
United States Patent (19)
Hao et al.

USOO5844.553A

11 Patent Number: 5,844,553
(45) Date of Patent: Dec. 1, 1998

54 MECHANISM TO CONTROLAND USE
WINDOW EVENTS AMONG APPLICATIONS
IN CONCURRENT COMPUTING

75 Inventors: Ming C. Hao, Los Altos Hills; Alan H
Karp, Palo Alto, both of Calif.; Daniel
Garfinkel, Fort Collins, Colo.; Charles
Young, Palo Alto, Calif.; Thomas G.
Fincher, Hudson, N.H.

73 Assignee: Hewlett-Packard Company, Palo Alto,
Calif.

21 Appl. No.: 625,615

22 Filed: Mar. 29, 1996

Related U.S. Application Data

63 Continuation-in-part of Ser. No. 602,386, Feb. 16, 1996, Pat.
No. 5,742,778, which is a continuation of Ser. No. 113,790,
Aug. 30, 1993, abandoned.

(51) Int. Cl." .. G06F 15/00
52 U.S. Cl. 345/329; 345/330; 345/340;

395/200.31; 395/200.34; 395/200.44
58 Field of Search 395/329, 330,

395/331, 332, 825, 824, 200.31, 200.34,
200.44, 200.57, 200.6, 200.62, 200.68;

345/329, 330, 331, 339, 340

56) References Cited

PUBLICATIONS

Ming C. Hao et al., “Concurrent Application Control in
Collaborative Computing”, 1994, pp. 1-13.
Hughes et al., “Bifidobacteria: Their Potential For Use In
American Dairy Products”, pp. 74-81 in Food Technology
(Apr. 1991).

WORKSTATION 110

SERVER 111

WINDOW. 112

CONCURRENCY
CONTROL
WINDOW (CCW) 116

WN HERARCY ARRAY
W1, W2, ... WN 117

CAPTURE
NPUT
EVENTS

GET

NTER-ACCESS
EVENT PROCESS
(IEP) 115

APPLICATION 113

FE 114

Primary Examiner Huynh Ba

57 ABSTRACT

A new application Sharing technology that enables Sharing
of many Single-user non-modified applications between two
or more WorkStations. It provides concurrent Sharing of
existing multiple applications with no change in a distrib
uted environment. It permits real-time sharing of distributed
applications based on a fundamental window hierarchical
mapping and user interactions. Control is centralized but the
data and program are replicated. It is event driven with agent
assistance. The new event capturing capability is automati
cally triggered by user interactions on entering/leaving the
shared window. The event capturing capability Starts when
the user moves the pointer into the shared windows. The
event capturing ends when the user moves the pointer out of
the shared windows. The new multicasting Scope is defined
in a shared window hierarchy data array. This global data
array is dynamically created at run time on an as-needed
basis. Because this mechanism only processes user input
events Such as mouse, keyboard or cursor movement
(commands), no output graphic data transmission across the
network is required. Therefore, this approach is extremely
light-weight and provides Secure transmission without
requiring intensive encryption. Because it is not using
pseudo Server interception, this approach can Support DHA
3-D rendering. Also, the agent can dynamically mediate
resources and normalize environment differences. This per
mits real-time sharing of 3-D, graphic and DHA (direct
hardware access) applications. DHA permits the application
to bypass the windowing Server to render graphics on
display. Moreover, because it is extremely light-weight, high
network bandwidth is not required.

15 Claims, 11 Drawing Sheets

WORKSTATION 120

INPUT EVENTS

APPLICATION 123

FILE 124

APPLICATION 133
FILE 134

EP
STARTUP 125

WORKSTATION 130

NPEVENTS

EP
STARTUP 35

5,844,553 Sheet 1 of 11 Dec. 1, 1998 U.S. Patent

Z04 NOIIVISX8OM

5,844,553 Sheet 2 of 11 Dec. 1, 1998 U.S. Patent

9? ? (MOO) MOONIM

T081N00 ÅONEMIN?ION00

U.S. Patent Dec. 1, 1998 Sheet 4 of 11 5,844,553

GRAB THE POINTER

CLICK ON SHARED WINDOW

WINDOW
SHARED BEFORE SENDADD WINDOWSTREE

REGUEST TO ALL AGENTS

WAIT
FOR ALL
AGENTS

SE GLOBAL WINDOW
HERARCHY DATA ARRAY

SELECT INPUT EVENTS
TO SHARE

UNGRAB THE POINTER

All
ARRIVED

Aligure 3Es

U.S. Patent Dec. 1, 1998 Sheet 8 of 11 5,844,553

SELECT SHARED
APPLICATION WINDOW 620

AGENTN AGENT 1 (1 TON)

