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57 ABSTRACT

According to the disclosure, a memory allocation method
and device and recording medium in a multi-core processor
system are disclosed. According to an embodiment, a
method for allocating a shared variable to a memory in a
multi-core processor system comprises mapping each task to
a core, allocating unshared variables to memories times of
access, to which are sequentially minimized, in descending
order of actual variable access count, calculating an actual
variable access count per core, selecting a core with a
highest actual variable access count, and allocating a shared
variable to a memory of the selected core.
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[FIG. 2]
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[FIG. 3]
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Abbreviations:

PCACHE: Program Cache

DCACHE: Data Cache

DSPR: Data Scratch-Pad RAM
PSPR: Program Scratch-Pad RAM
BROM: Boot ROM

PFlash: Program Flash

DFlash: Data Flash(EEEPROM)

[ S ]: SRI Slave Interface
(W ]: SRI Master Interface



.auunn; $9|QB1JBA PaJRYS 199|9S f\s;wo#m

A
S CE L

£Po1Bo0]| |8 S9qElJBA
paJeys-uou ||e

ON

¢3UOp SYdSQ
|| Uo syse}

LOvS

Gl¥s paziwiulw S| 8Wi] SS8O0B 848YM
_ uoijisod wolj sa|qeileA aleoo||e

US 2021/0055967 Al

~——90¥S

(v 'OId]

2 [ e [ v s | ,
=]
- , + N onjeA ) asJe| yiim
= y1¥S o Sk eIvS $3|qelJeA paJeys-Uou 398|9S  |——GOPS
2 K| 1e|3usnbas pue A||e|iusleta.d
72 1.
I N ;oklwgaoxm
& »SIh  TIFS BOJR ¥4SQ U! oyoeo ajqeus | TO7S
e I
. $Pa1e00] [B S3|qelJBA
3 poJeys ||e ON (4/0001) %UX=A 2UN0D $S8D0E  cors
= 9|qelJeA |enjoe 91e|Nn9|E9
LiPS A
=
m 01%S— uwz ﬂwﬁw owmmwh%o_o_chs.mm%h_bwsu 1583 30 Uo1N9ska 3o pus
2 . ) ysel jo (d) polted uo paseq (uy)
= 4dS0 31 9499 %o=xmwa 0% &3800]1® JUN00 S$S0008 9|E|JeA Jndu] | ¢0FS
£ I
= 9100 UoB® J0J onjeA | SuIje|nojeo
2 607S 10142 enjen § 3se8Je] Y31k 2100 300]8s _ 9400 03 sey deu fx‘.,_oww
S I
=
=y
«
=
&
=
A




Patent Application Publication  Feb. 25,2021 Sheet 5 of 9 US 2021/0055967 A1

[FIG. 5]
510 520 5/00
— ) — _/ _____ N
I memory memory I
i al location i
''| controller cache !
e T ]




Patent Application Publication  Feb. 25,2021 Sheet 6 of 9

[FIG. 6]
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[FIG. 8]
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[FIG. 9]
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METHOD AND APPARATUS FOR MEMORY
ALLOCATION IN A MULTI-CORE
PROCESSOR SYSTEM, AND RECORDING
MEDIUM THEREFOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the priority benefit of
Korean Patent Application No. 10-2019-0101332 filed on
Aug. 19,2019, and 10-2019-0101333 filed on Aug. 19, 2019
which is incorporated herein by reference for all purposes as
if fully set forth herein.

BACKGROUND OF THE DISCLOSURE

Field of the Disclosure

[0002] Embodiments of the disclosure relates to a method
and device for memory allocation in a multi-core processor,
and a storage medium for the same, and more specifically, to
a method and device for optimizing memory allocation
while maintaining integrity for variables in a multi-core
processor system and a storage medium for the same.

Discussion of the Related Art

[0003] There have been known devices and methods for
securing data integrity via use shared data copying in data
processing systems, in which an object code processor
obtains information for shared data, and a linker allocates
copied symbols of the shared data to a memory.

