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(57) ABSTRACT

A translation lookaside buffer coherency unit with Emulated
Purge (TCUEP) fetches first instructions for execution in a
multi-processor system. The TCUEP associates a first
instruction timestamp with each of the first instructions. The
TCUEP receives a multi-processor coherency operation and
increments the first timestamp value in a master-tag register to
form a second timestamp value after receiving the multi-
processor coherency operation. The TCUEP fetches, by an
instruction fetch unit in the first microprocessor, second
instructions for execution in the multiprocessor system. The
TCUEP associates a second instruction timestamp with each
of the second instructions. The TCUEP enables an emulated
purge mechanism to suppress hits in the translation lookaside
buffers for the second instructions. The TCUEP after deter-
mining the first instructions are complete, purges entries in
the translation lookaside buffers and disables the emulated
purge mechanism.
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REDUCING MICROPROCESSOR
PERFORMANCE LOSS DUE TO
TRANSLATION TABLE COHERENCY IN A
MULTI-PROCESSOR SYSTEM

RELATED APPLICATIONS

[0001] This application claims the priority benefit of U.S.
application Ser. No. 13/667,687 filed Nov. 2, 2012. This
application is a continuation application of application Ser.
No. 13/667,687.

BACKGROUND

[0002] Embodiments of the inventive subject matter gener-
ally relate to the field of computers, and, more particularly, to
reducing microprocessor performance loss due to translation
table coherency in a multi-processor system.

[0003] Multi-processor (MP) coherency protocols in a MP
system ensure that all processors use up-to-date data from
caches and translation tables (e.g., a translation lookaside
buffer (TLB)). When an operating system updates a transla-
tion table, all processors in the MP system are notified to
handle the change by a TLB MP-coherency operation (here-
inafter “MP-coherency operation”). For example, processors
are drained and purge affected entries from TLBs (i.e., all
instruction queues in the processors are drained) and no
instructions must be executed in order to perform the purge.
After the purge a processor can answer the MP-coherency
operation. When all processors have answered the MP-coher-
ency operation, a modified table entry(ies) is written and all
processors are allowed to continue executing instructions.
Performance improvements to this technique include a zone
(also known as Logical Partition) filtering technique. A zone
has its own storage assigned to it which is disjunct to storage
assigned to other zones. MP-coherency operations originat-
ing from a particular zone do not need to interrupt or drain
processors running in a different zone because no storage
access of instructions in flight can possibly collide with the
purge operation. Only a TLB level(s) that may still hold
entries from the originating zone need to be purged. However,
processors running in the same zone as the originator must
still be interrupted and remain drained until the MP-coher-
ency operation is finished. In another improvement, each
processor in the same zone is drained individually. On purge
of the processor’s own TLLB and answering the MP-coher-
ency operation, each processor may continue to execute
instructions as long as it does not access the affected storage
locations or translation tables. If the processor finds accesses
to the affected storage locations or translation tables, the
processor waits until it receives a signal that the MP-coher-
ency operation is finished. However, the processors in the MP
system still suffer a performance penalty as they are inter-
rupted and drained.

SUMMARY

[0004] Some embodiments of the inventive subject matter
include a method to fetch first instructions for execution in a
multi-processor system. In some embodiments, the method
associates a first instruction timestamp with each of the first
instructions. The first instruction timestamp may be derived
from a first timestamp in a master-tag register. The method
may receive a multi-processor coherency operation in a first
microprocessor of the multi-processor system. The multi-
processor coherency operation may indicate a purge opera-
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tion for translation lookaside buffers in the multi-processor
system, and the multi-processor coherency operation may be
initiated by a second microprocessor sharing the translation
lookaside buffers with the first microprocessor. The method
may increment the first timestamp value in a master-tag reg-
ister to form a second timestamp value after receiving the
multi-processor coherency operation. The method may copy
the second timestamp value to a source-tag register. The
method may fetch, by an instruction fetch unit in the first
microprocessor, second instructions for execution in the mul-
tiprocessor system. The method may associate a second
instruction timestamp with each of the second instructions,
wherein the second instruction timestamp is derived from the
second timestamp value in the source-tag register. The
method may enable an emulated purge mechanism. The emu-
lated purge mechanism may determine that the second
instruction timestamp values associated with the second
instructions are equal to the second timestamp value in the
master-tag register. The emulated purge mechanism may also
suppress hits in the translation lookaside bufters for the sec-
ond instructions. The method may also determine that the first
instructions are complete. After determining the first instruc-
tions are complete, the method may purge entries in the trans-
lation lookaside buffers. The method may also disable the
emulated purge mechanism.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present embodiments may be better under-
stood, and numerous objects, features, and advantages made
apparent to those skilled in the art by referencing the accom-
panying drawings.

[0006] FIG. 1 depicts a timing diagram of multi-processor
coherency operations in a microprocessor.

[0007] FIG. 2 depicts an example concept diagram of
selected components of a translation lookaside buffer coher-
ency unit with Emulated Purge to reduce microprocessor
performance loss in a multi-processor system.

[0008] FIG. 3 depicts an example concept diagram of
selected components of an emulated purge unit to determine
a decision for hit in a translation lookaside buffer.

[0009] FIG. 4 depicts aflow diagram of example operations
to manage an MP-coherency operation in a microprocessor.
[0010] FIG. 5 depicts an example concept diagram of
selected components of a translation lookaside buffer coher-
ency unit with Emulated Purge to handle multiple MP-coher-
ency operations in parallel.

[0011] FIG. 6 depicts an example computer system.
DESCRIPTION OF EMBODIMENT(S)
[0012] The description that follows includes exemplary

systems, methods, techniques, instruction sequences and
computer program products that embody techniques of the
present inventive subject matter. However, it is understood
that the described embodiments may be practiced without
these specific details. For instance, examples refer to an emu-
lated purge unit to determine a hit in a translation lookaside
buffer. However, embodiments are not limited to an emulated
purge unit to determine a hit in a translation lookaside buffer
(s). Embodiments can have one or more units in the multi-
processor system with program instructions or logic imple-
mented in hardware to determine a hit in the translation
lookaside buffer(s). In other instances, well-known instruc-
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tion instances, protocols, structures and techniques have not
been shown in detail in order not to obfuscate the description.

[0013] A translation lookaside buffer coherency unit with
Emulated Purge (hereinafter “TCUEP”) reduces the perfor-
mance impact caused by interrupt and drain performed for
each MP-coherency operation (e.g., a full TLB purge opera-
tion, a partial TLB purge operation, etc.) and reduces micro-
processor performance loss in a multi-processor system. The
TCUEP avoids interrupt and drain of a microprocessor for a
purge operation and allows the microprocessor to execute
instructions with different views of TLBs in the MP system
with respect to observing the MP-coherency operation. For
example, two views of the TLBs in the MP system with
respect to observing the MP-coherency operation are: a first
view, before observing the MP-coherency operation (herein-
after, a non-purged view), and a second view, after observing
the MP-coherency operation (hereinafter, a purged view). In
accordance with the two views of TLBs in the MP system, an
instruction fetch unit classifies the instructions in the MP
system as old instructions (instructions in the MP system
before observing the MP-coherency operation) and new
instructions (instructions in the MP system after observing
the MP-coherency operation). The instruction fetch unit clas-
sifies the instructions as old and new instructions using
QTags. A QTag is similar to a timestamp. A QTag is a single
or multi-bit field attached with an instruction before the
instruction’s physical instruction address is fetched from a
TLB. For the new instructions, the TCUEP utilizes the second
view of the TLBs in the MP system and the access to the TLB
appears as if the TLB was already purged. On each TLB
lookup for a new instruction, an emulated purge unit in the
TCUEP suppresses a hit(s) (i.e., the hit(s) for an entry that will
be purged by the MP-coherency operation) that occurs in the
TLB, this is referred to as hit-suppression. The emulated
purge unit implements Emulated Purge (a mechanism) for
new instructions. Emulated Purge creates a purged view of
the TLB on-the-fly. In the purged view, the TLB entries which
are not actually purged, appear to be purged. The normal view
of'the TLB is referred to as the non-purged view. The TCUEP
utilizes a selection mechanism using the emulated purge unit
to selectively allow or suppress a hit in the TLB based on the
age (i.e., old instruction or new instruction) of the instructions
in regard to the MP-coherency operation. The TCUEP also
allows new TLB entries to be created without restrictions for
old instructions. The TCUEP also allows for storage
addresses of new instructions, when the new instructions do
not interfere with the MP-coherency operation, until the MP-
coherency operation is finished. The TCUEP avoids use of
microprocessor’s internal firmware (e.g., millicode in Sys-
temZ processors) and interrupts for the MP-coherency opera-
tion.