GET WINDOW
HERARCHY DATA
ARRAY 622

GET WINDOW
HERARCHYDATA
ARRAY 622

DISPLAY 1 DISPLAYN

a1 Y.
N

SEND WINDOW -- a-- -- SEND WINDOW

624 624

CONSTRUCT SHARED
WINDOW DATA ARRAY 628

Figure 6

5,844,553 Sheet 9 of 11 Dec. 1, 1998 U.S. Patent

Z MOCININA

901#01 (GESWETB8)(038n1dw0) 831N3)

BAWET

| MOCININA

5,844,553 Sheet 10 of 11 Dec. 1, 1998 U.S. Patent

908

MOCININA CIELOETES AME|mo

908

MOCINIWA CJE, 10ETES AXEITO

908

M00 NINA CH10ETES Å HETTO
(c) 1N39y(Z) IN 39W

(1) 1N39y

Z08 MOCININA (IEMVHS C]B10ETES NO MOITO

5,844,553
1

MECHANISM TO CONTROLAND USE
WINDOW EVENTS AMONG APPLICATIONS

IN CONCURRENT COMPUTING

CROSS REFERENCE TO RELATED
APPLICATION

This is a continuation-in-part of application Ser. No.
08/602,386, filed Feb. 16, 1996, which issued as U.S. Pat.
No. 5,742,778, and which is a continuation of application
Ser. No. 08/113,790, filed on Aug. 30, 1993, now aban
doned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an event-driven applica
tion sharing mechanism and, more particularly, to a graphi
cal user interface that enables window events to be con
trolled and used among multiple unrelated Single-user
applications in a concurrent computing engineering context.

2. Description of the Related Art
Although graphical user interfaces (GUIs) have improved

over the years, they are Still predominantly based upon a
Single-threaded dialogue. In a Single-threaded dialogue, a
user operates on one Single command button to invoke one
application or to execute one Single function at a time. These
buttons typically are part of a window of a conventional
windows environment and appear on a Screen display of a
computer System.

In a conventional remote computing environment, a host
computer is coupled to remote computers. Each remote
computer is able to run a Sequential application. Each of the
Sequential applications contained on the remote computers
produce an application window on the host computer. The
user typically resides at the host computer and interacts with
the Sequential applications via each of the host application
windows. Each application window enables the user to input
commands or data for the corresponding Sequential appli
cation or to receive information back from the correspond
ing Sequential application. The commands or other infor
mation are passed back and forth to/from the remote Sites
from/to the host Site using known communication protocols,
Such as UNIX Sockets.

In a Standard client-Server model, the display on the host
computer is the Server, and the Sequential applications are
the clients. The Screen display of the host computer can
Serve the clients on any System in a network. The remote
clients are able to display their windows on the host Screen
display when the display of the host computer (Server) gives
them the access authority.

Typically, as Soon as the user types a character or presses
a button on a window, the window event is delivered by the
Server to the appropriate application (client), the owner of
the window. Input events are private to the application. All
the events occurring on a window will be sent directly to the
application. See, for example, Adrian Nye, “Xlib. Program
ming Manual', O'Reilly & Associates, Inc. July, 1992.

Current sharing technology uses a pseudo-Server to inter
cept (poll) and multiplex window messages from a server to
applications (clients). This approach usually results in a
heavy traffic load and a demand for high bandwidth network
communication linkS.

As illustrated in FIG. 1, a common method used to permit
the same application 106 (client) to share a window appli
cation among multiple workstations 101-104, is to use a
pseudo Server 105 to intercept existing application messages

15

25

35

40

45

50

55

60

65

2
and pass them to each user's workstation 101-104, To the
application 106, the pseudo server 105 appears to be the
actual server. To each user's workstation 101-104, the
pseudo server 105 appears to be the client. The data
eXchanged between the user application 106 and the pseudo
server 105 is identical to the data exchanged between the
pseudo server 106 and the user workstations 102-104.
Because this approach constantly sends messages among
participating WorkStations, it usually generates heavy net
work traffic.

