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57 ABSTRACT

A method for optimizing the energy expenditure and the
comfort of a building, including comfort systems provided
with an online consumption sensor, local environment data
sensors associated with an identifier of a zone of the build-
ing, and at least one server for collecting and recording the
timestamped data remotely includes the following steps:
—constructing and saving a simplified digital model of the
thermal behavior of the building; —a step of calibrating the
simplified digital model calculated during the preceding
step; —a step of validating the calibrated digital model
calculated during the preceding step by comparing the
digital variables obtained by predictive processing of the
calibrated model and the digital variables stored by the
server over a period of a few days; —a step of calculating
digital parameters for resource allocation by applying a
Pareto optimum calculation applied to the validated cali-
brated digital model.
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METHOD FOR OPTIMISING THE ENERGY
EXPENDITURE AND COMFORT OF A
BUILDING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a national phase entry under 35
US.C. § 371 of International Patent Application PCT/
FR2019/050123, filed Jan. 21, 2019, designating the United
States of America and published as International Patent
Publication WO 2019/166710 Al on Sep. 6, 2019, which
claims the benefit under Article 8 of the Patent Cooperation
Treaty to French Patent Application Serial No. 1851762,
filed Feb. 28, 2018.

TECHNICAL FIELD

[0002] The present disclosure relates to the field of opti-
mizing heating, ventilation and air conditioning systems in
large buildings. The method used relies on simulations
carried out using a digital model combined with advanced
statistical learning and stochastic optimization tools.

BACKGROUND

[0003] The object is to reduce overall energy expenditure
while improving the comfort perceived by the users of a
building, by constructing a digital model that allows
advanced controls to be parameterized for the set points of
the technical management systems, for the operation of air
conditioning systems and more generally all the systems that
lead to energy expenditure on the one hand and that con-
tribute to the comfort perceived by users on the other.
[0004] As an example, the U.S. Energy Information
Administration agency estimates that heating, cooling, light-
ing, refrigeration and water heating represent about 55% of
the energy consumption for a building in the commercial
sector.

[0005] Energy consumption for lighting (about 10%) can
be reduced without diminishing perceived comfort by
replacing conventional lighting with lighting that uses elec-
troluminescent diodes (LED) instead of fluorescent lamps. It
is therefore crucial to improve other types of energy usage
in order to control the environmental impact of buildings
management (by reducing greenhouse gas emissions such as
carbon dioxide) and to enhance financial efficiency (by
reducing energy bills with new, suitably scaled contracts).
[0006] A specific problem linked to reducing the energy
consumption of commercial or public buildings is maintain-
ing and controlling thermal comfort inside these buildings
during occupation, while taking account of the dynamics of
the building and changes in the weather, reducing consump-
tion during periods of inoccupation and restarting the heat-
ing, ventilation and air conditioning in a timely fashion after
an idle period.

[0007] Typically, two approaches to producing an optimal
energy efficiency and comfort strategy are observed.
[0008] The first approach relies on physical simulators,
based on a model of an entire building, taking account of the
geometry of the building, its envelope, the internal loads, the
air conditioning and ventilation systems and the weather
data. This digital model is then used to simulate the energy
consumptions and temperatures inside the building. Various
algorithms may then be used to estimate the best manage-
ment parameters (programming, temperature set points) in
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order to reduce consumption while ensuring optimal thermal
comfort. This simulation-based approach may provide
acceptable precision, but requires a great deal of effort of
precise data that is difficult, and therefore costly, or even
impossible, to obtain (for example, the actual system set-
tings, the actual heat contributed by office equipment and
lighting, the actual air-tightness of the building, the true
characteristics of the climate control systems, etc.). It is then
very costly in engineering terms to achieve sufficient preci-
sion to embed all the parameters of the thermal simulation
model associated with each building. It is also very depen-
dent on the quality and relevance of the physical simulation
model used.