[0014] FIG. 1 depicts a timing diagram of multi-processor
coherency operations in a microprocessor. FIG. 1 includes
time intervals 102, 104, 106, 108, 110 and 112. FIG. 1 also
includes time instances 103, 105, 107, 109 and 111. During
time intervals 102 and 104, old instructions are present in a
microprocessor. During the time interval 106, the old instruc-
tions along with new instructions are present in the micropro-
cessor. During the time interval 108, a memory management
unit (MMU) in the TCUEP instructs the purging of a TLB.
During the time interval 108 and 110, only new instructions
are present in the microprocessor. In some embodiments,
during the time interval 112 the new instructions (correspond-
ing to the time intervals 108 and 110) are re-designated as old
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instructions based on another MP-coherency operation, and
after completion of the MP-coherency operation received at
the time-instance 103. The microprocessor maintains a
QTagC register, which stores a QTagC to keep a track of the
MP-coherency operations received by the microprocessor.
The microprocessor also maintains a QTagT register (a
source-tag register), which is a source of instruction QTags
(an instruction QTag is referred to as a QTagl). On receiving
an MP-coherency operation at the time instance 103, the
microprocessor increases the value of the QTagC. The micro-
processor copies the value of the QTagCto the QTagT register
atthe next interruptible point (i.e., the time instance 105) after
which the new instructions utilizing a purged view ofthe TLB
are fetched. The microprocessor also instructs an emulated
purge unit in the TCUEP to enable Emulated Purge. The
TCUEP may enable Emulated Purge and/or a translation
blocking technique (as described below) in the time interval
between the increment of the QTagC and copying of the value
of'the QTagC to the QTagT register. It is noted that when the
TCUEP enables Emulated Purge prior to the incremented
QTagC being copied to the QtagT register, Emulated purge
and/or the translation blocking technique is not enabled by
components (e.g., comparators, etc.) of the TCUEP for old
instructions (i.e., instructions having QTagl value less than
the value of QTagC).

[0015] Before receiving an MP-coherency operation, the
QTagC and the register QTagT have their initial values for the
MP-coherency operation. For example, an initial value before
receiving the MP-coherency operation is 0. An instruction
fetch unit in the microprocessor attaches QTagls having the
initial value of the QTagC while fetching the old instructions.
At the time instance 103, the microprocessor receives the
MP-coherency operation. For example, the MP-coherency
operation instructs the microprocessor to purge the TLB. On
receiving the MP-coherency operation, the microprocessor
increments the value of QTagC. The microprocessor copies
the incremented value of the QTagC register to the QTagT
register at the next interruptible point (i.e., the time instance
105). At the time instance 105, the microprocessor attaches
QTagl to the new instructions. The QTagls attached with the
new instructions have the incremented value of the QTagC. A
new MP-coherency operation(s) is typically not received
until the MP-coherency operation is finished at the time
instance 111. It is noted that for the MP-coherency operation,
the QTagC value is typically not reset or modified at the end
of the MP-coherency operation. The new MP-coherency
operation(s) may be received after the time instance 111.

[0016] During the time interval 106, the old instructions
(i.e., QTagls having the initial value of QTagC) and the new
instructions (i.e., QTagls having the incremented value of
QTagC) are present in the microprocessor. During the time
interval 106, the emulated purge unit in the TCUEP deter-
mines whether Emulated Purge is used to access the TLB for
instructions present in the microprocessor. The emulated
purge unit determines the use of Emulated Purge based on the
QTagl value of the instructions. An instruction’s QTagl value
is compared with the value of QTagC. When the instruction’s
QTagl value is greater than or equal to the value of QTagC, the
emulated purge unit utilizes Emulated Purge. When the
instruction’s QTagl value is smaller than the value of QTagC,
the emulated purge unit does not utilize Emulated Purge. In
one implementation, when the QTagC and the QTagl are
single bit wide, the emulated purge unit enables Emulated
Purge when the QTagl value is equal to the value of the
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QTagC. The emulated purge unit does not enable Emulated
Purge when the QTagl value is not equal to the value of
QTagC. In the embodiments described in detail, the micro-
processor receives one MP-coherency operation at a time and
the microprocessor does not receive another MP-coherency
operation before an answer is sent to the MP-coherency
operation. Hence, the emulated purge unit enables Emulated
Purge when the QTagl value is equal to the value of QTagC.

[0017] When Emulated Purge is enabled, the TCUEP
allows formation of new TLB entries for old instructions. The
TCUEP does not limit the formation of the new TLB entries
asthe TLB is not yet purged. The new TLB entries are purged
at the time of a TLLB purge operation (i.e., the time interval
108). For new instructions, a memory management unit
(MMU) utilizes the translation blocking technique during the
time interval 106, 108 and 110. In one implementation of the
translation blocking technique, when the MP-coherency
operation indicates an invalid page table entry, the MMU
compares the page index of the new translation against the
page index received with the MP-coherency operation to
determine if a storage access is affected. When the result of
the compare is a match, the MMU blocks the storage access
and does not allow the formation of a new TLB entry for the
translation. In some embodiments, when the TLB is a hierar-
chical TLB, the MMU may allow a storage access and for-
mation of a partial TLB entry for the part of translation not
affected by the MP-coherency operation. When the result of
compare is a no match, a new TLB entry may be formed as the
translation is not affected by the MP-coherency operation. In
some implementations of the translation blocking technique,
when the MP-coherency operation indicates purge of the
entire TLB, the MMU blocks storage accesses for all trans-
lations. In other implementations of the translation blocking
technique, the MMU may block storage accesses for a certain
segment of the TLB, a range of TLB entries, etc. The com-
parison logic for the translation blocking technique may be
implemented in hardware or as program instructions in one or
more components of the MMU. During time interval 106
usage of the translation blocking technique is enabled by the
same rules as the emulated purge (i.e., based on a global
enable signal and a QTag compare). For time interval 108 and
110 translation blocking is typically always used, without
utilizing the global enable signal and the QTag compare.

[0018] The translation blocking technique and Emulated
Purge can operate independently. The translation blocking
technique and Emulated purge may utilize different sub-sets
of'information (e.g., information about which TLB entries to
purge) from the MP-coherency operation. For example, with
the utilization of a different sub-set of information, Emulated
Purge may suppress hits for the TLB entries corresponding to
certain translations allowed by the translation blocking tech-
nique (e.g., the translations for new instructions). Similarly,
the translation blocking technique may block certain storage
accesses to TLB entries for which Emulated Purge does not
suppress hits. In some embodiments, the TLB purge opera-
tion may also purge the TLB entries blocked by the translation
blocking technique. The MMU may repeatedly perform these
translations when the TLB purge operation purges the TLB
entries corresponding to these translations, and before the
TLB entries are utilized again. During the time interval 106,
the MMU may repeatedly perform translations that are hit-
suppressed by Emulated Purge but not blocked by the trans-
lation blocking technique. Such repeated translations result in
the loss of performance. To prevent purge or hit-suppression
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of'the TLB entries corresponding to the translations allowed
by the translation blocking technique, the TLB utilizes a rigid
marker (e.g., a rigid flag, a rigid bit, etc.) for each TLB entry.
The rigid marker is set for a TLB entry during the time
interval 106 when a translation for a new instruction is per-
formed, and the translation passes the translation blocking
technique (after receiving the MP-coherency operation). The
rigid marker, when set for an entry, prevents purge of the TLB
entry by the TLB purge operation. The rigid marker, when set
for a TLB entry, also prevents suppression of a hit for the TL.B
entry. When an already existing TL.B entry is hit-suppressed,
but its storage access passed the translation blocking tech-
nique, the old entry is removed/purged from TLB before the
new entry can be formed (i.e., the new entry completely
replaces the hit-suppressed TLB entry). In some embodi-
ments the TLB entry may just have its rigid marker set.
[0019] At the time instance 107, the microprocessor com-
pletes execution of the last of the old instructions. At the time
instance 107, only instructions having QTagl values equal to
or greater than the value of the QTagC (i.e., the value of
QTagC incremented on receiving the corresponding to MP-
coherency operation) remain in the microprocessor. For a
single MP-coherency operation, the instructions having the
same QTagl values (equal to the incremented value of the
QTagC on receiving the MP-coherency operation) remain in
the microprocessor. At the time instance 107, the micropro-
cessor answers the MP-coherency operation. The micropro-
cessor signals to the initiator of the MP-coherency operation
(e.g., by means of a Serialization Manager (SM), a TLB
MP-coherency manager, etc.) that the microprocessor has
observed the MP-coherency operation. The SM may be
implemented at another microprocessor in the multi-proces-
sor system.

