
|||||III
United States Patent (19)
Lowe, Jr.

US005542084A

11 Patent Number: 5,542,084
(45) Date of Patent: Jul. 30, 1996

54

(75)

(73)

21
22)

63
51
52
(58

56)

METHOD AND APPARATUS FOR
EXECUTING AN ATOMC
READ-MODIFY.WRITE INSTRUCTION

Inventor: Robert B. Lowe, Jr., North
Chelmsford, Mass.

Assignee: Wang Laboratories, Inc., Billerica,
Mass.

Appl. No. 343,268
Filed: Nov. 22, 1994

Related U.S. Application Data

Continuation of Ser. No. 135,109, Oct. 12, 1993, abandoned.

Int. Cl." ... G06F 9/30
U.S. Cl. 395/375; 395/482; 364/DIG. 1
Field of Search 395/375, 425,

395/474, 481,482

References Cited

U.S. PATENT DOCUMENTS

3,430,209 2/1969 Goshorn 340/1725
3,982,229 9/1976. Rouse et al. 395/775
4,740,922 4/1988 Ogawa 365/189.04
4,761,755 8/1988 Ardini, Jr. et al. 364,749
4,884,271 1/1989 Concha et al. 371/40.2
4,896,259 i? 1990 Jacobs et al. ... 395/250
5,167,029 1/1992 Eikill et al. 395/885
5,235,693 8/1993 Chinnaswamy et al. ... 395/486
5,394,535 2f1995 Ohuchi 395/482

FOREIGN PATENT DOCUMENTS

0177712 4/1986 European Pat. Off..

24.

CONTROL STORE
8K X 88

CSA:2 CS):89

MA0:13 CSO:87

OTHER PUBLICATIONS

Harmar et al. "The Motorola MC68000 Microprocessor
Family:Assembly Language, Interface Design, & Sysam
Design' pp.106-108, 398-408,438, 492-499.
IEEE Micro vol. 10, No. 3, Jun. 1990, New York, USA pp.
48–66 M. Alsup Motorola's 88000 Family Architecture p.
55, left column paragraph 6.

Primary Examiner-Krisna Lim
Assistant Examiner Viet Wu
Attorney, Agent, or Firm-Ronald J. Paglierani

57) ABSTRACT

A circuit that enhances the performance of the execution of
a read-modify-write instruction type. The circuit provides
hardware detection and decoding of various options speci
fied by the instruction, and greatly improves the perfor
mance and conserves space within a micro-code control
store (14). The circuit also detects anomalous cases and
reports them to micro-code for special handling. The detec
tion of the anomalous cases occurs dynamically and in
parallel to instruction execution, thereby improving perfor
mance. Resulting condition codes are also provided simul
taneously to the control program. The circuit operates in
concert with a micro-code controlled mechanism to read a
memory variable and, based on the specification of the
instruction, the circuit selectively adds 1, subtracts 1, adds a
16-bit mask specified by the instruction, or subtracts the
16-bit mask, and returns the result to a central processor
(12). Anomalous conditions that include overflow, invalid
mask specification, and a special exchange option are all
simultaneously detected and reported to the micro-code.

17 Claims, 8 Drawing Sheets

Ref/cns
TABLE 6KX2

A2:15

O

CPA 5:20

16 REF

CNG

REF

CHNG 3DB32:31 --

36
MAU CPMA

OMA
STCNU " .27 CPA25:31

OA5:31
CPA 5:31

27 OA5:31 ENRAS33
POX:5-A-MA 7:28 EN CAS3

6 35

70a

CPCMD3:21, CPLD:5%
IOCMD3:27, lOLD2:5%

70b

DXMARX- 50

36an

U.S. Patent Jul. 30, 1996 Sheet 1 of 8 5,542,084

N

S

5,542,084 Sheet S of 8 Jul. 30, 1996 U.S. Patent

C72 -9/-/ ZE ‘S ng NIV/W

qZE

VN
TO}} 1 N00

SÍTE 008

% 38
% 1N 898Tl

328 08

18 : 918 OE

5,542,084 Sheet 8 of 8 Jul. 30, 1996 U.S. Patent

7 ‘DI NOI 10 fl.81.SN I 1 NT100W 30 NOI 18Od /---------—^–) 8 00183dZ CJOI?]3d| 00483d , ! do? Now I BAOBXH2 d'?s?X | 9H0x1NOW 'Is IX ZèH-]'^^ ^^/) dON/ 1 NT100 W/ 8. WOT

5,542,084
1.