[0009] The second approach attempts to model the energy
consumption of buildings based on an analysis of its corre-
lation with other variables such as indoor temperature,
outdoor temperature and occupation of the building). It uses
a purely digital and statistical approach taking account of
specific functions and objective constraints that must be
minimized (state-space models, for example). It does not use
a technical engineering model of the building and of the
energy systems. This approach has a relatively low calcu-
lation burden, and is therefore capable of responding rapidly.
A generic model can be applied to different buildings and
statistical learning techniques can be used to choose the
parameters of the models defined. But this “black-box”
approach, which relies on statistical comparisons but does
not take sufficient account of the underlying physics asso-
ciated with the energy behavior of buildings, is difficult to
translate into practical and concrete actions (as the actions
envisaged are limited, not graduated, and their impact can-
not be quantified with enough precision). The confidence
intervals are often greater than the estimated value of the
impacts.

[0010] U.S. Pat. No. 9,612,591 (application no. US2015/
192911) describes an example of a method and system for
optimizing and controlling the energy consumption of a
building. A first computing device generates a set of thermal
response coeflicients for the building based on the energy
characteristics thereof and the weather data associated with
the location of the building. The first computing device
predicts an energy response for the building based on the set
of thermal response coeflicients and the forecast weather
conditions associated with the location of the building. The
first computing device selects the minimum energy needs of
the building based on an energy consumption cost associated
with the building. The first computing device determines one
or more temperature set points for the building based on the
energy response and the minimum energy needs. The first
computing device transmits one or more temperature set
points to a thermostat in the building.

[0011] This method of the prior art provides for the
following steps:

[0012] Reception by a first calculation device of one or
more measurements from a plurality of sensors, at least
some of which are situated inside the building, the
measurements comprising temperature readings and
comfort characteristics;

[0013] Calculation by the first computing device of a set
of thermal response coefficients for the building based
on the energy characteristic of the building, the mea-
surements from the sensors and the weather data asso-
ciated with the location of the building;
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[0014] Calculation by the first calculation device of an
energy response level for the building as a function of
the set of thermal response coefficients and of the
weather forecasts associated with the location of the
building;

[0015] Determination by the first calculation device of
a series of energy control points for each of the comfort
devices in the building based on the energy response of
the control points that may be actuated to adjust one or
more operational comfort parameters;

[0016] Optimization by the first computing device of
the series of energy control points based on an esti-
mated energy cost for a plurality of predetermined time
periods such that the corresponding comfort devices
consume less energy during periods with a high esti-
mated energy cost and more energy during time periods
with a low estimated energy cost;

[0017] Collection by the first calculation device for each
of the plurality of predetermined time periods of the
temperatures detected by one or more sensors in the
different rooms of the building, by one or more sensors
outside the building and by a thermostat inside the
building;

[0018] Verification by the first calculation device of
whether the temperature readings from the one or more
sensors in the different rooms of the building diverge
over time from the temperature readings of the sensor
(s) outside the building and from the temperature
readings of the thermostat; and

[0019] 1If at least one of the detectors in the different
rooms of the building diverges over time from the
temperature readings of the sensor(s) outside the build-
ing and from the temperature readings from the ther-
mostat:

[0020] Adjustment by the first calculation device of the
series of energy control points for one or more comfort
devices associated with the room with the divergent
sensor to take account of the temperature divergence.

[0021] The following two scientific articles are also
known:
[0022] Yu, Wei & Li, Baizhan & Jia, Hongyuan & Zhang,

Ming & Wang, Di. (2015), “Application of multi-objective
genetic algorithm to optimize energy efficiency and thermal
comfort in building design,” Energy and Buildings, vol. 88,
pp- 135-143. This article describes a multi-objective opti-
mization model that can help designers in the design of
ecological buildings. This article proposes the use of the
Pareto solution to obtain a set of optimal optimization
solutions for building design. An improved multi-objective
genetic algorithm (NSGA-II) forms the theoretical basis for
modeling a multi-objective optimization model. Based on
the simulation data on energy consumption and indoor
thermal comfort, an optimized back-propagation network
based on the simulation, optimized by a genetic algorithm
(GA) is used to characterize the behavior of buildings, then
a network model is established allowing rapid prediction of
the energy consumption and indoor thermal comfort state of
residential buildings.

