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(57) ABSTRACT

Systems and methods for generating patient-specific surgi-
cal guides comprising: capturing a first and second images
of an orthopedic element in different reference frames using
a radiographic imaging technique, detecting spatial data
defining anatomical landmarks on or in the orthopedic
element using a neural network, applying a mask to the
orthopedic element defined by an anatomical landmark,
projecting the spatial data from the first image and the
second image to define volume data, applying the neural
network to the volume data to generate a reconstructed
three-dimensional (“3D”) model of the orthopedic element;
and calculating dimensions for a patient-specific surgical
guide configured to abut the orthopedic element.
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SYSTEMS AND METHODS FOR USING
PHOTOGRAMMETRY TO CREATE
PATIENT-SPECIFIC GUIDES FOR
ORTHOPEDIC SURGERY

REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 63/223,844 filed on Jul. 20, 2021.
The disclosure of this related application is hereby incorpo-
rated into this disclosure in its entirety.

BACKGROUND OF THE INVENTION

1. Technical Field

[0002] The present disclosure relates generally to the field
of orthopedic joint replacement surgeries and more particu-
larly to using photogrammetry and three-dimensional
(“3D”) reconstruction techniques to aid surgeons and tech-
nicians in planning and executing orthopedic surgeries.

2. Related Art

[0003] An emerging objective of joint replacement sur-
geries is to restore the natural alignment and rotational axis
or axes of the pre-diseased joint. However, this objective can
be difficult to achieve in practice, because joints comprise
not just the articulating bones but also ancillary supporting
bones and a variety of soft tissue, including cartilage,
ligaments, muscle, and tendons. In the past, surgeons
avoided restoring natural alignment altogether, or estimated
alignment angles and other dimensions based on averages
derived from a sample of the population. However, these
averages often failed to account for natural variation in the
anatomy of a specific patient, particularly when the patient
suffered from chronic bone deforming diseases like osteoar-
thritis.

[0004] In an attempt to address this, some care providers
started using computed tomography (“CT”) scans and mag-
netic resonance imaging (“MRI”) techniques to survey
patient’s internal anatomy to help plan orthopedic surgeries.
Data from these CT scans and MRIs have even been used to
create three-dimensional (“3D”) models in digital form.
These models can be sent to professionals to design and
produce patient-specific instruments (such as custom surgi-
cal resection guides) for said surgery. Additive manufactur-
ing techniques (e.g., 3D printing) and other conventional
production techniques can be used to construct physical
instruments that fit the patient’s specific anatomy.

[0005] However, obtaining CT scans and MRIs can be
complex, time consuming, and expensive. CT scans also
tend to expose patients to higher levels of radiation per
session than the patient might otherwise undergo using other
non-invasive imaging techniques such as traditional radiog-
raphy or ultrasounds. Moreover, scheduling considerations
sometimes place the surveying CT scans or MRIs a month
or more before the actual surgery. This delay can be exac-
erbated by the trend of gradually moving orthopedic surgical
procedures to outpatient ambulatory surgical centers
(“ASCs”). ASCs tend to be smaller facilities that often lack
expensive on-site CT scanners and MRI machines. This
often compels patients to schedule surveying appointments
at hospitals.

[0006] Increased time between the surveying appointment
and the surgery increases the risk that the patient’s boney
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and soft tissue anatomy will further deteriorate or change
under normal use or by progression of a disease. Further
deterioration not only causes the patient additional discom-
fort, but it can also negatively affect the surveying data’s
usefulness to the surgical team. This can be especially
problematic for patient-specific guides created from out-
dated data and for surgical techniques that seek to restore
range of motion based on the natural alignment of pre-
diseased joints. Furthermore, increased time between the
preoperative surveying appointment and the surgery
increases the likelihood that extrinsic events will negatively
affect the data. For example, an accident that dislocates or
breaks a bone in the planned surgical area usually under-
mines the usefulness of the prior surveying data. Such risks
may be higher in especially active or in especially frail
individuals.

[0007] Additionally, not all patients have access to CT
scans or MRIs for creating patient-specific instruments. This
can be due in part to the amount of time needed to acquire
the data, send the data to a medical device design specialist,
produce a 3D model of the desired anatomy, create a
patient-specific instrument design based upon the data or
model, produce the patient-specific instrument, track and
ship said patient-specific instrument to the surgical center,
and sterilize said instrument prior to the procedure. Lack of
availability can also be a function of the patient’s medical
insurance and type of disease.

[0008] Therefore, these techniques, coupled with the prob-
lems and availability of accurate preoperative data, can
jeopardize the accurate alignment of the artificial joint line
with the natural pre-diseased joint line. Repeated studies
have shown that artificial joints that change the natural
rotational axes of pre-diseased joints tend to contribute to
poor function, pre-mature implant wear, and patient dissat-
isfaction.

SUMMARY OF THE INVENTION

[0009] Accordingly, there is a long felt but unresolved
need to augment preoperative and intraoperative imaging
technologies to accurately model the operative joint, includ-
ing bone structure, bone loss, soft tissue, and other physi-
ology when planning and executing orthopedic surgeries.

[0010] The problems of limited access to conventional
preoperative CT and MRI imaging techniques, data accu-
racy due to bone and cartilage deterioration between the
time of preoperative imaging and surgical procedure, and the
limitations of determining the natural joint lines of pre-
diseased joints using currently available intraoperative tools
and techniques can be mitigated by exemplary systems and
methods for generating patient-specific surgical drill or
resection guides comprising: using a deep learning network
to identify and model an orthopedic element and using the
deep learning network to calculate dimensions for a patient-
specific surgical guide configured to abut the orthopedic
element from an input of at least two separate two-dimen-
sional (“2D”) input images of a subject orthopedic element,
wherein the first image of the at least two separate 2D input
images is captured from a first transverse position, and
wherein the second image of the at least two separate 2D
input images is captured from a second transverse position
offset from the first transverse position by an offset angle.

[0011] Radiographs allow for in-vivo analysis that can
account for external summation of passive soft tissue struc-
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tures and dynamic forces occurring around the knee, includ-
ing the effect of ligamentous restraints, load-bearing forces,
and muscle activity.

[0012] Creating patient-specific surgical plans and instru-
ments typically uses data from the cartilage and bony
anatomy, such as the contour of a knee, but data from the soft
tissue structures can also be used.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The foregoing will be apparent from the following
more particular description of exemplary embodiments of
the disclosure, as illustrated in the accompanying drawings.
The drawings are not necessarily to scale, with emphasis
instead being placed upon illustrating the disclosed embodi-
ments.

[0014] FIG. 1 is a flow chart illustrating steps of an
exemplary method.

[0015] FIG. 2 is a flow chart illustrating steps of a further
exemplary method.

[0016] FIG. 3 is an anterior view of a simplified example
left knee joint.
[0017] FIG. 4 is a schematic depiction of a pinhole camera

model used to convey how principles of epipolar geometry
can be used to ascertain the position of a point in 3D space
from two 2D images taken from different reference frames
from calibrated image detectors.

[0018] FIG.5A is an image of subject orthopedic elements
taken from the anterior-posterior (“A-P”) position that
shows an exemplary calibration jig.

[0019] FIG. 5B is an image of subject orthopedic elements
of FIG. 5A taken from the medial-lateral (“M-L") position
that shows an exemplary calibration jig.

[0020] FIG. 6 is a schematic depiction of a system that
uses a deep learning network to identify features (e.g.,
anatomical landmarks) of a subject orthopedic element to
generate a 3D model of the subject orthopedic element.
[0021] FIG. 7 is a schematic representation of a system
configured to generate a model of an orthopedic element and
to calculate dimensions for a patient-specific surgical guide
configured to abut the orthopedic element from using two or
more tissue penetrating, flattened, input images taken of the
same subject orthopedic element from calibrated detectors at
an offset angle.

[0022] FIG. 8 is a schematic representation depicting how
a CNN type deep learning network can be used to identify
features (e.g., anatomical landmarks), including the surface
of a subject orthopedic element.

[0023] FIG. 9 is a schematic representation of an exem-
plary system.
[0024] FIG. 10 is a flow chart depicting the steps of an

exemplary method.

[0025] FIG. 11 is the view of the underside of an exem-
plary patient-specific surgical guide created according to any
exemplary method disclosed herein.

[0026] FIG. 12 is the view of the underside of another
exemplary patient-specific surgical guide created according
to any exemplary method disclosed herein.

[0027] FIG. 13 depicts an exemplary patient-specific
femoral resection guide mount securely engaged to the
patient’s distal femur and an exemplary patient-specific
tibial resection guide mount securely fixed to the patient’s
proximal tibia.
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DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0028] The following detailed description of the preferred
embodiments is presented only for illustrative and descrip-
tive purposes and is not intended to be exhaustive or to limit
the scope and spirit of the invention. The embodiments were
selected and described to best explain the principles of the
invention and its practical application. One of ordinary skill
in the art will recognize that many variations can be made to
the invention disclosed in this specification without depart-
ing from the scope and spirit of the invention.

[0029] Similar reference characters indicate correspond-
ing parts throughout the several views unless otherwise
stated. Although the drawings represent embodiments of
various features and components according to the present
disclosure, the drawings are not necessarily to scale and
certain features may be exaggerated to better illustrate
embodiments of the present disclosure, and such exempli-
fications are not to be construed as limiting the scope of the
present disclosure.

[0030] Except as otherwise expressly stated herein, the
following rules of interpretation apply to this specification:
(a) all words used herein shall be construed to be of such
gender or number (singular or plural) as such circumstances
require; (b) the singular terms “a,” “an,” and “the,” as used
in the specification and the appended claims include plural
references unless the context clearly dictates otherwise; (c)
the antecedent term “about” applied to a recited range or
value denotes an approximation with the deviation in the
range or values known or expected in the art from the
measurements; (d) the words, “herein,” “hereby,” “hereto,”
“hereinbefore,” and ‘“hereinafter,” and words of similar
import, refer to this specification in its entirety and not to any
particular paragraph, claim, or other subdivision, unless
otherwise specified; (e) descriptive headings are for conve-
nience only and shall not control or affect the meaning of
construction of part of the specification; and (f) “or” and
“any” are not exclusive and “include” and “including” are
not limiting. Further, the terms, “comprising,” “having,”
“including,” and “containing” are to be construed as open-
ended terms (i.e., meaning “including but not limited to0”).
[0031] References in the specification to “one embodi-
ment,” “an embodiment,” “an exemplary embodiment,” etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-
ther, when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to
affect such feature, structure, or characteristic in connection
with other embodiments, whether explicitly described.
[0032] To the extent necessary to provide descriptive
support, the subject matter and/or text of the appended
claims are incorporated herein by reference in their entirety.
[0033] Recitation of ranges of values herein are merely
intended to serve as a shorthand method of referring indi-
vidually to each separate value falling within the range of
any sub-ranges there between, unless otherwise clearly
indicated herein. Each separate value within a recited range
is incorporated into the specification or claims as if each
separate value were individually recited herein. Where a
specific range of values is provided, it is understood that
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each intervening value, to the tenth or less of the unit of the
lower limit between the upper and lower limit of that range
and any other stated or intervening value in that stated range
of sub range thereof, is included herein unless the context
clearly dictates otherwise. All subranges are also included.
The upper and lower limits of these smaller ranges are also
included therein, subject to any specifically and expressly
excluded limit in the stated range.

