US 20160054931A1

a9 United States

a2y Patent Application Publication (o) Pub. No.: US 2016/0054931 A1l

Romanovsky et al.

43) Pub. Date: Feb. 25, 2016

(54)

(71)

(72)

@

(22)

(63)

STORAGE DEVICES AND METHODS FOR
OPTIMIZING USE OF STORAGE DEVICES
BASED ON STORAGE DEVICE PARSING OF
FILE SYSTEM METADATA IN HOST WRITE
OPERATIONS

Applicant: SanDisk Technologies Inc., Milpitas,
CA (US)

Inventors: Leonid Romanovsky, Haifa (IL); Judah

Gamliel Hahn, Ofra (IL); Joseph

Robert Meza, Aliso Viejo, CA (US);

Daniel Edward Tuers, Kapaa, HI (US)

Appl. No.: 14/555,548
Filed: Nov. 26, 2014

Related U.S. Application Data

Continuation-in-part of application No. 14/464,584,
filed on Aug. 20, 2014.

Publication Classification

(51) Int.CL
GOGF 3/06 (2006.01)
(52) US.CL
CPC ... GOGF 3/0608 (2013.01); GOGF 3/0644
(2013.01); GOGF 3/0659 (2013.01); GO6F
3/0679 (2013.01)
(57) ABSTRACT

The subject matter described herein includes processing file
system metadata in host write requests to determine informa-
tion about future host write operations. The information
regarding future host write operations can be used by a device
controller to prepare the non-volatile memory for the future
host write operations. For example, the device controller may
prepare the non-volatile storage device for future sequential
host write access patterns or random host write access pat-
terns depending on the content of the file system metadata.
The file system metadata may also be usable to determine
when it is optimal to perform memory management opera-
tions.

101

\J

HOST DEVICE
mo\ STORAGE DEVICE

102

[ HOST INTERFACE j/

ADDRESS TRANSLATION

\ DATA PATH MODULE /
> < 106

NON-VOLATILE STORAGE W

. J




Patent Application Publication  Feb. 25,2016 Sheet 1 of 9 US 2016/0054931 A1

101
\
HOST DEVICE
"’(’k STORAGE DEVICE
. 102
HOST INTERFACE j/
108 - < 104
ADDRESS TRANSLATION
\4 DATA PATH MODULE /
> < 106
NON-VOLATILE STORAGE _/
L /

FIG. |



Patent Application Publication  Feb. 25,2016 Sheet2 of 9 US 2016/0054931 A1

101
\
HOST DEVICE
'00\ STORAGE DEVICE
102
HOST INTERFACE _/
108
104
N DATA PATH VODRESS ¥
. TRANSLATION MODULE
/ HINT Deriv.
200 202 106
| HINTTABLE ACCSSFREQUENCY W,
NON-VOLATILE STORAGE C
204

FIG. 2



US 2016/0054931 A1l

Feb. 25,2016 Sheet 3 of 9

Patent Application Publication

ONISSIIOUd
sl INNIINGD
[}
~
ANYWWO) Ad
ILYDIANT J9NYY
Vg1 0L INIH ATddY
g 1
A
_ N¥3LLYd NMON)
v HOLYW (V) 5300

(V) VLV 40 SILAd
8-¥ 1SYI4 44INS

£ 9 80¢

A

ON

INIH 3LYNTVAI-TY
1

JHL HLIM INVISISNOD

INIH INJ¥¥N) H1IM
DNYAY0IIV NI DY

S3A

(LA avay)
ANYWWOD INTHHN SI

90¢

AMNINDIH SSHIV ILNIM
/vy INJY¥N) 139

SaA

¢
J9NVY QILVDIANI

IH1 NO INIH
V AQYIATY J43HL SI

[41]3

aNYWW0d

ooc— \ 0/1 DA



US 2016/0054931 A1l

Feb. 25,2016 Sheet 4 of 9

Patent Application Publication

INISSII0Yd p I INIH INTHYND HLIM
VI INNIINGD JNYAY0DIY NI DY
I Hﬁv vl
| INTH 11YNIYAT-3Y
ANYWWOD Ad , SIA
@LDIANT J9NVY ¢INIH
V41 0L INIH A1ddV THL HLIM INVISISNOD
7 (ILTYM/aV3Y)
A% | ON ANYWWOD INTYNM SI
S Av
NYILLYd NMON)
¥ HDLVW (v) $30Q
0Tp %ssf SSINV
olb | Jrem/ay3y IN3End 139
(V) VIV 40 SIAE |
oLy 1 v ISuH HINS G
\ .
¢
19NYY CILVDIQNI INYWWO)
ON IHL NO INIH vy \/131033
¥ AQVIYTY T4IHL S
80%
(0) Yyl
71 | SNONOYHINASY 31v3Y)
A\l
90 ANYWIWO)
ooy \ O/TIADH




US 2016/0054931 A1l

Feb. 25,2016 Sheet 5 of 9

Patent Application Publication

[JE

92§

NJA 40 ¥3QH0
NI SIN3LX3
I1H YW

vzs

JVIS
SV SINIDA
eHER L

J1l
JILV1S ONIIVIIANI
NY¥3LLYd v 3ANTINI
IWVNA1I $300

SIA ON

S1A

NIVH0dWAL bk
NETEIVE
T1H YW 0z§
sIA a1 ON
JW3L ONLIVIIGNT
N3LLYd ¥ 3GMTNI
IWVNITH 5300
81§
s 91¢
INVNITI 35UV

¢
40234 IWYNITI
Y IANTNI 1AW 304

SONIddVW
DA/

SSTdW03d

. L

i1

SA

ON
1S

¢WYIHLS VIVQ
INIQISIYNON ¥
J0NTONI LIW S30¢

HHW 358vd

/

908

!

S3A

ON

¢
N¥3LLYd LW JHL
HILYW (V) S300

(A

NY3LLYd
vLva NMONX

VSIDIYW (y) / 005

INIH LW
H1IM AYINA
HWvw

INISSDO0Yd
MNIINDD

01§

0s



US 2016/0054931 A1l

Feb. 25,2016 Sheet 6 of 9

Patent Application Publication

174} ™~

1T¥M ININDIY ANV QV3Y ININDIYA
INILYIIGNI sva1 404 INIH Qav
,

@azéuz: SINIH u><®/ - 990 Tt
] LI W
1UT4M
LNINOLINT ONY 0V3Y LNANDTY g g 209
ONILYDION] sg1 404 INIH Q0¥

ON

S3A

CATOHSTAHL NIVIY¥) V
08V ILNATHLLY GI1VIY)

ANV 3SS3DIV-15V1 3H1
NIIMI48 V1130 IHL SI

#

ON

!

S1A

¢ATOHSIUHL NIAT9
NVHL ¥3H9IH INNOD
40441 118V DIYH0) SI

919

SIN3LX3 IHL 404 VIV QVY NI
INNOJ Y0¥ 11GVDIYY0D ISNIS

¢SLTEM
IND)TY ON InQ SAvIY
IN3)34 10 ¥IGWNN
193V V 1IYDIONI VIV
MNINDIY SS1IIV 40
135 ¥3HLH S300

Y

v19

SIMTVA LIW HLIM
LYTHIY0) ANV 9NV Va1 404 B
JNINDIYS SV AISVE-DIAI0 139

SONLddVW
NDA/NDT ON
SSTHIN0DIT ;
=l WYILS YLYa

INTGISTANON ¥
609 SIA 1 30mINT Liw s300
_ ONISSII0N
INNLLNOD
LW 38V

71 709

oN

909 31 i

NYILLYd L4W 3HL
HOLVW (¥) $300

09

N411LYd
Viva NMONX

v SIHDLVW (V) 009



Patent Application Publication  Feb. 25,2016 Sheet 7 of 9 US 2016/0054931 A1
110
N HOST DEVICE
100
STORAGE DEVICE |/
NVM CONTROLLER 700
METADATA IDENTIFIER L
"] DB PARSER
70— |
06— | (B IDENTIFIER
106
N NON-VOLATILE STORAGE

FI6./



Patent Application Publication

PERFORM
WRITE
OPERATION

804
/S

Feb. 25,2016 Sheet 8 of 9

RECEIVE HOST
WRITE
REQUEST

US 2016/0054931 A1l

FILE SYSTEM

]

METADATA

INCLUDED?

802

LOCATE DESCRIPTOR
BLOCK (DB)

[ 801

PARSE FILE
SYSTEM METADATA
FOLLOWING DB TO

DETERMINE INFORMATION

OPERATIONS

REGARDING FUTURE HOST WRITE

[ ™-808

PREPARE NONVOLATILE

MEMORY FOR IDENTIFIED

FUTURE HOST WRITE OPERATIONS

810

FIG. 8



Patent Application Publication  Feb. 25,2016 Sheet 9 of 9 US 2016/0054931 A1

RECEIVE
HOSTWRITE  [™_sgg
REQUEST

904
4 N FILE SYSTEM
PROCESS '

LOCATE COMMIT
BLOCK (CB) IN 004
FILE SYSTEM METADATA

PERFORM HOUSEKEEPING
OPERATIONS ON -
NONVOLATILE MEMORY 906

FI6.9



US 2016/0054931 Al

STORAGE DEVICES AND METHODS FOR
OPTIMIZING USE OF STORAGE DEVICES
BASED ON STORAGE DEVICE PARSING OF
FILE SYSTEM METADATA IN HOST WRITE
OPERATIONS

PRIORITY CLAIM

[0001] This application is a continuation-in-part of U.S.
patent application Ser. No. 14/464,584 filed Aug. 20, 2014,
the disclosure of which is incorporated herein by reference in
its entirety.