[0020] During the time interval 108, the microprocessor
instructs the MMU to purge the TLB. The MMU deletes the
entries in the TLB and resets rigid markers (e.g., resets the
rigid flag, clears the rigid bit, etc.) for all TLB entries. In some
embodiments, the MMU may reset the rigid markers in a
separate operation after deleting the TLB entries. During the
time interval 108, the microprocessor also disables Emulated
Purge. Atthe end of the time interval 108 (i.e., at time instance
109), the microprocessor finishes purging the TLB.

[0021] During the time interval 110, only new instructions
are present in the microprocessor. The MP-coherency opera-
tion is not finished in the system and storage accesses are
allowed in accordance with the translation blocking tech-
nique. Before the TLB can form a new TLB entry, the MMU
in the TCUEP compares the new translation against the
entries purged in the MP-coherency operation. The MMU
allows the formation of a new TLB entry and an access to the
storage when the new translation is not affected by the MP-
coherency operation.

[0022] During the time interval 112, the MP-coherency
operation is finished. The MMU disables translation blocking
and allows all storage accesses. On completion of the MP-
coherency operation, the values of QtagC and QtagT registers
remain unchanged and subsequent instructions are fetched
and executed with QTagl value (from the QtagT register)
attached.

[0023] FIG. 2 depicts an example concept diagram of
selected components of a translation lookaside buffer coher-
ency unit with Emulated Purge to reduce microprocessor
performance loss in a multi-processor system. FIG. 2 depicts
a translation lookaside buffer coherency unit with Emulated
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Purge (TCUEP) 200. The TCUEP 200 includes a QTagC
register 202 (also referred to as a master-tag register), a
QTagT register 204, an instruction fetch unit 206, an instruc-
tion address register 207, a memory management unit 208
having a translation blocking unit 209, a TLB 210 having an
emulated purge unit 211, a TLB 212 having an emulated
purge unit 213, an out of order execution unit 214, an operand
address register 215 and a memory 216. In some embodi-
ments, the memory 216 may not be a part of the TCUEP 200.
The TLB 210 and the TLB 212 may be implemented as
instruction translation lookaside buffers and operand transla-
tion lookaside buffers. The instruction translation lookaside
buffers and the operand translation lookaside buffers include
their separate emulated purge units. The TLB 212 is the first
level TLB in the TLB hierarchy and the TLB 210 is the second
level of the TLB in the TLB hierarchy. Although, FIG. 1
depicts two levels ofthe TLB hierarchy, the TCUEP may have
fewer than two or more than two levels of the memory hier-
archy.

[0024] The QTagC register 202 stores a master QTag (i.e.,
QTagC) in the TCUEP. The QTagC is a timestamp to track the
current state of a microprocessor. The QTagC helps a micro-
processor to keep a track of the MP-coherency operations
received by the microprocessor. The microprocessor
increases the value of the QTagC register 202 on receiving an
MP-coherency operation. In some embodiments, the micro-
processor may set a global enable emulated purge signal on
receiving the MP coherency operation. In some embodi-
ments, when the microprocessor implements zone filtering, it
only tracks MP-coherency operations from within the same
zone as the microprocessor. The microprocessor does not
increment the value in the QTagC register on receiving an
MP-coherency operation from a different zone (i.e., different
from the zone of the microprocessor).

[0025] The QTagT register 204 is the source of instruction
QTags (i.e., QTagls). The microprocessor copies the value of
the QTagC register 202 to the QTagT register 204 at the next
interruptible point after receiving the MP-coherency opera-
tion. In some embodiments, the microprocessor sets the glo-
bal enable emulated purge signal at the next interruptible
point after receiving the MP-coherency operation. It is noted
that, the next interruptible point is the latest point in time
when the microprocessor can set the global enable emulated
purge signal.

[0026] The instruction fetch unit 206 receives a virtual
instruction address of an instruction from the instruction
address register 207. The instruction fetch unit 206 fetches the
physical address of the instruction using a search instruction
(e.g., a translation request) from the TLB 212. The search
instruction includes the virtual instruction address for trans-
lation in the TLB 212. The instruction fetch unit 206 attaches
a QTagl with the search instruction. The instruction fetch unit
206 uses the value in the QTagT register 204 as the source of
the QTagl. The QTagl indicates when the search instruction
was created (e.g., before receiving the MP-coherency opera-
tion or after receiving the MP-coherency operation). The
instruction fetch unit sends the search instruction to the TLB
212.

[0027] When the TLB 212 includes an entry for the virtual
address in the search instruction (i.e., a hit in the TLB 212),
the emulated purge unit 213 in the TLB 212 determines
whether to suppress the hit or to allow the translation. The
emulated purge unit 213 in the TLB 212 receives the QTagC
value from the QTagC register 202. The emulated purge unit
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213 receives the QTagl attached with the search instruction.
The emulated purge unit 213 also receives a global enable
emulated purge signal, set by the microprocessor. The emu-
lated purge unit 213 suppresses the hit in the TLB 212 when
the value of the QTagl is equal to the value of the QTagC and
when TLB purge information indicates a match for the TLB
entry. In some embodiments, when the microprocessor
receives one or more MP-coherency operations before a first
MP-coherency operation is finished (or an answer is sent for
the first MP-coherency operation), the microprocessor uti-
lizes QTagls based on a value saved from the first MP-coher-
ency operation and not based on the value of the QTagC.
Hence, a QTagl value may be greater than the value of the
QTagC (which is the value in the QTagC register). Hence,
when the microprocessor receives one or more MP-coher-
ency operations before the first MP-coherency operation is
finished, the emulated purge unit 213 suppresses a hit in the
TLB 212 when the QTagl value is greater than or equal to the
value of the QTagC, and when the TLB purge information
indicates a match for the TLB entry. The emulated purge unit
213 does not suppress the hit in the TLB 212 when the value
of'the QTagl is smaller than the value of the QTagC. The value
of QTagl, smaller than the value of QTagC, indicates that the
translation in the TLB 212 was requested before receiving the
MP-coherency operation and the hit in the TLB 212 is
allowed. When the emulated purge unit 213 allows the hit in
the TLB 212, the instruction fetch unit 206 receives the physi-
cal address of the instruction (for which the virtual address is
present in the search instruction).

[0028] The emulated purge unit 211 inthe TLB 210 and the
translation blocking unit 209 in the memory management unit
208 also receive the QTagC instruction from the QTagC reg-
ister 202. When the TL.B 212 does not include the entry for the
virtual address in the search instruction (i.e., a miss in the
TLB 212), the TLB 212 sends the search instruction to the
TLB 210. In some embodiments, the TLB 212 sends the
search instruction to the TLLB 210 and the memory manage-
ment unit 208 at the same time. The emulated purge unit 211
in the TLB 210 performs similar operations as the emulated
purgeunit 213 in the TLB 212. When the TL.B 210 includes an
entry for the virtual address in the search instruction (i.e., a hit
in the TLB 210), the emulated purge unit 211 in the TLB 210
determines whether to suppress the hit or to allow the hit
based on similar conditions as used by the emulated purge
unit 213. When the emulated purge unit 211 allows the hit in
the TLB 210, the instruction fetch unit 206 receives the physi-
cal address of the instruction from the TLB 210. The physical
address travels through the TLB hierarchy and may also be
stored in the TLB 212. When the TLB 210 does not include
the entry for the virtual address in the search instruction (i.e.,
amiss inthe TLB 210), the TLB 210 sends the search instruc-
tion to the memory management unit 208. The translation
blocking unit 209 in the memory management unit 208
implements the translation blocking technique based on the
TLB purge information when the global enable emulated
purge signal is set. The translation blocking unit 209 in the
memory management unit 208 allows memory usage when
the value of'the QTagl is smaller than the value of the QTagC.
When the translation blocking unit 209 allows memory
usage, the memory management unit 208 sends the physical
address of the instruction to the higher levels of the TLB
hierarchy and to the instruction fetch unit 206. The QTagl,
attached to the search instruction, carries forward with the
search instruction when the search instruction is carried for-
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ward to the lower levels in the TLB hierarchy and to the
memory management unit 208.