[0034] It should be noted that some of the terms used
herein are relative terms. For example, the terms, “upper”
and, “lower” are relative to each other in location, i.e., an
upper component is located at a higher elevation than a
lower component in each orientation, but these terms can
change if the orientation is flipped.

[0035] The terms, “horizontal” and “vertical” are used to
indicate direction relative to an absolute reference, i.e.,
ground level. However, these terms should not be construed
to require structure to be absolutely parallel or absolutely
perpendicular to each other. For example, a first vertical
structure and a second vertical structure are not necessarily
parallel to each other. The terms, “top” and “bottom” or
“base” are used to refer to locations or surfaces where the
top is always higher than the bottom or base relative to an
absolute reference, i.e., the surface of the Earth. The terms,
“upwards” and “downwards” are also relative to an absolute
reference; an upwards flow is always against the gravity of
the Earth.

[0036] Orthopedic procedures frequently involve operat-
ing on a patient’s joint. It will be understood that a joint
typically comprises a multitude of orthopedic elements. It
will further be appreciated that the exemplary methods and
systems described herein can be applied to a variety of
orthopedic elements. The examples described with reference
to FIGS. 3, 5A and 5B relate to an exemplary knee joint for
illustration purposes. It will be appreciated that the “ortho-
pedic element” 100 referenced throughout this disclosure is
not limited to the anatomy of a knee joint, but can include
any skeletal structure and associated soft tissue, such as
tendons, ligaments, cartilage, and muscle. A non-limiting list
of example orthopedic elements 100 includes any partial or
complete bone from a body, including but not limited to a
femur, a tibia, a pelvis, a vertebra, a humerus, an ulna, a
radius, a scapula, a skull, a fibula, a clavicle, a mandible, a
rib, a carpal, a metacarpal, a tarsal, a metatarsal, a phalange,
or any associated tendon, ligament, skin, cartilage, or
muscle. It will be appreciated that an example operative area
170 can comprise several subject orthopedic elements 100.
[0037] FIG. 3 is an anterior-posterior view of a simplified
left knee joint 100 (i.e., an example joint operative area 170)
in extension. The example knee joint 100 comprises a
number of orthopedic elements, including a femur 105, a
tibia 110, a fibula 111, a patella (not depicted), resected tibial
plateau 112, femoral articular cartilage 123, a medial col-
lateral ligament (“MCL”) 113 engaging the distal femur 105
to the proximal tibia 110 on the medial side M, and a lateral
collateral ligament (“LCL”) 122 engaging the distal femur
105 to the fibula 111 on the lateral side L. The femoral
articular cartilage 123 has a thickness T and the femoral
articular cartilage 123 is engaged to the boney surface 106
of the distal femur 105. The distal femur further comprises
a medial condyle 107 and the lateral condyle 103 (collec-
tively, “femoral condyles™). The distal femur 105 is sepa-
rated from the proximal tibia 110 by a femoral tibia gap 120.
The perspective of FIG. 3 is an example of using a radio-
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graphic imaging technique to capture a first image of an
orthopedic element (although in FIG. 3, multiple orthopedic
elements, i.e., the femur 105, tibia 110, fibula 111, articular
cartilage 123, MCL 113, and LCL 122 are depicted) in a first
reference frame (see also FIG. 5A, which depicts the subject
orthopedic element taken from a first reference frame,
wherein the first reference frame captures the subject ortho-
pedic element in the A-P position).

[0038] FIG. 5B depicts the same subject orthopedic ele-
ment in a second reference frame, wherein the second
reference frame captures the subject orthopedic element in
the M-L position.

[0039] In recent years, it has become possible to use 2D
images, such as X-ray radiographs, to create 3D models of
an operative area. These models can be used preoperatively
to plan surgeries much closer to the date of the actual
surgery. Moreover, these preoperative 3D models function
as the native model from which surgical instruments them-
selves can be configured to fit exactly.

[0040] However, X-ray radiographs have typically not
been used as inputs for 3D models previously because of
concerns about image resolution and accuracy. X-ray radio-
graphs are 2D representations of 3D space. As such, a 2D
X-ray radiograph necessarily distorts the image subject
relative to the actual object that exists in three dimensions.
Furthermore, the object through which the X-ray passes can
deflects the path of the X-ray as it travels from the X-ray
source (typically the anode of the X-ray machine) to the
X-ray detector (which may include by non-limiting
example, X-ray image intensifiers, phosphorus materials,
flat panel detectors “FPD” (including indirect conversion
FPDs and direct conversion FPDs), or any number of digital
or analog X-ray sensors or X-ray film). Defects in the X-ray
machine itself or in its calibration can also undermine the
usefulness of X-ray photogrammetry and 3D model recon-
struction. Additionally, emitted X-ray photons have different
energies. As the X-rays interact with the matter placed
between the X-ray source and the detector, noise and arti-
facts can be produced in part because of Compton and
Rayleigh scattering, the photoelectric effect, extrinsic vari-
ables in the environment or intrinsic variables in the X-ray
generation unit, X-ray detector, and/or processing units or
displays.

[0041] Moreover, in a single 2D image, the 3D data of the
actual subject is lost. As such, there is no data that a
computer can use from a single 2D image to reconstruct a
3D model of the actual 3D object. For this reason, CT scans,
MRIs, and other imaging technologies that preserve third
dimensional data were often preferred inputs for reconstruct-
ing models of one or more subject orthopedic elements (i.e.,
reconstructing a 3D model from actual 3D data generally
resulted in more accurate, higher resolution models). How-
ever, certain exemplary embodiments of the present disclo-
sure that are discussed below overcome these issues by
using deep learning networks to improve the accuracy of
reconstructed 3D models generated from X-ray input
images.

[0042] By way of example, a deep learning algorithm,
such as a convolutional neural network, can be used to
generate a 3D model from a set of at least two 2D radio-
graphic images of an operative area of a patient. In such a
method, the deep learning algorithm can generate a model
from the projective geometry data from the respective 2D
images. The deep learning algorithm can have the advantage
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of being able to generate a mask of the different orthopedic
elements (e.g., bones, soft tissue, etc.) in the operative area
as well as being able to calculate a volume of the imaged or
subject orthopedic element 100.

[0043] FIG. 1 is a flow chart outlining the steps of an
exemplary method for generating patient-specific surgical
guides (e.g., patient-specific drill guides or patient-specific
resection guides). The method comprises: step 1a calibrating
a radiographic imaging machine 1800 to determine a map-
ping relationship between radiographic image points and
corresponding space coordinates to define spatial data 43,
step 2a capturing a first image 30 of an orthopedic element
100 using a radiographic imaging technique, wherein the
first image 30 defines a first reference frame 30q, step 3a
capturing a second image 50 of the orthopedic element 100
using the radiographic imaging technique, wherein the sec-
ond image 50 defines a second reference frame 50q, and
wherein the first reference frame 30a is offset from the
second reference frame 50a at an offset angle 0, step 4a
projecting spatial data 43 from the first radiographic image
30 of the subject orthopedic element 100 and spatial data 43
from the second radiographic image 50 of the subject
orthopedic element 100 to define volume data 75, step 5a
using a deep learning network to detect the subject ortho-
pedic element 100 using the spatial data 43, the spatial data
43 defining an anatomical landmark on or in the subject
orthopedic element 100, step 6a using the deep learning
network to apply a mask to the subject orthopedic element
100 defined by an anatomical landmark wherein spatial data
43 comprising image points disposed within a masked area
of either the first image 30 or the second image 50 are given
a first value and wherein spatial data 43 comprising image
points disposed outside of the masked area of both the first
image 30 and the second image 50 are given a second value,
wherein the second value is different from the first value,
step 7a calculating dimensions for a patient-specific surgical
guide 500 configured to abut the orthopedic element.
[0044] In exemplary embodiments, an exemplary method
may further comprise step 86 applying the deep learning
network to the volume data 75 to generate a reconstructed
3D model of the orthopedic element. In other exemplary
embodiments, step 5a or 5b can comprise detecting the
spatial data 43 defining anatomical landmarks on or in the
orthopedic element 100 using a deep learning network (see
FIG. 2).

[0045] The above examples are provided for illustrative
purposes and are in no way intended to limit the scope of this
disclosure. All methods for generating a 3D model from 2D
radiographic images of the same subject taken from at least
two transverse positions are considered to be within the
scope of this disclosure.

[0046] FIGS. 4 and 6 illustrate how the first input image
30 and the second input image 50 can be combined to create
a volume 61 comprising volume data 75 (FIG. 6). FIG. 4
illustrates basic principles of epipolar geometry than can be
used to convert spatial data 43 from the respective input
images 30, 50 into volume data 75. It will be appreciated that
the spatial data 43 is defined by a collection of image points
(e.g., X;, Xz) mapped to corresponding space coordinates
(e.g., x and y coordinates) for a given input image 30, 50.
[0047] FIG. 4 is a simplified schematic representation of a
perspective projection described by the pinhole camera
model. FIG. 4 conveys basic concepts related to computer
stereo vison, but it is by no means the only method by which
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3D models can be reconstructed from 2D stereo images. In
this simplified model, rays emanate from the optical center
(i.e., the point within a lens at which the rays of electro-
magnetic radiation (e.g., visible light, X-rays, etc.) from the
subject object are assumed to cross within the imaging
machine’s sensor or detector array 33 (FIG. 9). The optical
centers are represented by points O,, O in FIG. 4. In reality,
the image plane (see 30qa, 50q) is usually behind the optical
center (e.g., O;, Op) and the actual optical center is projected
onto the detector array 33 as a point, but virtual image planes
(see 30a, 50qa) are presented here for illustrating the prin-
ciples more simply.

[0048] The first input image 30 is taken from a first
reference frame 30a, while the second input image 50 is
taken from a second reference frame 50qa that is different
from the first reference frame 30a. Each image comprise a
matrix of pixel values. The first and second reference frames
30a, 50a are desirably offset from one another by an offset
angle 0. The offset angle 6 can represent the angle between
the x-axis of the first reference frame 30a relative to the
x-axis of the second reference frame 50q. Stated differently,
the angle between the orientation of the orthopedic element
in the first image and the orthopedic element in the second
image can be known as the “offset angle.”