TECHNICAL FIELD

[0002] The subject matter described herein relates to
memory storage device optimization. More particularly, the
subject matter described herein relates to storage devices and
methods for optimizing use of storage devices based on stor-
age device parsing of file system metadata.

BACKGROUND

[0003] When accessing storage devices, it is desirable to
optimize utilization of the devices. For example, flash
memory devices have memory cells with a finite number of
program and erase cycles before the cells experience errors
and become unusable. Frequently accessed host data should
generally not be stored in such memory cells. Rather, fre-
quently accessed host data should be stored in dynamic
memory cells, i.e., cells with a comparatively larger number
of program and erase cycles.

[0004] Inaddition, itis desirable to store data with the same
anticipated host access pattern together in a memory storage
device because of differences in access granularity between a
host and the memory device. For example, in a flash memory
device, it may not be desirable to store a temporary file that is
frequently accessed in the same memory block as an image
file that is infrequently accessed because accesses to the
memory block that stores the temporary file would also access
the memory cells that store the image file. Because the storage
device only sees I/O operations that specify ranges of
memory addresses, the characteristics of the data being stored
or how the data will be accessed by the host in the future is not
explicitly communicated to the storage device. As a result,
data may be stored in suboptimal locations of the memory
device.

[0005] The protocol stack through which a host system,
such as a host computer, accesses a storage device is referred
to as the host storage stack, commonly referred to as the file
system driver. The host storage stack includes a number of
layers abstracting application logic from the logical blocks
that represent the storage device. These include caching lay-
ers, memory-mapped bufters, and file systems which allow an
application developer to store data in files rather than man-
aging the actual block device interface.

[0006] Over the last 30 years, the storage stack has evolved
from linear-access technologies (such as tape) to random
access devices that have a seek penalty (such as floppy disks
and hard disk drives (HDDs)) to random-access flash devices,
such as solid state drives (SSDs), which have no inherent seek
penalty, but which access physically sequential data more
efficiently than random-access data. As part of the abstrac-
tion, it is difficult for a storage device to define (or devise) the
ideal access pattern desired by the host. In the case of flash
storage devices, the device can adjust its storage strategy if

Feb. 25,2016

the storage device has information in advance of what the
host’s read pattern would be for certain logical block address
(LBA) sequences. As an example, if the device has informa-
tion that a certain LBA range, for example, will be read
sequentially at boot, it may make that range available for
access before it completes internal initialization. As another
example, if the device has information that that a certain LBA
sequence will only hold temporary files with a lifetime of one
host power cycle, it may choose particular flash regions which
are tuned for lower retention or keep data destined for these
LBAs in RAM. As alluded to above, most of the knowledge
regarding [.LBA sequences is maintained in the upper layers of
the host storage stack (such as the file system) and is not
communicated down to the storage device.

[0007] Storage protocols such as hybrid serial advanced
technology attachment (SATA) and non-volatile memory
express (NVMe) include the ability for the host to create
“hints”, which advise the device of characteristics of specific
LBA ranges. These hints do not require the device to change
its behavior, but optionally allow for optimization of specific
ranges. Sending hints from the host to the storage device
effectively requires the cooperation of multiple parts of the
storage stack, since the metadata used to determine a hint is
typically abstracted away within the file system.

[0008] Although current operating systems may send hints
on an extremely limited basis, such hints are not effective for
solid state drive optimization. This requires new solutions
that bridge the host-device gap in hinting.

[0009] One particular type of non-volatile memory in
which it is desirable to optimize utilization of the storage
media is NAND flash memory. A NAND flash memory is
organized in terms of blocks, and each block is further divided
into a fixed number of pages. A block is the basic unit for erase
operations, while reads and writes are processed in the unit of
one page. A page cannot be overwritten unless it is erased.

[0010] Due to the special write constraints of multi-level
cell (MLC) flash memory, pages of ML.C flash memory can
only be written sequentially in a block and partial program-
ming to a page is not possible. The write constraints introduce
extra overhead to writes over flash memory and make existing
flash transition layer (FTL) designs (e.g., implementing dif-
ferent address translation tables) and other flash memory
management schemes lack efficiency.

[0011] One existing problem associated with storage
devices based on flash memory is that the flash memory
management schemes do not have awareness of the file sys-
tem of the host and thereby introduce overhead caused by
write operations of different sizes, including overhead caused
by live page copying of valid pages from victim blocks con-
taining invalid pages to free pages in other blocks, such that
system performance is significantly affected. Currently, host
write operations are not managed in the storage device based
on the memory locations of memory blocks that are yet to be
written to the file system.

[0012] File system metadata in host write operations may
provide an indication of where data will be written in the
future to the non-volatile storage device. File system meta-
data signifying the beginning and end of data to be written to
a storage device may allow for the storage device to perform
memory management operations between write operations.
However, as stated above, such file system metadata, while
known to the host, is typically not known to the non-volatile
storage device.



US 2016/0054931 Al

[0013] Accordingly, there exists a need for storage devices
and methods for optimizing use of storage devices based on
storage device parsing of file system metadata in host write
operations.

OVERVIEW

[0014] The subject matter described herein includes pro-
cessing file system metadata in host write requests to deter-
mine information about future host write operations. The
information regarding future host write operations can be
used by a device controller to prepare the non-volatile
memory for the future host write operations. For example, the
device controller may prepare the non-volatile storage device
for future sequential host write access patterns or random host
write access patterns depending on the content of the file
system metadata. The file system metadata may also be
usable to determine when it is optimal to perform memory
management operations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Embodiments of the subject matter described herein
will now be explained with reference to the accompanying
drawings, wherein like reference numerals represent like
parts, of which:

[0016] FIG.11is a block diagram illustrating an exemplary
operating environment for the subject matter described
herein;

[0017] FIG. 2 is ablock diagram of exemplary components
of a storage device with a hint derivation and memory utili-
zation optimization module, hint tables, and a access fre-
quency map according to an embodiment of the subject mat-
ter described herein;

[0018] FIG. 3 is a flow chart illustrating an exemplary pro-
cess for in-line hint derivation and memory utilization opti-
mization according to an embodiment of the subject matter
described herein;

[0019] FIG. 4 is a flow chart illustrating an exemplary pro-
cess for asynchronous hint derivation and memory utilization
optimization according to an embodiment of the subject mat-
ter described herein;

[0020] FIG. 5 is a flow chart illustrating an exemplary pro-
cess for parsing file names in a master file table according to
an embodiment of the subject matter described herein;
[0021] FIG. 6 is a flow chart illustrating an exemplary pro-
cess for deriving hints from frequently read and frequently
accessed attributes in a master file table according to an
embodiment of the subject matter described herein;

[0022] FIG. 7 is a block diagram illustrating a host device
and a storage device capable of parsing file system metadata
in host write requests and preparing non-volatile memory for
future write operations according to an embodiment of the
subject matter described herein;

[0023] FIG. 8 is a flow chart illustrating an exemplary pro-
cess implemented by a storage device for parsing file system
metadata and for preparing the storage device for future host
write operations indicated by the file system metadata accord-
ing to an embodiment of the subject matter described herein;
and

[0024] FIG. 9 is a flow chart illustrating an exemplary pro-
cess implemented by a storage device for parsing file system
metadata and determining an optimal time for performing
non-volatile storage housekeeping operations according to an
embodiment of the subject matter described herein.

Feb. 25,2016

DETAILED DESCRIPTION

[0025] The subject matter described herein includes meth-
ods, systems, and computer readable media for automatically
deriving hints from accesses to a storage device and from file
system metadata and for optimizing utilization of the storage
device based on the hints. The operations described herein are
performed at the storage device level, for example, using a
hardware or firmware hint derivation and memory utilization
optimization module that automatically detects patterns in
data that is written to a storage device and derives hints from
the patterns regarding how data will likely be accessed by a
host. The hint derivation and memory utilization optimization
module may also utilize frequency of accesses to memory
locations and file system metadata to derive hints and to
determine how to best optimize utilization of storage device
resources.

[0026] FIG.1isablock diagram of an exemplary operating
environment in which the hint derivation and storage device
utilization optimization methods described herein may be
used. Referring to FIG. 1, a storage device 100 provides
non-volatile storage for a host device 101. Storage device 100
may be any suitable device that incorporates non-volatile
memory and that allows access to that memory by a host
device. In one example, storage device 100 may be a NAND
flash device. However, other storage devices may also be used
within the scope of the subject matter described herein. For
example, storage device 100 may be a NOR flash device, a
solid state drive that incorporates NOR and/or NAND flash
memory, or a device that combines solid state storage with
disk storage.

