201-204 and causing 
any of the cores 201-204 to enter a low power consumption 
sleep state. Each of the processing cores 201-204 is associ 
ated with a loop progress buffer (LPB) and a loop termina 
tion buffer (LTB) coupled with the runtime system 230. In 
processor 104, the processing cores 201, 202, 203, and 204 
correspond to loop termination buffers 211, 212, 213, and 
214, respectively, and correspond to loop progress buffers 
221, 222, 223, and 224, respectively. The LTBs 221-214 and 
LPBS 221-224 store information about program loops being 
executed by the processor 104. 

During execution of the program 240, the runtime system 
230 may manage the execution of multiple program loops of 
the program 240 in parallel, storing and updating loop 
progress information about each of these program loops in 
the LPBS 211-214 and the LTBS 221-224. For each of the 
program loops, the runtime system 230 predicts an estimated 
completion time based on the loop progress information 
associated with that program loop. 

For example, execution of the program 240 may result in 
a first, second, third, and fourth program loops being 
executed in parallel on respective cores 201, 202, 203, and 
204, where continued execution past a global barrier 
depends on completion of all four program loops. In 
response to identifying the program loops (e.g., by identi 
fying backwards branching instructions), the runtime system 
230 stores and maintains updated loop progress information 
for each of the loops, and predicts an estimated completion 
time for each of the loops based on the loop progress 
information and prior to completion of the program loops. 
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4 
The runtime system 230 also determines differences 

between the estimated completion times for the program 
loops. When multiple parallel program loops are associated 
with the same global barrier, the runtime system 230 iden 
tifies the program loop having the latest estimated comple 
tion time. The runtime system 230 then calculates the 
differences between each of the earlier estimated completion 
times and the latest completion time by subtraction. For 
example, the runtime system 230 may subtract a timestamp 
value representing the estimated completion time of a first 
program loop from a timestamp value representing the latest 
estimated completion time, associated with to a second 
program loop, to obtain a difference value. 

For each of the other program loops having an earlier 
estimated completion time, if the completion time of the 
program loop differs from (i.e., precedes) the latest esti 
mated completion time by more than a sleep threshold 
duration, the runtime system 230 causes the processing core 
assigned to execute the program loop to enter the sleep state. 
In one embodiment, the duration indicated by the sleep 
threshold is at least as long as the time to enter the sleep state 
plus the time to exit the sleep state. For each program loop 
for which the sleep state is to be initiated, the runtime system 
230 commands the power management unit (PMU) 205 to 
transition the processing core assigned to execute the pro 
gram loop to a low power consumption sleep state. 

Continuing the previous example, if the runtime system 
230 predicts that the latest estimated completion time is 
associated with the fourth program loop, the difference 
values for the other program loops can be calculated by 
Subtracting their respective estimated completion times from 
the estimated completion time of the fourth program loop. 
For each of the program loops associated with a difference 
value that is greater than the sleep threshold, the runtime 
system 230 commands the PMU 205 to transition the 
processing core 201 assigned to execute the program loop to 
a sleep state after the program loop has completed. 

For those processing cores that have been transitioned 
into a low power consumption sleep state by this process, the 
runtime system 230 transitions the processing core out of the 
sleep state prior to the latest estimated completion time. The 
start of the transition of the processing cores out of the sleep 
state precedes the latest estimated completion time by a 
sleep exit threshold, which corresponds to the expected time 
for the processing core to be ready to execute the next 
instruction after exiting the sleep state. The processing core 
can then be ready to continue execution as soon as possible 
after all dependent program loops have been completed. 
When the difference between the estimated completion 

time of a program loop and the latest estimated completion 
time is less than the sleep threshold, the runtime system 230 
commands the PMU 205 to adjust the execution rates of the 
program loop in order to decrease the difference between the 
estimated completion times, with the goal of minimizing this 
difference. For example, if the fourth program loop executed 
in core 204 has the latest estimated completion time and the 
first program loop executed in core 201 has an estimated 
completion time that precedes the latest estimated comple 
tion time of the fourth program loop by less than the sleep 
threshold duration, then the runtime system 230 commands 
the PMU 205 to increase the execution rate of the fourth 
program loop by Supplying more power to core 204. 