[0049] Point e, is the location of the second input image’s
optical center O on the first input image 30. Point e is the
location of the first input image’s optical center O; on the
second input image 50. Points e, and e, are known as
“epipoles” or epipolar points and lie on line O;-O. The
points X, O;, O define an epipolar plane.

[0050] Because the actual optical center is the assumed
point at which incoming rays of electromagnetic radiation
from the subject object cross within the detector lens, in this
model, the rays of electromagnetic radiation can actually be
imagined to emanate from the optical centers O,, O for the
purpose of visualizing how the position of a 3D point X in
3D space can be ascertained from two or more input images
30, 50 captured from a detector 33 of known relative
position. If each point (e.g., X;) of the first input image 30
corresponds to a line in 3D space, then if a corresponding
point (e.g., Xz) can be found in the second input image, then
these corresponding points (e.g., X;, Xz) must be the
projection of a common 3D point X. Therefore, the lines
generated by the corresponding image points (e.g., X;, Xz)
must intersect at 3D point X. In general, if the value of X is
calculated for every corresponding image points (e.g., X,
Xz) in two or more input images 30, 50, a 3D volume 61
comprising volume data 75 can be reproduced from the two
or more input images 30, 50. The value of any given 3D
point X can be triangulated in a variety of ways. A non-
limiting list of example calculation methods include the
mid-point method, the direct linear transformation method,
the essential matrix method, the line—line intersection
method, and the bundle adjustment method.

[0051] It will be appreciated that “image points” (e.g., X,
Xz) described herein may refer to a point in space, a pixel,
a portion of a pixel, or a collection of adjacent pixels. It will
also be appreciated that 3D point X as used herein can
represent a point in 3D space. In certain exemplary appli-
cations, 3D point X may be expressed as a voxel, a portion
of a voxel, or a collection of adjacent voxels.

[0052] However, before principles of epipolar geometry
can be applied, the position of each image detector 33
relative to the other image detector(s) 33 must be determined
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(or the position of a sole image detector 33 must be
determined at the point in time in which the first image 30
was taken and the adjusted position of the sole image
detector 33 should be known at the point in time in which the
second image 50 was taken). It is also desirable to determine
the focal length and the optical center of the imaging
machine 1800. To ascertain this practically, the image detec-
tor 33 (or image detectors) is/are first calibrated. FIGS. 5A
and 5B depict calibration jigs 973 A, 973B relative to subject
orthopedic elements 100. In these figures, the example
orthopedic elements 100 are the distal aspect of the femur
105 and the proximal aspect of the tibia 110 that comprise
a knee joint. The proximal fibula 111 is another orthopedic
element 100 imaged in FIGS. 5A and 5B. The patella 901 is
another orthopedic element 100 shown in FIG. 5B.

[0053] FIG. 5A is an anterior-posterior view of the
example orthopedic elements 100 (i.e., FIG. 5A represents a
first image 30 taken from a first reference frame 30a (e.g.,
a first transverse position)). A first calibration jig 973A is
attached to a first holding assembly 974 A. The first holding
assembly 974 A may comprise a first padded support 971A
engaged to a first strap 977A. The first padded support 971A
is attached externally to the patient’s thigh via the first strap
977A. The first holding assembly 974A supports the first
calibration jig 973 A oriented desirably parallel to the first
reference frame 30a (i.e., orthogonal to the detector 33).
Likewise, a second calibration jig 973B that is attached to a
second holding assembly 974B may be provided. The sec-
ond holding assembly 974B may comprise a second padded
support 971B engaged to a second strap 977B. The second
padded support 971B is attached externally to the patient’s
calf'via the second strap 977B. The second holding assembly
974B supports the second calibration jig 973B desirably
parallel to the first reference frame 30a (i.e., orthogonal to
the detector 33). The calibration jigs 973 A, 973B are desir-
ably positioned sufficiently far away from the subject ortho-
pedic elements 100 such that the calibration jigs 973 A, 973B
do not overlap any subject orthopedic element 100.

[0054] FIG. 5B is a medial-lateral view of the example
orthopedic elements 100 (i.e., FIG. 5B represents a second
image 50 taken from a second reference frame 50a (e.g., a
second transverse position)). In the depicted example, the
medial-lateral reference frame 504 is rotated or “offset” 90°
from the anterior-posterior first reference frame 30a. The
first calibration jig 973A is attached to the first holding
assembly 974A. The first holding assembly 974A may
comprise a first padded support 971A engaged to a first strap
977A. The first padded support 971A is attached externally
to the patient’s thigh via the first strap 977A. The first
holding assembly 974A supports the first calibration jig
973A desirably parallel to the second reference frame 50a
(i.e., orthogonal to the detector 33). Likewise, a second
calibration jig 973B that is attached to a second holding
assembly 974B may be provided. The second holding
assembly 974B may comprise a second padded support
971B engaged to a second strap 977B. The second padded
support 971B is attached externally to the patient’s calf via
the second strap 977B. The second holding assembly 974B
supports the second calibration jig 973B desirably parallel to
the second reference frame 50a (i.e., orthogonal to the
detector 33). The calibration jigs 973 A, 973B are desirably
positioned sufficiently far away from the subject orthopedic
elements 100 such that the calibration jigs 973A, 973B do
not overlap any subject orthopedic element 100.
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[0055] The patient can desirably be posited in the standing
position (i.e., the leg is in extension) because the knee joint
is stable in this orientation (see FIG. 9). Preferably, the
patient’s distance relative to the imaging machine should not
be altered during the acquisition of the input images 30, 50.
The first and second images 30, 50 need not capture the
entire leg, rather the image can focus on the joint that will
be the subject of the operative area 170.

[0056] It will be appreciated that depending upon the
subject orthopedic element 100 to be imaged and modeled,
only a single calibration jig 973 may be used. Likewise, if
a particularly long collection of orthopedic elements 100 are
to be imaged and modeled, more than two calibration jigs
may be used.

[0057] Each calibration jig 973A, 973B is desirably of a
known size. Each calibration jig 973A, 973B desirably has
at least four or more calibration points 978 distributed
throughout. The calibration points 978 are distributed in a
known pattern in which the distance from one point 978
relative to the others is known. The distance from the
calibration jig 973 from an orthopedic element 100 can also
be desirably known. For calibration of an X-ray photogram-
metry system, the calibration points 978 may desirably be
defined by metal structures on the calibration jig 973. Metal
typically absorbs most X-ray beams that contact the metal.
As such, metal typically appears very brightly relative to
material that absorbs less of the X-rays (such as air cavities
or adipose tissue). Common example structures that define
calibration points include reseau crosses, circles, triangles,
pyramids, and spheres.

[0058] These calibration points 978 can exist on a 2D
surface of the calibration jig 973, or 3D calibration points
978 can be captured as 2D projections from a given image
reference frame. In either situation, the 3D coordinate (com-
monly designated the z coordinate) can be set to equal zero
for all calibration points 978 captured in the image. The
distance between each calibration point 978 is known. These
known distances can be expressed as x, y coordinates on the
image sensor/detector 33. To map a point in 3D space to a
2D coordinate pixel on a sensor 33, the dot product of the
detector’s calibration matrix, the extrinsic matrix and the
homologous coordinate vector of the real 3D point can be
used. This permits the real world coordinates of a point in
3D space to be mapped relative to calibration jig 973. Stated
differently, this generally permits the x, y coordinates of the
real point in 3D space to be transformed accurately to the 2D
coordinate plane of the image detector’s sensor 33 to define
spatial data 43 (see FIG. 4).

[0059] The above calibration method is provided as an
example. It will be appreciated that all methods suitable for
calibrating an X-ray photogrammetry system are considered
to be within the scope of this disclosure. A non-limiting list
of other X-ray photogrammetry system calibration methods
include the use of a reseau plate, the Zhang method, the
bundle adjustment method, direct linear transformation
methods, maximum likelihood estimation, a k-nearest
neighbor regression approach (“kNN™), other deep learning
methods, or combinations thereof.

[0060] FIG. 6 illustrates how the calibrated input images
30, 50, when oriented along the known offset angle 6, can be
back projected into a 3D volume 61 comprising two chan-
nels 65, 66. The first channel 65 contains all the image points
(e.g., X, etc.) of the first input image 30 and the second
channel 66 contains all the image points (e.g., X, etc.) of the
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second input image 50. That is, each image point (e.g., pixel)
is replicated over its associated back-projected 3D ray. Next,
epipolar geometry can be used to generate a volume 61 of
the imaged operative area 170 comprising volume data 75
from these back projected 2D input images 30, 50.

[0061] Referring to FIG. 6, the first image 30 and the
second image 50 desirably have known image dimensions.
The dimensions may be pixels. For example, the first image
30 may have dimensions of 128x128 pixels. The second
image 50 may have dimensions of 128x128 pixels. The
dimensions of the input images 30, 50 used in a particular
computation desirably have consistent dimensions. Consis-
tent dimensions may be desirable for later defining a cubic
working area of regular volume 61 (e.g., a 128x128x128
cube). As seen in FIG. 4, the offset angle 6 is desirably 90°.
However, other offset angles 6 may be used in other exem-
plary embodiments.

[0062] In the depicted example, each of the 128x128 pixel
input images 30, 50 are replicated 128 times over the length
of the adjacent input image to create a volume 61 having
dimensions of 128x128x128 pixels. That is, the first image
30 is copied and stacked behind itself at one copy per pixel
for 128 pixels while the second image 50 is copied and
stacked behind itself for 128 pixels such that stacked images
overlap to thereby create the volume 61. In this manner, the
volume 61 can be said to comprise two channels 65, 66,
wherein the first channel 65 comprises the first image 30
replicated n times over the length of the second image 50
(i.e., the x-axis of the second image 50) and the second
channel 66 comprises the second image 50 replicated m
times over the length of the first image 30 (i.e., the x-axis of
the first image 30), wherein “n” and “m” are the length of the
indicated image as expressed as the number of pixels (or
other dimensions on other exemplary embodiments) that
comprise the length of the indicated image. If the offset
angle 0 is known, each transverse slice (also known as an
“axial slice” by some radiologists) of the volume 61 creates
an epipolar plane comprising voxels that are back-projected
from the pixels that comprise the two epipolar lines. In this
manner, projecting spatial data 43 from the first image 30 of
the subject orthopedic element 100 and the spatial data 43
from the second image 50 of the subject orthopedic element
100 defines the volume data 75. Using this volume data 75,
the 3D representation can be reconstructed using epipolar
geometric principles as discussed above; the 3D represen-
tation is consistent geometrically with the information in the
input images 30, 50.