METHOD AND APPARATUS FOR
EXECUTENG AN ATOMIC

READ-MODIFY.WRITE INSTRUCTION

This is a continuation of application Ser. No. 08/135,109
filed on Oct. 12, 1993 now abandoned.

FIELD OF THE INVENTION

This invention relates generally to digital data processors
and, in particular, to digital data processors that execute an
atomic, read-modify-write type of memory instruction.

Background of the Invention
A read-modify-write (RMW) type of instruction is accom

plished by reading a memory location, modifying the data
read from the memory, and then writing the modified data
back out to the memory. This occurs in what is referred to
as an "atomic' memory cycle. That is, the memory is locked
from the time the data is read until the modified data is
written back. Locking the memory prevents another memory
requestor from gaining access to the memory and possibly
modifying the location of interest. Performing the atomic
operation also prevents the data processor from being inter
rupted during the RMW cyclic.

Such RMW memory operations are useful for, by
example, maintaining a counter of external events or for
counting a number of loops through a particular section of
code.
As can be appreciated, in that the memory is locked

during the execution of the RMW cycle, another memory
requcstor, such as an I/O device or another processor, is
prevented from accessing the memory. Furthermore, in that
the RMW instruction may be executed a large number of
times before a desired condition occurs, the amount of time
required to execute each RMW instruction impacts directly
upon the CPU efficiency and operating speed.
Onc conventional type of RMW instruction is provided by

the VS Assembly Language program that is available from
Wang Laboratories Inc. of Lowell, Mass.

This instruction, referred to as a Modify Count
(MCOUNT) instruction, enables a specified memory loca
tion to be selectively incremented by one, decremented by
one, exchanged with a register, or incremented or decre
mented by a half-word amount specified in a mask operand.
As can be appreciated, for a RMW instruction of this

complexity a significant number of constituent microinstruc
tions can be required to implement all of the variations made
possible by the instruction. In addition, other microinstruc
tions are required to set and check condition codes, and to
perform the testing of the result and/or the instruction itself
to detect conditions that require special handling by the data
processor, such as an overflow condition or an invalid
instruction specification at run-time.

Objects of the Invention
It is thus one object of this invention to provide an

improved atomic RMW-type of instruction.
It is another object of this invention to provide an RMW

instruction that operates in conjunction with dedicated hard
ware, i.e., a hardware-assisted RMW instruction.

It is one further object of this invention to provide a RMW
instruction that requires significantly fewer constituent
microinstructions than a conventional RMW instruction.

O

15

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

The foregoing and other problems are overcome and the
objects of the invention are realized by a circuit arrangement
that enhances the performance of the execution of the
MCOUNT WS Assembler instruction. By providing hard
ware detection and decoding of various options of the
MCOUNT instruction the circuit greatly improves perfor
mance and conserves a limited control store space. The
circuit arrangement also detects several anomalous cases
and reports them to micro-code for special handling. The
detection of the anomalous cases occurs dynamically and in
parallel to instruction execution, thereby improving perfor
mance. Resulting condition codes are also provided simul
taneously to the control program.
The circuit arrangement operates in concert with a micro

code controlled mechanism to read a memory variable and,
based on the specification of the MCOUNT Instruction, the
circuit selectively adds 1, subtracts 1, adds a 16-bit mask
specified by the MCOUNT Instruction, or subtracts the
16-bit mask, and returns the result to the central processor.
Anomalous conditions that include overflow, invalid mask
specification, and a special exchange option are all simul
taneously detected and reported to the micro-code.

BRIEF DESCRIPTION OF THE DRAWINGS

The above set forth and other features of the invention are
made more apparent in the ensuing Detailed Description of
the Invention when read in conjunction with the attached
Drawings, wherein:

FIG. 1 illustrates the arrangement of FIGS. 2A-2D;
FIGS. 2A-2D are each a portion of a block diagram of a

data processor that is constructed and operated in accor
dance with this invention;

FIGS. 3A and 3B are schematic diagrams of logic cir
cuitry that provides the hardware-assisted MCOUNT
instruction of this invention; and

FIG. 4 is a timing diagram for the hardware assisted
MCOUNT instruction.