SharedX is an example of a System that uses the Server
extension approach. SharedX extends the X Window System
to allow application sharing by replicating the X protocol
Stream for each of the target windowS. See, for example,
John R. Portherfield “Mixed Blessings” and “HP SharedX”,
HP Professional Volume 5 Issue 9. September, 1991.
Because the X protocol Stream has a relatively high
bandwidth, this approach does not work well for large
numbers of targets or for high bandwidth applications, like
video or manipulation of 3-D models.

There are significant limitations to pseudo-Server or
extended Server types of approaches. Duplicating X protocol
for each target window is a relatively high-bandwidth
operation, effectively preventing real-time sharing of 3-D
rendering or multimedia applications over networks. Under
such a scheme, PHIGS (Programmers Hierarchical Interac
tive Graphics System), PEX (PHIGS Extension to X Win
dow System - - - providing 3-D graphics Support) and
proprietary graphics based applications are not Supported.
Another drawback is that Direct Hardware Access (DHA)
applications bypass the X Server. As a result, one cannot
share real-time rendering modeling.
An alternate prior method uses a separate Simulated

control window to multicast input events and thereby control
concurrent applications. See, Ming C. Hao, Alan H. Karp,
Vineet Singh, “Concurrent Application Control in Collabo
rative Computing", HPL-94-37, April, 1994. Under this
Scheme, a control window is used to Simulate the application
window. With this mechanism, any private window events,
Such as button press/release, key preSS/release, and cursor
motion, can be accessed and distributed among multiple
shared applications. This Scheme overcomes the repetitive
entry problem of the private window approach which
required Simulation of each type of window input fields
(e.g., button, text field) for each application, and also the
inability of private window approaches to multicast window
events to existing graphical user interfaces of program
applications without interpretation. The mechanism can
handle multicasting to different application programs,
dynamically control grouping, ordering or Sequencing of
window events, and permits multicasting of the window
events to nearly simultaneously invoke different action types
or operations in same or different GUI layers. Furthermore,
the Separate control window approach permits access to
existing GUIs at run time without requiring any changes to
the Source code of either the program applications or their
GUIs. Therefore, no recompilation, relinking or Special
libraries are required.

In any case, the above-described known techniques Suffer
from major disadvantages. They are ill-Suited to provide
advanced collaboration Software features or an infrastruc
ture for concurrent engineering design and other applica
tions. They do not permit one to run existing applications
unless commands are entered to a special, custom designed
control window. They also do not allow engineers and
designers working together to share massive Volumes of data
and collaborate over low bandwidth communication net
works (e.g., 56 kbps lines, Internet).

5,844,553
3

Thus, there is an unresolved need for a flexible low
bandwidth concurrent Sharing mechanism that does not
require recompilation or modification of the windowing
language. The mechanism should permit users to come and
go and should be usable over multiple window Systems and
by multiple applications.

SUMMARY OF THE INVENTION

The invention is a method and apparatus that provides a
new technology and infrastructure to permit real-time Shar
ing of existing distributed applications based on capturing
and multicasting window input events.
The user interface enables sharing of many Single-user,

non-modified applications between two or more WorkSta
tions. It provides concurrent sharing of existing multiple
applications with no change in a distributed environment. It
permits real-time Sharing of distributed applications based
on a fundamental window hierarchy mapping and user input
event capture. Control is centralized but the data and pro
gram are replicated. It is event driven with agent assistance.

This mechanism is built on the window hierarchy struc
ture of the applications. The mechanism uses active window
entering, capturing and input event multicasting to distrib
uted window events acroSS different WorkStations.

The new event capturing capability is automatically trig
gered by user interactions on the shared window. The event
capturing capability Starts when the user moves the pointer
into the shared windows. The event capturing ends when the
user moves the pointer out of the shared windows.