[0063] In exemplary systems and methods for generating
patient-specific surgical guides 500 using a deep learning
network, wherein the deep learning network is a CNN, a
detailed example of how the CNN can be structured and
trained is provided. All architecture of CNNs are considered
to be within the scope of this disclosure. Common CNN
architectures include by way of example, LeNet, Googl.e-
Net, AlexNet, ZFNet, ResNet, and VGGNet.

[0064] FIG. 11 is the view of the underside of a patient-
specific surgical guide 500 created according to any exem-
plary method disclosed herein. In FIG. 13 |, the patient-
specific surgical guide 500 is securely engaged to the
orthopedic element 100 (which is a femur 105 in the
depicted example). The patient-specific surgical guide 500
can be formed from a resilient polymer material. The
patient-specific surgical guide 500 depicted in FIG. 11 is a
patient-specific femoral resection guide mount 500a config-

Jan. 26, 2023

ured to securely engage the condyles 107, 103 of the
patient’s specific operative femur 105. The depicted exem-
plary patient-specific femoral resection guide mount 500«
comprises a body 42 having a resection slot 52 extending
transversely through the body 42 and a bifurcated condylar
yoke 25 and a guide receptacle 24. The bifurcated condylar
yoke 25 comprises a pair of spaced apart arms 31, 41 that
project outwardly from the body 42. The first arm 31 has a
first mating surface 36 that is complementary to the ana-
tomical surface features of a selected region of the patient’s
natural bone (e.g., one of the patient’s distal femoral con-
dyles). Likewise, the second arm 41 has a second mating
surface 40 that is complementary to the anatomical surface
features of a selected region of the patient’s natural bone
(e.g., the other of the patient’s distal femoral condyles). A
through bore 38 may optionally extend through each spaced
apart arm 31, 41. A pin may optionally be inserted through
each of the through bores 38 to further secure the depicted
patient-specific surgical guide 500 to the patient’s natural
bone.

[0065] In exemplary embodiments, the curved body 42 of
the patient-specific surgical guide 500 may store potential
energy when the patient-specific surgical guide 500 abuts the
surface topography of the patient’s natural exposed bone
(see 106, FIG. 3). In this manner, the curved body 42 and the
complementary mating surfaces 36, 40 that match the sur-
face topography of the patient’s natural exposed bone can
allow the patient-specific surgical guide 500 to be “press-fit”
(i.e., be secured by friction) to the patient’s exposed femoral
condyles at the desired location.

[0066] Once the patient-specific surgical guide 500 abuts
and is securely engaged to the complementary portions of
the patient’s exposed bone in the desired location, the
surgeon can insert a surgical saw through the resection slot
52 to resect the patient’s distal femur 105 at the desired
location in preparation for implant sizing and fitting. It is
contemplated that making custom surgical guides 500 in a
manner consistent with this disclosure may permit place-
ment of a surgical saw more accurately and precisely and
closer in time and using less energy than was previously
possible.

[0067] FIG. 12 is the view of the underside of another
exemplary patient-specific surgical guide 500 created
according to any exemplary method disclosed herein. In
FIG. 12, the patient-specific surgical guide 500 is a tibial
resection guide mount 5005.

[0068] The depicted exemplary patient-specific tibial
resection guide mount 5005 comprises a body 79 having a
resection slot 51 extending transversely through the body 79
and a bifurcated condylar yoke 64 and a guide receptacle 24.
The bifurcated condylar yoke 64 comprises a pair of spaced
apart arms 62, 63 that project outwardly from the body 79.
The first arm 62 has a first mating surface 53 that is
complementary to the anatomical surface features of a
selected region of the patient’s natural bone (e.g., one of the
patient’s proximal tibial hemi-plateau condyles). Likewise,
the second arm 63 has a second mating surface 54 that is
complementary to the anatomical surface features of a
selected region of the patient’s natural bone (e.g., the other
of the patient’s proximal tibial hemi-plateau). A through
bore 38 may optionally extend through the body 79. A pin
may optionally be inserted through each of the through bores
38 to further secure the depicted patient-specific tibial
resection guide mount 5004 to the patient’s natural bone.
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[0069] In embodiments, the first and second mating sur-
faces 53, 54 of the patient-specific tibial resection guide
mount 5005 can permit the patient-specific tibial resection
guide mount 5004 to be secured to the precise location of the
patient’s proximal tibial via friction. Once properly seated
and secured, a surgeon may insert a surgical saw through the
tibial resection slot 51 to resect the plateau of the proximal
tibia.

[0070] FIG. 13 depicts patient-specific femoral resection
guide mount 5004 securely engaged to the patient’s distal
femur 105 and the patient-specific tibial resection guide
mount 5005 securely fixed to the patient’s proximal tibia
110.

[0071] Because the patient-specific surgical guide 500 was
designed and manufactured using technical specifications
derived from 3D spatial data, which was in turn derived
from two radiographic images of the orthopedic element 100
taken from different reference frames, the patient-specific
surgical guide 500 precisely fits the orthopedic element 100
per the preoperative plan. Moreover, because radiography is
generally more efficient and easier to obtain than CT or MRI
scans, it is contemplated that preoperative planning can
occur closer to the date of the scheduled surgical procedure
and thereby mitigate the potential for change between the
pre-operative planning and the actual anatomy on the day of
the surgery.

[0072] It is further contemplated that preoperative plan-
ning can even occur on the same day as the scheduled
surgery, especially if additive manufacturing machines (e.g.,
3D printing machines) or subtractive manufacturing
machines (e.g., CNC machines) are present onsite or locally.
For example, a patient may undergo preoperative imagine
and planning in the morning and have surgery schedule for
the afternoon.

[0073] Preferably, the methods disclosed herein may be
implemented on a computer platform having hardware such
as one or more central processing units (CPU), a random
access memory (RAM), and input/output (I/O) interface(s)
(see FIG. 7).

[0074] In still other embodiments, a volume of the ortho-
pedic element may be calculated. It will be appreciated that
any disclosed calculations or the results of any such calcu-
lations may optionally be displayed on a display.

[0075] It is further contemplated that the exemplary meth-
ods disclosed herein may be used for preoperative planning,
intraoperative planning or execution, or postoperative evalu-
ation of the implant placement and function.

[0076] Referring to FIG. 9, an exemplary system for
calculating the dimensions of a patient-specific surgical
guide 500 configured to abut or be securely engaged to the
subject orthopedic element 100 can comprise: a radiographic
imaging machine 1800 comprising an emitter 21 and a
detector 33 (FIG. 9), wherein the detector 33 of the radio-
graphic imaging machine 1800 captures a first image 30
(FIGS. 4 and 5A) in a first transversion position 30a (FIGS.
4 and 5A) and a second image 50 (FIGS. 4 and 5B) in a
second transverse position 50a (FIGS. 4 and 5B), wherein
the first transverse position 30a is offset from the second
transverse position 50a by an offset angle 6 (FIG. 4), a
transmitter 29 (FIG. 9), and a computational machine 1600
(see FIG. 7 for further details) wherein the transmitter 29
transmits the first image 30 and the second image 50 from
the detector 33 to the computational machine 1600, and
wherein the computational machine 1600 is configured to
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calculate a surface topography of the subject orthopedic
element 100. In certain exemplary embodiments, the com-
putational machine 1600 can be configured to calculate
dimensions of a mating surface of the patient specific
surgical guide 500 that are complementary to the surface
topography of a portion of the subject orthopedic element
100.

[0077] In certain exemplary embodiments, an exemplary
system may further comprise a display 19.

[0078] In certain exemplary embodiments, an exemplary
system may further comprise a manufacturing machine 18.
In exemplary embodiment comprising a manufacturing
machine 18, the manufacturing machine 18 can be an
additive manufacturing machine. In such embodiments, the
additive manufacturing machine may be used to manufac-
ture the 3D model of the subject orthopedic element 1100 or
a physical 3D model of the patient-specific surgical guide
500. By way of example, 3D manufacturing techniques can
include, but are not limited to stereo lithography and laser
sintering.

[0079] FIG. 9 is a schematic representation of an exem-
plary system comprising a radiographic imaging machine
1800 comprising an X-ray source 21, such as an X-ray tube,
a filter 26, a collimator 27, and a detector 33. In FIG. 9, the
radiographic imaging machine 1800 is shown from the top
down. A patient 1 is disposed between the X-ray source 21
and the detector 33. The radiographic imaging machine 1800
may be mounted on a rotatable gantry 28. The radiographic
imaging machine 1800 may take a radiographic image of the
patient 1 from a first reference frame 30a. The gantry 28 may
then rotate the radiographic imaging machine 1800 by an
offset angle (preferably 90°). The radiographic imaging
machine 1800 may then take the second radiographic image
50 from the second reference frame 50a. It will be appre-
ciated that other exemplary embodiments can comprise
using multiple input images taken at multiple offset angles
0. In such embodiments, the offset angle may be less than or
greater than 90° between adjacent input images.

[0080] It will be appreciated that the offset angle need not
be exactly 90 degrees in every embodiment. An offset angle
having a value within a range that is plus or minus 45
degrees is contemplated as being sufficient. In other exem-
plary embodiments, an operator may take more than two
images of the orthopedic element using a radiographic
imaging technique. It is contemplated that each subsequent
image after the second image can define a subsequent image
reference frame. For example, a third image can define a
third reference frame, a fourth image can define a fourth
reference frame, the n image can define an n” reference
frame, etc.

[0081] In exemplary embodiments comprising three input
images and three distinct reference frames, each of the three
input images desirably have an offset angle 6 of about 60
degrees relative to each other. In exemplary embodiments
comprising four input images and four distinct reference
frames, the offset angle 0 is desirably 45 degrees from an
adjacent reference frame. In an exemplary embodiment
comprising five input images and five distinct reference
frames, the offset angle 0 is desirably about 36 degrees from
the adjacent reference frame. In exemplary embodiments
comprising n images and n distinct reference frames, the
offset angle 0 is desirably 180/n degrees.

[0082] It is further contemplated that embodiments
involving multiple images, especially more than two images
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do not necessarily have to have regular and consistent offset
angles. For example, an exemplary embodiment involving
four images and four distinct reference frames may have a
first offset angle at 85 degrees, a second offset angle at 75
degrees, a third offset angle at 93 degrees, and a fourth offset
angle at 107 degrees.