[0004] Despite securing data integrity by use of shared
data copying, such conventional methods and devices lack a
method for minimizing overhead for accessing the memory
upon use of shared data copying and thus fails to give the
optimized results for use of the core and memory.

[0005] To address such issues, a need exists for a method
for minimizing the memory access time for each core by
obtaining information for the task and core accessing each
shared data.

SUMMARY OF THE DISCLOSURE

[0006] According to an embodiment, a method for allo-
cating a shared variable to a memory in a multi-core
processor system comprises mapping each task to a core,
allocating unshared variables to memories times of access,
to which are sequentially minimized, in descending order of
actual variable access count, calculating an actual variable
access count per core, selecting a core with a highest actual
variable access count, and allocating a shared variable to a
memory of the selected core.

[0007] According to an embodiment, a method for allo-
cating shared data in a multi-core processor system com-
prises receiving data information and per-core memory
access time information, generating a data-memory table by
calculating per-core data access counts and per-core
memory access times based on the data information and the
per-core memory access time information, determining per-
data item minimum memory access times based on the
data-memory table, sorting differences between the deter-
mined minimum memory access times and the per-data item
memory access times in descending order, and sequentially
allocating data to memories in the sorted order.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The accompanying drawings, which are included
to provide a further understanding of the disclosure and are
incorporated in and constitute a part of this specification,
illustrate embodiments of the disclosure and together with
the description serve to explain the principles of the disclo-
sure. In the drawings,

[0009] FIG. 1 is a view illustrating an example of occur-
rence of an integrity issue when cache flush applies;
[0010] FIG. 2 is a view illustrating an example of address-
ing an integrity issue when cache flush applies;

[0011] FIG. 3 is a view illustrating a non-uniform memory
access (NUMA)-type memory structure according to an
embodiment of the disclosure;

[0012] FIG. 4 is a view illustrating a method for memory
allocation to minimize an access time of a shared variable in
a multi-core processor system according to an embodiment
of the disclosure;

[0013] FIG. 5 is a view illustrating a device for memory
allocation to minimize an access time of a shared variable in
a multi-core processor system according to an embodiment
of the disclosure;

[0014] FIG. 6 illustrates an example of memory allocation
of data upon multi-core migration;

[0015] FIG. 7 is a view illustrating a memory allocation
device of shared data in a multi-core processor system
according to an embodiment of the disclosure;

[0016] FIG. 8 is a view illustrating a memory allocation
optimization method of shared data in a multi-core processor
system according to an embodiment of the disclosure; and
[0017] FIG. 9 is a view illustrating a memory allocation
optimization method of shared data in a multi-core processor
system according to an embodiment of the disclosure.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

[0018] Reference will now be made in detail to embodi-
ments of the disclosure, examples of which are illustrated in
the accompanying drawings. Wherever possible, the same
reference numbers will be used throughout the drawings to
refer to the same or like parts. It will be paid attention that
detailed description of known arts will be omitted if it is
determined that the arts can mislead the embodiments of the
disclosure.

[0019] FIG. 1 is a view illustrating an example of occur-
rence of an integrity issue when cache flush applies.
[0020] In general, use of a data cache (DCACHE) signifi-
cantly reduces memory access time. For the shared variable
(variable a in FIG. 1) commonly used for each core, if no
flush code is inserted upon allocation to data scratch-pad
random access memory (DSPR), the value written to the
DCACHE is not immediately updated. Thus, although each
core reads the same value, they end up having different
values. Resultantly, the integrity issue shown in FIG. 1
arises.

[0021] FIG. 2 is a view illustrating an example of address-
ing an integrity issue when cache flush applies.

[0022] To address the above-mentioned integrity issue, if
a shared variable (variable a in FIG. 2) is allocated to the
DSPR upon using the cache, a flush code is inevitably
needed and, thus, consideration is required to add the time
for performing the flush code to the memory access time as
shown in FIG. 2.
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[0023] Since normal local variables, other than the shared
variable, are not used by the other cores, no problem occurs
although they are allocated to the DSPR.