[0027] Storage device 100 may include hardware, soft-
ware, and firmware components. For example, storage device
100 typically includes a storage controller that controls
access by host device 101 to non-volatile memory storage. As
described above, storage device 100 may also include hard-
ware or firmware components that implement hint derivation
and storage device utilization optimization as described
herein. These components will be described in more detail
below.

[0028] In the illustrated example, storage device 100
includes a host interface 102 for interfacing with host device
101. Host interface 102 may be any suitable interface for
handling I/O operations between host device 101 and non-
volatile memory. For example, host interface 102 may be a
SATA interface, a peripheral component interface express
(PClIe) interface, or any other suitable interface for receiving
1/O commands from a host system. An address translation
module 104 translates from the address space by the host to
the address space used by storage device 100 to access non-
volatile storage 106. In one example, host device 101 may use
logical addressing by specifying logical block addresses
(LBAs) in I/O operations to storage device 100, storage
device 100 may use physical addressing to specify memory
locations, and address translation module 104 may translate
between the logical address space and the physical address
space

[0029] Non-volatile storage 106 may comprise the physical
memory cells where data is stored. For example, in the case of
flash memory, non-volatile storage 106 may include NAND
or NOR flash memory cells in two-dimensional, three-dimen-
sional, or combinations of two-dimensional and three-dimen-
sional configurations. As stated above, non-volatile storage
106 may also include one or more disk storage devices. Stor-
age device 100 further includes a data path 108 that commu-



US 2016/0054931 Al

nicates data from host device 101 to non-volatile storage 106
and from non-volatile storage 106 to the host. Data path 108
may include data buffers and error detection and correction
modules for ensuring data integrity. In addition, as will be
described in detail below, data path 108 may also include hint
derivation and memory utilization optimization.

[0030] FIG. 2 is a block diagram of storage device 100 and
host device 101 in FIG. 1 where storage device 100 includes
a hint derivation and memory utilization optimization module
200 for deriving hints from accesses to storage device 100 and
from file system metadata and utilizing the hints to optimize
utilization of non-volatile storage 106. In FIG. 2, hint deriva-
tion and memory utilization optimization module 200 may
comprise a hardware or firmware component of storage
device 100 that resides on the storage device side of host
interface 102 and analyzes incoming data for patterns. Hint
derivation and memory utilization optimization module 200
may also detect the access frequency for LBAs in /O requests
from host device 101. Hint derivation and memory utilization
optimization module 200 may also derive hints from file
system metadata. Hint derivation and memory utilization
optimization module 200 may use the hints to optimize utili-
zation of non-volatile memory. Examples of optimizations
that may be performed will be described below.

[0031] A hinttable 202 stores LBA ranges and correspond-
ing hints that indicate how the corresponding L. BA range will
likely be accessed by host system 101 in the future. In one
example, the hints may be file types, which provide an indi-
cation of how the files will subsequently be accessed by the
host system. Access frequency map 204 stores LBA ranges
and frequencies of access for the ranges. Access frequency
map 204 may be in the form of statistics, counters, logs, or any
other direct or derived mechanism for recording access fre-
quencies for different LBAs. Hint table 202 and access fre-
quency map 204 may be stored in any suitable location within
storage device 100. For example, hint table 202 and access
frequency map 204 may be stored in non-volatile storage 106
or in cache memory that is separate from non-volatile storage
106. In addition, hint table 202 and access frequency map 204
may be combined into a single data structure so that an access
frequency is specified for each LBA range entry in hint table
202.

[0032] FIG.3isaflow chartillustrating exemplary steps for
in-line hint derivation and corresponding memory utilization
optimization according to an embodiment of the subject mat-
ter described herein. By “in-line”, it is meant that hints asso-
ciated with the anticipated host memory access pattern are
derived by the storage device while performing a host initi-
ated I/O operation. In-line hint derivation and corresponding
memory optimization is believed to be beneficial because the
anticipated type of memory access for a specific LBA range in
an 1/O request can be used to determine where to initially
store data from the /O request in the case of a write operation.
However, the subject matter described herein is not limited to
in-line hint derivation and memory utilization optimization.
Hint derivation may be performed asynchronously with
respect to 1/O operations. Asynchronous hint derivation may
not allow optimization of how data is initially stored. How-
ever, the data can be subsequently moved to optimize utiliza-
tion of storage device 100.

[0033] Referring to FIG. 3, in step 300, an I/O command is
received. The /O command may be a read command or a
write command received by hint derivation and memory uti-
lization optimization module 200. In step 302, it is deter-

Feb. 25,2016

mined whether or not a hint already exists for the LBA range
in the I/O command. In order to determine whether a hint
exists for the range specified in the [/O command, hint deri-
vation and memory utilization optimization module 200 may
extract the LBA range from the [/O command sequence and
perform a lookup in hint table 202 to determine whether an
entry for the LBA range is present in hint table 202. Table 1
shown below illustrates exemplary entries that may be present
in hint table 202:

TABLE 1

Exemplary Hint Table Entries

LBA Range Hint

0x00000000-0x3FFFFFFF
0x40000000-0x400001F3
0x50000000-0x8FFFFFFF

JPEG Image File
Executable File
Swap File

In Table 1, the left hand column includes LBA ranges corre-
sponding to previous I/O operations by host device 101 for
which hints have been derived. The right hand column
includes corresponding hints. In the illustrated example, the
hints are file types which provide insight as to how the data
may be accessed by the host in the future. For example, the
first entry in the hint table indicates that the LBA range stores
a JPEG image file. A JPEG image file may be a photo that is
likely to be written only once and then read sequentially. Such
a file is preferably stored in static memory cells that have a
relatively lower number of remaining program and erase
cycles, as it is unlikely that even for read operations the JPEG
image file will be frequently accessed. In addition, the JPEG
image file may be distributed across flash memory in a man-
ner that is optimal for sequential read access. It may also be
desirable to store the JPEG image file with other JPEG image
files that were created around the same time, as accesses to
JPEG image files that relate to the same event are likely to
occur together.

[0034] The second entry in Table 1 is an executable file.
Similar to a JPEG image file, an executable file is likely to be
written once and then read sequentially when the correspond-
ing program is executed. An executable file may therefore be
stored or distributed across memory cells in a manner that is
optimal for sequential read access. The executable file may be
stored in static or dynamic regions of non-volatile storage 106
depending on the type of program and anticipated frequency
of'access. For example, if the program is a web browser which
is likely to be frequently accessed, the web browser may be
stored in a dynamic portion of non-volatile storage 106. If
however, the program is a back-up program that runs only
once per week, the program may be stored in a static region of
non-volatile storage 106.

[0035] The third entry in Table 1 includes a hint that indi-
cates that the file is a system swap file. A swap file is typically
frequently accessed because it enables an operating system to
use secondary storage devices, such as storage device 100, to
simulate extra memory. When the system runs low on
memory, it swaps a section of system Random Access
Memory (RAM) that an idle program is using onto the storage
device to free up memory for other programs. A swap file is
preferably stored in a dynamic region of non-volatile storage
106 in light of the frequent access and low latency require-
ment of a swap file. A dynamic region of non-volatile storage
106 may, in addition to having a large number of remaining



US 2016/0054931 Al

program and erase cycles, be a region with relatively low
access latency, as compared with other regions of non-volatile
storage 106.

[0036] Returning to step 302 in FIG. 3, if a hint is present,
control proceeds to step 304 where the current read or write
access frequency is determined. This step may be performed
by hint derivation and memory utilization optimization mod-
ule 200 accessing access frequency data stored for the LBA
range in the I/O operation in access frequency map 204. In
step 306, it is determined whether the current command is
consistent with the hint. Determining whether the current
command is consistent with the hint may include examining
the command type and/or the access frequency data to deter-
mine whether the hint needs to be reevaluated. For example,
if the hint stored for a particular LBA range indicates that the
file stored is JPEG image file and the command is a write
command, the hint may require reevaluation, as it is unlikely
that a JPEG file will be overwritten by the host once it is
written the first time. In the same example, if the command for
the LBA range is a read command for a previously stored
JPEG file, then the command is consistent with the current
hint. If the current command is consistent with the hint, con-
trol proceeds to step 308, where an action is performed in
accordance with the current hint. Performing an action in
accordance with the current hint may include carrying out the
1/0 operation and updating the associated access frequency
data. Continuing with the JPEG file example, the read com-
mand may be executed. If the current command is not con-
sistent with the hint, control proceeds to step 310 where hint
re-evaluation begins.

[0037] As part of hint re-evaluation, in step 312, the first
four bytes of data in the command are analyzed. In step 314,
it is determined whether the data matches a known pattern.
Table 2 shown below illustrates different patterns that may be
analyzed in a Macintosh (MAC)- or Windows-based file sys-
tem.