Alternatively, the PMU 205 may reduce the amount of 
power supplied to core 201 to decrease the execution rate of 
the first program loop, or the PMU 205 may increase the 
power to core 204 while simultaneously reducing the power 
supplied to core 201, thus redistributing power between the 
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cores in order to balance the execution rates of the first and 
fourth program loops. In one embodiment, the PMU 205 
may redistribute power between multiple cores 201-204 in 
order to adjust the execution rates of the multiple program 
loops executing on the cores 201-204. The rebalancing of 5 
execution rates may be based on estimating the relationship 
between the power Supplied to a processing core and the 
resulting performance of the processing core; for example, 
the runtime system 230 may calculate the amount of power 
to Supply to a particular core based on data correlating 
different power levels to the resulting execution rates for that 
type of core. 

In one embodiment, the runtime system 230 recalculates 
the estimated completion times for the program loops having 
adjusted execution rates one or more times during the 
execution of the program loops, and readjusts the execution 
rates of the program loops according to the updated esti 
mated completion times. Thus, during the course of the 
processor 104 executing the multiple parallel threads, if the 
runtime system 230 detects that one of the parallel threads 
is outpacing any of the others, the runtime system 230 and 
PMU 205 can rebalance power between cores to minimize 
synchronization time at the global barrier for a given power 
consumption constraint. 

FIG. 3 illustrates a loop termination buffer (LTB) 211 and 
a loop progress buffer (LPB) 221, according to an embodi 
ment. The LTB 211 and the LPB 221 store loop progress 
information for threads being executed in the processing 
core 201 and makes the loop progress information available 
to the runtime system 230. The other LTBs 212-214 and 
LPBS 222-224 also provide the runtime system 230 with 
loop progress information for their respective processing 
cores 202-204. The loop progress information allows the 
runtime system 230 to predict loop completion times and to 
adjust the execution rates of the parallel threads or transition 
one or more of the processing cores executing the parallel 
threads to low power consumption sleep states. In one 
embodiment, the LTBs 212-214 and LPBs 222-224 operate 
according to similar principles as the LTB211 and LPB 221 
described below. 

In one embodiment, the LTB 211 is a hardware structure 
that can store loop termination information for each of a 
number of program loops of the program 240 that are being 
executed in the processing core 201. The stored loop termi 
nation information includes a tag 311, a speculative iteration 
count SpecIter 312, a non-speculative iteration count 
NonSpec 313, a trip count 314, and a confidence bit 315. 
The tag field 311 stores a program counter of a branch that 
uniquely identifies the program loop. The fields of the LTB 
211 are updated by the runtime system 230 during execution 
of the program 240. 

In one embodiment, the first encounter of a backwards 
conditional branch in the program 240 (i.e., a branch speci 
fying a negative displacement) causes the runtime system 
230 to add the program counter value of the branch to the tag 
field 331. The program loop is thus added as an entry in the 
LTB 211, and the remaining fields 312-315 are each initial 
ized to 0. The fields are then updated based on whether or 
not the backwards conditional branch is taken and based on 
comparisons between the fields. 
The SpecIter field 312 is used in conjunction with the 

NonSpec field 313 to track the number of iterations of the 
program loop (i.e., the number of times the branch has been 
taken consecutively). A branch misprediction may cause the 
same loop to be fetched before the original branch resolves 
as not taken; thus, the SpecIter field 312 is used to count 
the iterations of the loop executed due to the branch pre 
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6 
diction and can be overwritten with the NonSpec 313 value 
when the original branch resolves and thus determines the 
branch prediction to be incorrect. 
The Trip field 314 stores the number of times the branch 

was taken before the last instance where the branch was not 
taken, and can be derived from the iteration counters 312 
and 313 when the branch is resolved as not taken. The 
Confidence bit 315 indicates that the same trip count has 
been observed at least twice consecutively. 
The loop termination information stored in the LTB211 

is used by the runtime system 230 to predict when a program 
loop that is currently being executed will terminate. For 
example, a difference between the NonSpec 313 value and 
the Trip 314 value, when the Confidence bit 315 is asserted, 
can be used to estimate the number of remaining iterations 
of the loop to be executed before the loop terminates. 