[0024] Hence, for allocation for the shared variable, it is
efficient to compare a circumstance of using the cache, with
the flush time considered, and another circumstance of using
the cache without using the flush and use the memory.
[0025] Accordingly, the disclosure proposes a method for
optimizing the memory access time of a task through the use
of a memory (for example, DSPR) and a cache having fast
performance for variables used in software.

[0026] FIG. 3 is a view illustrating a non-uniform memory
access (NUMA)-type memory structure according to an
embodiment of the disclosure.

[0027] The terms used in FIG. 3 are as follows:

[0028] PCACHE: Program Cache

[0029] DCACHE: Data Cache

[0030] DSPR: Data Scratch-Pad RAM

[0031] PSPR: Program Scratch-Pad RAM

[0032] BROM: Boot ROM (Read-Only Memory)

[0033] PFlash: Program Flash

[0034] DFlash: Data Flash, i.e., EEEPROM (Electrically

Erasable Programmable Read-Only Memory)

[0035] S: SRI (SRI(Shared Resource Interconnect) Slave
Interface)

[0036] M: SRI Master Interface

[0037] DMI: Direct Media Interface

[0038] SPB: System Peripheral Bus

[0039] XBAR_SRI: SRI Cross Bar Interconnect

[0040] However, this is merely an example memory struc-

ture to which the disclosure is applicable, and the disclosure
is not limited thereto.

[0041] FIG. 4 is a view illustrating a method for memory
allocation to minimize an access time of a shared variable in
a multi-core processor system according to an embodiment
of the disclosure.

[0042] Referring to FIG. 4, a memory allocation device
evenly maps (allocates) a task to cores (S401).

[0043] The memory allocation device determines (i.e.,
receives) a variable access count (X_n) based on the period
P of the task and one execution of the task (S402).

[0044] The memory allocation device calculates the actual
variable access count (S403).

[0045] The actual variable count is calculated as shown in
Equation 1 below.

Y=Xnx(1000/P)

[0046] where Y is the actual variable access count, X_n is
the variable access count when the task is performed once,
and P is the period of the task.

[0047] The actual variable access count may be obtained
by multiplying the determined (i.e., received) variable
access count by 1000 followed by dividing the result by the
task period. At this time, the reason for multiplying by 1000
and then dividing by the task period is to match the operation
count of a different task to the task with the largest period,
1000 ms.

[0048] For example, since the 1000 ms task is executed
once, the 1 ms task is executed 1000 times, it is preferable
to multiply by 1000 (1000/1 ms period) for the variables
operated within 1 ms.

[0049] The memory allocation device enables the cache in
the memory (e.g., DSPR) area except for the local memory
unit (LMU) (S404).

[Equation 1]
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[0050] The memory allocation device preferentially
selects the variables not shared by each core (i.e., non-shared
variables) and allocate the variables from the position where
the access time is minimized.

[0051] That is, the memory allocation device preferen-
tially selects non-shared variables with a high Y value and
selects them sequentially (i.e., in order of high Y value)
(8405).

[0052] The memory allocation device allocates the non-
shared variables from the position (i.e., memory) where the
access time is minimized (S406).

[0053] The memory allocation device determines whether
memory allocation has been done for all the non-shared
variables (S407).

[0054] Unless memory allocation for all the non-shared
variables is done, the memory allocation device returns to
step S405 and repeats steps S405 to S407 until memory
allocation for all the non-shared variables is done.

[0055] If memory allocation for all the non-shared vari-
ables is completed, the memory allocation device starts
allocations of shared variables.

[0056] First, the memory allocation device selects shared
variables (S408).

[0057] The memory allocation device calculates the Y
value for each core according to Equation 1 above and
selects the core with the largest Y value (S409).

[0058] The memory allocation device allocates (places)
the selected shared variable to the memory (e.g., DSPR) of
the core (i.e., the core with the largest Y value). At this time,
if the memory (e.g., DSPR) of the core is saturated, the
memory allocation device allocates (places) the selected
shared variable to the memory (e.g., DSPR) of the core with
the second largest Y value (S410).

[0059] The memory allocation device determines whether
memory allocation for all the shared variables are completed
(S411).