[0023] O’Neill, Z. & Eisenhower, “Leveraging the analy-
sis of parametric uncertainty for building energy model
calibration,” B. Build. Simul. (2013), Springer Berlin
Heidelberg Print ISSN 1996-3599, describes calibrated
energy models used to measure and verity building renova-
tion projects, predict savings made due to the energy con-
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servation measures and commission construction systems
(both before occupation and during monitoring, perfor-
mance controls and diagnostics based on a real-time model).
[0024] This article presents an automated and systematic
method of calibrating a building energy model. Effective
calibration of the parameters allows over two thousand
model parameters to be analyzed and those that are critical
(the most important) identified in order to adjust the model.
[0025] The parameters that most affect the final energy use
in the building are selected and automatically refined to
calibrate the model by applying metamodel-based analytical
optimization. The real-time data for an office block, includ-
ing data for energy meters and energy in 2010, were used to
calibrate the model, while the 2011 data were used to verify
the model. The modeling process, the calibration and veri-
fication results, and the implementation problems encoun-
tered throughout the model calibration process were dis-
cussed from the point of view of the user. The total
electricity consumption forecasts for the installations and
plugs based on the calibrated model correspond to the actual
measured monthly date to within +5%.

[0026] A first drawback of the solutions of the prior art is
the recourse to genetic algorithms to solve multi-objective
optimization problems requiring a large number of simula-
tions to calculate a Pareto optimum and determine the
optimal allocation of comfort resources. This leads to pro-
hibitive calculation costs when the processing is combined
with simulation programs such as the buildings and systems
thermal simulation application TRNSYS (trade name).
[0027] Moreover, the precision and robustness of the
results remain somewhat approximate.

[0028] Further, the solutions of the prior art usually
require the construction of complex and imperfect theoreti-
cal models of the superstructures, thermal flows and energy
and thermal behaviors for each of the elements present in the
building. The elements are established a priori by experts, so
as to model the building realistically, but do not take account
of real observations obtained in the building in order to
calibrate the theoretical model so that it best describes the
actual behavior of the building studied.

[0029] One embodiment of the disclosure minimizes total
energy consumption over a year and to optimize thermal
comfort (defined as the fraction of the number of hours in the
year when the temperature is between 18 and 26 degrees)
and to measure the difference from a given comfort tem-
perature (19° and 22° are not considered comfortable in the
same way, contrary to what is proposed in the article by Yu
et al. and only during occupation.

BRIEF SUMMARY

[0030] To overcome these drawbacks, the present disclo-
sure relates in its most generally accepted meaning to a
method for optimizing the energy expenditure and comfort
of a building comprising:

[0031] a plurality of comfort systems provided with an
online consumption sensor, suitable for periodically
remotely transmitting consumption data associated
with an identifier of the comfort system,

[0032] a plurality of local environment data sensors
(temperature, luminosity, CO,, etc.) associated with an
identifier of a zone of the building,

[0033] at least one server for collecting and recording
the timestamped data remotely transmitted by the con-
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sumption sensors and for collecting data external to the
building as well as internal data.

[0034] Wherein, the method comprises the following
steps:
[0035] constructing and saving a simplified digital

model of the thermal behavior of the building for which
the parameters are estimated using the timestamped
data remotely transmitted by the online consumption
sensors and by the local environment sensors, by inte-
gration processing of all the characteristics of a build-
ing and its comfort systems for the detailed study of the
building depending on the location of the building, the
construction materials used, the overall architecture,
and the chosen energy concept

[0036] a step of calibrating the simplified digital model
calculated during the preceding step,

[0037] a step of validating the calibrated digital model
calculated during the preceding step by comparing the
digital variables obtained by predictive processing of
the calibrated model and the digital variables stored by
the server over a period of a few days,

[0038] a step of calculating digital parameters for
resource allocation by applying a Pareto optimum
calculation using a multi-objective optimization algo-
rithm applied to the validated calibrated digital model.