In one embodiment, a loop progress buffer (LPB) 221 
extends the LTB 211 and includes additional fields for 
storing loop progress information, which is updated by the 
runtime system 230 during execution of the program 240. 
For each of multiple program loops being executed by the 
processor 104, the loop progress information may include 
fields for completed instructions 321, expected instructions 
322, a last start cycle field 323, a completed cycles field 324, 
and an expected total cycle count field 325. The LPB 221 
may also be used to track power information for each of the 
program loops being monitored, such as estimated power 
consumption 326 for each program loop and the power state 
327 for each program loop (e.g., power being Supplied to the 
core assigned to execute the program loop iteration). 
The completed instructions field 321 stores the number of 

instructions that have been completed during execution of a 
program loop that is currently being executed. The com 
pleted instructions field is updated by the runtime system 
230, which resets the field 321 to “0” at the start of each 
program loop, then increments the field 321 for each instruc 
tion that is executed until the end of the program loop. In an 
alternative embodiment, the number of instructions may be 
calculated or estimated based on other features of the 
program loop. Such as the branch displacement of the loop. 
The runtime system 230 may update the expected instruc 

tions field 322 based on the final value of the completed 
instructions field 321 upon reaching the end of the program 
loop. In one embodiment, the final number of completed 
instructions 321 for the loop may simply be copied to the 
expected instructions field 322. Alternatively, the expected 
instructions 322 field may be updated based on multiple 
completed instruction count 321 values; for example, the 
expected instructions 322 may be updated over time to 
reflect a running average number of completed instructions 
321 for the program loop over several iterations. 
The runtime system 230 also records a timestamp value 

indicating the time when the program loop was last entered. 
This timestamp value is stored in the last start cycle field 
323, and may be recorded in response to taking the branch 
instruction of the program loop. 
The completed cycles field 324 stores the number of clock 

cycles that have elapsed during the current execution of the 
program loop, while the expected cycles field 325 stores the 
total number of clock cycles that is expected to have elapsed 
by the time the program loop has completed execution. The 
expected cycles value 325 may be calculated based on prior 
executions of the same program loop. For example, the 
value stored in the completed cycles field 324 may have 
been copied to the expected cycles field 325 upon comple 
tion of the prior program loop. In one embodiment, the 



US 9,619,290 B2 
7 

expected cycles value 325 is calculated based on an average 
of cycle counts for multiple previous executions of the same 
program loop. 

FIG. 3 additionally illustrates a control logic 330, which 
may be implemented as part of the runtime system 230, 
according to one embodiment. The control logic 330 uses 
the loop progress information stored in the LPB 221 and 
other LPBs 222-224 to monitor program loops in threads 
being executed on the multiple corresponding processing 
cores. In one embodiment, the processing cores may be 
running threads belonging to the same “single program, 
multiple data” (SPMD) process (e.g. Open Multi-Processing 
threads). 

In one embodiment, the control logic 330 as part of the 
runtime system 230 is configured to estimate the completion 
time for each of the monitored program loops based on the 
loop termination information in the LTB 211 and the loop 
progress information in the LPB 221. In one embodiment, 
the control logic 330 assumes regular patterns of loop 
behavior between Successive executions of the program 
loops in order to predict the behavior of future executions of 
the program loops. For example, the control logic 330 may 
estimate the number of remaining loop iterations for a 
currently executing program loop based on the number of 
total iterations observed for past executions of the same 
program loop, or based on an average of the observed total 
iterations for multiple past executions. 
The loop termination estimate output 335 of the control 

logic 330 indicates the estimated completion time for each 
of the loops being tracked. In one embodiment, the LTB211 
and LPB 221 include 32 entries, for monitoring up to 32 
program loops; accordingly, the loop termination estimate 
output 335 indicates up to 32 estimated completion times. 
The calculation of the estimated completion time for a 