[0060] Unless memory allocation for all the shared vari-
ables is done, the memory allocation device returns to step
S408 and repeats steps S408 to S411 until memory alloca-
tion for all the shared variables is done.

[0061] After memory allocation for all the shared vari-
ables is done, the memory allocation device calculates A
(i.e., the difference in total memory access time depending
on whether the cache is used) according to Equation 2 below
and determines whether A is larger than 0 (S412).

[0062] A shows comparison between the total memory
access time considering the flush overhead when the shared
variables corresponding to all the tasks are allocated to the
memory (e.g., DSPR) and the total memory access time
when they are allocated to the memory (e.g., DSPR) without
using the cache.

A= i 1000((t +ig+r Il )} Bauation 2]
= 5 (ay + 10y £) = (T}
=Ty

[0063] In Equation 2, t_dw denotes the total access time
during which each shared variable is written to the cache
memory. t_dr denotes the total access time during which
each shared variable is read from the cache memory. t_lw
denotes the total access time during which each shared
variable is written to the random access memory (RAM).
t_Ir denotes the total access time during which each shared
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variable is read from the RAM. t_f denotes the execution
time of the cache flush instruction. T _1 to T_n denote the
periods of all the tasks.

[0064] If A is larger than O, it is determined that non-use
of'the cache presents better efficiency and, thus, the memory
allocation device does not use the cache (S413).

[0065] In contrast, if A is identical to or smaller than 0, the
memory allocation device maintains it, as it is, in the
memory (e.g., DSPR) and dispose it to use the cache and
flush (S414).

[0066] The memory allocation device determines whether
tasks on all the memories (e.g., DSPRs) have been com-
pleted (S415).

[0067] Unless the tasks on all the memories (e.g., DSPRs)
are done, the memory allocation device returns to step S412
and repeats steps S412 to S415 until the tasks on all the
memories (e.g., DSPRs) are done.

[0068] FIG. 5 is a view illustrating a device for memory
allocation to minimize an access time of a shared variable in
a multi-core processor system according to an embodiment
of the disclosure.

[0069] In the multi-core processor system shown in FIG.
5, according to an embodiment, a memory allocation device
500 for shared variables is shown with components func-
tionally distinguished from one another, and any one or more
of'the components may be physically integrated or separated
from one another.

[0070] Referring to FIG. 5, the memory allocation device
500 may include a memory allocation controller 510, a
memory 520, and a cache 530.

[0071] The memory allocation controller 510 maps (allo-
cates) the task to the core. The memory allocation controller
510 determines (i.e., receives) the variable access count X_n
based on the period P of the task and one execution of the
task and calculates the actual variable access count accord-
ing to Equation 1 above.

[0072] The memory allocation controller 510 enables the
cache in the memory (e.g., DSPR) area except for the local
memory unit (LMU).

[0073] The memory allocation controller 510 preferen-
tially selects the variables not shared by each core (i.e.,
non-shared variables) and allocate the variables from the
position where the access time is minimized. That is, the
memory allocation controller 510 preferentially selects non-
shared variables with a high Y value and selects them
sequentially (i.e., in order of high Y value). The memory
allocation controller 510 allocates the non-shared variables
from the position (i.e., memory) where the access time is
minimized.

[0074] The memory allocation controller 510 determines
whether memory allocation for all the non-shared variables
are done and repeats the above steps until memory allocation
for all the non-shared variables is done.

[0075] If memory allocation for all the non-shared vari-
ables is completed, the memory allocation device starts
allocations of shared variables.

[0076] First, the memory allocation controller 510 selects
shared variables.

[0077] The memory allocation controller 510 calculates
the Y value for each core according to Equation 1 above and
selects the core with the largest Y value. The memory
allocation controller 510 allocates (places) the selected
shared variable to the memory (e.g., DSPR) of the core (i.e.,
the core with the largest Y value). At this time, if the memory
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(e.g., DSPR) of the core is saturated, the memory allocation
controller 510 allocates (places) the selected shared variable
to the memory (e.g., DSPR) of the core with the second
largest Y value.