DETALED DESCRIPTION OF THE
INVENTION

Reference is made to FIGS. 2A-2D for the ensuing
description of one embodiment of a data processor 10 that is
constructed and operated in accordance with this invention.
A Central Processor (CP) 12 is coupled to an 8K by 88-bit
Control Store 14 by a 14-bit control store address bus 14a
and an 88-bit control store data bus 14b. The Control Store
14 stores microinstructions (micro-code) which are read into
the CP12 in order to execute macroinstructions that are read
from an 8K by 72-bit CACHE memory 16, via a CACHE
Data Unit (CDU) 18, bidirectional 64-bit data bus
BDS00:63 18a, and bidirectional 32-bit data bus DB00:32
12a. Macroinstructions are fetched from the CACHE
memory 16 in accordance with physical addresses provided
by the CP 12 on a 32-bit physical address bus (PAO:31) 12b,
via a CACHE address multiplexer (MUX) 20. The CACHE
address MUX 20 is employed when pre-filling the CACHE
16 with instructions and data. In this embodiment of the
invention only PAbits 16:28 are provided to the CACHE 20.
PA bit 28 being provided as the LSB address bit enables a
Double-Word (eight bytes or two 32-bit words) to be read by
the CP 12 over the 64-bit bus 18a and 32-bit bus 12a. The
eight bit DSP0:7 bus 18b conveys data parity bits between
the CACHE 16 and the CDU 18. The CDU 18 operates as

5,542,084
3

a data buffer for interfacing the 32-bit CP12 data bus 12a to
the 64-bit cache/main memory data bus 18a, as a data error
checker, and provides data alignment for the CP 12. The
CDU 18 receives a sub-set of the Control Store 14 output
bits (CS) and includes the logic that provides the hardware
assisted MCOUNT instruction of this invention, as will be
described in detail below with respect to FIGS. 3A and 3B.

In the presently preferred embodiment of this invention
the macroinstructions that are read from the CACHE 16 are
those that implement the VS Assembly Language program
that is provided by Wang Laboratories Inc. of Lowell Mass.
One of the macroinstructions is referred to as the Modify
Count (MCOUNT) instruction that was briefly described
above. A presently preferred technique for providing a
hardware assist for the MCOUNT instruction is described in
detail below.

Continuing with the description of the block diagram of
FIGS. 2A-2D, the 32-bit processor data bus 12a is buffered
by a transceiver 22 and is provided as a buffered data bus
(BDB0:31) 22a to several locations, including a 16K by
8-bit Data Key memory 24, a 16-bit control and status
register (XCTLREG) 26, a reference and change table
(REF/CHG TABLE) 28, and a system (backplane) Bus
Interface Chip (BIC) 30. This data path gives the CP 12 an
ability to send control information to, and read status infor
mation from, these various devices.
The Data Key memory 24 stores encrypted information

and provides a capability to enable only specified software
packages to be executed by the CP 12. The REF/CHGTable
28 functions to indicate a reference to a particular page of
memory, and to indicate if the reference was a write opera
tion. The BIC 30 provides an interface to other components
that are coupled to the system bus 32, the system bus
including a 32-bit multiplexed address/data bus (AD31:0)
32a, associated parity lines (PAR3:0)32b, and control signal
lines 32c. In general, the BIC30 operates to arbitrate access
to the system bus 32 and to perform all necessary hand
shaking with other devices that are coupled to the system bus
32. A memory control function is also contained within the
BIC 30. The XCTLREG 26 enables control over the
CACHE memory 16, indicates CACHE status, and also
provides indications of correctable and uncorrectable data

OS.

A buffer 34 drives the PA bus 12b as a CPAddress (CPA)
bus 34a to the Data Key 24 (14 bits), the REF/CHG Table
28 (16 bits) and a Memory Address Unit (MAU)36 (27 bits).
The MAU 36 operates to queue memory read and write
addresses and functions, in conjunction with even and odd
Memory Data Units (MDUs) 38a and 38b, respectively, to
write and read data from main memory 40. Main memory 40
is comprised of a plurality of DRAM modules 40a–40d, and
is organized as an even word array (modules 40a and 40b)
and as an odd word array (modules 40c and 40d). The total
width of the main memory 40 is 64 bits (a double word), plus
14 bits of ECC parity information. ECC is performed
separately on each odd and even 32-bit memory word.
The MAU 36 also receives a 27-bit I/O address (IOA) bus