[0083] A transmitter 29 then transmits the first image 30
and the second image 50 to a computational machine 1600.
The computational machine 1600 can apply a deep learning
network to calculate dimensions of a mating surface of the
patient-specific surgical guide 500 that are complementary
to the surface topography of a portion of the subject ortho-
pedic element 100 in any manner that is consistent with this
disclosure. FIG. 9 further depicts the output of the compu-
tational machine 1600 being transmitted to a manufacturing
machine 18. The manufacturing machine 18 can be an
additive manufacturing machine, such as a 3D printer, (e.g.,
stereo lithography or laser sintering manufacturing equip-
ment), or the manufacturing machine can be a subtractive
manufacturing machine, such as a computer numerical con-
trol (“CNC”) machine. In yet other exemplary embodiments,
the manufacturing machine 18 can be a casting mold. The
manufacturing machine 18 can use the output data from the
computational machine 1600 to produce a physical model of
one or more 3D models of the subject orthopedic elements
1100. In this manner, the manufacturing machine 18 can be
said to be “configured to produce” at least a partial physical
model of the identified surface of the orthopedic element
100. In embodiments, the manufacturing machine can be
used to produce a physical 3D model of the patient-specific
surgical guide 500.

[0084] FIG. 9 also depicts another embodiment in which
the output data from the computational machine 1600 is
transmitted to a display 19. A first display 19a depicts a
virtual 3D model of the patient-specific surgical guide 500.
The second display 195 depicts a virtual 3D model of the
identified subject orthopedic element 1100.

[0085] This display 19 may take the form of a screen. In
other exemplary embodiments, the display 19 may comprise
a glass or plastic surface that is worn or held by the surgeon
or other people in the operation theater. Such a display 19
may comprise part of an augmented reality device, such that
the display shows the 3D model in addition to the bearer’s
visual field. In certain embodiments, such a 3D model can be
superimposed on the actual operative joint. In yet other
exemplary embodiments, the 3D model can be “locked” to
one or more features of the operative orthopedic element
100, thereby maintaining a virtual position of the 3D model
relative to the one or more features of the operative ortho-
pedic element 100 independent of movement of the display
19. It is still further contemplated that the display 19 may
comprise part of a virtual reality system in which the entirety
of the visual field is simulated.

[0086] Although X-ray radiographs from an X-ray imag-
ing system may be desirable because X-ray radiographs are
relatively inexpensive compared to CT scans and because
the equipment for some X-ray imaging systems, such as a
fluoroscopy system, are generally sufficiently compact to be
used intraoperatively, nothing in this disclosure limits the
use of the 2D images to X-ray radiographs unless otherwise
expressly claimed, nor does anything in this disclosure limit
the type of imaging system to an X-ray imaging system.
Other 2D images can include by way of example: CT-
images, CT-fluoroscopy images, fluoroscopy images, ultra-
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sound images, positron emission tomography (“PET”)
images, and MRI images. Other imaging systems can
include by way of example: CT, CT-fluoroscopy, fluoros-
copy, ultrasound, PET, and MRI systems.

[0087] Preferably, the exemplary methods can be imple-
mented on a computer platform (e.g., a computational
machine 1600) having hardware such as one or more central
processing units (CPU), a random access memory (RAM),
and input/output (I/0) interface(s). An example of the archi-
tecture for an example computational machine 1600 is
provided below with reference to FIG. 7.

[0088] FIG. 7 generally depicts a block diagram of an
exemplary computational machine 1600 upon which one or
more of the methods discussed herein may be performed in
accordance with some exemplary embodiments. In certain
exemplary embodiments, the computational machine 1600
can operate on a single machine. In other exemplary
embodiments, the computational machine 1600 can com-
prise connected (e.g., networked) machines. Examples of
networked machines that can comprise the exemplary com-
putational machine 1600 include by way of example, cloud
computing configurations, distributed hosting configura-
tions, and other computer cluster configurations. In a net-
worked configuration, one or more machines of the compu-
tational machine 1600 can operate in the capacity of a client
machine, a server machine, or both a server-client machine.
In exemplary embodiments, the computational machine
1600 can reside on a personal computer (“PC”), a mobile
telephone, a tablet PC, a web appliance, a personal digital
assistant (“PDA”), a network router, a bridge, a switch, or
any machine capable of executing instructions that specify
actions to be undertaken by said machine or a second
machine controlled by said machine.

[0089] Example machines that can comprise the exem-
plary computational machines 1600 can include by way of
example, components, modules, or like mechanisms capable
of executing logic functions. Such machines may comprise
tangible entities (e.g., hardware) that is capable of carrying
out specified operations while operating. As an example, the
hardware may be hardwired (e.g., specifically configured) to
execute a specific operation. By way of example, such
hardware may have configurable execution media (e.g.,
circuits, transistors, logic gates, etc.) and a computer-read-
able medium having instructions, wherein the instructions
configure the execution media to carry out a specific opera-
tion when operating. The configuring can occur via a loading
mechanism or under the direction of the execution media.
The execution media selectively communicate to the com-
puter-readable medium when the machine is operating. By
way of an example, when the machine is in operation, the
execution media may be configured by a first set of instruc-
tions to execute a first action or set of actions at a first point
in time and then reconfigured at a second point in time by a
second set of instructions to execute a second action or set
of actions.

[0090] The exemplary computational machine 1600 may
include a hardware processor 1697 (e.g., a CPU, a graphics
processing unit (“GPU”), a hardware processor core, or any
combination thereof, a main memory 1696 and a static
memory 1695, some or all of which may communicate with
each other via an interlink (e.g., a bus) 1694. The compu-
tational machine 1600 may further include a display unit
1698, an input device 1691 (preferably an alphanumeric or
character-numeric input device such as a keyboard), and a
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user interface (““UP”) navigation device 1699 (e.g., a mouse
or stylus). In an exemplary embodiment, the input device
1691, display unit 1698, and Ul navigation device 1699 may
be a touch screen display. In exemplary embodiments, the
display unit 1698 may include holographic lenses, glasses,
goggles, other eyewear, or other AR or VR display compo-
nents. For example, the display unit 1698 may be worn on
a head of a user and may provide a heads-up-display to the
user. The input device 1691 may include a virtual keyboard
(e.g., a keyboard displayed virtually in a virtual reality
(“VR”) or an augmented reality (“AR”) setting) or other
virtual input interface.

[0091] The computational machine 1600 may further
include a storage device (e.g., a drive unit) 1692, a signal
generator 1689 (e.g., a speaker) a network interface device
1688, and one or more sensors 1687, such as a global
positioning system (“GPS”) sensor, accelerometer, compass,
or other sensor. The computational machine 1600 may
include an output controller 1684, such as a serial (e.g.,
universal serial bus (“USB”), parallel, or other wired or
wireless (e.g., infrared (“IR”) near field communication
(“NFC”), radio, etc.) connection to communicate or control
one or more ancillary devices.

[0092] The storage device 1692 may include a machine-
readable medium 1683 that is non-transitory, on which is
stored one or more sets of data structures or instructions
1682 (e.g., software) embodying or utilized by any one or
more of the functions or methods described herein. The
instructions 1682 may reside completely or at least partially,
within the main memory 1696, within static memory 1695,
or within the hardware processor 1697 during execution
thereof by the computational machine 1600. By way of
example, one or any combination of the hardware processor
1697, the main memory 1696, the static memory 1695, or
the storage device 1692, may constitute machine-readable
media.

[0093] While the machine-readable medium 1683 is illus-
trated as a single medium, the term, “machine readable
medium” may include a single medium or multiple media
(e.g., a distributed or centralized database, or associated
caches and servers) configured to store the one or more
instructions 1682.

[0094] The term “machine-readable medium” may include
any medium that is capable of storing, encoding, or carrying
instructions for execution by the computational machine
1600 and that cause the computational machine 1600 to
perform any one or more of the methods of the present
disclosure, or that is capable of storing, encoding, or carry-
ing data structures used by or associated with such instruc-
tions. A non-limited example list of machine-readable media
may include magnetic media, optical media, solid state
memories, non-volatile memory, such as semiconductor
memory devices (e.g., electronically erasable programmable
read-only memory (“EEPROM?”), electronically program-
mable read-only memory (“EPROM”), and magnetic discs,
such as internal hard discs and removable discs, flash storage
devices, magneto-optical discs, and CD-ROM and DVD-
ROM discs.

[0095] The instructions 1682 may further be transmitted or
received over a communications network 1681 using a
transmission medium via the network interface device 1688
utilizing any one of a number of transfer protocols (e.g.,
internet protocol (“IP”), user datagram protocol (“UDP”),
frame relay, transmission control protocol (“TCP”), hyper-
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text transter protocol (“HTTP”), etc.) Example communi-
cation networks may include a wide area network (“WAN”),
a plain old telephone (“POTS”) network, a local area net-
work (“LAN”), a packet data network, a mobile telephone
network, a wireless data network, and a peer-to-peer (“P2P”)
network. By way of example, the network interface device
1688 may include one or more physical jacks (e.g., Ethernet,
coaxial, or phone jacks) or one or more antennas to connect
to the communications network 1681.

[0096] By way of example, the network interface device
1688 may include a plurality of antennas to communicate
wirelessly using at least one of a single-input multiple-
output (“SIMO”), or a multiple-input single output
(“MISO”) methods. The phrase, “transmission medium”
includes any intangible medium that is capable of storing,
encoding, or carrying instructions for execution by the
computational machine 1600, and includes analog or digital
communications signals or other intangible medium to
facilitate communication of such software.

[0097] Exemplary methods in accordance with this dis-
closure may be machine or computer-implemented at least
in part. Some examples may include a computer-readable
medium or machine-readable medium encoded with instruc-
tions operable to configure an electronic device to perform
the exemplary methods described herein. An example imple-
mentation of such an exemplary method may include code,
such as assembly language code, microcode, a higher-level
language code, or other code. Such code may include
computer readable instructions for performing various meth-
ods. The code may form portions of computer program
products. Further, in an example, the code may be tangibly
stored on or in a volatile, non-transitory, or non-volatile
tangible computer-readable media, such as during execution
or other times. Examples of these tangible computer-read-
able media may include, but are not limited to, removable
optical discs (e.g., compact discs and digital video discs),
hard drives, removable magnetic discs, memory cards or
sticks, include removable flash storage drives, magnetic
cassettes, random access memories (RAMs), read only
memories (ROMS), and other media.