The multicasting Scope is defined in a shared window
hierarchy data array. This global data array is dynamically
created at run time on an as-needed basis. Because this
mechanism only processes user input events (commands),
no application data transmission across the network is
required. Therefore, this approach is extremely light-weight
and provides Secure transmission without requiring inten
Sive encryption. Because it is not using pseudo Server
interception, this approach can Support 3-D rendering. Also,
the agent can dynamically mediate resources and normalize
environment differences. This permits real-time sharing of
3-D, graphic and DHA applications.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be readily understood by the following
detailed description in conjunction with the accompanying
drawings, wherein like reference numerals designate like
Structural elements, and in which:

FIG. 1 illustrates a prior art collaboration system based on
interception by a pseudo Server;

FIG. 2 illustrates a multiple workStation System using
collaboration Software;

FIG. 3A illustrates an embodiment of a concurrency
control window graphical user interface;

FIG. 3B is a flow chart illustrating window hierarchy
mapping in the share window;

FIG. 3C is a flow chart illustrating application Sharing
with user interactions,

FIG. 4 illustrates high level flow for input event capturing;
FIG. 5 illustrates the interaction among an embodiment of

the Inter-Access Event Process, the Window Hierarchy
Array Data Area and the Run Lib;

FIG. 6 illustrates parallel processing used to construct a
shared window hierarchy mapping,

FIG. 7 illustrates automatic dynamic window events
capturing as a pointer enters and leaves a window;

1O

15

25

35

40

45

50

55

60

65

4
FIG. 8 illustrates window event mapping used to con

Struct a global shared window data area; and
FIG. 9 illustrates an alternate embodiment for a multiple

WorkStation collaboration System wherein agents are
employed at remote Stations.

DETAILED DESCRIPTION OF THE
INVENTION

Embodiments of the invention are discussed below with
reference to FIGS. 2-9. Those skilled in the art will readily
appreciate that the detailed description given herein with
respect to these figures is for explanatory purposes, however,
because the invention extends beyond these limited embodi
mentS.

The invention concerns a mechanism, Inter-AcceSS Event
Process (IEP), that provides a generic input event capturing
control and distribution technology among multiple Servers
and clients during a concurrent computing Session. IEP
enables users to control and use window events of any
applications. It captures application window events from:
window tree hierarchy mappings, user interactions on the
windows and enter/leave window events. It differs from
prior pseudo-server (interception) methods by not using a
control window to Simulate the application windows and
thereby collect window events to multicast. With this new
feature based on window event mapping and window (enter/
leaving) event capturing, any private window events/states,
Such as button press/release, key press/release, or pointer
motion, can be accessed and distributed among multiple
shared applications after being captured directly from a
window of one of the applications. It is also different from
the traditional method of using a pseudo Server interception
Scheme to intercept (filter) events/messages between the
display (server) and clients (applications). The mechanism
maps window Structure, captures user interaction on the
window and multicasts these events to a Selected Set of
application windows to execute operations concurrently. In
accordance with the invention, an existing Sequential appli
cation can be made distributed with no modification to the
existing System or application Software. The term distributed
as used herein is broadly defined as including both a
distributed computing environment and a multitasking envi
ronment. Distributed computing classically refers to Sepa
rate programs being executed on different computers or
WorkStations, while multitasking refers to Separate programs
being executed on the same computer or WorkStation.
Any application program running under a graphical user

interface (GUI) that captures user events Such as button
preSS/release, key preSS/release or pointer movement can be
run using the invention without change thereto. For
consistency, in the following discussion, embodiments
employing the X windowing system will be described. It is
to be understood, however, that alternate embodiments can
employ other GUIs, for example, the popular Windows,
Macintosh, Motif or OpenLook interfaces.

FIG. 2 illustrates an embodiment of a multiple worksta
tion System using collaboration Software. In FIG. 2, work
stations 110, 120 and 130 are separate workstations possibly
located at different locations. Thus, all WorkStations can be
located at the same location, or the WorkStations can be
Separated by great distances. Each WorkStation is running a
local application having at least one locally displayed win
dow associated with the application. Each application also
operates on a local WorkStation to determine what is dis
played in the associated local window. The concurrency
control window 116 of workstation 110 permits a user of

5,844,553
S

workstation 110 to select which of the other workstations
will receive multicasted events captured by the Inter-AcceSS
Event Process (IEP) 115 as they are entered in window 112.
An example of how this IEP mechanism can be used is in

the field of collaboration. IEP allows engineers or research
erS located at remote sites to view and manage shared
applications among multiple workStations. Unlike the prior
high bandwidth approach such as SharedX, IEP replicates
only the input events among applications running on dis
tributed computers to thereby perform desired functions.
This provides application Sharing through multiple, Synchro
nized instances of the Shared application.