[0029] The instruction fetch unit 206 receives the physical
address of the instruction and fetches the instruction from the
memory 216. In one implementation, the instruction fetch
unit 206 sends the instruction to the out of order execution
unit 214. The instruction fetch unit 206 attaches a QTagl to
the instruction when sending it to the out of order execution
unit 214. The QTagl remains attached with the instruction as
long as the instruction is present in an instruction pipeline in
the microprocessor.

[0030] The out of order execution unit 214 executes the
instruction received from the instruction fetch unit 206. In
some embodiments, the out of order execution unit 214
receives an operand’s virtual address from the operand
address register 215. The out-of-order execution unit 214
fetches the physical address of the operand from the TLB
hierarchy using similar operations as the instruction fetch unit
206 (to fetch the physical address of the instruction). The
operand execution unit 214 receives the physical address of
the operand and fetches the operand from the memory 216.
The out of order execution unit 214 executes the instruction
and sends the result (with QTagl attached) to the next stage in
the instruction pipeline to complete the instruction.). The
memory management unit 208 can start purging the TLBs
210 and 212 based on completion of the last old instruction. In
some embodiments, the microprocessor disables the global
enable emulated signal as soon as the purge starts and sends
an answer to the MP-coherency operation.

[0031] The TLB 210 and the TL.B 212 also maintain a rigid
marker for each TLB entry. The rigid marker may be included
in the emulated purge unit 211 and emulated purge unit 213
which utilize the rigid marker in one or more logical com-
parisons.

[0032] Once the microprocessor copies the incremented
value of QTagC to the QTagT register, the instruction fetch
unit 206 attaches QTagls (having the incremented value of
QTagC) with new instructions to be fetched. For an instruc-
tion(s) already in a cache, the instruction fetch unit 206 typi-
cally re-evaluates the physical address of the instruction(s),
and the re-evaluation may collide with the MP-coherency
operation. The instruction fetch unit 206 sends a search
instruction(s) (having the virtual address of the instruction(s))
to the TLB 212. In case of a miss or hit-suppression at one or
more TLBs in the TLB hierarchy, the memory management
unit 208 re-translates the virtual address of the instruction(s).
If the translation blocking unit 209 does not block the trans-
lation(s), the instruction(s) are valid.

[0033] Insome embodiments, the microprocessor receives
multiple MP-coherency operations from within the same
zone. The microprocessor increases the value of the QTagC
register 202 for each MP-coherency operation received from
the same zone. The number of MP-coherency operations that
the microprocessor can handle at a time depends on the size of
the QTagC register 202. The microprocessor increases the
value of the QTagC register 202 on observing the additional
MP-coherency operation. With a finite size of the QTagC
register 202, the microprocessor may delay sending an
answer to an MP-coherency operation until the value of the
QTagC register 202 can be incremented FIG. 5 describes a
TCUEP to handle multiple MP-coherency operations in par-
allel.

[0034] In one implementation, the microprocessor
observes only a single MP-coherency operation at a time from
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a single MP-coherency manager. The TCUEP utilizes a one-
bit wide QTagC register. For the single MP-coherency opera-
tion, each instruction can only be older (i.e., QTagC=0) or
younger (i.e., QtagC=1) than the MP-coherency operation. In
such implementation, the QTagl for instructions is also one-
bit wide. When the QTagl and the QTagC are not equal, the
instruction is older and the non-purged view of a TLB is
utilized. The new instructions get the QTagl which is equal to
the QTagC. For the new instructions, the purged view of the
TLB is utilized. When the microprocessor completes execu-
tion of the old instructions, QTagls of all instructions are
equal to the QTagC. The microprocessor then answers the
MP-coherency operation. The memory management unit 208
purges the TLBs 210 and 212. The microprocessor then
inverts the QTagC and is ready to observe another MP-coher-
ency operation from a MP-coherency initiator.

[0035] FIG. 3 depicts an example concept diagram of
selected components of an emulated purge unit to determine
a decision for hit in a translation lookaside buffer. FIG. 3
depicts the emulated purge unit 213, as described with refer-
ence to FIG. 2 above. The emulated purge unit 213 includes a
TLB array 302, a comparator 304, a comparator 306, a com-
parator 308, a comparator 310, a comparator 311, a compara-
tor 312, a comparator 314, a logical NAND gate 316, alogical
NAND gate 318, a logical NAND gate 320, a logical AND
gate 311, a logical AND gate 313, a logical AND gate 315, a
logical AND gate 317, alogical AND gate 319, a logical AND
gate 322, a logical AND gate 324, a logical AND gate 326,
and a logical OR gate 328. The TLB array 302 consists of
three compartments (0, 1 and 2) which are read out in parallel
for a line based on a line selection signal. The TLB array 302
also includes rigid markers 303, 305 and 307 in each of the
compartments in a line. Although, the TLB array 302 includes
a rigid marker for each compartment in each line, for simpli-
fication FIG. 3 does not depict all rigid markers. The TLB
array 302 receives translation request data (e.g., Virtual
Address for translation, Address Space Control Element, etc.)
which includes line selection data and other hit criteria. The
TLB array 302 may consist of more than or less than three
compartments, which are read out in parallel. The line selec-
tion data selects a line using a part of the virtual address of an
instruction/operand which represents the line number. The
comparators 304, 306 and 308 compare the data read from the
compartments 0, 1 and 2 respectively against the other hit
criteria. The other hit criteria can be another part of the virtual
address, an address space control element, etc. In case of a
match in the compartments 0, 1 and/or 2, the respective com-
parators 304, 306 and/or 308 return a hit, i.e., the output of the
respective comparator is 1. Although, not depicted in FIG. 3,
on a hit in a compartment, the TL.B array 302 also returns the
data (e.g., absolute address, protection flags, etc.) in the
respective compartment.

[0036] The comparators 310, 312 and 314 receive the out-
put from the compartments 0, 1 and 2 of the TLB array 302
respectively, the translation request data, and TLB purge
information from an MP-coherency operation. The TLB
purge information from the MP-coherency operation speci-
fies the type of MP-coherency operation (e.g., invalidate page
table entry(ies) (IPTE), invalidate data address translation
entry(ies) (IDTE), purge TLB of Address Space Control Ele-
ment (PTOA), etc.) Based on the type of MP-coherency
operations, the comparators 310, 312 and 314 perform com-
parisons on certain parameters (e.g., comparison of a page
index or a range of page indexes and parts of page table origin
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in case of IPTE; comparison of a segment index or a range of
segment indexes and parts of table origin from Address Space
Control Element in case of IDTE; comparison of table origin
from Address Space Control Element in case of PTOA, etc.).
The comparators 310, 312 and 314 also receive a compare
mode signal to switch the comparators 310,312 and 314 in a
compare mode. The compare mode signal is derived from the
TLB purge information from the MP-coherency operation.
The comparators 310, 312 and 314 verify for the hits in the
respective compartments 0, 1 and 2 against the data to be
purged later (i.e., in accordance with the MP-coherency
operation). When there is a match, the output of the respective
comparator is 1.

[0037] The comparator 311 receives the value of a QTagC
and the value of a QTagl. The comparator 311 receives the
value of the QTagC from a QTagC register and the value of
QTagl from the instruction QTag associated with a search
instruction. When the value of QTagl, B, is equal to the value
of QTagC, A, the output of comparator 311 is a 1. The output
of the comparator 311 and a global enable emulated purge
signal are inputs to the logical AND gate 313. The global
enable emulated purge signal is set by a microprocessor. The
emulated purge unit 213 enables Emulated Purge when the
global enable emulated purge is set (i.e., 1). The emulated
purge unit 213 disables Emulated Purge, when the global
enable emulated purge is reset (i.e., 0). The output of logical
AND gate 313, is a local enable emulated purge signal. The
local enable emulated purge signal indicates whether to use a
purged view or a non-purged view of the TLBs.