[0098] There are a variety of methods to generate a 3D
model from 2D preoperative or intraoperative images. By
way of example, one such method may comprise receiving
a set of 2D radiographic images of an operative area 170 of
a patient with a radiographic imaging system, computing a
first 3D model using epipolar geometry principles with a
coordinate system of the radiographic imaging system and
projective geometry data from the respective 2D images (see
FIGS. 4 and 5A and 5B). Such an exemplary method may
further comprise projecting the first 3D model on the 2D
radiographic images and then adjusting the initial 3D model
by registering the first and second radiographic images 30,
50 on the first 3D model with an image-to-image registration
technique. Once the image-to-image registration technique
has been applied, a revised 3D model may be generated.
This process can repeat until the desired clarity in achieved.
[0099] By way of another example, a deep learning net-
work (also known as a “deep neural network” (“DNN”),
such as a convolutional neural network (“CNN”), recurrent
neural network (“RNN”), modular neural network, or
sequence to sequence model, can be used to generate a 3D
model of the subject orthopedic element 1100 and/or a 3D
model of the patient-specific surgical guide 500 from a set
of at least two 2D images of an operative area 170 of a
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patient. The 2D images 30, 50 are desirably tissue penetrat-
ing images, such as radiographic images (e.g., X-ray or
fluoroscopy images). In such a method, the deep learning
network can generate a model from the projective geometry
data (i.e., spatial data 43 or volume data 75) from the
respective 2D images. The deep learning network can have
the advantage of being able to generate a mask of the
different subject orthopedic elements 100 (e.g., bones, soft
tissues, etc.) in the operative area 170 as well as being able
to calculate a volume (see 61, FIG. 6) of one or more imaged
orthopedic elements 100.

[0100] FIG. 8 is a schematic representation of a CNN that
illustrates how the CNN can be used to identify the surface
topography of a subject orthopedic element 100. Without
being bound by theory, it is contemplated that a CNN may
be desirable for reducing the size of the volume data 75
without losing features that are necessary to identify the
desired orthopedic element 100 or the desired surface topog-
raphy. The volume data 75 of the multiple back projected
input images 30, 50 is a multidimensional array that can be
known as an “input tensor.” This input tensor comprises the
input data (which is the volume data 75 in this example) for
the first convolution. A filter (also known as a kernel 69) is
shown disposed in the volume data 75. The kernel 69 is a
tensor (i.e., a multi-dimensional array) that defines a filter or
function (this filter or function is sometimes known as the
“weight” given to the kernel). In the depicted embodiment,
the kernel tensor 69 is three dimensional. The filter or
function that comprises the kernel 69 can be programed
manually or learned through the CNN, RNN, or other deep
learning network. In the depicted embodiment, the kernel 69
is a 3x3x3 tensor although all tensor sizes and dimensions
are considered to be within the scope of this disclosure,
provided that the kernel tensor size is less than the size of the
input tensor.

[0101] Each cell or voxel of the kernel 69 has a numerical
value. These values define the filter or function of the kernel
69. A convolution or cross-correlation operation is per-
formed between the two tensors. In FIG. 8, the convolution
is represented by the path 76. The path 76 that the kernel 69
follows is a visualization of a mathematical operation.
Following this path 76, the kernel 69 eventually and sequen-
tially traverses the entire volume 61 of the input tensor (e.g.,
the volume data 75). The goal of this operation is to extract
features from the input tensor.

[0102] Convolution layers 72 typically comprise one or
more of the following operations: a convolution stage 67, a
detector stage 68, and a pooling stage 58. Although these
respective operations are represented visually in the first
convolution layer 72a in FIG. 8, it will be appreciated that
the subsequent convolution layers 72b, 72¢, etc. may also
comprise one or more or all of the convolution stage 67,
detector stage 68, and pooling layer 58 operations or com-
binations or permutations thereof. Furthermore, although
FIG. 8, depicts five convolution layers 72a, 72b, 72c, 72d,
72e of various resolutions, it will be appreciated that more
or less convolution layers may be used in other exemplary
embodiments.

[0103] In the convolution stage 67, the kernel 69 is
sequentially multiplied by multiple patches of pixels in the
input data (i.e., the volume data 75 in the depicted example).
The patch of pixels extracted from the data is known as the
receptive field. The multiplication of the kernel 69 and the
receptive field comprises an element-wise multiplication
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between each pixel of the receptive field and the kernel 69.
After multiplication, the results are summed to form one
element of a convolution output. This kernel 69 then shifts
to the adjacent receptive field and the element-wise multi-
plication operation and summation continue until all the
pixels of the input tensor have been subjected to the opera-
tion.

[0104] Until this stage, the input data (e.g., the volume
data 75) of the input tensor has been linear. To introduce
non-linearity to this data, a nonlinear activation function is
then employed. Use of such a non-linear function marks the
beginning of the detector stage 68. A common non-linear
activation function is the Rectified Linear Unit function
(“ReLU”), which is given by the function:

0,if x<0
ReLU(x):{ S }

x,if x=0

[0105] When used with bias, the non-linear activation
function serves as a threshold for detecting the presence of
the feature extracted by the kernel 69. For example, applying
a convolution or a cross-correlation operation between the
input tensor and the kernel 69, wherein the kernel 69
comprises a low level edge filter in the convolution stage 67
produces a convolution output tensor. Then, applying a
non-linear activation function with a bias to the convolution
output tensor will return a feature map output tensor. The
bias is sequentially added to each cell of the convolution
output tensor. For a given cell, if the sum is greater than or
equal to 0 (assuming ReLU is used in this example), then the
sum will be returned in the corresponding cell of the feature
map output tensor. Likewise, if the sum is less than O for a
given cell, then the corresponding cell of the feature map
output tensor will be set to 0. Therefore, applying non-linear
activations functions to the convolution output behaves like
a threshold for determining whether and how closely the
convolution output matches the given filter of the kernel 69.
In this manner, the non-linear activation function detects the
presence of the desired features from the input data (e.g., the
volume data 75 in this example).

[0106] All non-linear activation functions are considered
to be within the scope of this disclosure. Other examples
include the Sigmoid, TanH, Leaky Rel.U, parametric Rel.U,
Softmax, and Switch activation functions.

[0107] However, a shortcoming of this approach is that the
feature map output of this first convolutional layer 72a
records the precise position of the desired feature (in the
above example, an edge). As such, small movements of the
feature in the input data will result in a different feature map.
To address this problem and to reduce computational power,
down sampling is used to lower the resolution of the input
data while still preserving the significant structural elements.
Down sampling can be achieved by changing the stride of
the convolution along the input tensor. Down sampling is
also achieved by using a pooling layer 58.

[0108] Valid padding may be applied to reduce the dimen-
sions of the convolved tensor (see 72b) compared to the
input tensor (see 72a). A pooling layer 58 is desirably
applied to reduce the spatial size of the convolved data,
which decreases the computational power required to pro-
cess the data. Common pooling techniques, including max
pooling and average pooling may be used. Max pooling
returns the maximum value of the portion of the input tensor
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covered by the kernel 69, whereas average pooling returns
the average of all the values of the portion of the input tensor
covered by the kernel 69. Max pooling can be used to reduce
image noise.

[0109] In certain exemplary embodiments, a fully con-
nected layer can be added after the final convolution layer
72e to learn the non-linear combinations of the high level
features (such as the profile of an imaged proximal tibia 110
or the surface topology of the orthopedic element) repre-
sented by the output of the convolutional layers.

[0110] The top half of FIG. 8 represents compression of
the input volume data 75, whereas the bottom half represents
decompression until the original size of the input volume
data 75 is reached. The output feature map of each convo-
Iution layer 72a, 725, 72¢, etc. is used as the input for the
following convolution layer 724, 72¢, etc. to enable pro-
gressively more complex feature extraction. For example,
the first kernel 69 may detect edges, a kernel in the first
convolution layer 726 may detect a collection of edges in a
desired orientation, a kernel in a third convolution layer 72¢
may detect a longer collection of edges in a desired orien-
tation, etc. This process may continue until the entire profile
of the medial distal femoral condyle is detected by a
downstream convolution layer 72.

[0111] The bottom half of FIG. 8 up-samples (i.e., expands
the spatial support of the lower resolution feature maps. A
de-convolution operation is performed in order to increase
the size of the input for the next downstream convolutional
layer (see 72c¢, 72d, 72¢). For the final convolution layer 72e,
a convolution can be employed with a 1x1x1 kernel 69 to
produce a multi-channel output volume 59 that is the same
size as the input volume 61. Each channel of the multi-
channel output volume 59 can represent a desired extracted
high level feature. This can be followed by a Softmax
activation function to detect the desired orthopedic elements
100. For example, the depicted embodiment may comprise
six output channels numbered 0, 1, 2, 3, 4, 5 wherein channel
0 represents identified background volume, channel 1 rep-
resents the identified distal femur 105, channel 2 represents
the identified proximal tibia 110, channel 3 represents the
identified proximal fibula 111, channel 4 represents the
identified patella 901, and channel 5 represents the identified
surface topography of a subject orthopedic element 100.
[0112] In exemplary embodiments, select output channels
comprising output volume data 59 of the desired orthopedic
element 100 can be used to create a 3D model of the subject
orthopedic element 1100. For example, data from the chan-
nel representing the identified surface topography of the
subject orthopedic element 100 can be mapped and repro-
duced as one or more mating surfaces (see 40 and 36 in
FIGS. 11 and 53 and 54 in FIG. 12) on the patient-specific
surgical guide 500 to create a patient-specific surgical guide
500 that is configured to be securely engaged to the subject
orthopedic element 100. Producing a physical patient-spe-
cific surgical guide 500 via a manufacturing technique and
sterilizing said patient-specific surgical guide 500 can permit
the surgeon to install and use the patient-specific surgical
guide 500 directly in the operative area 170. In this manner,
the patient-specific surgical guide 500 can be said to be
“configured to abut” the orthopedic element 100 on the
identified surface. Likewise, in this manner, a computational
machine 1600 that uses a deep learning network in this or a
related manner to isolate individual orthopedic elements 100
or portions of orthopedic elements (e.g., a surface topogra-
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phy of a subject orthopedic element 100) can be said to be
“configured to identify” a surface topography on the actual
subject orthopedic element 100 or on a 3D model of the
subject orthopedic element 1100 to define an identified
surface.

[0113] Although the above example described the use of a
three dimensional tensor kernel 69 to convolve the input
volume data 75, it will be appreciated that the general model
described above can be used with 2D spatial data 43 from
the first calibrated input image 30 and the second calibrated
input image 50 respectively. In other exemplary embodi-
ments, a machine learning algorithm (i.e., a deep learning
network (such as for example, a CNN)) can be used after
calibration of the imaging machine but before 2D to 3D
reconstruction. That is, the CNN can be used to detect
features (e.g., anatomical landmarks) of a subject orthopedic
element 100 from the first reference frame 30a and the
second reference frame 50a of the respective 2D input
images 30, 50. In exemplary embodiments, CNN may be
used to identify high level orthopedic elements (e.g., the
distal femur 105 and a portion of the surface topology of the
subject orthopedic element 100) from the 2D input images
30, 50. The CNN may then optionally apply a mask or an
outline to the detected orthopedic element 100 or surface
topography of a subject orthopedic element 100. It is con-
templated that if the imaging machine 1800 is calibrated and
if the CNN identified multiple corresponding image points
(e.g., X,, Xy) of features between the two input images 30,
50, then the transformation matrices between the reference
frames 30a, 50a of a subject orthopedic element 100 can be
used to align the multiple corresponding image points in 3D
space.