[0078] The memory allocation controller 510 determines
whether memory allocation for all the shared variables are
done and repeats the above steps until memory allocation for
all the shared variables is done.

[0079] After memory allocation for all the shared vari-
ables is done, the memory allocation controller 510 calcu-
lates A (i.e., the difference in total memory access time
depending on whether the cache is used) according to
Equation 2 above and determines whether A is larger than 0.
[0080] If A is larger than O, it is determined that non-use
of'the cache presents better efficiency and, thus, the memory
allocation controller 510 does not use the cache. In contrast,
if A is identical to or smaller than 0, the memory allocation
controller 510 maintains it, as it is, in the memory (e.g.,
DSPR) and dispose it to use the cache and flush.

[0081] The memory allocation controller 510 determines
whether the tasks on all the memories (e.g., DSPRs) are
done and repeats the above steps until the tasks on all the
memories (e.g., DSPRs) are done.

[0082] FIG. 6 illustrates data upon multi-core migration.
[0083] FIG. 6 illustrates example operations of a single
core-based vehicular electronic control unit (ECU). Cur-
rently, single core-based ECUs are reaching the limit of core
factor due to the limitations on computing power. Due to the
high load factor of the core, it is difficult to apply a new
control logic to the controller in the vehicle.

[0084] This leads vehicle developers to have more interest
in vehicle multi-core technology and, to address the above
issues, multi-core software is under development and
research. Multicore-based ECUs may save core loads via
parallelized execution of tasks and addresses the issues with
application of a new control logic.

[0085] In developing such a vehicular multi-core system,
it is critical to secure data integrity. However, upon securing
data integrity by copying and using shared data, an access
overhead may be caused depending on the position where
the shared data is stored, increasing latency. The increased
latency causes an increase in the load of each core.

[0086] The data processing system may be optimized by
minimizing the increase in the load. Conventional technol-
ogy, albeit presenting a method for securing data integrity,
fails to propose a method for minimizing the overhead
caused upon accessing the shared data for copy use and
resultant latency and, thus, is not regarded as the most
optimized system.

[0087] Upon copying and using shared data for securing
integrity, it is possible to minimize the increases in core
loads by minimizing the memory access time.

[0088] Therefore, to address the issues with the conven-
tional technology, there is provided a device and method for
minimizing the memory access time by storing shared data
in a proper position upon copying and using the shared data
for data integrity, according to the disclosure.

[0089] According to the disclosure, to resolve such issues,
a semiconductor device memory allocation control device is
proposed which receives information for shared data and
sets a position for storing the shared data depending on the
access time information corresponding to the storage posi-
tion.
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[0090] In other words, according to the disclosure, there is
proposed a method for optimizing memory allocation for
shared data in a multi-core processor system. To that end,
there are proposed a memory allocation control device for
shared data for optimizing memory allocation and a memory
allocation algorithm for minimizing the data access over-
head. The memory allocation control device generates a
data-memory table by inputting the data access count per
core and the memory access time per core. The memory
allocation control device distributes proper shared data and
optimizes memory use via the generated table and memory
allocation algorithm.

[0091] There is provided a device and method for mini-
mizing the memory access time by storing shared data in a
proper position upon copying and using the shared data for
data integrity, according to the disclosure. This is described
below in detail with reference to the drawings.

[0092] FIG. 7 is a view illustrating a memory allocation
device of shared data in a multi-core processor system
according to an embodiment of the disclosure.

[0093] In the multi-core processor system shown in FIG.
7, according to an embodiment, a memory allocation device
for shared data 200 is shown with components functionally
distinguished from one another, and any one or more of the
components may be physically integrated or separated from
one another.

[0094] Referring to FIG. 7, the memory allocation device
200 may include a memory allocation controller 210 and a
linker 220.

[0095] The memory allocation controller 210 generates
the optimal memory storage position information (i.e., data-
memory table) for each shared data.

[0096] More specifically, the memory allocation controller
210 receives a memory access time 201 and shared data
information 202 for each core and calculates the total access
time for each memory, thereby generating a data-memory
table.