In a simple case, identical copies of a CAD/CAM
(computer aided design/computer aided manufacture) pro
gram and a database file can be resident on each WorkStation.
A user working on a design at WorkStation 110 can press a
button, move a mouse or type a key into window 112. The
user's action will be captured by IEP 115 and multicast to
windows 112, 122 and 132. Applications 113, 123 and 133
then apply the same user action to respective files 114, 124
and 134 and display the result in respective windows 112,
122 and 132. For example, a rotation motion (to cause a 3-D
figure to be rotated a certain amount) can be conducted
directly on window 112. The rotate motion would then be
captured and multicast to windows 112, 122 and 132. Each
application (113, 123 and 133) would receive the motion
event and operate on an associated local database (114, 124
and 134, respectively) to determine and display the rotated
figure.

Although the same figure would be displayed on each
workstation, there would be very little information trans
mitted between the workstations. Only the rotation motion
input event would be multicast. This capability permits the
engineers to collaborate acroSS great distances using low
bandwidth transmission lines. Furthermore, rather than
requiring that the input event be entered into a special
window, it is entered as a direct input event into the
application window. There is no interception processing
performed on the contents of the input event. Another
example of the use of IEP is to provide automatic updates
and replications to Spreadsheets, documents and databases.
With the capability of sharing the same input events, IEP
triggers the corresponding applications to update or replicate
multiple database copies with different contexts spreadsheet/
database/documents Simultaneously. AS will be described
further below, one can also use this input event sharing
technology to build interactive games and to provide many
other multimedia interactive applications.

IEP Features

IEP provides a mechanism to access, control, and distrib
ute private input events directly from/to the application
windows with a plurality of processes interacting concur
rently. The IEP mechanism uses the combination of active
window entering, capturing, and input event multicasting to
distribute window events across different workstations or
Systems.

The IEP mechanism permits a user to access private
window events directly from the application window. It
allows applications to share events among different Systems/
computers. This is accomplished without requiring changes
to the windowing System or to the application to be shared.
Thus, IEP provides a portable, easy to use, and fast mecha
nism to share input events among multiple applications.

IEP is built on a multiple client, multiple server model.
For one embodiment IEP uses standard X window, MOTIF

15

25

35

40

45

50

55

60

65

6
interfaces to access existing application window input
events and distribute them among multiple applications.
IEP is the main inter-access event process. It resides in the

WorkStation which captures and multicasts the input events
to the remote application windows (e.g., Workstation 110 in
FIG. 2).
The IEP StartUp program resides on each workstation.

The main functions of IEP StartUp are to: collect the
application window information; Send the information to
IEP; and store the information in WinDataArea 117 of
Server 110 in FIG. 2.

In FIG. 2, the IEP StartUp program 125 and 135 resides
in workstations 120 and 130. These programs store the
application window hierarchy information of each display
Sever in the WinDataArea 117 on Server 110.

The main functions of IEP include: (1) mapping applica
tion window hierarchy information for window 1-n from the
WinDataArea to build a window inter-access window hier
archy array; (2) entering the application window and cap
turing private window events, Such as button preSS/release,
key press/release, pointer motion . . . , from application
windows when the user's mouse enters the window; and (3)
multicasting the incoming events to windows 1-n.

For example in FIG. 2, IEP 115 (1) maps window infor
mation from the Win DataArea 117; (2) when the user's
mouse enters display 1/window 112, IEP 115 captures an
event from display 1/window 112; (3) based upon the
window hierarchy array, IEP 115 multicasts the event to
display 1/window 122 and display 2/window 132 (in
general, to display n/window m). Afterwards, IEP 115 may
enter display 2/window 132 and capture another event from
display 2/window 132, IEP would then multicast the Second
event to display 1/window 112, display 2/window 132, . . .
and display n/window m.

Before the input events are Sent to application windows
1-N, IEP analyses the events from multiple applications and
puts them in proper execution order. Optionally, IEP can
replicate the event Stream or tailor it for Some targets to
allow for different key codes, colormapS and the like.

Three main functional blocks of IEP are as follows:
Inter-AcceSS Resource Table Creation; Event Capturing and
Notification; and Event Multicasting and Event Sharing.