[0038] Thelogical AND gates 315, 317 and 319 receive the
outputs of comparators 310, 312 and 314, respectively. The
logical AND gates 315, 317 and 319, also receive the inverted
values of the rigid markers 303, 305, and 307, respectively.
Therigid markers 303, 305 and 307 do not affect comparisons
at the comparators 304, 306, and 308 as well as the compara-
tors 310,312 and 314. However, when a rigid marker (e.g., the
rigid marker 303) is set as ‘1’, the inverted value of the rigid
marker is ‘0’ and when the inverted value is fed to the logical
AND gate (e.g., the logical AND gate 315), the output of the
logical AND gate is ‘0’. The outputs of the logical AND gates
315,317, and 319 take into account the effect of rigid markers
303, 305, and 307 and helps in suppressing hit suppression by
the logical NAND gates 316, 318, and 320 when the rigid
markers are set.

[0039] The logical NAND gates 316, 318 and 320 receive
the output of the logical AND gates 315, 317 and 319, respec-
tively. The local enable emulated purge signal is also an input
to the logical NAND gates 316, 318 and 320. The outputs of
the logical NAND gates 316, 318 and 320 are inputs to the
logical AND gates 322, 324 and 326 respectively. The logical
AND gates 322, 324 and 326 also receive the result of com-
parators 304, 306 and 308 respectively as inputs. The result of
comparators 304, 306 and 308 indicate whether there is a hit
in the respective compartment 0, 1 and 2 of the TLB array
302. The outputs of the logical AND gates 322, 324 and 326
indicate whether there is a hit in the respective compartment
0, 1 and 2 of the TL.B array 302 taking into account the effect
of'local enable emulated purge signal and suppressed hits in
the compartments 0, 1 and 2, via the signals from the logical
NAND gates 316, 318 and 320 respectively. The logical OR
gate 328 determines a TLB hit when the output of either of the
logical AND gates 322, 324 and 326 is 1. It is noted that FIG.
3 describes one implementation of the emulated purge unit
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213. In other implementations, the emulated purge unit 213
may be implemented using logical NOR gates, lookup tables,
etc.

[0040] FIG. 4 depicts aflow diagram of example operations
to manage an MP-coherency operation in a microprocessor.

[0041] At block 402, the microprocessor receives the MP-
coherency operation. For example, the MP-coherency opera-
tion is a full TLB purge operation for a TLB in the micropro-
Cessor.

[0042] At block 404, the microprocessor determines
whether the MP-coherency operation is from a microproces-
sor in the same zone (i.e., the same Logical Partition as the
microprocessor and the MP-coherency operation affects the
storage (e.g., TLBs, etc.) shared by the microprocessor). If the
MP-coherency operation is from the same zone, control flows
to block 408. If the MP-coherency operation is not from the
same zone, the microprocessor and the initiator of the MP-
coherency operation have disjoint storage and the control
flows to block 406.

[0043] Atblock 406, the microprocessor performs afiltered
fast quiesce. In the filtered fast quiesce, a MMU purges the
TLBs (i.e., TLBs lower in the TLB hierarchy than the TLB for
which the MP-coherency operation indicates a TLB purge
operation) in the background without affecting the micropro-
Cessor.

[0044] At block 408, the microprocessor increments a
QTagC. The microprocessor increments the value of the
QTagC to keep track of the MP-coherency operations. For
example, the initial value of the QTagC is 0 and the micro-
processor increments the value of the QTagC to 1.

[0045] At block 410, the microprocessor waits until the
next interruptible point. For example, the microprocessor
waits until the microprocessor fetches new instructions after
incrementing the value of the QTagC.

[0046] Atblock 412, the microprocessor copies the value of
the QTagC to a QTagT register and an emulated purge unit
enables Emulated Purge. The microprocessor copies the
value of QTagC to the QTagT register and uses the value in the
QTagT register to attach QTagls to the new instructions (i.e.,
instructions to be fetched henceforth). As soon as a new
instruction is in flight, the emulated purge unit enables Emu-
lated Purge and a translation blocking unit enables a transla-
tion blocking technique. For example, the microprocessor
sets a global enable emulated purge signal as 1, and the
emulated purge unit enables Emulated Purge based on the
global enable emulated purge signal. In some embodiments,
the microprocessor may fetch an instruction before the
instruction is considered to be in-flight. However, the emu-
lated purge unit enables Emulated Purge before the micro-
processor fetches the instruction.

[0047] Atblock 414, the microprocessor attaches QTaglsto
the new instructions including instructions for fetching
address. For example, the microprocessor attaches the
QTagls to instructions to be executed and the microprocessor
attaches the QTagls to the instructions to fetch the physical
address of instructions from the TLB.

[0048] At block 416, the microprocessor waits for execu-
tion of all old instructions to complete. The old instructions
are instructions with the QTagl having the initial value of the
QTagC (i.e., the value of QTagC before receiving the MP-
coherency operation).

[0049] The microprocessor utilizes a global completion
table (GCT) to keep track of instructions in flight and age of
the instructions. The microprocessor can determine when the
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execution of the old instructions is complete by tracking the
instructions’ age. In one implementation, the microprocessor
utilizes a counter to track instructions’ age. For example, the
microprocessor maintains a counter for every unique value of
the QTagls attached with the instructions. The counter value
for a QTagl indicates the number of instructions in the micro-
processor for the QTagl. For example, when the QTagC and
QTagl are single bit wide, a counter for a QTagl indicates the
number of instructions in the microprocessor before receiv-
ing an MP-coherency operation. In some embodiments, for
multiple MP-coherency initiators (which initiate multiple
MP-coherency operations in parallel), the microprocessor
may maintain separate counters for unique values of the
QTagls for each MP-coherency initiator. When the micropro-
cessor fetches an instruction, the microprocessor increments
the counter corresponding to the instruction’s QTagl. Every
time the microprocessor completes execution of an instruc-
tion, and removes the instruction from the instruction pipe-
line, the microprocessor decrements the counter correspond-
ing to the instruction’s QTagl. When the counter
corresponding to the QTagl (for instructions in the micropro-
cessor before receiving the MP-coherency operation, i.e., old
instructions) is zero, the microprocessor an MMU can purge
the TLB and the microprocessor can answer the MP-coher-
ency operation. However, it is noted that the translation block-
ing technique remains enabled when the counter is zero. The
size of counter is the maximum number of instructions in
flight in the microprocessor.

[0050] In another implementation, a combinatorial logic
can be utilized to collect the QTagls for active instructions. A
QTaglValid bit for each entry in the GCT indicates whether
the entry in the GCT for the instruction is valid. The All-
SameTag expression (mentioned below), determines whether
all instructions in the GCT have the same QTagl. For
example, when there are different QTagls (e.g., for old and
new instructions), the AllSameTag results in a “1°. When all
instructions in the GCT have identical QTagls, it results in a
‘0’. It is noted, that for the address translation of a first
instruction’s instruction fetch after the MP-coherency opera-
tion is received, an entry in the GCT is reserved before the
instruction fetch. In one implementation, the microprocessor
sets the global enable emulated purge signal on incrementing
the QTagC register on receiving the MP-coherency operation.
Similarly, a falling edge of the AllSameTag signal triggers the
microprocessor to reset the global enable emulated purge
signal.

[0051] For example, for 3 instruction entries in the GCT,
QTagl1 indicates QTagl for the first entry in GCT:

[0052] AllSameTag=

[0053] ((QTagll OR not QTaglValidl) & (QTagl2 OR not
QTaglValid2) & (QTagl3 OR not QTaglValid3))

[0054] OR not

[0055] ((QTagll & QTaglValidl) OR (QTagl2 & QTa-
glValid2) OR (QTagl3 & QTaglValid3))

[0056] It is noted that the above combinatorial logic works
for QTagls that are only one bit wide. For simplicity, it is
noted that all instructions that follow an instruction with an
exception are removed from the GCT (including the one with
the exception). Hence, detection for absence of old instruc-
tions works flawlessly. In some embodiments, when imple-
mentation of the microprocessor’s exception handling devi-
ates, the detection logic may be adapted accordingly.

[0057] Embodiments are not limited to the above men-
tioned techniques to track the age of instructions and deter-
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mining the completion of old instructions. Embodiments can
utilize other similar techniques to track the age of instructions
and completion of old instructions.