[0097] The memory access time information 201 for each
core is data measured in an actual embedded system, and the
shared data information 202 includes the period of the task
accessing (associated with) each data and the core informa-
tion to which the task is allocated.

[0098] The memory allocation controller 210 receives the
per-core memory access time information 201 and the
shared data information 202, calculates the per-core data
access count and memory access time using the input
information, and generates a memory-data table based on the
results of calculation.

[0099] The memory allocation controller 210 determines
the minimum memory access time for each data based on the
memory-data table information. The memory allocation
controller 210 calculates the difference between the selected
minimum value and the memory access time for each data.
The memory allocation controller 210 extracts the next
minimum values from the results (i.e., the differences
between the determined minimum value and the memory
access time for each data) calculated for each data and sorts
them in descending order.

[0100] The linker 220 generates an execution file 203 by
allocating each shared data to the optimal memory position
based on the memory-data table information generated by
the memory allocation controller 210. In other words, each
data is sequentially allocated to the memory in descending
order.
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[0101] At this time, the linker 220 may determine whether
the size of memory is smaller than a threshold upon memory
allocation for data. If the size of memory upon memory
allocation for data is smaller than the memory threshold, the
linker 220 may allocate the data to the memory with the
shortest memory access time. In contrast, if the memory
allocable data quantity is exceeded (i.e., when the memory
size upon memory allocation for data is identical to or larger
than the memory threshold), the linker 220 may allocate the
data to the memory with the next shortest memory access
time.

[0102] The linker 220 determines whether memory allo-
cation has been done for all the data and, until memory
allocation is done for all the data, may repeat the above-
described steps.

[0103] FIG. 8 is a view illustrating a memory allocation
optimization method of shared data in a multi-core processor
system according to an embodiment of the disclosure.
[0104] FIG. 8 illustrates an example method of memory
allocation to minimize data access overhead as proposed
according to the disclosure.

[0105] Referring to FIG. 8, the memory allocation device
receives data-related information (i.e., shared data informa-
tion) (S301) and receives memory access time information
for each core (S302).

[0106] The data-related information (i.e., shared data
information) includes the period of the task accessing (asso-
ciated with) each data and information for the core to which
the task is allocated.

[0107] The memory allocation device calculates the per-
core data access counts and memory allocation times using
the received information and generates a data-memory table
(S303).

[0108] The memory allocation device determines the
minimum memory access time for each data using the
generated table (S304) and calculates the difference between
the selected minimum value and the memory access time for
each data (S305).

[0109] The memory allocation device extracts the mini-
mum value and next minimum values from the results
calculated for each data (i.e., the differences between the
determined minimum value and the memory access time for
each data), sort them in descending order (S306), and
sequentially allocates each data to the memory (S307).
[0110] At this time, the memory allocation device may
determine whether the size of memory is smaller than a
threshold upon memory allocation for data (S508).

[0111] If the size of memory upon memory allocation for
data is smaller than the memory threshold, the memory
allocation device may allocate the data to the memory with
the shortest memory access time (S309).

[0112] In contrast, if the memory allocable data quantity is
exceeded (i.e., when the memory size upon memory allo-
cation for data is identical to or larger than the memory
threshold), the memory allocation device may allocate the
data to the memory with the next shortest memory access
time (S310).

[0113] The memory allocation device determines whether
memory allocation has been done for all the data (S311) and,
until memory allocation is done for all the data, may repeat
the above-described steps S307 to S310.

[0114] FIG. 9 is a view illustrating a memory allocation
optimization method of shared data in a multi-core processor
system according to an embodiment of the disclosure.
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[0115] FIG. 9 illustrates an example of data allocation
using per-core memory access time information and data
information.

[0116] Table 1 of FIG. 9 shows the number of times in
which each core accesses data, and Table 2 of FIG. 9 shows
the time when each core accesses the memory.