In the case of Inter-Access Resource Table Creation, IEP
retrieves the Shared application window tree hierarchy data
array information from the WinDataArea. It also creates the
inter-access resource table that contains the global window
hierarchy Structure mapping for all shared applications for
input event capturing and multicasting.

In the case of Event Capturing and Notification, IEP
captures the private events from the shared window under
control of a pointer movement entering/leaving the shared
window. After IEP captures the shared application window
pointer, all the Selected private window events, Such as
button press, release, motion notify, ..., will be reported to
the IEP. IEP defines various types of event handlers to
process each incoming event.

In the case of Event Multicasting and Event Sharing, IEP
provides a grouping function to allow users to Select the
input event distribution Scope. It provides an ordering func
tion to Sequence events from multiple Sources into a proper
execution order. It also provides a multicasting function to
distribute events to the appropriate targets based on the
global window hierarchy data array. After analyzing the
captured input events, IEP orders them if necessary and
Sends the shared input events to the target application

5,844,553
7

windows. Applications automatically trigger their own event
handlers to execute received events. Events are processed
just as they would be if the window events had been directly
entered into the application windows.

Although only one concurrency control window is
depicted in FIG. 2, multiple concurrency control windows
can be employed to permit floor control among the users of
the various WorkStations. In an embodiment wherein each
WorkStation has its own concurrency control window, each
user can enter commands into the Screen of the WorkStation
for that user.

FIG.3 illustrates an embodiment of a concurrency control
window graphical user interface. IEP real-time collaboration
provides a Symmetric, multi-user, multi-application Session.
There is only one Single input Source. It is managed by a
central floor control mechanism. Each concurrency control
window is managed by the floor control mechanism. Only
one user can have the floor at a time and enter events. The
invitation button 212 is used to invite a user to join a shared
Session. The initiator: enters the WorkStation name of the
participants, enters the shared application name, issues an
invitation letter and Starts Video conferencing. Participants
then reply to the invitation (by enteringid, yes/no, etc.) and
use the conferencing control window to join the application
Sharing. This permits Synchronized views. Furthermore,
ease of use is provided because, as is the CAE in applica
tions Such as SharedX, one merely clicks on a window to
begin sharing.

The get floor 204 and free floor 206 buttons are used by
the users to pass control of the sharing among themselves.
A user desiring to have the ability to capture and multicast
events requests the floor by clicking on the get floor button
204. The user having the floor can then relinquish the floor
by clicking on the free floor button 206.

The context buttons (212, 214, 216 and 218) permit the
user having the floor to Select the context and thereby
determine to whom the captured events will be multicast.
One can add shared windows through a mouse click. One
can also construct the shared window data area and query the
pointer/window tree. Thus, for example, context ALL (212)
could cause events to be multicast to all users, whereas
contexts 1, 2 and 3 would only multicast to respective
Subsets of all of users.

The share 208 and unshare 210 buttons permit the user to
dynamically select a window to share. IEP will ask all the
agents to Send the local window hierarchy array to IEP, and
to map data arrays into a global window hierarchy based on
user's needs. A user can enter a local mode whereby events
entered will not be multicast. In the local mode the user can
perform operations on the local application without relin
quishing floor control.

FIG. 3B is a flow chart illustrating window hierarchy
mapping in the share window. This corresponds to the Share
button of the concurrency control window or FIG. 3A. As
illustrated in FIG. 3B, IEP grabs the pointer and a user clicks
on the shared window. If the window has been shared before,
then the input events to share are Selected before the pointer
is released.

If, on the other hand, the window has not been shared
before, add window tree requests are Sent to all participants
(agents) that are sharing. The process waits until all of the
participants have replied and then the global window hier
archy data array is Set using the information from the
participants.

FIG. 3C is a flow chart illustrating application Sharing
with user interactions and describes concurrency control

15

25

35

40

45

50

55

60

65

8
window input focus. IEP waits for an enter window event.
When the window is entered, IEP grabs the pointer and then
IEP waits for input events.
Upon receiving button press/release, keyboard or motion

events, IEP multicasts the events to all participating appli
cations and then waits for more input events. Upon receiving
a shared window destroy, IEP removes the window from the
global window hierarchical array and then waits for another
enter event. Upon receiving a leaving event, IEP waits for
another enter event.