36a that is sourced from the BIC 30 via a Buffered Address
(BA) bus 30a and a latch 42. IOA bus 36a provides a first
memory address of a data block that is to be written to or
read from by an UO device that is coupled to the system bus
32. The first address is received though a transceiver 44, a
buffered address/data (BAD) bus 44a, and a transceiver 45.
Transceiver 45 is enabled to pass the first memory address
of the memory block to the BIC 30 and the latch 42, via the
BAbus 30a. In the MAU 36 the first address is buffered, and

10

15

20

25

30

35

40

45

50

55

60

65

4
subsequent memory addresses are incremented by the BIG
30 during an I/O operation and provided over the buses 30a
and 36a, via latch 42. This enables a potentially large
number of reads or writes to be made to consecutive memory
locations of the main memory 40.
One output of the MAU 36 is a 22-bit memory address

(MA) bus 36b that is applied to a row/column MUX 46
which has a 12-bit output for sequentially providing row and
column addresses, via drivers 48a–48d, to the DRAM
modules 40a–40d, respectively. The row/column. MUX 46
operates under the control of a COL signal that is generated
by a memory control state machine (not shown).

Another output of the MAU 36 is a 24-bit update address
(UPDT) bus 36c that is latched by a register XMAR 50.
XMAR50 sources aregistered update address (RUPDT) bus
50a to the MUX 20 (13 bits), to a MUX 52 (24 bits), to a
driver 54, and to an External Tag Store 56. Also provided to
MUX 52 is the PA bus 12b. The output of the MUX52 is a
13-bit internal tag store address (ITSA) bus 52a and an
11-bit internal tag store data (ITSD) bus 52b which are
applied to an Internal Tag Store 58. The output of the driver
54 is a 13-bit external tag store address (XTSA) bus 54a
which is applied to the External Tag Store 56, in conjunction
with 11-bits of the RUPDT bus 50a. The External Tag Store
56 and the Internal Tag Store 58 provide CACHE hit and
miss detection, XMIS and IMIS, respectively, for I/O
accesses and CP 12 accesses, respectively.
The MDUs 38a and 38b operate in conjunction with

registered buffers 60a and 60b, respectively, to provide a
data queue for read and write accesses of the main memory
40. The MDUs 38a and 38b also each provide for word-wide
ECC generation and checking functions for data going to
and coming from the main memory 40. Each of the MDUs
38a and 38b is bidirectionally coupled to one word (32-bits)
of the 64-bit buffered data bus 18a, and thereby to the
CACHE 16 and to the CDU 18. Each of the MIDUs 38a and
38b also source 4-bits of the 8-bit CP Data Parity (CPDP)
bus which is provided through a buffer 64 to the eight bit
DSP0:7 bus 18b that conveys data parity bits between the
CACHE 16 and the CDU 18. The MDUS 38a and 38b each
also have a 32-bit I/O data path (IOD) and are bidirectionally
coupled in parallel to a transceiver 62 and thence to the BAD
bus 44a. For I/O data transfers to or from the system bus 32
the MDUs are alternately selected to either transmit up to a
32-bit word to the transceiver 62 or receive up to a 32-bit
word from the transceiver 62.

The data processor 10 of FIGS. 2A-2D, in a presently
preferred embodiment of the invention, is packaged on a
single multi-layered printed circuit board. The CDU 18,
MAU 36, the MDUs 38a and 38b, and the BIC 30 are each
contained within an Application Specific Integrated Circuit
(ASIC). A CP 12 cycle is a minimum of 50 nanoseconds in
duration (20 MHz clock frequency), and is comprised of two
or more 50% duty cycle 25 nanosecond sub-cycles or
"ticks'. The CP12 clock is synchronized to a 50 nanosecond
clock signal that is provided on the system bus 32.

Having thus described the technical environment within
which the present invention operates, a detailed description
of the MCOUNT assembly language instruction hardware
assist logic now ensues. This logic is preferably embodied
external to the CP 12, within the CDU 18, and is shown in
FIGS. 3A and 3B.
The format for the MCOUNT instruction is as follows:

MCOUNT R1, D2(X2,B2), M3, M4.

5,542,084
S

R1 is a general CP 12 register into which the main
memory word addressed by the second operand D2(X2,B2)
is copied after being modified by addition or subtraction.
The second operand addresses a target word in main
memory 40 which is fullword aligned. M3 is a 16-bit
function mask that determines the operation performed by
MCOUNT. M4 is a 16-bit unsigned integer used as an
increment for add immediate and subtract immediate func
tions, if specified by M3.
The functions listed in the following Table 1 are available

using the associated M3 mask values.