TABLE 2

Windows File System Patterns

Pattern Hint

“FILE” NTFS MFT entry

“PK” ZIP compressed file (including JAR files,
Android APK files, and compressed document
files)

“RCRD”, “RSTR” NTFS log metadata

OXFE OXED OxFA Mach-O executable

“HIBR” Hibernate data

“MZ” Windows or UEFI executable
000000 18 66 7479 70 MPEG-4 video file

000000 1C 66 74 79 70

“ID3” ID3v2-tagged MP3 file

“MDMP” Windows minidump file
“PAGEDUMP” Windows pagedump file
0x89, “PNG” PNG Image file format
0x42 0x4D BMP Image file format
“GIF” GIF Image file format

In the examples in Table 2, the patterns in the left-hand
column correspond to file type in the right-hand column. The
file types can be used by storage device 100 to determine how
that file will be accessed. For example, if the file is an execut-
able file, it is known that executable files are relatively static.
That is, they are typically written once to non-volatile storage,
not modified, but may be completely erased and replaced.
Thus, an executable file may be written to a static or portion

Feb. 25,2016

of non-volatile storage. In another example, if the data con-
tains the pattern “PK”, or is determined to be an image file
format, or is determined to be of particular audiovisual file
formats, then the file may be determined to be a compressed
file. A compressed file is not likely to require recompression
and thus may be stored in static portion of non-volatile stor-
age 106.

[0038] Continuing with step 314, it is determined whether
the first 4 to 8 bytes of data in the data or payload portion of
the /O command sequence matches a known pattern. If the
data matches a known pattern, control proceeds to step 316
where a hint is applied to the logical block address range
indicated by the I/O command. Applying the hint may include
storing the derived hint for the LBA range in the hint table and
treating the data in accordance with the identified file type to
optimize utilization of the memory storage device. If the hint
does not match a known pattern, control proceeds to step 318
where processing is continued. Continuing the processing
may include completing the I/O command and updating the
access frequency for the LBA range.

[0039] As stated above, the subject matter described herein
is not limited to deriving hints in-line, although such deriva-
tion is desirable because it allows any storage device optimi-
zations to be performed when data is initially stored in non-
volatile storage 106. The subject matter described herein also
includes deriving hints asynchronously, i.e., performing the
1/O operations and deriving hints asynchronously from the
1/O operations. Deriving hints asynchronously is likewise
beneficial to ensure repeated optimization of storage
resources. F1G. 4 is a flow chart illustrating asynchronous hint
derivation according to an embodiment of the subject matter
described herein. Referring to FIG. 4, in step 400, an /O
command is received. The [/O command may be a read com-
mand or a write command regarding a specific LBA range. In
step 402, an asynchronous task “D” is created to derive the
hint for the I/O command. Creating the asynchronous task
may include spawning a thread or process that analyzes the
data in the 1/0O command sequence and any previously stored
hints. In step 404, the /O command is executed indepen-
dently of the process that derives and acts on the hint. Refer-
ring to step 406, asynchronous task D begins its execution.
The asynchronous task D executes steps 408-424 to derive the
hint and apply the hint. Steps 408-424 are the same as steps
304-318 described above with respect to FIG. 3, with the
exception that applying the hint (step 414 or 426) occurs
independently of the current /O operation. For example,
applying hints may include marking the LBA ranges in the
hint table such that when NAND maintenance operations,
read look ahead, or other logical operations optimizing the
data are utilized, the hint is available and is used as a method
of making decisions about the data. For example, if the hint
indicates that the data is temporary, it may be skipped in
relocation decisions. Alternatively, if the data is expected to
be heavily read but not written often, it may be grouped
together with other “hot read” data to reduce read scrub
copies of data which is relatively static.

[0040] As stated above, hint derivation may also occur by
parsing file system metadata. File system metadata refers to
datathat is written by the file system to non-volatile storage to
characterize files. File system metadata may be parsed for
hint derivation as it is written to storage device 100, during
storage device idle time, or opportunistically during mainte-
nance operations that access the physical blocks in which the
metadata is stored. File system metadata typically includes



US 2016/0054931 Al

the following information about each file (all attributes are
present in NTFS, HFS+, and the ext4 file system):
[0041] Access times (last access, last modification, cre-
ation time)

[0042] Filename

[0043] Directory structure

[0044] Extent map (map of file offsets to LBA ranges)
[0045] Insome file systems (such as NTFS and HFS+), the

extent map may include resident portions in a central file
(called the catalog file in HFS+ and the MFT in NTFS), as
well as a non-resident extension used for additional extent
maps in severely fragmented files. Depending on internal
device resources, storage device 100 may elect not to de-
reference non-resident extents into hints.

[0046] Filename parsing works based on common usage
patterns associated with file extensions or directory trees. For
example, the Windows operating system uses the “Program
Files” and “Program Files (x86)” directories to store execut-
able resources, which are typically static. Furthermore,
executables in Windows tend to have an extension of “EXE”
or “DLL”. Correspondingly, Mac OS X uses directories with
the extension “.app” to store executables. (The actual
executables in Mac OS X do not have an identifying exten-
sion.) Temporary files have a “.tmp” extension or are in a
directory called “tmp” or “Temporary Internet Files”. Internet
browser cache files (which are also short-lived) may have
identifying characteristics such as brackets in the filename,
enclosing a single digit.

[0047] FIG. 5 illustrates hint derivation by file name pars-
ing according to an embodiment of the subject matter
described herein. In step 500, it is determined whether data in
an 1/0O command sequence received by storage device 100
matches a known data pattern. In step 502, it is determined
whether the data matches the MFT pattern. As illustrated by
the second entry in Table 2, the MFT pattern is the characters
“FILE”. Thus, if the data parsed from the I/O operation
includes the characters “FILE”, then the I/O operation may be
determined to be a write to the MFT table. If the operation
does not match the MFT pattern, control proceeds to step 504
where processing is continued. Continuing the processing
may include performing another type of hint derivation, such
as based on last written and last read attributes maintained by
the file system as will be described in more detail below.
[0048] In step 502, if the data matches the MFT pattern,
control proceeds to step 506, where the MFT is parsed. Pars-
ing the MFT includes locating the MFT entry corresponding
to the I/O operation. Parsing the MFT continues in step 508,
where it is determined whether the MFT entry stores a non-
resident data stream. A non-resident data stream is a file
whose location is specified in the MFT entry, but which is
stored external to the MFT. A resident data stream is a file that
is stored in the MFT entry. Accordingly, a write to the MFT
for a resident file is a write to the file. Thus, ifthe MFT entry
has a resident file, control proceeds to step 510 where the
MEFT entry is marked with a hint indicating that the entry
includes an MFT resident file.

[0049] Returning to step 508, if the MFT entry includes a
non-resident data stream, i.e., a pointer to one or more loca-
tions outside of the MFT that stores the corresponding file,
control proceeds to step 512 where the logical cluster num-
ber/virtual cluster number (LCNNCN) mappings that indi-
cate storage locations for a non-resident file are decom-
pressed. In step 514, it is determined whether the MFT entry
includes a file name record. If the MFT entry does not include

Feb. 25,2016

a file name record, control returns to step 510 where the entry
is marked with an MFT hint. An MFT hint may explicitly
identify the entry as an MFT entry.

[0050] Ifthe MFT entry includes a file name record, control
proceeds to step 516 where the file name is parsed. File name
parsing continues in step 518 where it is determined whether
the file name includes a pattern indicating a temp file. File
names for temp files vary per operating system. In a Win-
dows-based operating system, a temp file may end with the
suffix “.tmp” or may include closed brackets that surround a
single number. If the file name pattern indicates a temp file,
control proceeds to step 520 where the file extents that store
the file are marked as temporary. Marking the extents as
temporary may include inserting hints in the MFT table that
marks the extents as temporary or adding entries to the hint
table that mark the LBA ranges corresponding to the file
extents or containing a temp file.

[0051] Returning to step 518, if the file name does not
include a pattern identifying the file as temporary, control
proceeds to step 522 where it is determined whether the file
name includes a pattern identifying a static file. As described
above, examples of static files are executable files and some-
times image files. If the file name includes a pattern identify-
ing the file as static, control proceeds to step 524 where the
extents are marked as static. If the file name does not include
a pattern indicating a static file, control proceeds to step 526
where the extents are marked in the order specified by the
virtual cluster numbers in the MFT table. The purpose of
ordering the extents allows the storage device to know the
order of data in the file so that the device can reorder the file
for optimal host access. Reordering the file may include stor-
ing the extents of the file in different memory blocks so that
they can be read out in parallel.

[0052] As stated above, another approach to parsing file
system metadata is to parse last written and last read attributes
in the file system and to combine these attributes with cor-
rectable error count rates or with internal counters in order to
determine the access frequency of the read and optimize read
scrub algorithms. Correctable error rates would correlate with
increased read activity in some storage types and may be
augmented by device based historical data collected on reads
and writes to extents that map to files that are expected to be
heavily accessed.