[0039] According to advantageous variants:

[0040] the Pareto criterion is determined by the histori-
cal target temperatures;

[0041] the Pareto criterion is determined by a set of new
target temperature values;

[0042] the optimum Pareto calculation is implemented
using a genetic NSGA-II algorithm.

BRIEF DESCRIPTION OF THE DRAWINGS

[0043] While this disclosure concludes with claims par-
ticularly pointing out and distinctly claiming specific
embodiments, various features and advantages of embodi-
ments within the scope of this disclosure may be more
readily ascertained from the following description when
read in conjunction with the accompanying drawings, in
which:

[0044] FIG. 1 is a schematic representation of an environ-
ment in which embodiments of the present disclosure may
be implemented;

[0045] FIG. 2 is a summary of the parameters linked to the
building control strategy;

[0046] FIG. 3 shows the calibration results in the table of
parameters and time series; and

[0047] FIG. 4 shows the result of the optimization with
historical target temperatures.

DETAILED DESCRIPTION

[0048] The present disclosure will be described in more
detail with reference to a non-limiting embodiment.

Material Architecture

[0049] The description that follows presents an example of
effective multi-objective methodology to improve energy
efficiency and maintain thermal comfort, without interven-
tion to renovate or modify the building envelope.
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[0050] The building comprises a plurality of comfort
systems such as heating systems, light sources, air-condi-
tioning systems, aeration systems, how or cold water supply
points, etc.

[0051] These systems are associated with sensors 10 com-
municating with a server 30 via the wired network or via a
radiofrequency network to communicate information on the
state of the associated system and on the main energy
consumption points. The building also comprises local envi-
ronment data sensors 20 transmitting data to the server 30 on
a comfort parameter in the local zone where the sensor is
installed.

[0052] The sensors 10, 20 provide information in the form
of digital sequences comprising an identifier of the sensor
and at least one digital value for the parameter measured.
The server 30 controls the timestamping of the data received
and recording in permanent storage.

[0053] The server 30 also receives and stores timestamped
outdoor environment data, notably weather information
from data sources.

[0054] The data recorded by the server 30 are subject to
processing in accordance with the method according to the
disclosure, associating an energy program for the building
with optimization processing.

[0055] For example, the energy program may be a tool
such as the Energy Plus (trade name) application developed
based on the BLAST (trade name) and DOE-2 (trade name)
tools and incorporating specific modules for introducing
systems into the thermal zone energy balance and input and
output data structures defined from the digital data recorded
by the server 30.

[0056] The energy program may consist of the specialized
TRNSYS (trade name) application for dynamic thermal
simulation applied to buildings. This application allows all
the characteristics of a building and its systems (heating, air
conditioning) to be incorporated in order to carry out a
detailed mono-zone or multi-zone study of its thermal
behavior. It incorporates variables for location, construction
materials, overall architecture, and the chosen energy con-
cept, including more complex systems such as innovative
solar systems.

[0057] The function of the optimization processing
(single-objective or multi-objective) is to analyze the enve-
lopes, orientations, shading or material characteristics and
allow a diagnosis to be made.

[0058] It may be carried out using the Global Python
Parallel-PyGMO (trade name) toolbox applications consti-
tuting a multi-objective optimizer that allows a simplified
model to be designed.

[0059] The simplified model is obtained either based on a
schematic view of the building, or following a complex
campaign of time and resource measurement where trained
professionals define the parameters that characterize the
physical properties of the building.