TABLE 1.

W'8000' Add one to main memory word; result to R1
X4000 Subtract one from main memory word, result to R1
X2000' Exchange R1 with main memory word;

unmodified main memory word to R1
X000' Add M4 to main memory word; result to Ri
X'0800 Subtract M4 from main memory word; result to R1

The bit numbering convention employed is such that the
most significant bit (MSB) is referred to as M30 (or M3 bit
0), the second MSB is referred to as M31, etc. As such, and
in accordance with Table 1, the bits of interest in M3 are
shown in Table 2.

O

5

20

6
in 2's complement notation=+/-10), the normal usage of
the MCOUNT instruction should never cause an overflow.
What follows is a partial listing of the micro-code that

implements the hardware assisted MCOUNT instruction of
this invention. The micro-code is stored within the Control
Store 14 (FIG. 2A), and is read by the CP 12 on the
occurrence of an MCOUNT instruction being received over
the DB0:31 bus 12a from the CACHE 16 via the CDU 18.
A sub-set of the microcode bits (CS) is input to the CDU 18,
which then cooperates with the CP 12 to execute the
MCOUNT instruction. A first portion of the micro-code
employs a CP 12 Memory Address Register (MAR) to
generate the address for the second word of the two word
MCOUNTInstruction. If an index register is in use, then it
is added to the effective address within the MAR.

Having loaded both words of the MCOUNT Instruction,
the following three microcode instructions are executed in
cooperation with the logic shown in FIGS. 3A and 3B.

(1) NOP (MAR2/RW)/LDM347 XTS1,
MCNTXCHG

This micro-code instruction activates, via the CS bits, a
Load Mask 3&4 (LDM34) control signal line 80 to load M3
from data bus signal lines 0:15 (DBDIO 15) into register

TABLE 2

MSB 2MSB 3MSB 4MSB SMSB Action

0 O O O Add one to main memory word,
result to R

O O O 0 Subtract one from main memory
word, result to R1

O O O 0 Exchange Ri with main memory word,
unmodified main memory word to Rl

O O O 0 Add M4 to main memory word, result to R1
O O O O Subtract M4 from main memory word,

result to R1

Invalid values for the M3 function mask result in a
specification exception. For all cases, except the exchange
function (M3-2000), a Condition Code reports on the new
value of the main memory word, and the general register
named by R1 is loaded with this new value if the named
register is not General Register 0. In the case of the exchange
function, the Condition Code reports on the updated value of
the general register named by R1; and that register is always
updated, even if it is General Register 0.
The resulting 2-bit Condition Code is defined as follows

in Table 3.

TABLE 3

Result is zero
Rcsult is negative
Result is positive
Not defined

Two program exceptions can occur during the execution
of the MCOUNT Instruction. These are a Specification
Exception and an Overflow Exception. The Specification
Exception results from an illegal (undefined) M3 operand.
The Overflow Exception indicates an overflow condition.
More specifically, an overflow can occur when adding or
subtracting, and will cause a program check, regardless of
the setting of a binary arithmetic overflow mask. On over
flow, the main memory word is not modified, and the
condition code is undefined. Given a 32-bit counter (32 bits

40

45

50

55

60

65

M3 82, and to load M4 from data bus signal lines 16:31
(DBDI16 31) into register M484. Registers M382 and M4
84 each provide a 16-bit true bus (82a, 84a) and a 16-bit
negated bus (82b, 34b).

During the execution of this first micro-code instruction
the various outputs of M382 are applied to a combinatorial
logic block 86 which decodes M3. If M3 is equal to 8000,
4000, 1000, or 0800 no output is provided from the logic
block 86. If M3 is equal to 2000, indicating an exchange
between main memory and R1, then the signal M2000 is
asserted. If M3 does not equal any of the defined M3 values
of Table 1, then the ERR2000 signal is asserted.
The M2000 and ERR2000 signals are applied as External

Status inputs (XTS1) to the CP 12, and are checked at the
completion of the first micro-instruction. If either is asserted
a branch is taken to MCOUNT Exchange (MCNTXCHG)
where, if M2000 is asserted, a read word from memory
operation is performed, the memory word is placed in the
general CP 12 register, and the content of the general register
is written back out to main memory 40, thereby accomplish
ing the exchange operation.