[0053] A frequently read or frequently written hint can be
based on combinations of these two inputs, as described
below with respect to FIG. 6. Referring to FIG. 6, in step 600
and 602, it is determined whether the file and the datainan I/O
request matches the MFT pattern. As described above, the
MET pattern in a Windows file system is the word “FILE”. If
the file name does not match the MFT pattern, control pro-
ceeds to step 604 where additional processing is performed to
determine whether the data matches any of the other patterns
described above.

[0054] If the data in the /O request matches the MFT
pattern, control proceeds to step 606 where the MFT is
parsed. Parsing the MFT may include locating the MFT entry
corresponding to the I/O operation. In step 607, it is deter-
mined whether the MFT entry includes a non-resident data
stream. If the MFT entry includes a resident data stream,
control proceeds to step 608 where the entry is marked with a
hint indicating that the LBA range in the /O request corre-
sponds to an MFT resident file. If the MFT entry includes a
non-resident data stream, control proceeds to step 609 where
the LCNNCN mappings are decompressed to determine the



US 2016/0054931 Al

locations of the extents that store the non-resident file. Once
the LCNNCN mappings are determined, control proceeds to
step 610 where the device based access frequency for the
LBA range is obtained from the access frequency map and
that access frequency is correlated with the MFT attributes
that correspond to file access frequency. In step 612, it is
determined whether either set of access frequency data indi-
cates the large number of reads but no recent writes. If the
access frequency data indicates a large number of reads but no
recent writes, control proceeds to step 614 where a correct-
able error count is sensed in read data for the extents. In step
616, it is determined whether the correctable error count is
higher than a given threshold. If the correctable error count is
higher than a given threshold, control proceeds to step 618
where a hint is created for the LBAs indicating frequently
read and infrequently written. If the correctable error count is
not higher than a given threshold, control proceeds to step 620
where the hints associated with the LBA range are left
unchanged.

[0055] Returning to step 612, if it is determined that either
set of access frequency data does not indicate a large number
of reads but no recent writes, control proceeds to step 622
where it is determined whether the difference between the last
accessed and created attribute is above a threshold. If the last
accessed and created attribute is above the threshold, this
means that the file is static, and control proceeds to step 618
where the hints are left unchanged. If the difference between
last accessed and created attribute is not above the threshold,
this means that the file is frequently read and written, so
control proceeds to step 624 where a hint is added to the
logical block addresses indicating frequently read and fre-
quently written data. As described above, hints that indicate
frequently read and frequently written data can be used to
place the data in a region of the storage device that contains
memory cells with a larger comparative number of remaining
program and erase cycles.

[0056] Although in the examples illustrated in FIGS. 5 and
6 file system metadata is parsed in the context of an 1/O
request, the subject matter described herein is not limited to
deriving hints from file system metadata in the context of an
1/0 request. File system metadata constitutes data that is
stored in non-volatile memory. Accordingly, such metadata
can be parsed independently of I/O operations to derive hints
associated with LBA ranges corresponding to files referenced
in file system metadata.

[0057] In addition, the subject matter described herein is
not limited to parsing timestamps and filenames to derive
hints. Another type of file system metadata that may be used
for hint derivation are file attributes (read only, hidden, sys-
tem, compressed) that can also be extracted to help with
hinting. For example, if a file is marked read only, then it is not
likely that the file will be modified and the file can be stored
in a static portion of non-volatile memory 106. Similarly, if a
file is marked as hidden or system, this typically refers to the
file is being a part of the operating system. A file that is part of
the operating system is one that is not likely to be modified, so
it could also be stored in a static portion of non-volatile
memory 106. The file attributes can be combined with any of
the attributes or other sources described herein for enhanced
hint derivation.

Parsing File System Metadata in Write Requests to
Determine Information Regarding Future Host Write
Operations
[0058] The subject matter described herein includes a file
system aware scheme that is implemented in a storage device

Feb. 25,2016

for regulating data writes and other data transfer operations
based on knowledge of the layout of the host operating file
system to achieve better write performance. The subject mat-
ter described herein can be used to support any major file
systems that are currently in use or that may be used it the
future, for example, in the mobile or non-mobile world,
including ext2, ext3, ext4, and others.

[0059] The subject matter described herein includes a file
system aware scheme in the non-volatile storage device that is
designed to regulate writes coming in from the host by imple-
menting a filtering mechanism that distinguishes between file
system data (metadata) and between file content and other
data. The filtering mechanism is designed to separate access
requests for metadata and access requests for other data (such
as file content) and filter out the required file system metadata
information based on the knowledge of the layout of the file
system.

[0060] One possible mechanism for implementing the fil-
tering described herein can be based on the knowledge that
file systems commonly store superblocks at fixed locations
that do not change after file system creation. The superblock
records various information about the enclosing file system,
such as block counts, inode counts, supported features, main-
tenance information, and other information. The superblock
also contains information about locations of file system meta-
data in memory. One example of file system metadata that
may be located in a superblock is the location of the file
system journal log, which contains a log of host write opera-
tions that have yet to be performed to the file system.

[0061] According to an aspect of the subject matter
described herein, the device controller, i.e., the controller of
the non-volatile storage device, may analyze the file system
metadata to determine to which memory blocks the file sys-
tem will write host data before the data is actually written to
the storage device. This information may be filtered or pro-
vided to the device controller for use by the controller in
regulating host writes in a more efficient manner. Such infor-
mation provides the device controller with an indication of to
which memory blocks the file system will write the data
before the data is actually written to the storage device.
[0062] Thus, a device controller of the subject matter
described herein may be file system aware in that the control-
ler is capable of organizing data into file system metadata and
other content, where the other content includes file data and
other data. The other data typically contains the contents of
files oruser data. Compared to metadata, most user data is less
frequently accessed, and each access to user data typically
touches data of a larger size. File system metadata typically
contains information about the file system, file attributes, and
file directories. The file system metadata includes indexes to
locations of memory blocks that are scheduled to be written
by the file system into the device memory. The indexes are
referred to as inodes and are stored in the journal log. The
journal log is typically stored in a dedicated area on the
non-volatile storage device and contains the indexes to
memory blocks containing data file changes and updates that
the file system will make in the future. These indexes can be
translated into logical block addresses of memory blocks
where the host data corresponding to the inodes will be writ-
ten.

[0063] Insome file systems, such as ext3 and ext4, there are
two possible mechanisms for converting between inodes and
logical block addresses. The first mode is a direct-indirect
block addressing approach, and the second mode utilizes an



US 2016/0054931 Al

extent tree implementation. In the first mode, file block num-
bers (inode numbers) are mapped to logical block numbers
(logical block addresses) by navigating a three level block
map. To find a logical block that stores a particular file block,
the block map is navigated using the file block number as an
index to locate the corresponding logical block number.
[0064] Inthe second mode, file system extents are arranged
as a tree. Each node of the tree begins with a structure extent_
header. If the node is an interior node, the header is followed
by instances of the structure ext4_extent_idx. Each of these
index entries points to a block containing one or more nodes
in the extent tree. If the node is a leaf node, then the header is
followed by extent header entries instances of the structure
extent. These instances point to the file system’s data blocks.
The root node of the extent tree is stored in such a manner that
allows for the first four extents to be recorded without the use
of'extra metadata blocks. Thus, using the second mode where
file system extents are arranged as a tree, mapping an inode
number to a logical block address may include traversing the
extent tree using the inode number as an index until a leaf
node is located. The leaf node stores the block number to
which a particular file system extent points.

[0065] In general, journaling is a file system aware feature
in which all data file updates and changes that the file system
will make are recorded ahead of time in a journal log and
maintained in a dedicated area of the file system before com-
mitting the updates to the main file system. The journal log
provides an audit trail of the file system associated with
memory allocation blocks and host data writes that are
defined by the file system. Such information is typically used
to reconstruct file system if the original file is damaged or
destroyed, so that in the event of a system crash or power
failure, such file systems are quicker to bring online and less
likely to become corrupted. However, according to an aspect
of the subject matter described herein, the proposed file sys-
tem aware scheme operates to utilize the information in the
journal log for efficient data write purposes. In addition, the
subject matter described herein utilizes the information in the
journal for more efficient handling of internal housekeeping
operations within the storage device.

[0066] Thejournal logis typically designed as a table array
containing descriptor blocks (DBO, DB1, etc.), which store
the transaction ID number, inode information from which
LBA addresses have yetto be written blocks by the file system
can be calculated, and corresponding commit blocks (CBO,
CB1, etc.), indicative of an end of a data write operation.
[0067] For example, in the case where the specified data in
an incoming host write command is associated with a trans-
action ID number (e.g., 100) for DB1, then the LBA addresses
of'the yet to be written memory blocks in the device memory
may be calculated from the corresponding inode information
within the journal log. The following simplified example
illustrates information that may be contained within the jour-

nal log:
[0068] DBO inodes CBO
[0069] DBI1 CBI1
[0070] DB2CB2
[0071] In the above-listed example, the inodes between

DBO and CBO can be used to calculate the LBA addresses of
memory blocks that are yet to be written to the device.
[0072] The following steps illustrate a possible flow for the
subject matter described herein:

[0073] 1. Upon receiving a host write access request of
data, differentiate between metadata (file system data)
access request and (other data) request.