program loop may account for the number of instructions to 
be executed for the loop, the number of clock cycles for 
executing the instructions at a previous power state, and the 
current power State under which the program loop is being 
executed. For instance, the control logic 330 may determine 
the completion time of a program loop by Subtracting the 
completed instructions 321 from the expected instructions 
322 for the loop to determine the remaining instructions for 
the loop, then calculate the remaining clock cycles until the 
loop completes based on the rate of execution of instructions 
at the current power state. The control logic 330 can then add 
the duration corresponding to the remaining clock cycles to 
the current timestamp TSC 331 to determine the estimated 
completion time. 

In one embodiment, the control logic 330 determines the 
estimated completion time for a program loop by Subtracting 
the completed cycles value 324 of the loop from the 
expected cycles value 325 for that loop, to obtain a remain 
ing cycles value. The control logic 330 can then add the 
duration corresponding to the remaining cycles to the cur 
rent timestamp TSC 331 to determine the estimated comple 
tion time. In one embodiment, the estimated completion 
time may also be presented in a timestamp format. 

Alternatively, the control logic 330 may determine the 
estimated completion time for the program loop relative to 
the current program counter value, which may be received 
by the control logic 330 at the program counter input 332. 

The branch prediction output 333 of the control logic 330 
indicates whether the next branch is predicted to be taken for 
the currently executing loop iteration. In one embodiment, 
the control logic 330 predicts whether the branch will be 
taken based on the information in the LTB211. For example, 
the control logic 330 may predict that the next branch will 
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8 
be taken for each loop iteration until the iteration counters 
312 and 313 match the trip field 314 with the confidence bit 
Set. 
While the confidence bit 315 indicates a measure of 

certainty for the Trip value 314, the confidence output 334 
of the control logic 330 may indicate a measure of certainty 
of one or more of the other outputs from the control logic 
330, such as the branch prediction output 333 or the loop 
termination estimate 335. The confidence value 334 may be 
calculated based on the information in the LTB211 and the 
LPB 221, and may also be affected by the accuracy of past 
predictions determined from this information. In one 
embodiment, the confidence output value 334 is a single bit; 
alternatively, the confidence output value 334 may be a 
larger integer value, or may include multiple values to 
indicate a level of certainty associated with multiple loop 
termination estimates or multiple branch predictions. 

In some embodiments the control logic 330 or other parts 
of the runtime system 230 uses the information in the LTB 
211 and the LPB 221 to calculate other information about the 
monitored program loops. For example, the runtime system 
230 may identify the program loops that have the greatest 
number of instructions or cycles, and/or identify the pro 
gram loops having variable or constant numbers of itera 
tions. The runtime 230 may also determine power consump 
tion information, such as the power efficiency of each of the 
processing cores 201-204 or may identify program loops 
that cause the violation of local power constraints. 

For each of the processing cores 201-204, the runtime 
system 230 can control the PMU 205 to adjust the execution 
rate for the core based on the loop termination estimate 335, 
the confidence value 334, and other values calculated based 
on the corresponding LTBs 211-214 and/or LPBS 221-214. 
For example, the runtime system 230 may use the loop 
termination information for each of the loops executing on 
the cores 201-204 to determine which of the cores need to 
be allocated more or less power to speed or slow the rate of 
execution. The runtime system 230 then adjusts the execu 
tion rates of the cores 201-204 in order to minimize the 
differences in the completion times of the program loops 
being executed in parallel. 

FIG. 4 is a flow diagram illustrating a process 400 for 
balancing the execution rates of multiple parallel program 
loops to minimize the differences in their completion times 
prior to a global barrier, according to an embodiment. The 
loop balancing process 400 may be executed by the runtime 
system 230, using the loop termination information and the 
loop progress information stored in the LTBs 211-214 and 
the LPBs 221-224, respectively. 