[0058] At block 418, the translation blocking unit in the
MMU continues blocking storage accesses (i.e., the transla-
tion blocking technique is in eftect). The translation blocking
unit blocks creation of new entries in the TLB (for the new
instructions) and access to memory locations which the TL.B
entries (corresponding to new translations) reference. The
translation blocking unit compares new translations against
the entries purged in the MP-coherency operation. For
example, the translation blocking unit compares the page
index of a new translation against the page index in the TLB
purge information of the MP-coherency operation. When
there is a match, the translation blocking unit blocks storage
access and a new TLB entry is not created for the translation.
[0059] Atblock419, the microprocessor sends an answer to
the MP-coherency operation. For example, the microproces-
sor sends an answer signal to the MP-coherency manager that
the MP-coherency operation has been observed.

[0060] Atblock 420, the MMU starts the TL.B purge opera-
tion and Emulated Purge is disabled. The MMU starts delet-
ing the entries in the TLB. However, the MMU does not delete
the entries in the TLB for which a rigid marker is set. The
microprocessor may set the global enable emulated purge
signal to 0, to disable Emulated Purge.

[0061] At block 422, the translation blocking unit stops
blocking the translations when the MP-coherency operation
is finished. In some embodiments, the initiator of the MP-
coherency operation writes a new translation table to the
memory on completion of the MP-coherency operation. The
translation blocking unit stops blocking new translations to
be stored in the TLB and subsequent storage accesses on
completion of the MP-coherency operation.

[0062] Although, not illustrated in the flow diagram, TL.B
purge operations and translation blocking operations may
occur independently. The TLB purge operations and the
translation blocking operations can occur independently
based on information in the MP-coherency operation. The
TLB purge operations and the translation blocking operations
may utilize different sub-sets of the information in the MP-
coherency operation. For example, a TLB entry to be purged
is not blocked during translation and vice versa. In some
embodiments, the TLB passes an address for a storage access
to the lower level TLBs and the MMU after a hit is sup-
pressed, which is similar to operations after amiss in the TLB.
The address may pass the translation and be saved for use with
new instructions and the rigid marker may be set.

[0063] FIGS. 1-4 describe one implementation of a single-
thread processor receiving one MP-coherency operation at a
time. However, it is noted that extensions to symmetric multi-
threading (SMT) and Pipelined/Parallel MP-coherency
operations are possible as described below.

[0064] FIG. 5 depicts an example concept diagram of
selected components of a translation lookaside buffer coher-
ency unit with Emulated Purge to handle multiple MP-coher-
ency operations in parallel. FIG. 5 includes a TCUEP 500,
similar to the TCUEP 200 as described above with reference
to FIG. 2. However the TCUEP 500 includes a QTagC register
502 which is multi-bit wide (e.g., two bit wide), and a QTag
storage unit 505 (not depicted in FIG. 2). The TCUEP 500
includes an MMU 508 having translation blocking units 510
and 512, a TLB 513 having emulated purge units 516 and 518,
and a TLB 520 having emulated purge units 522 and 524. The



US 2014/0129789 Al

TCUEP 500 also includes a QTagT register 504, an instruc-
tion fetch unit 506, an out-of-order execution unit 514. For
simplification, FIG. 5 does not include all components of the
TCUEP 500 (e.g., an instruction address register, an operand
address register etc.). The operations performed by compo-
nents of the TCUEP 500 are similar to the operations per-
formed by components of the TCUEP 200, except that two
translation blocking units (510 and 512), two emulated purge
units (516 and 518) in the TL.B 513, and two emulated purge
units (522 and 524) in the TLB 520 are capable of handling
two MP-coherency operations in parallel. Each of the emu-
lated purge units 516, 518, 522 and 524 also maintain a
separate rigid marker for each TLB entry. The emulated purge
units 516 and 522 receive a first global enable emulated purge
signal. The emulated purge units 518 and 524 receive a sec-
ond global enable emulated purge signal.

[0065] A microprocessor increments the multi-bit wide
QTagC register 502 every time an MP-coherency operation is
received. At the next interruptible point, after receiving the
MP-coherency operation, the microprocessor copies the
value of the QTagC register 502 to the QTagT register 504.
The instruction fetch unit 506 while fetching an instruction
attaches the value present in the QTagT register 504 as QTagl
to the instruction. The emulated purge units 516 and 522, and
similarly the emulated purge units 518, and 524 do not utilize
the value in the QTagC register 502 for comparison with
QTagl (attached with an instruction) to determine whether to
enable Emulated Purge. Also, the translation blocking units
510 and 512 do not utilize the value in QTagC register 502 for
comparisons. For each MP-coherency operation, the value of
QTagC register 502 incremented on receiving the MP-coher-
ency operation is copied and saved separately for comparison
with the QTagl. For example, the microprocessor can store
the multiple values of QTagC in the QTag storage unit 505.
The emulated purge units 516, 522, and the translation block-
ing unit 510 utilize TLB purge information corresponding to
afirst MP-coherency operation. The emulated purge units 516
and 522 determine whether to enable Emulated Purge based
on a comparison of the QTagC (corresponding to the first
MP-coherency operation, received from the QTag storage
unit 505) with the QTag] attached with an instruction, and the
first global enable emulated purge signal. Also, the translation
blocking unit 510 determines whether to block storage access
based on the QTagC value corresponding to the first MP-
coherency operation and rigid markers maintained by the
emulated purge units 516 and 522. Similar operations are
performed by the translation blocking unit 512, and the emu-
lated purge units 518 and 524 for the second MP-coherency
operation. The components of the TCUEP 500 can handle the
two MP-coherency operations in parallel independent of each
other.

[0066] It is noted that the QTagC register 502 is multi-bit
wide, however the width is finite. In some embodiments, after
certain increments the value in the QTagC register 502 may
wrap (i.e., the counter may restart), and hence the value after
increment may be less than the intended value. In order to
avoid wrapping, the value in QTagC register 502 may be
allowed to wrap, but the value is corrected before it is utilized
for any comparison. In one implementation, a single bit in the
QTagC register 502 (e.g., the MSB) may be utilized for apply-
ing correction (e.g., by using the MSB as a flip bit). Utilizing
the MSB for correction purpose divides the QTagC value
range into two halves, an upper half range and a lower half
range. Using the flip bit, the upper half range and the lower
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half range may can be swapped before the timestamp value in
the QTagC register is utilized. When allowing the swap
between the upper half range and the lower half range it is
ensured that all values from one of the halves isnotin use (i.e.,
no MP-coherency operation for those values is pending). For
pipelined MP-coherency operations (i.e., multiple MP-coher-
ency operations from multiple MP-coherency initiators uti-
lizing a single MP-coherency manager) which are answered
in sequence, a buffer full signal may be utilized to indicate to
other MP-coherency initiators in the MP system that the
QTagC register 502 is blocked from increment. The buffer
full signal indicates to the other MP-coherency not to send an
MP-coherency operation as long as the buffer full signal is
set. In some embodiments, the buffer full signal may be set
ahead of time (e.g., with few possible increments remaining)
to take into account any delays.

[0067] It is noted that the TCUEP 500 in FIG. 5 is not
limited to handling two MP-coherency operations in parallel.
With multiple translation blocking units, and emulated purge
units in the TLB hierarchy along with an increased width of
the QTag registers (i.e., the QTagC register 502 and the
QTagT register 504), the TCUEP 500 can handle multiple
number of MP-coherency operations in parallel.

[0068] Itis noted that, when a microprocessor is initiator of
an MP-coherency operation, it does not utilize Emulated
Purge or the translation blocking technique. After sending the
MP-coherency operation, the microprocessor (i.e., the MP-
coherency initiator) waits for an answer(s) from the micro-
processor(s) (e.g., an MP-coherency manager) in the MP
system. When the microprocessor(s) in the MP system have
answered the MP-coherency operation, the MP-coherency
initiator writes the new table entry(ies) and finishes the MP-
coherency operation. In some implementations, the micro-
processor (i.e., the MP-coherency initiator) starts a TLB
purge operation by receiving and answering its own MP-
coherency operation. The microprocessor does not increment
its QTagC, however it can start the TLB purge operation and
send an answer signal for its own MP-coherency operation.
[0069] Itis also noted that, when an instruction encounters
an exception, a microprocessor does not execute instructions
following that instruction (i.e., the instruction with the excep-
tion). The microprocessor executes an exception handler. In
one implementation, the microprocessor considers execution
of old instructions is complete and considers the MP-coher-
ency operation is observed. It is noted that, with out-of-order
processing some instructions preceding the instruction with
the exception may not be complete, the microprocessor com-
pletes execution of the preceding instructions before the
completion of old instructions (i.e., instructions present
before the MP-coherency operation). On completion of the
old instructions, the microprocessor can instruct a MMU to
start a TLB purge operation and send an answer to the MP-
coherency operation. When the instruction with the exception
repeats (e.g., a page-fault exception), the microprocessor
executes the instruction (i.e., the instruction with exception)
as the MP-coherency operation is observed. The micropro-
cessor repeats the instruction fetch for the instruction and
re-tags the instruction with an instruction QTag. The instruc-
tion’s address and operand addresses are subject to hit-sup-
pression and translation blocking.