[0074] 2. Identify the location of the journal log within
the access request for file system metadata by accessing

Feb. 25,2016

the descriptor block and corresponding inodes informa-
tion associated with the incoming host write access
request. In the ext4 file system, access to journal log is
mostly performed with a special inode number which is
equal to 8. In any case, file system journal location
information can be parsed from superblock information
as well. The device controller will check the properties
of all data written to this inode. The logical block address
(LBA) of'this inode is calculated from superblock infor-
mation.

[0075] 3. Obtain indexes (inodes) information associ-
ated with the descriptor block specified in the incoming
host write access request.

[0076] 4. For the incoming host write access request,
calculate the LBA addresses of memory blocks that are
yet to be written by the file system in the device memory
from their associated indexes (inodes) information in the
journal log. The LBA addresses of memory blocks asso-
ciated with data writes that are yet to be written by the
file system are then filtered to the device controller for
use by the controller. Such information provides the
device controller an indication as to where (i.e. which
memory blocks) the file system will write the host data
before the data is actually written in the storage device.

[0077] 5. Then, prepare the device memory array for
regulating upcoming host writes according to the iden-
tified LBA addresses of yet to be written blocks in the
device for efficient data writes purposes. Knowing
where (which memory blocks) the file system will write
upcoming host data allows the device controller to pre-
pare for upcoming host write operations in various ways,
as required. As a result, host write operations are man-
aged by the device controller in the storage device in a
more effective way based also on information that is
maintained in the journal log within the metadata (file
system data), wherein such information is indicative of
the memory locations of memory blocks that are yet to
be written by the file system.

[0078] As stated above, after parsing the file system meta-
data, the device controller may prepare the storage device for
the future write operations identified from the file system
metadata. Exemplary preparations that may be performed are
as follows:

[0079] Making identified LBA addresses of yet to be
written memory blocks available, for example, in a con-
tinuous manner for upcoming sequential host writes;

[0080] Preparing the device for handling burst control
operations accordingly, for example, by allocating an
available (e.g., continuous) storage partition and device
memory;

[0081] Handling scheduling of other internal housekeep-
ing operations accordingly, for example, activating or
deactivating garbage collection operations (i.e., reclaim-
ing memory locations that are no longer in use) on the
identified memory blocks only according to specific
configuration, and so on;

[0082] Mapping logical memory addresses to physical
memory addresses for memory blocks to be written to
the device so that the memory blocks will reside on the
same memory die, identifying desired memory dies for
performing host writes, determining which memory die
to perform the host writes so as not to leave undesired
holes in the memory array, etc.



US 2016/0054931 Al

[0083] According to another aspect of the subject matter
described herein, in the case of a file system configuration
where the file system of the host is configured not to write host
data between a descriptor block and a commit block, the
subject matter described herein can be further applicable to
utilize the detection of a commit block for more efficient
handling of internal housekeeping operations, such as gar-
bage collection and other internal memory management
operations within the storage device. For example, currently,
garbage collection will be triggered after a large amount of
idle time. The receipt of a commit block may be used as a
trigger to reduce the wait time for garbage collection.

[0084] One advantage of the subject matter described
herein includes significantly improved write performance.
Another advantage is that the subject matter described herein
provides for efficient handling of incoming host writes based
on LBA ranges of data blocks that are defined by the file
system for host writes before the writes are actually written to
the device memory. The subject matter described herein fur-
ther provides for efficient handling of internal housekeeping
operations based on file system information of yet to be
written blocks to the device. The subject matter described
herein may assist major file systems currently or that will be
in use in mobile and other devices, including ext2, ext3, and
ext4.

[0085] As stated above, according to an aspect of the sub-
ject matter described herein, file system metadata in host
write requests may be parsed to identify regarding future host
write operations and to determine when to perform house-
keeping operations. FIG. 7 is a block diagram illustrating a
host device and a storage device where the storage device
parses file system metadata in host write requests to prepare
the storage device for future host write operations and to
determine when to perform housekeeping operations on the
non-volatile storage device. Referring to FIG. 7, storage
device 100, non-volatile memory 106, and host device 110 are
described above with respect to FIG. 1. In FIG. 7, storage
device 100 includes a device controller 700 that controls
access to non-volatile memory 106. Device controller 700 is
typically a hardware or firmware component that resides on
storage device 100 to interface with host device 110 and
control access to non-volatile memory 106. In the illustrated
example, device controller 700 includes a metadata identifier
702 which is further divided into a descriptor block (DB)
parser 704 and a commit block (CB) identifier 706. Metadata
identifier 702 parses host write requests to identify the pres-
ence of file system metadata. DB parser 704 locates descrip-
tor blocks in write requests determined to have file system
metadata and parses the file system metadata following each
descriptor block to determine information regarding future
host write operations.

[0086] Commit block identifier 706 parses write requests
determined to have file system metadata for the presence of a
commit block. A commit block signifies the end of a write
request. When a commit block is detected, controller 700 may
perform housekeeping operations on non-volatile memory
106. An example of a housekeeping operation is garbage
collection or other memory management operations.

[0087] Controller 700, based on the file system metadata
parsed in the write request, prepares non-volatile memory
106 for future write operations. FIG. 8 illustrates an exem-
plary process for identifying file system metadata in an
incoming write request, parsing the file system metadata, and
preparing non-volatile memory 106 for future host write

Feb. 25,2016

operations based on information determined from file system
metadata. Referring to FIG. 8, in step 800, storage device 100
receives a write request. The write request may be passed to
device controller 700. In step 802, it is determined whether
the write request includes file system metadata. The presence
of file system metadata in a write request may be determined
based on logical block address (LBA) ranges in a write
request that correspond to the memory location where the file
system stores a file system journal. Writes to a file system
journal include file system metadata because the file system
journal is used by the file system to record information about
upcoming write operations, such as which inodes or logical
block addresses will be written in the future write operations.
The purpose of the file system journal is to keep track of file
system write that will occur so that the write operations can be
replayed using the journal in the event of a system crash. Ifit
is determined that the write request does not include file
system metadata, control proceeds to step 804 where control-
ler 700 performs the write operation specified in the write
request.

[0088] Ifitis determined that the write request includes file
system metadata, control proceeds to step 806 where a
descriptor block (DB) is located in the file system metadata.
DB parser 704 may locate the descriptor block by looking for
predetermined bits that specify a descriptor block. The infor-
mation following a descriptor block but prior to receiving a
commit block contain file system metadata. Accordingly, in
step 808, file system metadata following the descriptor block
is parsed to identify information regarding future host write
operations. Examples of information that may be determined
from file system metadata is whether future write operations
will be sequential, random, etc. In step 810, the non-volatile
memory is prepared for the identified future host write opera-
tions. For example, controller 700 may enable burst mode for
expected sequential write access patterns, perform urgent
housekeeping tasks in preparation for new incoming data,
delay copying from single level cells (SLC) to multi-level
cells (MLC) when it is determined that the data to be copied
will be overwritten by the received user data. After step 810,
control proceeds to step 804 where the write operation speci-
fied by the write request is performed.

[0089] According to another aspect of the subject matter
described herein, commit blocks in file system metadata may
be used to signify a time for performing housekeeping opera-
tions on non-volatile memory 106. A commit block signifies
the end of a write request and no data will be written to the
non-volatile storage device until another descriptor block is
received. Accordingly, when a commit block is received, it
may be desirable to initiate housekeeping operations, such as
garbage collection or other memory management operations.
FIG. 9 is a flow chart illustrating an exemplary process for
determining when to perform housekeeping operations using
file system metadata according to an embodiment of the sub-
ject matter described herein. Referring to FIG. 9, in step 900,
a write request is received from a host. The write request may
be received by controller 700. In step 902, it is determined
whether the write request includes file system metadata. [fthe
write request does not include file system metadata, control
proceeds to step 904 where the commit block parsing process
ends. If the write request includes file system metadata, con-
trol proceeds to step 906 where a commit block is located in
the file system metadata. The commit block may be identified
by parser 704 illustrated in FIG. 7 using predetermined bits
that specify a commit block. In step 908, in response to



US 2016/0054931 Al

locating the commit block, controller 700 performs house-
keeping operations on the non-volatile memory. Examples of
housekeeping operations that may be performed include gar-
bage collection and other memory management operations.

[0090] The subject matter described herein can be imple-
mented in any suitable NAND flash memory, including 2D or
3D NAND flash memory. Semiconductor memory devices
include volatile memory devices, such as dynamic random
access memory (“DRAM?”) or static random access memory
(“SRAM”) devices, non-volatile memory devices, such as
resistive random access memory (“ReRAM”), electrically
erasable programmable read only memory (“EEPROM”),
flash memory (which can also be considered a subset of
EEPROM), ferroelectric random access memory (“FRAM”),
and magnetoresistive random access memory (“MRAM”),
and other semiconductor elements capable of storing infor-
mation. Each type of memory device may have different
configurations. For example, flash memory devices may be
configured in a NAND or a NOR configuration.