Process 400 begins at block 401. At block 401, the 
runtime system 230 identifies at least one dependent serial 
instruction block in the program 240 to be executed after the 
completion of multiple parallel program loops of the pro 
gram 240. In other words, the execution of the dependent 
instruction block does not begin until all of the multiple 
parallel program loops have completed (i.e., a global barrier 
is reached). From block 401, the process 400 continues at 
block 403. 
At block 403, the runtime system 230 stores a program 

counter value of a backwards branch in the program in 
response to encountering the backwards branch in the pro 
gram 240. In one embodiment, the runtime system 230 
stores the program counter value of the backwards branch in 
the tag 311 field of one of the LTBs 211-214 corresponding 
to the processing core executing the branch to establish an 
entry for monitoring the progress of the program loop 
associated with the branch. For example, the runtime system 
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230 stores the program counter value of a backwards branch 
being executed by core 201 in the tag 311 field of the LTB 
211, which corresponds to core 201. The other fields 312 
315 in the LTB211 and 321-327 in the LPB 221 comprising 
the entry are also initialized. From block 403, the process 
400 continues at block 405. 

At block 405, the runtime system 230 stores loop termi 
nation information in the fields 311-315 of the LTB 211. In 
addition to the program counter of a branch associated with 
the loop stored in the tag field 311, the loop termination 
information stored in the LTB 211 also includes the specu 
lative iteration count 312, non-speculative iteration count 
313, trip count 314, and confidence bit 315. Loop termina 
tion information is similarly stored in the other LTBs 212 
214 for loops being executed in the other cores 202-204. 

At block 407, the runtime system 230 additionally stores 
loop progress information for each of the program loops in 
the LPB 221. In one embodiment, the storing of loop 
progress information may be performed when one or more 
dependent instruction blocks has been identified, as pro 
vided at block 401. The runtime system 230 similarly stores 
loop progress information in other LPBs 222-224 for loops 
being executed in the other cores 202-204. Thus, in one 
embodiment, the runtime system 230 stores and updates 
loop progress information in the LPBS 221-224 only for 
multiple parallel loops that precede a global barrier, while 
storing and updating loop termination information in the 
LTBs 211-214 for both parallel and non-parallel loops. 
Alternatively, the loop progress information may be stored 
and updated even for non-parallel loops. 

In one embodiment, the loop progress information stored 
in the LPBs 221-224 includes the total number of expected 
instructions 322, a current number of completed cycles 324, 
and a number of total expected cycles 325 for each of the 
monitored program loops. The LPBs 221-224 may addition 
ally store power information, such as the power consump 
tion 326 of the program loop and the power state 327 of the 
processing core that is executing the loop. From block 407, 
the process 400 continues at block 409. 

At block 409, the runtime system 230 estimates a comple 
tion time for each of the parallel program loops preceding 
the global barrier. The estimated completion time is deter 
mined based on the information stored in the LTBs 211-214 
and in the LPBs 221-224. From block 409, the process 400 
continues at block 411. 

At block 411, the runtime system 230 identifies the latest 
of the estimated completion times, then determines a dif 
ference between the latest estimated completion time and 
each of the earlier estimated completion times. The runtime 
system 230 can then decrease these differences in the 
estimated completion times by adjusting the execution rates 
of the program loops. In one embodiment, adjusting the 
execution rates includes Supplying additional power to cores 
executing the program loops having later estimated comple 
tion times and/or decreasing the amount of power Supplied 
to the cores executing program loops having earlier esti 
mated completion times. For program loops having an 
estimated completion time that more than a threshold 
amount earlier than the latest estimated completion time, the 
adjustment of the execution rate may include transitioning 
the program loop to a power saving sleep state. 