[0060] The parameters of the simplified model are then
calibrated using measurements (temperatures, consump-
tions, programming, etc.) obtained from thousands of com-
municating sensors placed in a real building to store a very
large number of real-time data. The physical parameters of
the simplified model are estimated using PyGMO add-on
software with the measurements and the CMA-ES algo-
rithm.
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[0061] Next, the estimated model is validated using the
TRNSYS (trade name) program to ensure that the resulting
base model imitates the thermal behavior of the actual
building.

[0062] A multi-objective methodology to improve energy
efficiency and maintain thermal comfort is then imple-
mented acting only on the building management system
without modifying the physical parameters.

[0063] The NSGA-II approach is used to obtain the opti-
mal Pareto parameters. The performance of the methodol-
ogy is assessed based on data collected in a building situated
in the Paris region.

Functional Architecture

[0064] The first step of the method according to the
disclosure involves designing a simplified model of the
building for which the parameters are estimated using mea-
surements obtained from communication-capable sensors.

First Step: Definition of a Simplified Model

[0065] The base model was implemented using the TRN-
SYS IT solution (Type 56 component) and taking account of
a plurality of parameter types. Building managers usually
know some of these parameters precisely whereas others are
not known or not well understood.

[0066] The single-zone base model is defined by the
following components.

[0067] A plurality of vertical external walls. Each of
these walls is specified by the following parameters:
surface area, proportion of windows relative to wall,
orientation, thickness and constituent layers such as
concrete, insulation, etc.

[0068] A roof and a floor specified by: surface area and
thicknesses of the various constituent layers, including
the insulation.

[0069] Maximum heating and air conditioning (AC)
power available at the emitters and at central produc-
tion.

[0070] Schedules and temperatures for the heating, ven-

tilation and air conditioning (HVAC) systems. A sched-
ule consists of a start time, a time until shut down, a
comfort temperature when occupied and lower tem-
peratures when not occupied. Three (or four) program
schedules are considered for each week: (i) Monday,
(i1) Tuesday, Wednesday, Thursday, (iii) Friday (and
(iv) weekend, if different from Friday).

[0071] Other parameters characterizing thermal contri-
butions inside the building, such as the number of
occupants, the number of items of IT equipment, PCs,
and the lighting systems characterized by a number of
W/m?.

[0072] In most cases, the structure of the walls, of the roof
and of the low floors are fairly well known, as is the overall
orientation of the building and the glazed surface area, but
the thickness and the nature of the insulation is usually not
well known and must be estimated to within a realistic range
of values.

[0073] Furniture that forms a substantial thermal energy
store is summarized in a single parameter known as capaci-
tance, expressed in kJ/° C./m> and sized in proportion to the
total volume.
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Second Step: Calibration of the Simplified Model

[0074] As the objective is to improve thermal efficiency
without renovation work, the calibration procedure must
estimate the parameters linked to the building envelope.
Some of these parameters are known or do not need to be
calibrated, such as the structure of the external walls, of the
roofs and of the low floors, or the window types. The other
parameters linked to the building envelope required in order
to define the TRNSYS model and the parameters linked to
the building control strategy are summarized in the table
shown in FIG. 2.

[0075] Hereinafter, these parameters are designated by 6.
The initial value of 8 is chosen according to data determined
by the building construction or redevelopment date.

[0076] The estimation procedure uses the data recorded by
the server 30 over a month, based on hourly readings. The
data recorded each hour comprise outdoor temperature
T,°%°, average indoor temperature T°* measured in the
building, energy consumption for heating Q,°” and for
cooling Q_°**. The other data are recorded in a table of
variables such as that shown in FIG. 2.

[0077] The covariance matrix adaptation evolution strat-
egy (CMA-ES) is implemented with the PyGMO (trade
name) application toolbox to optimize iteratively the param-
eters in the table of variables using the selection (u, A).
[0078] At each iteration, the best descendant parameters
(u, A) from the actual estimation of the parameters are
combined to form the population of the next iteration and the
other candidates are rejected.