[0117] The memory allocation controller may generate a
data-memory table, as shown in Table 3 of FIG. 9, by
regarding the two tables as matrixes and multiplying them
by each other. The memory allocation controller may
sequentially organize the data and memory information as
shown in Table 4 of FIG. 9, by applying an algorithm,
according to the disclosure, to the generated table. In Table
3 of FIG. 9, upon allocating shared data D1 to memory M1,
an access time of 22*10+12%20=460 is given. The access
count when each data is allocated to its respective memory
is obtained as shown in Table 3 in the same manner. At this
time, given the capacity limit to each memory, the priority
for each data to be stored in the memory is obtained. First,
in the example shown in Table 3, since D1 has the shortest
access time when allocated to M1, the efficiency is the best.
Likewise, the efficiency becomes the best when D2 is
allocated to M2, and D3 to M1. At this time, it is good to
allocate D1 and D3 to M1. However, the priority for the data
to be stored in M1 is needed due to the capacity limit to
memory. The method proposed in the disclosure gives
priority considering the difference from the time when the
data is allocated next in the order, outside the area where
each data is to be stored first. As an example, when D1 is
stored in M2, as the second position in the order, better
efficiency may result. At this time, the total access time of
560 is taken, and time efficiency is reduced by 100 (560-
460) as compared with when it is stored in M1. Likewise,
when D3 is stored in M2, as the next position to M1 in the
order, better efficiency may result. At this time, the total
access time of 260 is taken, and time efficiency is reduced by
40 (260-220) as compared with when it is stored in M1.
Given the reductions in time efficiency of 100 and 40, D1
has a larger reduction in time efficiency and, thus, a higher
priority of allocation to M1 is given to D1 than D3. Sorting
is performed in descending as shown in Table 4 by deter-
mining the order of allocation in the same manner.

[0118] Thereafter, the linker may allocate data to each
memory using the information shown in Table 4 of FIG. 9.
It is most advantageous in light of optimization to allocate
data D1 of FIG. 9 to memory M1 of FIG. 9, and it may be
expected that a system optimized for cores and memories
may be designed by applying an embodiment of the disclo-
sure.

[0119] The above-described embodiments regard prede-
termined combinations of the components and features of
the disclosure. Each component or feature should be con-
sidered as optional unless explicitly mentioned otherwise.
Each component or feature may be practiced in such a
manner as not to be combined with other components or
features. Further, some components and/or features may be
combined together to configure an embodiment of the dis-
closure. The order of the operations described in connection
with the embodiments of the disclosure may be varied. Some
components or features in an embodiment may be included
in another embodiment or may be replaced with correspond-
ing components or features of the other embodiment. It is
obvious that the claims may be combined to constitute an
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embodiment unless explicitly stated otherwise or such com-
binations may be added in new claims by an amendment
after filing.

[0120] The embodiments of the disclosure may be imple-
mented by various means, e.g., hardware, firmware, soft-
ware, or a combination thereof. When implemented in
hardware, an embodiment of the disclosure may be imple-
mented with, e.g., one or more application specific inte-
grated circuits (ASICs), digital signal processors (DSPs),
digital signal processing devices (DSPDs), programmable
logic devices (PLDs), field programmable gate arrays (FP-
GAs), processors, controllers, micro-controllers, or micro-
processors.

[0121] When implemented in firmware or hardware, an
embodiment of the disclosure may be implemented as a
module, procedure, or function performing the above-de-
scribed functions or operations. The software code may be
stored in a memory and driven by a processor. The memory
may be positioned inside or outside the processor to
exchange data with the processor by various known means.

[0122] Although embodiments have been described with
reference to a number of illustrative embodiments thereof, it
should be understood that numerous other modifications and
embodiments can be devised by those skilled in the art that
will fall within the scope of the principles of this disclosure.
More particularly, various variations and modifications are
possible in the component parts and/or arrangements of the
subject combination arrangement within the scope of the
disclosure, the drawings and the appended claims. In addi-
tion to variations and modifications in the component parts
and/or arrangements, alternative uses will also be apparent
to those skilled in the art.

What is claimed is:

1. A method for allocating a shared variable to a memory
in a multi-core processor system, the method comprising:

mapping each task to a core;

allocating unshared variables to memories times of
access, to which are sequentially minimized, in
descending order of actual variable access count;

calculating an actual variable access count per core;

selecting a core with a highest actual variable access
count; and

allocating a shared variable to a memory of the selected
core.