If the ERR2000 status signal is asserted a branch is taken
to an exception routine, thereby terminating the execution of
the MCOUNT instruction.

If neither the ERR2000 or the M2000 status bits are set
after the execution of the first micro-instruction, micro-code
execution continues at instruction (2):

5,542,084
7

(2) NOP
(/RWAFR2)/MCOUNT/XTS1PCHKBOVF.

This micro-code instruction reads the word to be modified
from memory, stores the word in a CP 12 file register (FR2),
and applies the word to a first input of an adder (ADD) 88
on a 32-bit bus 88a (RRB0 31). A second input (88b) of the
adder 88 is supplied with the content of M484 if M3 is equal
to 1000 or 0800 (see Tables 1 and 2). This is accomplished
through the combinatorial logic block 90 and the sign extend
(SE) block 92. The SE block 92 inputs a 16-bit half-word
and outputs a sign-extended 32-bit word to the second input
of the adder 88. If a subtraction operation is indicated by the
output of 20R 90a (M3 bit 1 or M3 bit 4 asserted), then a
1 is sign extended through bits 00:15, otherwise these bits
are made zero, and the inversion of M4 (M40:15*) is gated
through the AND gate 90c of block 90. If M3 bit I is asserted
(indicating that M4 is not used for the increment) then
M40:15 are also gated through the AND gate 90d, resulting
in all ones being output from the OR gate 90e and applied
to SE 92. If M3 bit 4 is asserted, then the inversion of M4
is gated through AND gate 90c and OR gate 90e to the input
of SE 92. If M3 bit 0 is asserted, the 16-bit output of the OR
gate 90e is zero. A Carry-In (CI) input of the adder 88 is set
for the case where either M3 bit 0 or M3 bit 4 are asserted,
via the OR gate 94.
The result of this gating scheme is the control of the

operands and CI input of the adder 88 to accomplish the
action dictated by the state of M3 bits 0, 1, 3, or 4, as
indicated in Tables 1 and 2. The result of the addition or
subtraction is provided during the execution of the second
micro-code instruction on the 32-bit result bus 88c
(MCOUTO 31).
The adder 88 also provides three status outputs indicating

an overflow (OVFL), a zero result (ALU), and a sign (SIGN)
of the output appearing on MCOUTO 31. These status
outputs are provided as inputs to a combinatorial logic block
96 which generates the 2-bit condition code (MXCC) there
from, as indicated in Table 3. It is noted that the OVFL bit
being asserted results in a condition code indication of 3.
However, the OVFL condition also causes the CP exception
referred to above, with a branch being taken to PCHKBOVF.
As such, the actual state of the condition code is not
checked, and is defined in Table 3 to be undefined.
At PCHKOVF the operation of the MCOUNT instruction

is terminated, and the modified word is not written back to
main memory.
Assuming that the OVFL exception does not occur during

the second micro-code instruction, the third micro-code
instruction is executed.

(3) NOP (/WWFR2) MCNTOP1

That is, the output word of the adder is written back to
main memory, the CP register is updated with the result of
the adder 88, thereby accomplishing atomic read-modify
write operation that is implemented by the MCOUNT
instruction.
An appreciation of the savings in execution speed that is

made possible by the hardware-assisted atomic RMW
instruction of this invention can be gained by a comparison
of a number of micro-instructions required to implement the
conventional MCOUNT instruction, and that required to
implement the hardware-assisted MCOUNT instruction of
this invention. More particularly, the conventional
MCOUNT instruction required approximately 40 micro

10

15

20

25

30

35

40

45

50

55

60

65

8
code instructions to implement, whereas the improved
MCOUNT instruction made possible by this invention
requires a total of approximately 15 micro-code instructions.
As a result, the overall execution time of the RMW

operation is increased significantly, thereby improving the
overall operating speed of the system 10 and reducing the
amount of time that the memory is locked and not available
to other memory requestors.

Although the teaching of this invention has been
described in the context of a specific type of RMW instruc
tion (MCOUNT), having specific fields for specifying the
masks M3 and M4, it should be appreciated that this
teaching has wider applicability. For example, more than
two separate masks can be applied, and more or less than the
five types of operations specified by M3 can be accom
plished.