[0070] It is also noted that, a microprocessor goes through
arecovery on detecting an internal fault. The microprocessor
resets the logic (e.g., clears the TLBs) in a TCEUP and con-
siders an MP-coherency operation as observed. An error cor-
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rection code checks the (milli-) architected state for faults and
if possible corrects the fault. The microprocessor repeats the
oldest not-completed instruction (continued from the (milli-)
architected state). The logic external to the microprocessor
unit detects a recovery and automatically reports the micro-
processor as having observed the MP-coherency operation.
After the recovery, the microprocessor starts at the last
(milli-)architected state. The microprocessor resets one or
more QTagC and QTagT registers, and starts a TLB purge
operation. No instructions are in flight, no QTagls are used
and the emulated purge is disabled. The translation blocking
technique is in effect for translations after the recovery as long
as one or more MP-coherency operations are in progress. For
example, after the recovery, the microprocessor may detect
that an MP-coherency operation is in progress. However, the
microprocessor may not be able to determine that the MP-
coherency operation is the same as prior to the recovery, anew
MP-coherency operation, or whether multiple MP-coherency
operations have occurred during the recovery. Hence, the
translation blocking technique (utilizing unconditional
blocking) is in effect as long as one or more MP-coherency
operations are in progress.

[0071] The TCUEP described in the embodiments can
handle SMT. The TCUEP recognizes each thread as a sepa-
rate logical core. The TCUEP includes a QTagT register per
MP-coherency manager for each thread. A microprocessor
updates the QTagT register independently for each thread.
Each of the instructions holds a single QTagl value, based on
the QTagT register of the respective thread. In some embodi-
ments, when an MP-coherency operation is common for all
threads, the TCUEP utilizes a single QTagC register i.e.,
additional QTagC registers are not utilized for receiving the
MP-coherency operation.

[0072] Multiple threads can share a TLB using different
implementations (e.g., a Shared TLB implementation and a
Shared Entry TLB implementation). In the Shared TLB
implementation, the TLB includes TLB entries that are pri-
vate to each thread. A thread can purge its private TLB entries
independently. The multiple threads share the TLB capacity
(i.e., total number of TLB entries). New TLB entries formed
by one thread can age-out entries from other threads (e.g.,
based on Least Recently Used (LRU) algorithm).

[0073] In the Shared Entry TLB implementation, the mul-
tiple threads can share a TLB entry (created by one of the
multiple threads) based on certain conditions (e.g., same con-
figuration, same address space, etc.). A thread cannot purge a
TLB entry shared with other thread(s) until the other thread(s)
have reached an interruptible point time. For example, if a
first thread purges a TLB entry shared with a second thread,
the second thread may write to the TLB entry again and the
first thread may wrongly use the TLB entry. To avoid this
problem, a thread sends a ready-to-purge signal on complet-
ing the execution of 0ld instructions but does not yet start the
purge. Also, an MP-coherency manager in the MP system
may not be aware of SMT inside a core. The MP-coherency
manager sends a single MP-coherency operation to the core,
and receives a single answer for the MP-coherency operation.
For example, once a thread has reached its interruptible point
for an MP-coherency operation, it starts parallel execution of
old and new instructions. On completing the execution of the
old instructions, instead of purging a TL.B entry that is shared,
the thread sends the ready-to-purge signal to an MP-coher-
ency operation observed collector. The MP-coherency opera-
tion is not answered (i.e., the ready-to-purge signal stays
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inside the microprocessor core) while the thread continues to
execute new instructions with Emulated Purge and the trans-
lation blocking technique in effect. The thread can write to the
TLB entry and mark the TLB entry with a rigid marker. When
all threads which share TLB entries have sent the ready-to-
purge signal, the microprocessor can purge the TLB and send
an answer to the MP-coherency manager for the MP-coher-
ency operation.

[0074] Ifarecovery occurs during the execution of multiple
threads, the microprocessor core goes through recovery and
all threads restart at the last known good architected state,
having observed the MP-coherency operation. In some
embodiments, certain threads having observed the MP-coher-
ency operation and other threads not having observed the
MP-coherency operation when recovery occurs, does not
affect sharing of the TLB entries by the multiple threads.
Also, an exception in one thread between its ready-to-purge
signal and the actual purge, does not affect sharing ofthe TLB
entries by multiple threads. The microprocessor core
executes multiple threads while Emulated Purge and the
translation blocking technique are enabled until the TLB
purge operation is started. Otherwise same rules apply as
described in the single threaded description.

[0075] The TCUEP described in the embodiments above
also includes support for multiple MP-coherency managers
(one MP-coherency initiator per MP-coherency manager) in
parallel. To support multiple MP-coherency initiators, the
TCUEP includes a separate QTagC register for each MP-
coherency manager. The TCUEP includes the registers as
QTagCi, where i represents number of an MP-coherency
manager. The TCUEP also maintains a purged view and a
non-purged view of TLBs/MMU for each MP-coherency
operation. Instructions hold multiple QTagls, with a QTagli
for each MP-coherency manager. The emulated purge unit
213 of FIG. 3 depicts comparators 310, 311, 312 and 314 for
a single MP-coherency initiator. The TCUEP includes sepa-
rate comparators for each MP-coherency manager to support
multiple MP-coherency initiators. Also, the TCUEP includes
multiple instances of the logical AND gates 313, 315, 317,
319, 316, 318, and 320 for each of the MP-coherency initia-
tors. Each of the multiple instances of the logical AND gate
313 receives a separate global enable emulated purge signal
corresponding to the respective MP-coherency initiator. The
number of inputs to logical AND gates 322, 324 and 326 is
equal to the number of MP-coherency initiators+1. The TLBs
also include a rigid marker per MP-coherency manager for a
TLB entry and the rigid marker is reset separately for each of
the MP-coherency manager. The multiple MP-coherency ini-
tiators can initiate multiple MP-coherency operations in par-
allel which are independent of each other (using different
MP-coherency managers). Hence, an MP-coherency opera-
tion can finish before a previously initiated MP-coherency
operation. The flow diagram of FIG. 4 illustrates actions
performed for a single MP-coherency operation. Similar
actions are performed for each MP-coherency operation.

[0076] When multiple MP-coherency operations are
present in the system at the same time (controlled by multiple
MP-coherency managers), deadlocks may occur. When, a
processor is an MP-coherency initiator, it may also be a
receiver of an MP-coherency operation from another MP-
coherency initiator. A deadlock can occur when the MP-
coherency operation on one receiving MP-coherency initiator
stops the MP-coherency operation initiated by the other MP-
coherency initiator, a deadlock occurs. For example, Proces-
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sor A initiates an MP-coherency operation and around the
same time processor B also initiates another MP-coherency
operation. After both processors (i.e., Processor A and Pro-
cessor B) begin executing the instruction that initiates the
MP-coherency operation, the processor is not interruptible.
Processor A receives the MP-coherency operation initiated by
Processor B, and Processor B receives the MP-coherency
operation initiated by Processor A. Processor B waits to
answer Processor A’s MP-coherency operation until it
receives an answer to its own MP-coherency operation from
Processor A, and vice versa. To resolve such deadlocks, an
MP-coherency operation observable point ensures that the
MP-coherency initiators answer their received MP-coher-
ency operations independently instead of waiting for an inter-
ruptible point. For example, Processor A initiates a first MP-
coherency operation, and Processor B initiates a second
MP-coherency operation. Processor A copies the QTagC
value of the second MP-coherency operation to its QTagT
register, and hence performs the second MP-coherency
operation. Similarly, Processor B copies the QTagC value of
the first MP-coherency operation to its QtagT register, and
performs the second MP-coherency operation.