[0079] For each parameter 0, the TRNSYS model is
executed with the stored weather conditions to produce
hourly energy consumptions and the associated indoor tem-
peratures.

[0080] The objective function minimized by the CMA-ES
takes account of the difference between these hourly simu-
lations and the actual observations measured in the building:

Sean8=0, log(1H| T~ I77(p)+o, log (14 0°-
%),
where:

[0081] T, and Q° designate the indoor temperatures
and the total energy consumptions (heating, cooling
and other expenditures) formed by the time series
produced by the TRNSYS model with a given param-
eter 0, for any time series s, such that:

8 _ obs 1¢ 9 bs 182 "
Is” =5l = | = 37 Is%(k) = s (k)
k=1

[0082] where n equals the number of samples.

Step 3: Validation of the Model

[0083] Once the CMA-ES algorithm has reached a state of
convergence, the TRNSYS model is trained using observa-
tions to ensure calibration relative to the actual building.
[0084] To ensure that the base model thermal behavior
corresponds to the thermal behavior of the actual building,
the model predictions are compared to the observations
recorded for the week following the calibration period and
for another subsequent period.

[0085] All the parameters linked to the building envelope
estimated during the calibration procedure are fixed and are
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considered as the building signature. Next, the parameters
linked to the construction control strategy are fixed to the
actual construction parameters for each validation period.
The calibrated model is executed using these settings and the
stored weather conditions and compared to the observations.

Step 4: Pareto Optimization

[0086] When the model has been calibrated and validated,
Pareto optimization is carried out so that the energy perfor-
mance of the building can be analyzed, by optimizing energy
consumptions while maintaining a thermal comfort chosen
by the model. The parameters used to improve energy
efficiency are designated by m. All the other parameters are
defined by the parameters calibrated in 6.

[0087] For each parameter m, the TRNSYS model is
executed with the stored weather conditions to produce the
associated hourly energy consumptions and indoor tempera-
tures for the following week. The objective function mini-
mized by the NSGA-II algorithm aims to find a compromise
between minimizing total energy consumptions and provid-
ing a thermal comfort specified by the user:

optim' 1= Foptim(T)s Sopni (), With
1 » 1/2
St (1) = log(l + (;Elelﬂ”(k) - Tk 1k€,] ]

I i) = log(1 + 110711,

where T,* designates the sequence of indoor temperatures
desired by the energy managers.

[0088] Various optimization configurations may be envis-
aged.
[0089] a) Optimization with historical target tempera-

tures. In this case, the sequence T,* determined to allow
adjustment to the temperatures observed in the building
during the optimization period. Optimization aims to
find parameters to reduce energy consumptions without
changing the thermal comfort.

[0090] b) Optimization with new target temperatures. In
this case, the thermal comfort recorded with the sensors
is assumed to be too conservative and the optimization
procedure allows the temperature set points to be
changed to improve efficiency with a new reference
thermal comfort.

[0091] Optimization is carried out using the NSGA-II
method for multi-objective problems implemented in
PyGMO, based on a non-dominated descendant selection
procedure.

Experimental Results

[0092] According to one embodiment, the data used were
collected in a 7-story office building of 14,000 m? floor
space situated in the Paris region for a total volume of
51,800 m>. Based on a commonly used rule, it is assumed
that 24 of the total area is occupied by people, which gives
a total occupation area of 9240 m®. Assuming that each
occupant has 12 m? the initial values are set at 770
occupants and 770x1.2=924 PC in the building during the
hours of occupation. The wall areas, on the other hand, are
3.7x7x50=1295 m? and 3.7x7x40=1036 m?, respectively.
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[0093] In the results obtained, the model is calibrated
using a month of data stored every hour such that n=720.
The calibration results are shown in the table of parameters
in FIG. 3. The CMA-ES algorithm is executed with a
population size given by A=4+3 log (card(0)) and the
parameter i by default. The parameters are initialized ran-
domly within the interval given in Table 1 and the estimation
procedure is repeated 50 times and stopped after 800 gen-
erations when the algorithm has reached convergence. The
estimated average value and the standard deviation over 50
independent trials are given for each parameter in the table
in FIG. 2. FIG. 3 shows the outdoor temperature evolution
curve 5 (at the top) and the estimated indoor temperature
curve 6 as well as the curve 7 showing estimated energy
consumption.