Accordingly, at block 415, the runtime system 230 evalu 
ates each of the calculated differences from block 411 to 
determine whether the difference is greater than a sleep 
threshold. In one embodiment, the sleep threshold is a 
duration value that is greater than or equal to the time for a 
processing core to enter and then exit the sleep state. 
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10 
For each program loop corresponding to a difference at 

block 415 that is not greater than the sleep threshold, the 
process 400 continues at block 421. At block 421, the 
runtime system 230 adjusts the execution rate of the pro 
gram loops by individually adjusting the amount of power 
Supplied to each of the processing cores executing the 
program loops. For example, the runtime system 230 may 
increase the power Supplied to cores executing loops that 
have later estimated completion times and/or decrease the 
power Supplied to cores executing loops that have earlier 
estimated completion times in order to increase or decrease, 
respectively, the rates of execution for the loops. By these 
operations, the runtime system 230 minimizes, or at least 
decreases, the differences between the estimated completion 
times of all of the program loops. 

For each program loop having a difference at block 415 
that is greater than the sleep threshold, the process 400 
continues at block 417. Thus, each of the program loops for 
which the process 400 arrives at block 417 is expected to 
complete with sufficient time to enter and exit the sleep state 
before the last program loop in the parallel section com 
pletes, according to the latest estimated completion time 
identified at block 411. The runtime system 230 transitions 
the processing cores assigned to execute these program 
loops to low power consumption sleep states after comple 
tion of their respective program loops. From block 417, the 
process 400 continues at block 419. 
At block 419, the runtime system 230 causes the process 

ing cores that have been transitioned to a sleep state at block 
417 to exit their respective sleep states prior to the latest 
estimated completion time. This allows the cores to be ready 
to execute the dependent serial instruction block upon 
completion of the last parallel thread in the parallel section. 
In one embodiment, each of the processing cores are tran 
sitioned out of the sleep state at a time preceding the latest 
estimated completion time by at least a sleep exit duration. 
The sleep exit duration represents the duration between the 
time at which the exit from sleep state is initiated and the 
time at which the core is ready to execute the next instruc 
tion. 

In one embodiment, the balancing of power Supplied to 
the processing cores 201-204 as provided at block 421 can 
be influenced by the number of processing cores that are 
transitioned to the sleep state at block 417. For example, 
cores that are placed in the sleep state may correspond to a 
certain amount of power savings that may be redistributed to 
the non-sleeping cores. These adjustments may be made 
according to a predetermined local power constraint or 
power consumption budget that applies to the processing 
cores, to the entire chip, or to another grouping of compo 
nentS. 

At block 423, the runtime system 230 completes execu 
tion of the parallel program loops, then executes the depen 
dent instruction block upon reaching the global barrier. 
From block 423, the process 400 continues back to block 
401. Thus, the process 400 repeats for the next group of 
parallel threads, which may correspond to the dependent 
instruction block executed at block 423 or to a subsequent 
instruction block. 

In one embodiment, the runtime system 230 is imple 
mented primarily in hardware (e.g., the processor 104); 
accordingly, the process 400 is executed primarily by hard 
ware components. Alternatively, Some or all of the opera 
tions of process 400 may be implemented using software 
(e.g., implemented in an operating System), or using a 
combination of software and hardware. 
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As used herein, the term “coupled to may mean coupled 
directly or indirectly through one or more intervening com 
ponents. Any of the signals provided over various buses 
described herein may be time multiplexed with other signals 
and provided over one or more common buses. Additionally, 
the interconnection between circuit components or blocks 
may be shown as buses or as single signal lines. Each of the 
buses may alternatively be one or more single signal lines 
and each of the single signal lines may alternatively be 
buses. 

Certain embodiments may be implemented as a computer 
program product that may include instructions stored on a 
non-transitory computer-readable medium. These instruc 
tions may be used to program a general-purpose or special 
purpose processor to perform the described operations. A 
computer-readable medium includes any mechanism for 
storing or transmitting information in a form (e.g., Software, 
processing application) readable by a machine (e.g., a com 
puter). The non-transitory computer-readable storage 
medium may include, but is not limited to, magnetic storage 
medium (e.g., floppy diskette); optical storage medium (e.g., 
CD-ROM); magneto-optical storage medium; read-only 
memory (ROM); random-access memory (RAM); erasable 
programmable memory (e.g., EPROM and EEPROM); flash 
memory, or another type of medium Suitable for storing 
electronic instructions. 