Thus, while the invention has been particularly shown and
described with respect to a preferred embodiment thereof, it
will be understood by those skilled in the art that changes in
form and details may be made therein without departing
from the scope and spirit of the invention.
What is claimed is:
1. A method for executing a read-modify-write instruction

with a data processor, comprising the steps of:
during a first time period corresponding to a first micro

instruction of a sequence of microinstructions that are
executed during an execution of said read-modify-write
instruction,

loading a first register with first data that specifies an
operation to be performed upon target data located
within a memory location of a memory;

loading a second register with second data, said second
data having a possibility of being combined with said
target data located within said memory location; and

applying said first data to logic means and decoding said
first data with said logic means to determine said
operation to be performed;

during a second period of time corresponding to a second
microinstruction of said sequence of microinstructions,

reading said target data from said memory location of said
memory and, responsive to an output of said logic
means, performing said specified operation by applying
said target data to arithmetic/logic circuit means and
operating said arithmetic/logic circuit means to per
form said specified operation, wherein if said specified
operation so indicates said second data stored within
said second register is combined with said target data,
otherwise the second data is not combined with the
target data; and

during a third period of time corresponding to a third
microinstruction of said sequence of microinstructions,

storing a result of said specified operation within a
register of said data processor and also within said
memory location, wherein

said first register, said second register, said logic means,
and said arithmetic/logic circuit means are all external
to said memory.

2. A method as set forth in claim 1 wherein said first data
specifies operations that include:

incrementing said target data;
decrementing said target data;
incrementing said target data by an amount specified by

said second data;
decrementing said target data by an amount specified by

said Second data, and

5,542,084

exchanging said target data with data stored within a
register of said data processor.

3. A method as sct forth in claim 1 wherein the step of
decoding includes a step of detecting a condition wherein
said first data does not specify a valid operation to be
performed by said arithmetic/logic circuit means, and a step
of generating an exception condition to notify said data
processor if the first data does not specify a valid operation.

4. A method as set forth in claim 1 wherein the step of
performing said specified operation includes a step of gen
crating a plurality of condition codes indicative of a result of
performing said specified operation, and a step of applying
said condition codes to said data processor.

5. A method as set forth in claim 4 wherein said plurality
of condition codes includes a condition code that indicates
a sign of said result, and a condition code that indicates if
said result is zero.

6. A method as set forth in claim 1 wherein the step of
pcrforming said specified operation includes a step of gen
erating an exception condition to indicate that the perfor
mance of said specified operation resulted in an overflow
condition.

7. Apparatus for executing a read-modify-write instruc
tion with a data processor, comprising:

a first register for storing, during a first period of time
corresponding to an execution of a first microinstruc
tion of a scquence of microinstructions that are
executed during an execution of said read-modify-write
instruction, first data that specifies an operation to be
performed upon target data located within a memory
location of a memory;

a second register for storing, during said first period of
timc, second data that has a possibility of being com
bined with said target data located within said memory
location;

logic means, operating during said first period of time, for
decoding said first data to determine said operation to
be performed;

means for reading said target data from said memory
location of said memory during a second period of time
corresponding to an execution of a second microin
struction of said sequence of microinstructions;

means having inputs coupled to said memory and to said
second register and, responsive to an output of said
logic means, for executing said specified operation on
said target data during said second period of time, said
executing means including means, responsive to said
output of said logic means, for selectively combining
said sccond data stored within said second register with
said targel data read from said memory location; and

means for storing, during a third period of time corre
sponding to an execution of a third microinstruction of
said scquence of microinstructions, a result of said
specified operation within a register of said data pro
cessor and also within said memory location, wherein

at least said first register, said second register, said logic
means, and said executing means are all external to said
memory.

8. Apparatus as set forth in claim 7 wherein said first data
spccifies operations that include:

incrementing said target data;
decrementing said target data;
incrementing said target data by an amount specified by

said second data;
decrementing said target data by an amount specified by

said second data; and

10

15

20

25

30

35

40

45

50

55

60

65

10
exchanging said target data with data stored within a

register of said data processor.
9. Apparatus as set forth-in claim 7 wherein said decoding

means includes means for detecting a condition wherein said
first data does not specify a valid operation to be performed
by said executing means, and means for generating an
exception condition to notify said data processor if said first
data docs not specify a valid operation.

10. Apparatus as set forth in claim 7 wherein said execut
ing means includes means for generating a plurality of
condition codes as a result of the execution of the operation,
said condition codes indicating a result of performing said
specified operation.