[0094] These estimated chronological series are compared
with the observations from the building sensors. The last
graph shows the relative error between the estimated
chronological series and the observations over time. For any
time series, this relative error is given for any 1=k=n, by:

|s§(k) _Sobx(k)|

s5k) = EZ7

[0095] The estimated model is used to predict the weekly
temperatures and consumptions after the calibration period
(FIG. 3) and during a period N (FIG. 4).

[0096] FIG. 4 shows the result of the optimization with
historical target temperatures.

[0097] The average temperature in the building during an
hour of occupation was 23.4 degrees with a standard devia-
tion of 0.67. Total energy consumption was 342.6 kWh. The
results of the NSGA-II algorithm show that for a similar
temperature volatility about 23.4 degrees, other construction
parameters may lead to a total energy consumption of 300
kWh. The associated parameters are given in the table of
parameters and the time series are displayed in FIG. 3. FIG.
4 shows optimization with new target temperatures. This
demonstrates that significant gains may be obtained by
reducing the target temperatures if the energy managers
accept such a moderation of the target temperature.

[0098] The method according to the disclosure allows the
lack of information and data imprecision inherent to any
building in real use to be overcome in a profitable and
generalizable way. It also allows a dynamic physical thermal
model to be produced that is very close to the real operation
of the building (usually to within a few percentage points of
reality). Furthermore, it allows explicit results to be obtained
on the improvement actions that should be undertaken
(system settings, programming, building work, energy sup-
ply contract optimization) and allows the impacts of the
improvement actions to be quantified in terms of enhanced
comfort and energy efficiency.

1.-4. (canceled)

5. A method for optimizing the energy expenditure and

comfort of a building that includes:

a plurality of comfort systems provided with an online
consumption sensor, suitable for periodically remotely
transmitting consumption data associated with an iden-
tifier of the comfort system; and

a plurality of local environment data sensors associated
with an identifier of a zone of the building;
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wherein, the method comprises the following steps:

constructing and saving on a remote server a simplified
digital model of the thermal behavior of the building
for which the parameters of the simplified digital model
are estimated using the timestamped data remotely
transmitted to the server by the online consumption
sensors and by the plurality of local environment data
sensors, by integration processing of characteristics of
the building and the comfort systems depending on the
location of the building, construction materials used in
the building, the overall architecture of the building,
and a chosen energy concept;

a step of calibrating the simplified digital model calcu-
lated during the preceding step;

a step of validating the calibrated simplified digital model
by comparing digital variables obtained by predictive
processing of the calibrated simplified digital model
and digital variables stored by the server over a period
of a few days; and
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a step of calculating digital parameters for resource allo-
cation by applying a Pareto optimum -calculation
applied to the validated and calibrated simplified digital
model.

6. The method of claim 5, wherein the Pareto optimum
calculation is implemented by using a genetic NSGA-II
algorithm.

7. The method of claim 5, wherein a criterion for the
Pareto optimum calculation is determined by historical
target temperatures.

8. The method of claim 7, wherein the Pareto optimum
calculation is implemented by using a genetic NSGA-II
algorithm.

9. The method of claim 5, wherein a criterion for the
Pareto optimum calculation is determined by a set of new
target temperature values.

10. The method of claim 9, wherein the Pareto optimum
calculation is implemented by using a genetic NSGA-II
algorithm.