[0091] The memory devices can be formed from passive
and/or active elements, in any combinations. By way of non-
limiting example, passive semiconductor memory elements
include ReRAM device elements, which in some embodi-
ments include a resistivity switching storage element, such as
an anti-fuse, phase change material, etc., and optionally a
steering element, such as a diode, etc. Further by way of
non-limiting example, active semiconductor memory ele-
ments include EEPROM and flash memory device elements,
which in some embodiments include elements containing a
charge storage region, such as a floating gate, conductive
nanoparticles, or a charge storage dielectric material.

[0092] Multiple memory elements may be configured so
that they are connected in series or so that each element is
individually accessible. By way of non-limiting example,
flash memory devices in a NAND configuration (NAND
memory) typically contain memory elements connected in
series. A NAND memory array may be configured so that the
array is composed of multiple strings of memory in which a
string is composed of multiple memory elements sharing a
single bit line and accessed as a group. Alternatively, memory
elements may be configured so that each element is individu-
ally accessible, e.g., a NOR memory array. NAND and NOR
memory configurations are exemplary, and memory elements
may be otherwise configured.

[0093] The semiconductor memory elements located
within and/or over a substrate may be arranged in two or three
dimensions, such as a two dimensional memory structure or a
three dimensional memory structure.

[0094] In a two dimensional memory structure, the semi-
conductor memory elements are arranged in a single plane or
a single memory device level. Typically, in a two dimensional
memory structure, memory elements are arranged in a plane
(e.g., in an x-z direction plane) which extends substantially
parallel to a major surface of a substrate that supports the
memory elements. The substrate may be a wafer over or in
which the layer of the memory elements are formed or it may
be a carrier substrate which is attached to the memory ele-
ments after they are formed. As a non-limiting example, the
substrate may include a semiconductor such as silicon.

[0095] The memory elements may be arranged in the single
memory device level in an ordered array, such as in a plurality
of'rows and/or columns. However, the memory elements may
be arrayed in non-regular or non-orthogonal configurations.

Feb. 25,2016

The memory elements may each have two or more electrodes
or contact lines, such as bit lines and word lines.

[0096] A three dimensional memory array is arranged so
that memory elements occupy multiple planes or multiple
memory device levels, thereby forming a structure in three
dimensions (i.e., in the X, y and z directions, where the y
direction is substantially perpendicular and the x and z direc-
tions are substantially parallel to the major surface of the
substrate).

[0097] As a non-limiting example, a three dimensional
memory structure may be vertically arranged as a stack of
multiple two dimensional memory device levels. As another
non-limiting example, a three dimensional memory array
may be arranged as multiple vertical columns (e.g., columns
extending substantially perpendicular to the major surface of
the substrate, i.e., in the y direction) with each column having
multiple memory elements in each column. The columns may
be arranged in a two dimensional configuration, e.g., in an X-z
plane, resulting in a three dimensional arrangement of
memory elements with elements on multiple vertically
stacked memory planes. Other configurations of memory ele-
ments in three dimensions can also constitute a three dimen-
sional memory array.

[0098] By way of non-limiting example, in a three dimen-
sional NAND memory array, the memory elements may be
coupled together to form a NAND string within a single
horizontal (e.g., x-z) memory device levels. Alternatively, the
memory elements may be coupled together to form a vertical
NAND string that traverses across multiple horizontal
memory device levels. Other three dimensional configura-
tions can be envisioned wherein some NAND strings contain
memory elements in a single memory level while other
strings contain memory elements which span through mul-
tiple memory levels. Three dimensional memory arrays may
also be designed in a NOR configuration and in a ReRAM
configuration.

[0099] Typically, in a monolithic three dimensional
memory array, one or more memory device levels are formed
above a single substrate. Optionally, the monolithic three
dimensional memory array may also have one or more
memory layers at least partially within the single substrate. As
anon-limiting example, the substrate may include a semicon-
ductor such as silicon. In a monolithic three dimensional
array, the layers constituting each memory device level of the
array are typically formed on the layers of the underlying
memory device levels of the array. However, layers of adja-
cent memory device levels of a monolithic three dimensional
memory array may be shared or have intervening layers
between memory device levels.

[0100] Then again, two dimensional arrays may be formed
separately and then packaged together to form a non-mono-
lithic memory device having multiple layers of memory. For
example, non-monolithic stacked memories can be con-
structed by forming memory levels on separate substrates and
then stacking the memory levels atop each other. The sub-
strates may be thinned or removed from the memory device
levels before stacking, but as the memory device levels are
initially formed over separate substrates, the resulting
memory arrays are not monolithic three dimensional memory
arrays. Further, multiple two dimensional memory arrays or
three dimensional memory arrays (monolithic or non-mono-
lithic) may be formed on separate chips and then packaged
together to form a stacked-chip memory device.



US 2016/0054931 Al

[0101] Associated circuitry is typically required for opera-
tion of the memory elements and for communication with the
memory elements. As non-limiting examples, memory
devices may have circuitry used for controlling and driving
memory elements to accomplish functions such as program-
ming and reading. This associated circuitry may be on the
same substrate as the memory elements and/or on a separate
substrate. For example, a controller for memory read-write
operations may be located on a separate controller chip and/or
on the same substrate as the memory elements.

[0102] One of skill in the art will recognize that the subject
matter described herein is not limited to the two dimensional
and three dimensional exemplary structures described but
cover all relevant memory structures within the spirit and
scope of the subject matter as described herein and as under-
stood by one of skill in the art.

[0103] The subject matter described herein includes pro-
cessing file system metadata in host write requests to deter-
mine information about future host write operations. The
information regarding future host write operations can be
used by a device controller to prepare the non-volatile
memory for the future host write operations. For example, the
device controller may prepare the non-volatile storage device
for future sequential host write access patterns or random host
access patterns operations depending on the content of the file
system metadata. The file system metadata may also be
usable to determine when it is optimal to perform memory
management operations.

[0104] According to one aspect, the subject matter
described herein includes a storage device. The storage
device includes a nonvolatile memory. The storage device
further includes a metadata identifier for determining whether
an incoming write request received from a host system
includes file system metadata. The storage device further
includes a descriptor block (DB) parser for, in response to a
determination that the incoming write request includes file
system metadata, locating a descriptor block in the write
request and parsing file system metadata following the
descriptor block to determine information regarding future
host write operations. The storage device further includes a
device controller for preparing the nonvolatile memory for
the future host write operations based on the information
regarding the future host write operations determined from
the file system metadata.

[0105] According to another aspect of the subject matter
described herein, the nonvolatile memory comprises flash
memory.

[0106] According to another aspect of the subject matter
described herein, the flash memory comprises NAND flash
memory or NOR flash memory having a two-dimensional or
three-dimensional configuration.

[0107] According to another aspect of the subject matter
described herein, the metadata identifier is configured to iden-
tify the presence of file system metadata in the write request
based on memory address information determined from the
write request.

[0108] According to another aspect of the subject matter
described herein, the metadata identifier is configured to iden-
tify the presence of file system metadata in the write request
based on the presence of memory address information that
corresponds to the location of a file system journal in the
nonvolatile memory.

[0109] According to another aspect of the subject matter
described herein, the DB parser is configured to determine

Feb. 25,2016

logical block addresses (LLBAs) of memory blocks to be writ-
ten in the nonvolatile memory from inodes following the
descriptor block.

[0110] According to another aspect of the subject matter
described herein, the storage device further includes a com-
mit block (CB) identifier for identifying a CB in the write
request, wherein the device controller is configured to per-
form memory management operations on the nonvolatile
memory after the CB is identified.

[0111] According to another aspect of the subject matter
described herein, the memory management operations
include activating or deactivating garbage collection.

[0112] According to another aspect of the subject matter
described herein, the DB parser is configured to determine,
from the file system metadata, that future sequential host
write operations will occur and wherein, in response to the
determination that the future sequential host write operations
will occur, the device controller is configured to prepare con-
tiguous blocks of the nonvolatile memory for the future
sequential host write operations.

[0113] According to another aspect of the subject matter
described herein, the DB parser is configured to determine,
from the file system metadata, that future random host write
access patterns will occur.

[0114] According to another aspect of the subject matter
described herein, the device controller is configured to map
logical addresses for the future host write operations to physi-
cal addresses associated with a particular memory die or dies
to increase the efficiency of utilization of the memory die or
dies.

[0115] According to another aspect, the subject matter
described herein includes a storage device. The storage
device includes non-volatile storage. The storage device fur-
ther includes a hint derivation and memory utilization opti-
mization module for deriving hints regarding accesses to the
non-volatile storage and from file system metadata and for
utilizing the hints to optimize utilization of the non-volatile
storage. The separate device further includes hint table main-
tained in the non-volatile storage for storing the hints.
[0116] According to another aspect, the subject matter
described herein includes a storage device. The storage
device includes non-volatile storage. The storage device fur-
ther includes means for determining whether an incoming
write request received from a host system includes file system
metadata. The storage device further includes means for, in
response to a determination that the incoming write request
includes file system metadata, locating a descriptor block in
the write request and parsing file system metadata following
the descriptor block to determine information regarding
future host write operations. The storage device further
includes means for preparing the nonvolatile memory for the
future host write operations based on the information regard-
ing the future host write operations determined from the file
system metadata.