Additionally, some embodiments may be practiced in 
distributed computing environments where the computer 
readable medium is stored on and/or executed by more than 
one computer system. In addition, the information trans 
ferred between computer systems may either be pulled or 
pushed across the transmission medium connecting the 
computer systems. 

Generally, a data structure representing the processor 104 
and/or portions thereof carried on the computer-readable 
storage medium may be a database or other data structure 
which can be read by a program and used, directly or 
indirectly, to fabricate the hardware comprising the the 
processor 104. For example, the data structure may be a 
behavioral-level description or register-transfer level (RTL) 
description of the hardware functionality in a high level 
design language (HDL) such as Verilog or VHDL. The 
description may be read by a synthesis tool which may 
synthesize the description to produce a netlist comprising a 
list of gates from a synthesis library. The netlist comprises 
a set of gates which also represent the functionality of the 
hardware comprising the the processor 104. The netlist may 
then be placed and routed to produce a data set describing 
geometric shapes to be applied to masks. The masks may 
then be used in various semiconductor fabrication steps to 
produce a semiconductor circuit or circuits corresponding to 
the processor 104. Alternatively, the database on the com 
puter-readable storage medium may be the netlist (with or 
without the synthesis library) or the data set, as desired, or 
Graphic Data System (GDS) II data. 

Although the operations of the method(s) herein are 
shown and described in a particular order, the order of the 
operations of each method may be altered so that certain 
operations may be performed in an inverse order or so that 
certain operation may be performed, at least in part, con 
currently with other operations. In another embodiment, 
instructions or sub-operations of distinct operations may be 
in an intermittent and/or alternating manner. 

In the foregoing specification, the embodiments have 
been described with reference to specific exemplary embodi 
ments thereof. It will, however, be evident that various 
modifications and changes may be made thereto without 
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12 
departing from the broader spirit and scope of the embodi 
ments as set forth in the appended claims. The specification 
and drawings are, accordingly, to be regarded in an illus 
trative sense rather than a restrictive sense. 

What is claimed is: 
1. A method, comprising: 
estimating a completion time for each program loop of a 

plurality of program loops executed by a processor, 
determining a difference between the estimated comple 

tion time of a first program loop of the plurality of 
program loops and the estimated completion time of a 
second program loop of the plurality of program loops, 
wherein the first program loop is executed concurrently 
with the second program loop; and 

decreasing the difference by adjusting an execution rate of 
the first program loop. 

2. The method of claim 1, further comprising storing loop 
progress information for each of the plurality of program 
loops in one or more loop progress buffers, wherein the 
estimated completion time for each program loop of the 
plurality of program loops is determined based on the loop 
progress information. 

3. The method of claim 2, wherein the plurality of 
program loops is defined in an executable program executed 
by the processor, and wherein the method further comprises: 

identifying a dependent instruction block in the execut 
able program to be executed after completion of all of 
the program loops of the plurality of program loops; 
and 

in response to identifying the dependent instruction block 
and in response to a backwards branch in the program 
corresponding to the first program loop, storing a 
program counter value of the backwards branch in the 
one or more loop progress buffers. 

4. The method of claim 2, wherein for each program loop 
of the plurality of program loops, the loop progress infor 
mation comprises a number of instructions, a number of 
completed cycles, and a number of expected total cycles for 
the program loop. 

5. The method of claim 2, wherein for each program loop 
of the plurality of program loops, the loop progress infor 
mation comprises a power state of a processing core execut 
ing the program loop and an estimated power consumption 
for the program loop. 

6. The method of claim 2, further comprising: 
for each program loop of the plurality of program loops, 

storing values in one or more loop termination buffers 
including a speculative iteration count, a non-specula 
tive iteration count, a trip count, and a confidence bit, 
wherein estimating the completion time is based on the 
values stored in the one or more loop termination 
buffers. 

7. The method of claim 1, wherein the processor com 
prises a plurality of processing cores, and wherein adjusting 
the execution rate of the first program loop comprises 
adjusting an amount of power Supplied to a processing core 
executing the first program loop. 