11. Apparatus as set forth in claim 10 wherein said
plurality of condition codes includes a condition code that
indicates a sign of said result, and a condition code that
indicates if said result is zero.

12. Apparatus as set forth in claim 7 wherein said execut
ing means includes means for generating an exception
condition to indicate that the performance of said specified
operation resulted in an overflow condition.

13. Apparatus as set forth in claim 7 wherein said first and
Second register means, said logic means, and said executing
means are all located externally to said data processor and
are coupled to said data processor and to said memory
through at least one bus means.

14. In a data processing system having a data processor
and a memory unit external to said data processor, a method
for executing an atomic read-modify-write instruction with
said data processor, comprising the steps of:

during a first time period corresponding to an execution of
a first microinstruction of a sequence of microinstruc
tions that are executed during an execution of said
atomic read-modify-write instruction,

loading a first register with a first data unit that specifies
an operation to be performed upon target data located
within a memory location of said memory unit, said
first data unit specifying valid operations that include
incrementing said target data, decrementing said target
data, incrementing said target data by an amount speci
fied by a second data unit, decrementing said target data
by an amount specified by said second data unit, and
exchanging said target data with data stored within a
register of said data processor,

loading a second register with data having a possibility of
being used as said second data unit; and

applying said first data unit to logic means and decoding
with said logic means said first data unit to determine
which one of said valid operations are to be performed,
said step of decoding including a step of detecting if
said first data unit specifies one of said valid operations,
and a step of generating an exception condition to
notify said data processor if said first data unit does not
specify one of said valid operations;

during a second period of time corresponding to an
execution of a next microinstruction of said sequence
of microinstructions,

reading said target data from said memory location and,
responsive to an output of said logic means, performing
said specified operation by applying said target data
read from said memory location to arithmetic/logic
circuit means and operating said arithmetic/logic cir
cuit means to perform said specified operation, wherein
if said specified operation so indicates said second data
unit is combined with said target data, said step of
performing said specified operation including a step of

5,542,084
11

generating a plurality of condition codes individuals
ones of which are indicative of a result of performing
the specified operation, and a step of applying said
plurality of condition codes to said data processor, and

during a third period of time corresponding to an execu
tion of a next microinstruction of said sequence of
microinstructions,

storing a result of said specified operation within a
register of said data processor and also within said
memory location, wherein

said first register, said second register, said logic means,
and said circuit means are all external to said memory
unit.

15. A method as set forth in claim 14 wherein said
plurality of condition codes includes a condition code that
indicates a sign of said result, and a condition code that
indicates if said result is Zero.

16. A method as set forth in claim 14 wherein the step of
performing said specified operation includes a step of gen
erating an exception condition to indicate that the perfor
mance of said specified operation resulted in an overflow
condition.

17. A central processor coupled to an external memory
and comprising circuitry for executing an atomic read
modify-write (RMW) instruction, the atomic RMW instruc
tion having the format:

R1, MEMORY ADDRESS, M3, M4,

where R1 is a general data processor register into which a
target memory word containing target data addressed by
MEMORY ADDRESS is copied after being modified,
where M3 is a function mask that determines an operation
performed by the atomic RMW instruction, the operation

O

15

20

25

30

12
being one of incrementing said target data, decrementing
said target data, incrementing said target data by an amount
specified by M4, decrementing said target data by an amount
specified by M4, and exchanging.said target data with data
stored within R1, and where M4 is an unsigned integer, said
central processor circuitry comprising:

a first register for storing M3 during a first period of time
corresponding to an execution of a first microinstruc
tion of a sequence of microinstructions that are
executed during an execution of said atomic RMW
instruction;

a second register for storing M4 during said first period of
time;

logic means, operating during said first period of time, for
decoding M3 to determine one of said operations to be
performed upon said target data;

means for reading said target data from said target
memory word during a second period of time corre
sponding to an execution of a second microinstruction
of said sequence of microinstructions,

arithmetic/logic means having a first input coupled to an
output of said memory and a second input coupled to an
output of said second register, said arithmetic/logic
means being responsive to an output of said logic
means for executing said determined one of said opera
tions on said target data during said second period of
time; and

means for storing, during a third period of time corre
sponding to an execution of a third microinstruction of
said sequence of microinstructions, a result of said
specified operation within R1 and also within said
target memory location.

ck ck ck