[0117] According to another aspect, the subject matter
described herein includes a method for using file system
metadata to enhance utilization of nonvolatile memory. The
method includes in a nonvolatile memory device having non-
volatile memory: determining whether an incoming write
request received from a host system includes file system
metadata; and in response to a determination that the incom-
ing write request includes file system metadata:locating a
descriptor block in the write request; parsing file system
metadata following the descriptor block; identifying, from



US 2016/0054931 Al

the file system metadata, memory addresses of future host
write operations; and preparing the nonvolatile memory for
the future host write operations based on the file system
metadata.

[0118] According to another aspect of the subject matter
described herein, the nonvolatile memory comprises flash
memory.

[0119] According to another aspect of the subject matter
described herein, the flash memory comprises NAND flash
memory or NOR flash memory having a two-dimensional or
three-dimensional configuration.

[0120] According to another aspect of the subject matter
described herein, identifying the presence of file system
metadata in the write request comprises identifying the pres-
ence of file system metadata based on memory address infor-
mation determined from the write request.

[0121] According to another aspect of the subject matter
described herein, identifying the presence of file system
metadata in the write request includes identifying memory
address information that corresponds to the location of a file
system journal in the nonvolatile memory.

[0122] According to another aspect of the subject matter
described herein, identifying memory addresses of the future
write operations includes identifying logical block addresses
(LBAs) of memory blocks to be written in the nonvolatile
memory from inodes following the descriptor block.

[0123] According to another aspect of the subject matter
described herein, the method for using file system metadatato
enhance utilization of nonvolatile memory includes identify-
ing a commit block (CB) in the write request, and performing
memory management operations on the nonvolatile memory
after the CB is identified.

[0124] According to another aspect of the subject matter
described herein, the memory management operations
include activating or deactivating garbage collection.

[0125] According to another aspect of the subject matter
described herein, the method for using file system metadatato
enhance utilization of nonvolatile memory includes deter-
mining, from the file system metadata, that future sequential
host write operations will occur and, in response to determin-
ing that the future sequential host write operations will occur,
preparing contiguous blocks of the nonvolatile memory for
the future sequential host write operations.

[0126] According to another aspect of the subject matter
described herein, the method for using file system metadatato
enhance utilization of nonvolatile memory includes deter-
mining, from the file system metadata, that future random
host write access patterns will occur.

[0127] According to another aspect of the subject matter
described herein, the method for using file system metadatato
enhance utilization of nonvolatile memory includes mapping
logical addresses for the future host write operations to physi-
cal addresses associated with a particular memory die or dies
to increase the efficiency of utilization of the memory die or
dies.

[0128] The subject matter described herein can be imple-
mented in software in combination with hardware and/or
firmware. For example, the subject matter described herein
can be implemented in software executed by a processor. In
one exemplary implementation, the subject matter described
herein can be implemented using a non-transitory computer
readable medium having stored thereon computer executable
instructions that when executed by the processor of a com-
puter control the computer to perform steps. Exemplary com-
puter readable media suitable for implementing the subject
matter described herein include non-transitory computer-

Feb. 25,2016

readable media, such as disk memory devices, chip memory
devices, programmable logic devices, and application spe-
cific integrated circuits. In addition, a computer readable
medium that implements the subject matter described herein
may be located on a single device or computing platform or
may be distributed across multiple devices or computing plat-
forms.

[0129] Any of the methods or systems described herein
may be combined with each other. For example, any of the
hint derivation methods or systems (or components thereof)
described herein may be combined with the descriptor block
and commit block parsing methods or systems (or compo-
nents thereof) described herein.

[0130] It will be understood that various details of the sub-
ject matter described herein may be changed without depart-
ing from the scope of the subject matter described herein.
Furthermore, the foregoing description is for the purpose of
illustration only, and not for the purpose of limitation.

What is claimed is:

1. A storage device comprising:

nonvolatile memory;

a metadata identifier for determining whether an incoming
write request received from a host system includes file
system metadata;

a descriptor block (DB) parser for, in response to a deter-
mination that the incoming write request includes file
system metadata, locating a descriptor block in the write
request and parsing file system metadata following the
descriptor block to determine information regarding
future host write operations; and

a device controller for preparing the nonvolatile memory
for the future host write operations based on the infor-
mation regarding the future host write operations deter-
mined from the file system metadata.

2. The storage device of claim 1 wherein the nonvolatile

memory comprises flash memory.

3. The storage device of claim 2 wherein the flash memory
comprises NAND flash memory or NOR flash memory hav-
ing a two-dimensional or three-dimensional configuration.

4. The storage device of claim 1 wherein the metadata
identifier is configured to identify the presence of file system
metadata in the write request based on memory address infor-
mation determined from the write request.

5. The storage device of claim 4 wherein the metadata
identifier is configured to identify the presence of file system
metadata in the write request based on the presence of
memory address information that corresponds to the location
of a file system journal in the nonvolatile memory.

6. The storage device of claim 1 wherein the DB parser is
configured to determine logical block addresses (LBAs) of
memory blocks to be written in the nonvolatile memory from
inodes following the descriptor block.

7. The storage device of claim 1 comprising a commit
block (CB) identifier for identifying a CB in the write request,
wherein the device controller is configured to perform
memory management operations on the nonvolatile memory
after the CB is identified.

8. The storage device of claim 7 wherein the memory
management operations include activating or deactivating
garbage collection.

9. The storage device of claim 1 wherein the DB parser is
configured to determine, from the file system metadata, that
future sequential host write operations will occur and
wherein, in response to the determination that the future



US 2016/0054931 Al

sequential host write operations will occur, the device con-
troller is configured to prepare contiguous blocks of the non-
volatile memory for the future sequential host write opera-
tions.

10. The storage device of claim 1 wherein the DB parser is
configured to determine, from the file system metadata, that
future random host write access patterns will occur.

11. The storage device of claim 1 wherein the device con-
troller is configured to map logical addresses for the future
host write operations to physical addresses associated with a
particular memory die or dies to increase the efficiency of
utilization of the memory die or dies.

12. A storage device comprising:

non-volatile storage;

a hint derivation and memory utilization optimization
module for deriving hints regarding accesses to the non-
volatile storage and from file system metadata and for
utilizing the hints to optimize utilization of the non-
volatile storage; and

a hint table maintained in the non-volatile storage for stor-
ing the hints.

13. A storage device comprising:

non-volatile storage;

means for determining whether an incoming write request
received from a host system includes file system meta-
data;

means for, in response to a determination that the incoming
write request includes file system metadata, locating a
descriptor block in the write request and parsing file
system metadata following the descriptor block to deter-
mine information regarding future host write operations;
and

means for preparing the nonvolatile memory for the future
host write operations based on the information regarding
the future host write operations determined from the file
system metadata.

14. A method for using file system metadata to enhance

utilization of nonvolatile memory, the method comprising:
in a nonvolatile memory device having nonvolatile

memory:

determining whether an incoming write request received
from a host system includes file system metadata;

in response to a determination that the incoming write
request includes file system metadata:

locating a descriptor block in the write request;

parsing file system metadata following the descriptor
block;

Feb. 25,2016

identifying, from the file system metadata, memory
addresses of future host write operations; and

preparing the nonvolatile memory for the future host
write operations based on the file system metadata.

15. The method of claim 14 wherein the nonvolatile
memory comprises flash memory.

16. The method of claim 15 wherein the flash memory
comprises NAND flash memory or NOR flash memory hav-
ing a two-dimensional or three-dimensional configuration.

17. The method of claim 14 wherein identifying the pres-
ence of file system metadata in the write request comprises
identifying the presence of file system metadata based on
memory address information determined from the write
request.

18. The method of claim 17 wherein identifying the pres-
ence of file system metadata in the write request includes
identifying memory address information that corresponds to
the location of a file system journal in the nonvolatile
memory.

19. The method of claim 14 wherein identitfying memory
addresses of the future write operations includes identifying
logical block addresses (LLBAs) of memory blocks to be writ-
ten in the nonvolatile memory from inodes following the
descriptor block.

20. The method of claim 14 comprising identifying a com-
mit block (CB) in the write request, and performing memory
management operations on the nonvolatile memory after the
CB is identified.

21. The method of claim 20 wherein the memory manage-
ment operations include activating or deactivating garbage
collection.

22. The method of claim 14 comprising determining, from
the file system metadata, that future sequential host write
operations will occur and, in response to determining that the
future sequential host write operations will occur, preparing
contiguous blocks of the nonvolatile memory for the future
sequential host write operations.

23. The method of claim 14 comprising determining, from
the file system metadata, that future random host write access
patterns will occur.

24. The method of claim 14 comprising mapping logical
addresses for the future host write operations to physical
addresses associated with a particular memory die or dies to
increase the efficiency of utilization of the memory die or
dies.