[0114] In certain exemplary embodiments that comprise
using a deep learning network to add a mask or an outline
to the detected 2D orthopedic element 100 from the respec-
tive input images 30, 50, only the 2D masks or outlines of
the identified orthopedic element 100 or surface topography
of the identified orthopedic element 100 can be sequentially
back-projected in the manner described with reference to
FIGS. 4 and 6 supra to define a volume 61 of the identified
orthopedic element 100. In this exemplary manner, a 3D
model of the subject orthopedic element 1100 may be
created.

[0115] In embodiments wherein the first image 30 and the
second image 50 are radiographic X-ray images, training a
CNN can present several challenges. By way of comparison,
CT scans typically produce a series of images of the desired
volume. Each CT image that comprises a typical CT scan
can be imagined as a segment of the imaged volume. From
these segments, a 3D model can be created relatively easily
by adding the area of the desired element as the element is
depicted in each successive CT image. The modeled element
can then be compared with the data in the CT scan to ensure
accuracy.

[0116] By contrast, radiographic imaging systems typi-
cally do not generate sequential images that capture different
segments of the imaged volume; rather, all of the informa-
tion of the image is flattened on the 2D plane. Additionally,
because a single radiographic image 30 inherently lacks 3D
data, it is difficult to check the model generated by the
epipolar geometry reconstruction technique described above
with the actual geometry of the target orthopedic element
100. To address this issue, the CNN can be trained with CT
images, such as digitally reconstructed radiograph (“DRRs”)
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images. By training the deep learning network in this way,
the deep learning network can develop its own weights (e.g.,
filters) for the kernels 69 to identify a desired orthopedic
element 100 or surface topography of a subject orthopedic
element 100. Because X-ray radiographs have a different
appearance than DRRs, image-to-image translation can be
performed to render the input X-ray images to have a
DRR-style appearance. An example image-to-image trans-
lation method is the Cycle-GAN image translation tech-
nique. In embodiments in which image-to-image style trans-
fer methods are used, the style transfer method is desirably
used prior to imputing the data into a deep learning network
for feature detection.

[0117] The above examples are provided for illustrative
purposes and are in no way intended to limit the scope of this
disclosure. All methods for generating a 3D model of the
subject orthopedic element 1100 from 2D radiographic
images of the same subject orthopedic element 100 taken
from at least two transverse positions (e.g., 30a, 50a) are
considered to be within the scope of this disclosure.
[0118] FIG. 10 is a flow chart that outlines the steps of an
exemplary method that uses a deep learning network to
calculate dimensions for a patient-specific surgical guide
500 to abut an orthopedic element 100 using two flattened
input images (30, 50, FIGS. 4 and 5A and 5B) taken from an
offset angle 6. The exemplary method comprises: step Ic
calibrating an imaging machine 1800 (FIG. 9) to determine
a mapping relationship between image points (see X;, e;,
Xz €z, FIG. 4) and corresponding space coordinates (e.g.,
Cartesian coordinates on an X, y plane) to define spatial data
43. The imaging machine 1800 is desirably a radiographic
imaging machine capable of producing X-ray images (“X-
ray images” can be understood to include fluoroscopic
images), but all medical imaging machines are considered to
be within the scope of this disclosure.

[0119] Step 2¢ comprises capturing a first image 30 (FIG.
5A) of a subject orthopedic element 100 using the imaging
technique (e.g., an X-ray imaging technique, a CT imaging
technique, an MRI imaging technique, or an ultrasound
imaging technique), wherein the first image 30 defines a first
reference frame 30a (e.g., a first transverse position). In step
3¢, a second image 50 (FIG. 5B) of the subject orthopedic
element 100 is captured using the imaging technique,
wherein the second image 50 defines a second reference
frame 50a (e.g., a second transverse position), and wherein
the first reference frame 30a is offset from the second
reference frame 50a at an offset angle 6. The first image 30
and the second image 50 are input images from which data
(including spatial data 43) can be extracted. It will be
appreciated that in other exemplary embodiments, more than
two images may be used. In such embodiments, each input
image is desirably separated from the other input images by
an offset angle 6. Step 4¢ comprises projecting spatial data
43 from the first image 30 of the subject orthopedic element
100 and the spatial data 43 from the second image 50 of the
subject orthopedic element 100 to define volume data 75
(FIG. 6) using epipolar geometry.

[0120] Step 5c comprises using a deep learning network to
detect the orthopedic element 100 from the volume data 75.
Step 6¢ comprises using a deep learning network to detect
other features (e.g., anatomical landmarks) from the volume
data 75 of the subject orthopedic element 100 to define a 3D
model of the subject orthopedic element 1100, including a
surface topography of the subject orthopedic element 100.
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Step 7c¢ comprises calculating dimensions for a patient-
specific surgical guide 500. In such embodiments, the
dimensions of a mating surface of the patient specific
surgical guide 500 can be complementary to the surface
topography of a portion of the subject orthopedic element
100. In this manner, the patient-specific surgical guide 500
can be configured to abut and be securely engaged to the
orthopedic element 100.

[0121] In certain exemplary embodiments, the deep learn-
ing network that detects an anatomical landmark of the
subject orthopedic element 100 from the volume data 75 can
be the same deep learning network that detects other features
from the volume data 75 of the subject orthopedic element
100, such as the surface topography of the subject orthope-
dic element. In other exemplary embodiments, the deep
learning network that detects an anatomical landmark of the
subject orthopedic element 100 from the volume data 75 can
be different from the deep learning network that detects
other feature from the volume data 75 of the subject ortho-
pedic element 100, such as the surface topography of the
subject orthopedic element.

[0122] In certain exemplary embodiments, the first image
30 can depict the subject orthopedic element 100 in a lateral
transverse position (i.e., the first image 30 is a lateral view
of the orthopedic element 100). In other exemplary embodi-
ments, the second image 50 can depict the orthopedic
element 100 in an anterior-posterior (“AP”) transverse posi-
tion (i.e., the second image 50 is an AP view of the
orthopedic element 100). In yet other exemplary embodi-
ments, the first image 30 can depict the orthopedic element
100 in an AP transverse position. In still other exemplary
embodiments, the second image 50 can depict the orthope-
dic element 100 in a lateral transverse position. In still yet
other exemplary embodiments, neither the first image 30 nor
the second image 50 can depict the orthopedic element 100
in an AP transverse position or a lateral transverse position,
provided that the first image 30 is offset from the second
image 50 by an offset angle 6. The computational machine
1600 can calculate the offset angle 6 from input images 30,
50 that include the calibration jig (see 973, FIG. 5A and 5B).
The first image 30 and second image 50 may be referred to
collectively as “input images™ or individually as an “input
image.” These input images 30, 50 desirably depict the same
subject orthopedic element 100 from different angles. These
input images 30, 50 can be taken along a transverse plane of
the subject orthopedic element 100.

[0123] Certain exemplary systems or methods can further
comprise using a style transfer deep learning network such
as Cycle-GAN. Systems or methods that use a style transfer
deep learning network may start with a radiographic input
image (e.g., 30) and use the style transfer deep learning
network to transfer the style of the input image to a DRR
type image. Yet further exemplary methods may comprise
using a deep learning network to identify features (e.g.,
anatomical landmarks) of the subject orthopedic element
100 (which can include a portion of the surface topology of
the subject orthopedic element 100) to provide a segmen-
tation mask for each subject orthopedic element 100.
[0124] Without being bound by theory, it is contemplated
that embodiments that utilize radiographic input images may
be able to provide smoother surface on the 3D model of the
orthopedic element compared to 3D models produced from
CT input images or MRI input images. CT scans typically
scan the subject orthopedic element at 1 mm increments.
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The change in surface topography between a first CT
segment scan and an adjacent CT segment scan can result in
a loss of information in the output of a traditional CT system
because surface topographic details that are spaced less than
1 mm apart are not captured by a CT system that incremen-
tally scans a subject orthopedic element in 1 mm increments.
As aresult, technicians typically had to manually smooth out
the surface topography of a CT 3D model in order to create
a surgical guide that was able to mate with the actual subject
orthopedic element intraoperatively. Because topographic
data less than 1 mm of the actual subject orthopedic element
was never captured, this manual smoothing process tended
to be imprecise and could result in a less than perfect fit.
Certain embodiment in accordance with the present disclo-
sure can obviate this problem because the radiographic
X-ray images can be expressed as an array of pixel values.
Pixel density varies, but by way of example, if the first and
second input images have a resolution of 96 dots per inch
(“dp1™) (a unit of pixel density), then there are 25.4 mm in
that inch, or 3.78 pixels per millimeter. Stated differently,
there are an extra 3.78 pixels of information per millimeter
in this example compared to a traditional CT scan. Higher
pixel densities will likewise result in an even greater reso-
Iution of the surface topography, while the use of the deep
learning network(s) as described herein can reduce the
computational load of the computational machine compared
to systems and methods that do not use a deep learning
network.

[0125] It is further contemplated that in certain exemplary
embodiments, the exemplary systems and/or methods can
take surgeon input and preferences into account. For
example, if the surgeon desires to orient the distal resection
plane of the distal femur at three degrees varus, an exem-
plary patient-specific femoral resection guide mount 500a
can be produced in accordance with this disclosure and the
resection slot 52 can be manufactured relative to the body 42
such that the resection slot 52 is oriented at three degrees
varus when the patient-specific surgical guide 500 is
installed on the distal femur 105. The orientation of the
resection slot 52 can be further modified in exemplary
embodiments to accommodate limited access or obstruc-
tions to the operative area 170, which can be common in
minimally invasive procedures.