[0077] The TCUEP described in the embodiments above
also includes support for multiple MP-coherency operations
per MP-coherency manager from different MP-coherency
initiators. It is noted that multiple MP-coherency operations
using the same MP-coherency manager are answered in the
order they are received (i.e., pipelined). To support multiple
MP-coherency operations, each MP-coherency operation uti-
lizes separate comparators for Emulated Purge at TL.Bs which
can be enabled or disabled individually. Each MP-coherency
operation has its own purged and non-purged view of every
TLB. Each MP-coherency operation holds a copy of the
QTagC value when it was received and after the QTagC has
been incremented. Each instruction has one QTagl, however
the width of QTagl is increased based on the number of
MP-coherency operations. The number of comparisons for
old and new instructions is also increased. For example, an
instruction can be older than a first MP-coherency operation
or the instruction can be newer than the first MP-coherency
operation but older than a second MP-coherency operation,
etc. The answer to an MP-coherency operation can be sent
when no value smaller than QTagC (i.e., the copy of QTagC
corresponding to the respective MP-coherency operation) is
no longer utilized by an active instruction (i.e., an instruction
in-flight) in the processor. The TLBs also include as many
separate rigid markers for a TLB entry as there are pipelined
MP-coherency operations possible and the rigid marker is
reset separately for each of the MP-coherency operations.
[0078] It is noted that the TCUEP described above is also
capable of supporting Multiple MP-coherency operations per
MP-coherency manager for multiple MP-coherency manag-
ers (i.e., pipelined MP-coherency operations for each MP-
coherency manager along with MP-coherency operations
received from multiple MP-coherency managers in parallel).
The TCUEP may also support multiple MP-coherency opera-
tions received from an MP-coherency manager.

[0079] It is noted that the TCUEP described above is also
capable of supporting Multiple MP-coherency operations per
MP-coherency initiator utilizing the same or different MP-
coherency managers (e.g. more than one thread in SMT pro-
cessor initiate a MP-coherency operation in parallel).

[0080] Although, the embodiments described in FIGS. 1-3
include QTags with a limit on the width (i.e., single-bit wide),
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embodiments are not so limited. In other embodiments, the
QTags may be multi-bits wide with a fixed width, with no
limit on the width, etc. For multi-bit wide QTags, the TCUEP
includes additional circuitry to prevent wrapping of the
QTags after a certain number of increments to the QTags (as
described above). With no limit on the width, the QTags are
not prone to wrapping (i.e., reset after certain increments).
[0081] As will be appreciated by one skilled in the art,
aspects of the present inventive subject matter may be embod-
ied as a system, method or computer program product.
Accordingly, aspects of the present inventive subject matter
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining
software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.” Fur-
thermore, aspects of the present inventive subject matter may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

[0082] Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0083] A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

[0084] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0085] Computer program code for carrying out operations
for aspects of the present inventive subject matter may be
written in any combination of one or more programming
languages, including an object oriented programming lan-
guage such as Java, Smalltalk, C++ or the like and conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user’s com-
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puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

[0086] Aspects of the present inventive subject matter are
described with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems) and com-
puter program products according to embodiments of the
inventive subject matter. It will be understood that each block
of'the flowchart illustrations and/or block diagrams, and com-
binations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

[0087] These computer program instructions may also be
stored in a computer readable medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

[0088] The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0089] FIG. 6 depicts an example computer system 600.
The example computer system 600 includes a processor unit
601 (possibly including multiple processors, multiple cores,
multiple nodes, and/or implementing multi-threading, etc.).
The computer system includes memory 603. The memory
603 may be system memory (e.g., one or more of cache,
SRAM, DRAM, zero capacitor RAM, Twin Transistor RAM,
eDRAM, EDO RAM, DDR RAM, EEPROM, NRAM,
RRAM, SONOS, PRAM, etc.) or any one or more of the
above already described possible realizations of machine-
readable media. The computer system also includes a bus 611
(e.g., PCI, ISA, PCI-Express, HyperTransport®, Infini-
Band®, NuBus, etc.), a network interface 607 (e.g., an ATM
interface, an FEthernet interface, a Frame Relay interface,
SONET interface, wireless interface, etc.), and a storage
device(s) 613 (e.g., optical storage, magnetic storage, etc.).
The processor unit 601 includes a QTagT register 615, a
QTagC register 614, and a translation lookaside bufter 608
having an emulated purge unit 606. The QTagC register 614
is keeps a track of received MP-coherency operations. The
QTagT register 615 is the source of instruction QTags (i.e.,
QTagls). The emulated purge unit 606 embodies the function-
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ality to implement some of the embodiments described
above. The emulated purge unit 606 implements Emulated
Purge and other functionalities supported by the TCUEP. Any
one of these functionalities may be partially (or entirely)
implemented in hardware and/or on the processing unit 601.
For example, the functionality may be implemented with an
application specific integrated circuit, in logic implemented
in the processing unit 601, in a co-processor on a peripheral
device or card, etc. Further, realizations may include fewer or
additional components not illustrated in FIG. 6 (e.g., video
cards, audio cards, additional network interfaces, peripheral
devices, etc.). The processor unit 601, the storage device(s)
609, and the network interface 607 are coupled to the bus 611.
Although illustrated as being coupled to the bus 611, the
memory 603 may be coupled to the processor unit 601.
[0090] While the embodiments are described with refer-
ence to various implementations and exploitations, it will be
understood that these embodiments are illustrative and that
the scope of the inventive subject matter is not limited to
them. In general, techniques for implementing Emulated
Purge and selectively suppressing hits for certain instructions
as described herein may be implemented with facilities con-
sistent with any hardware system or hardware systems. Many
variations, modifications, additions, and improvements are
possible.

[0091] Plural instances may be provided for components,
operations or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the inventive subject matter.
In general, structures and functionality presented as separate
components in the exemplary configurations may be imple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and improvements
may fall within the scope of the inventive subject matter.

What is claimed is:

1. A method comprising:

fetching first instructions for execution in a multi-proces-
sor system,

associating a first instruction timestamp with each of the
first instructions, wherein the first instruction timestamp
is derived from a first timestamp in a master-tag register;

receiving a multi-processor coherency operation in a first
microprocessor of the multi-processor system, wherein
the multi-processor coherency operation indicates a
purge operation for translation lookaside buffers in the
multi-processor system;

incrementing the first timestamp value in a master-tag reg-
ister to form a second timestamp value after receiving
the multi-processor coherency operation;

copying the second timestamp value to a source-tag regis-
ter;

fetching, by an instruction fetch unit in the first micropro-
cessor, second instructions for execution in the multi-
processor system;

associating a second instruction timestamp with each ofthe
second instructions, wherein the second instruction
timestamp is derived from the second timestamp value
in the source-tag register;
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enabling an emulated purge mechanism, wherein the emu-
lated purge mechanism performs operations including,
determining that the second instruction timestamp val-
ues associated with the second instructions are equal
to the second timestamp value in the master-tag reg-
ister; and
suppressing, by the emulated purge mechanism, hits in
the translation lookaside buffers for the second
instructions;
determining that the first instructions are complete;
after determining the first instructions are complete, purg-
ing entries in the translation lookaside buffers; and
disabling the emulated purge mechanism.
2. The method of claim 1 further comprising:
blocking use of the translation lookaside buffers for
address translations of a first group of entries in the
translation lookaside bufters, wherein the first group of
entries are associated with the second instructions.
3. The method of claim 2 wherein the blocking further
comprises:
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determining that a second group of entries corresponding
to the second instructions are not affected by the multi-
processor coherency operation; and
storing of the second group of entries to the translation
lookaside buffers for one or more of the second instruc-
tions.
4. The method of claim 1 wherein, the determining that the
first instructions are complete comprises:
determining that no first instructions are present in a global
completion table, wherein the global completion table
stores instructions and associated instruction timestamp
values.
5. The method of claim 1 wherein, determining that the first
instructions are complete, comprises:
determining, using a combinatorial logic, that instructions
in the multi-processor system are the second instructions
having the associated second instruction timestamps.
6. The method of claim 1, wherein the master-tag register is
configured to store at least one binary digit.
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