2. The method of claim 1, wherein

when the memory of the core with the highest actual
variable access count is saturated, the shared variable is
allocated to a core with a second highest actual variable
access count.

3. The method of claim 1, wherein

the actual variable access count is calculated according to
Equation 1:

Y=Xux(1000/P) [Equation 1]

wherein Y is the actual variable access count, X_n is a
variable access count when a task is performed once,
and P is a period of task.
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4. The method of claim 1, further comprising:
determining whether A calculated according to Equation
2 below is larger than O:

[Equation 2]

T
% 1000
A= ) U+t 4 1) = (it
P=T\

wherein t_dw is a total access time when each shared
variable is written in a cache memory, t_dr is a total
access time when each shared variable is read from the
cache memory, t_lw is a total access time when each
shared variable is written in a random-access memory
(RAM), t_Ir is a total access time when each shared
variable is read from the RAM, t f is a time of
performing a cache flush instruction, and T_1 to T_n
are periods of all tasks.

5. The method of claim 4, wherein

when A is larger than 0, the shared variable is allocated to

the memory without using a cache.

6. The method of claim 4, wherein

when A is smaller than 0, the shared variable is allocated

to the memory using a cache.

7. A device for allocating a shared variable to a memory
in a multi-core processor system, the device comprising:

a memory;

a cache; and

a controller mapping each task to a core, allocating

unshared variables to memories times of access, to
which are sequentially minimized, in descending order
of actual variable access count, calculating an actual
variable access count per core, selecting a core with a
highest actual variable access count, and allocating a
shared variable to a memory of the selected core.

8. A recording medium storing a program for allocating a
shared variable to a memory in a multi-core processor
system, the program comprising:

mapping each task to a core;

allocating unshared variables to memories times of

access, to which are sequentially minimized, in
descending order of actual variable access count;
calculating an actual variable access count per core;
selecting a core with a highest actual variable access
count; and

allocating a shared variable to a memory of the selected

core.

9. A method for allocating shared data to a memory in a
multi-core processor system, the method comprising:

receiving data information and per-core memory access

time information;

generating a data-memory table by calculating per-core

data access counts and per-core memory access times
based on the data information and the per-core memory
access time information;
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determining per-data item minimum memory access
times based on the data-memory table;

sorting differences between the determined minimum
memory access times and the per-data item memory
access times in descending order; and

sequentially allocating data to a memory in the sorted
order.

10. The method of claim 9, wherein

the data information includes a period of a task associated
with data and information for a core to which the task
is allocated.

11. The method of claim 9, further comprising:

determining whether the memory is smaller in size than a
memory threshold when the data is allocated to the
memory.

12. The method of claim 11, wherein

when the memory is smaller in size than the memory
threshold, the data is allocated to a memory for which
the memory access time is shortest.

13. The method of claim 11, wherein

when the memory is not smaller in size than the memory
threshold, the data is allocated to a memory for which
the memory access time is next shortest.

14. A device for allocating shared data to a memory in a

multi-core processor system, the device comprising:

a memory allocation controller receiving data information
and per-core memory access time information, gener-
ating a data-memory table by calculating per-core data
access counts and per-core memory access times based
on the data information and the per-core memory
access time information, determining per-data item
minimum memory access times based on the data-
memory table, and sorting differences between the
determined minimum memory access times and the
per-data item memory access times in descending
order; and

a connector sequentially allocating data to a memory in
the sorted order.

15. A recording medium storing a program for allocating
shared data to a memory in a multi-core processor system,
the program comprising:

receiving data information and per-core memory access
time information;

generating a data-memory table by calculating per-core
data access counts and per-core memory access times
based on the data information and the per-core memory
access time information;

determining per-data item minimum memory access
times based on the data-memory table;

sorting differences between the determined minimum
memory access times and the per-data item memory
access times in descending order; and

sequentially allocating data to a memory in the sorted
order.