[0126] An exemplary method for generating patient-spe-
cific surgical guides comprises: calibrating a radiographic
imaging machine to determine a mapping relationship
between image points and corresponding space coordinates
to define spatial data; capturing a first image of an ortho-
pedic element using a radiographic imaging technique,
wherein the first image defines a first reference frame;
capturing a second image of the orthopedic element using
the radiographic imaging technique, wherein the second
image defines a second reference frame, and wherein the
first reference frame is offset from the second reference
frame at an offset angle; using a deep learning network to
detect the orthopedic element using the spatial data, the
spatial data defining anatomical landmarks on or in the
orthopedic element; using the deep learning network to
apply a mask to the orthopedic element defined by an
anatomical landmark; projecting the spatial data from the
first image of the desired orthopedic element and the spatial
data from the second image of the desired orthopedic
element to define volume data, wherein the spatial data
comprising image points disposed within a masked area of
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either the first image or the second image have a first value
and wherein the spatial data comprising image points dis-
posed outside of the masked area of either the first image or
the second image have a second value, wherein the first
value is different from the second value; applying the deep
learning network to the volume data to generate a recon-
structed 3D model of the orthopedic element; and calculat-
ing dimensions for a patient-specific surgical guide config-
ured to abut the orthopedic element.

[0127] An exemplary method for generating patient-spe-
cific surgical guide comprises: calibrating a radiographic
imaging machine to determine a mapping relationship
between image points and corresponding space coordinates
to define spatial data; using a radiographic imaging tech-
nique to capture a first image of an orthopedic element,
wherein the first image defines a first reference frame; using
the radiographic imaging technique to capture a second
image of the orthopedic element, wherein the second image
defines a second reference frame, and wherein the first
reference frame is offset from the second reference frame at
an offset angle; using a deep learning network to detect the
orthopedic element using the spatial data, the spatial data
defining an anatomical landmark on or in the orthopedic
element; using the deep learning network to apply a mask to
the orthopedic element defined by the anatomical landmark;
projecting the spatial data from the first image of the desired
orthopedic element and the spatial data from the second
image of the desired orthopedic element to define volume
data, wherein the spatial data comprising image points
disposed within a masked area of either the first image or the
second image have a positive value and wherein the spatial
data comprising image points disposed outside of a masked
area of either the first image or the second image have a
negative value; applying the deep learning network to the
volume data to generate a 3D model of the orthopedic
element; and calculating dimensions for a patient-specific
surgical guide configured to be securely engaged to the
orthopedic element.

[0128] In an exemplary embodiment, the method further
comprises using the deep learning network to perform a
style transfer on the first image and the second image.

[0129] In an exemplary embodiment, the style transfer
converts the spatial data from the radiographic imaging
technique into dynamic digital radiography data.

[0130] In an exemplary embodiment, the first value is a
positive value.
[0131] In an exemplary embodiment, the second value is

a negative value.

[0132] In an exemplary embodiment, the method further
comprises projecting the reconstructed 3D model on a
display.

[0133] In an exemplary embodiment, the deep learning
network comprises a deep learning algorithm.

[0134] An exemplary system comprises: a 3D model of an
orthopedic element comprising an operative area generated
from at least two 2D radiographic images, wherein at least
a first radiographic image is captured at a first position, and
wherein at least a second radiographic image is captured at
a second position, and wherein the first position is different
than the second position; a computational machine config-
ured to identify a surface topography on the 3D model of the
orthopedic element to define an identified surface and fur-
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ther configured to calculate dimensions for a patient-specific
surgical guide configured to abut the orthopedic element on
the identified surface.

[0135] An exemplary system can further comprise a dis-
play, wherein the 3D model of the orthopedic element is
displayed on the display. In an exemplary system, the
display can be an augmented reality device or a virtual
reality device. An exemplary system can further comprise an
X-ray imaging machine.

[0136] An exemplary system can further comprise a
manufacturing device, wherein the manufacturing device is
configured to produce a physical model of a patient-specific
surgical guide.

[0137] In an exemplary system comprising a manufactur-
ing device, the manufacturing device can be configured to
produce at least a partial physical model of the identified
surface of the orthopedic element. The manufacturing
device can be an additive manufacturing device.

[0138] In an exemplary system the physical model of the
patient-specific surgical guide can comprise a medical grade
polyamide.

[0139] An patient-specific surgical guide produced by an
exemplary process can comprise: calibrating a radiographic
imaging machine to determine a mapping relationship
between radiographic image points and corresponding space
coordinates to define spatial data; using a radiographic
imaging technique to capture a first radiographic image of a
subject orthopedic element, wherein the first radiographic
image defines a first reference frame; using the radiographic
imaging technique to capture a second radiographic image
of' the subject orthopedic element, wherein the second radio-
graphic image defines a second reference frame, and
wherein the first reference frame is offset from the second
reference frame at an offset angle; projecting spatial data
from the first radiographic image of the subject orthopedic
element and spatial data from the second radiographic image
of the subject orthopedic element to define volume data;
using a deep learning network to detect the subject ortho-
pedic element using the volume data, the volume data
defining an anatomical landmark on or in the subject ortho-
pedic element; using the deep learning network to identify a
surface on an orthopedic element to define an identified
surface using the volume data; and applying the deep
learning network to the volume data to calculate dimensions
for a patient-specific surgical guide configured to abut the
orthopedic element on the identified surface.

[0140] An exemplary product by process can further com-
prise using a manufacturing technique to produce a physical
3D model of the patient-specific surgical guide. In such
embodiments, the physical 3D model of the patient-specific
surgical guide can comprise a mating surface that mates with
the identified surface on the orthopedic element.

[0141] For an exemplary product by process, the physical
3D model of the patient-specific surgical guide can comprise
a mating surface, and the mating surface can further com-
prise a projection.

[0142] An exemplary patient-specific surgical guide can
be produced by an exemplary process comprising: calibrat-
ing a radiographic imaging machine to determine a mapping
relationship between radiographic image points and corre-
sponding space coordinates to define spatial data; using a
radiographic imaging technique to capture a first radio-
graphic image of a subject orthopedic element, wherein the
first radiographic image defines a first reference frame; using
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the radiographic imaging technique to capture a second
radiographic image of the subject orthopedic element,
wherein the second radiographic image defines a second
reference frame, and wherein the first reference frame is
offset from the second reference frame at an offset angle;
projecting spatial data from the first radiographic image of
the subject orthopedic element and spatial data from the
second radiographic image of the subject orthopedic ele-
ment; using a deep learning network to detect the subject
orthopedic element using the spatial data, the spatial data
defining an anatomical landmark on or in the subject ortho-
pedic element; using the deep learning network to detect
identify a surface on an orthopedic element to define an
identified surface using the spatial data; and applying the
deep learning network to the spatial data to calculate dimen-
sions for a patient-specific surgical guide configured to abut
the orthopedic element on the identified surface.

[0143] It is to be understood that the present invention is
by no means limited to the particular constructions and
method steps herein disclosed or shown in the drawings, but
also comprises any modifications or equivalents within the
scope of the claims known in the art. It will be appreciated
by those skilled in the art that the devices and methods
herein disclosed will find utility.

What is claimed is:

1. A system comprising:

a 3D model of an orthopedic element comprising an
operative area generated from at least two 2D radio-
graphic images, wherein at least a first radiographic
image is captured at a first position, and wherein at least
a second radiographic image is captured at a second
position, and wherein the first position is different than
the second position;

a computational machine configured to identity a surface
on the 3D model of the orthopedic element to define an
identified surface and further configured to calculate
dimensions for a patient-specific surgical guide config-
ured to abut the orthopedic element on the identified
surface.

2. The system of claim 1, further comprising a display,
wherein the 3D model of the orthopedic element is displayed
on the display.

3. The system of claim 2, wherein the display is an
augmented reality device or a virtual reality device.

4. The system of claim 1 further comprising an X-ray
imaging machine.

5. The system of claim 1 further comprising a manufac-
turing device, wherein the manufacturing device is config-
ured to produce a physical model of a patient-specific
surgical guide.

6. The system of claim 5, wherein the manufacturing
device is configured to produce at least a partial physical
model of the identified surface of the orthopedic element.

7. The system of claim 5, wherein the manufacturing
device is an additive manufacturing device.

8. The system of claim 5, wherein the physical model of
the patient-specific surgical guide comprises a medical grade
polyamide.

9. A patient-specific surgical guide produced by a process
comprising:

calibrating a radiographic imaging machine to determine
a mapping relationship between radiographic image
points and corresponding space coordinates to define
spatial data;
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using a radiographic imaging technique to capture a first
radiographic image of a subject orthopedic element,
wherein the first radiographic image defines a first
reference frame;

using the radiographic imaging technique to capture a

second radiographic image of the subject orthopedic
element, wherein the second radiographic image
defines a second reference frame, and wherein the first
reference frame is offset from the second reference
frame at an offset angle;

projecting spatial data from the first radiographic image of

the subject orthopedic element and spatial data from the
second radiographic image of the subject orthopedic
element to define volume data;

using a deep learning network to detect the subject

orthopedic element using the volume data, the volume
data defining an anatomical landmark on or in the
subject orthopedic element;

using the deep learning network to identify a surface on

the orthopedic element to define an identified surface
using the volume data; and

applying the deep learning network to the volume data to

calculate dimensions for a patient-specific surgical
guide configured to abut the orthopedic element on the
identified surface.

10. The product of claim 9 further comprising using a
manufacturing technique to produce a physical 3D model of
the patient-specific surgical guide.

11. The product of claim 10, wherein the physical 3D
model of the patient-specific surgical guide comprises a
mating surface that mates with the identified surface on the
orthopedic element.

12. The product of claim 11, wherein the physical 3D
model of the patient-specific surgical guide comprises a
mating surface, and wherein the mating surface further
comprises a projection.

13. A patient-specific surgical guide produced by a pro-
cess comprising:
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calibrating a radiographic imaging machine to determine
a mapping relationship between radiographic image
points and corresponding space coordinates to define
spatial data;

using a radiographic imaging technique to capture a first

radiographic image of a subject orthopedic element,
wherein the first radiographic image defines a first
reference frame;

using the radiographic imaging technique to capture a

second radiographic image of the subject orthopedic
element, wherein the second radiographic image
defines a second reference frame, and wherein the first
reference frame is offset from the second reference
frame at an offset angle;

projecting spatial data from the first radiographic image of

the subject orthopedic element and spatial data from the
second radiographic image of the subject orthopedic
element;

using a deep learning network to detect the subject

orthopedic element using the spatial data, the spatial
data defining an anatomical landmark on or in the
subject orthopedic element;

using the deep learning network to identify a surface on

the orthopedic element to define an identified surface
using the spatial data; and

applying the deep learning network to the spatial data to

calculate dimensions for a patient-specific surgical
guide configured to abut the orthopedic element on the
identified surface.

14. The product of claim 13 further comprising using a
manufacturing technique to produce a physical 3D model of
the patient-specific surgical guide.

15. The product of claim 14, wherein the patient-specific
surgical guide comprises a mating surface that mates with
the identified surface of the orthopedic element.

16. The product of claim 14, wherein the patient-specific
surgical guide comprises a mating surface, and wherein the
mating surface further comprises a projection.
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