8. The method of claim 1, further comprising: 
comparing the difference with a sleep threshold; and 
transitioning a processing core assigned to execute the 

first program loop to a sleep state after completion of 
the first program loop if the difference is greater than 
the sleep threshold, wherein the first program loop has 
an earlier estimated completion time than the second 
program loop. 
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9. The method of claim 8, wherein the sleep threshold is 
longer than a duration for the first program loop to enter the 
sleep state plus a duration for the first program loop to exit 
the sleep state. 

10. The method of claim 8, further comprising causing the 5 
processing core assigned to execute the first program loop to 
exit the sleep state prior to the estimated completion time of 
the second loop. 

11. An apparatus, comprising: 
one or more loop progress buffers configured to store loop 10 

progress information for each of a plurality of program 
loops executed by a set of processing cores; 

a runtime system coupled with one or more loop progress 
buffers and configured to: 

estimate a completion time for each of the plurality of 15 
program loops based on the loop progress information; 

determine a difference between the estimated completion 
time of a first program loop of the plurality of program 
loops and the estimated completion time of a second 
program loop of the plurality of program loops, 20 
wherein the first program loop is executed concurrently 
with the second program loop; and 

a power management unit coupled with the runtime 
System, wherein the power management unit is config 
ured to decrease the difference by adjusting an execu- 25 
tion rate of the first program loop. 

12. The apparatus of claim 11, wherein the set of pro 
cessing cores comprises multiple processing cores each 
configured to execute one of the plurality of program loops. 

13. The apparatus of claim 12, wherein the power man- 30 
agement unit is further configured to adjust the execution 
rate of the first program loop by redistributing power 
between two or more of the multiple processing cores. 

14. The apparatus of claim 12, wherein the power man 
agement unit is further configured to cause at least one of the 35 
multiple cores to enter a sleep state based on the difference 
between the estimated completion time of the first program 
loop and the estimated completion time of the second 
program loop. 

15. The apparatus of claim 11, wherein for each program 40 
loop of the plurality of program loops, the loop progress 
information comprises a number of instructions, a number of 
completed cycles, and a number of expected total cycles, a 
power state of a processing core executing the program loop, 
and an estimated power consumption for the program loop. 

14 
16. The apparatus of claim 11, further comprising one or 

more loop termination buffers coupled with the runtime 
system, wherein the one or more loop termination buffers are 
configured to, for each of the plurality of program loops, 
Store loop termination information comprising a speculative 
iteration count, a non-speculative iteration count, a trip 
count, and a confidence bit, wherein the runtime system is 
further configured to estimate the completion time based on 
the loop termination information. 

17. A non-transitory computer-readable medium storing 
instructions that when executed by a processor, cause the 
processor to perform a method comprising: 

estimating a completion time for each program loop of a 
plurality of program loops executed by the processor; 

determining a difference between the estimated comple 
tion time of a first program loop of the plurality of 
program loops and the estimated completion time of a 
second program loop of the plurality of program loops, 
wherein the first program loop is executed concurrently 
with the second program loop; and 

decreasing the difference by adjusting an execution rate of 
the first program loop. 

18. The non-transitory computer-readable medium of 
claim 17, wherein the method further comprises storing loop 
progress information for each of the plurality of program 
loops in one or more loop progress buffers, wherein the 
estimated completion time for each program loop of the 
plurality of program loops is determined based on the loop 
progress information. 

19. The non-transitory computer-readable medium of 
claim 17, wherein the processor comprises a plurality of 
processing cores, and wherein adjusting the execution rate 
of the first program loop comprises adjusting an amount of 
power supplied to a processing core executing the first 
program loop. 

20. The non-transitory computer-readable medium of 
claim 17, wherein the method further comprises: 

comparing the difference with a sleep threshold; and 
transitioning a processing core assigned to execute the 

first program loop to a sleep state after completion of 
the first program loop if the difference is greater than 
the sleep threshold, wherein the first program loop has 
an earlier estimated completion time than the second 
program loop. 