FIG. 4 illustrates high level flow for event capturing
processing flow used for concurrency control of multiple
application execution. An embodiment having automatic
window Sharing and unsharing is depicted. An array of
shared window hierarchy Ids and resources is maintained
(302) for appi), childi). Different things happen as the
pointer enters and leaves a shared child window (304).
When the user moves the pointer into the shared window and
performs an action (e.g., motion, button press, key entering,
or leaving, the window), it sends an input event (306), the
input event is captured by IEP (308) and processed (310).
Then, the processed input event is multicast to all shared
windows (312) and the associated applications are invoked
(318). Alternately, when the pointer leaves the shared win
dow (314), the captured child window is released (316). No
event will be sent to IEP.

Capturing removes application Specific information Such
as buttons that are used for button events. A text field is used
for key preSS/release events. IEP provides generic window
Sharing. Share begins when a shared window is entered and
ends when the window is left. That shared window may be
a button or text field.
The IEP child window data area uses information from the

shared application window tree Structure. Its purpose is to
find corresponding application window ids, characteristics
and child windows. One can use a mouse to click and
thereby to dynamically add an application window to a
working task Set. A Series of query window child/parent
relationship protocols are used to find application window
structure and their child windows (buttons, text fields, and
the like). One can map (i.e., build relationships) for shared
application windows by building ChildWinDataArea for
event capturing and multicasting.
The IEP proceSS logic is driven by events Such as mouse,

keyboard or cursor movement events. The dynamic shared
window data area is an array of shared window/child win
dow Id mappings for appi, wini). Setup is used to update
new comers and dropouts. AS the pointer enters and leaves
a shared window or child window various things happen.
When an the user's mouse enters the shared window, the
input events are captured and will be sent to IEP rather than
to the client that would normally have received the event.
Input events are then multicast to all shared windows. An
input event will not be captured when the user's mouse
leaves the Shared window. Leaving an event causes captured
shared windows or child windows to be released When the
user moves the pointer out of the shared window, Sharing
will be ended.

Generic application sharing control provides a framework
for application Sharing management of real-time 3-D
modeling, PHIGS, video, and the like. It provides: generic
window input, multiple applications sharing, and permits
environmental difference (e.g...size, font, color).

FIG. 5 illustrates the interaction among Inter-Access
Event Process 506, the Window Data Array 502 and the Run
Lib 504. Included in Inter-Access Event Process 506 are

5,844,553
9

inter-access resources table 508, event capturing/notify 512
and event distribution and multicasting 514.

IEP 506 is a mechanism that is built on a multiple
client-Server model. The mechanism is built on a basic
window hierarchy Structure and contains event mapping and
capturing components. The application sharing technology
is achieved through a fundamental window tree mapping
and user interaction.
The approach is to access, control and distribute input

events automatically triggered by the user interactions on the
application window. Instead of using the pseudo Server
Scheme to intercept (filter) window messages, we use the
fundamental window System Structure and a concurrent
event control mechanism to map 508, capture 512, and
multicast 514 window events.

Using window hierarchy Structures instead of window
attributes, IEP incorporates a way to automatically map a
window located at one site to windows located at other Sites
that correspond to the Same position in the window hierar
chy. IEP communicates with each agent residing at different
WorkStations to construct various instances of the one-to-one
parent-child window mapping.

FIG. 6 illustrates a generic window tree mapping from the
window at display 1, ..., to display N. When the user having
the floor selects a shared application window (620), IEP gets
(622) the window hierarchy data array information for each
application window being shared (624). The window hier
archy data array for each shared application is sent (624) to
IEP so that IEP can then construct a shared application
window data array (628).

For example, the child window 6C of display 1 is mapped
to child window 9C of display N. When the user processes
the window at 6C, the input event will be concurrently
multicasted to the corresponding child window 9C. Thus, if
the window at 6C is a button, then a button press event will
be triggered at window 9C when the window 6C button is
pressed.

Although Symmetric window hierarchies for the displayS
are shown in FIG. 6, this need not be the case. Thus, for
example rather than mapping the child window 6C of
display 1 to child window 9C of display N, one can map
child window 6C of display 1 to child window 98 of display
N. This mapping can be accomplished even though 6C and
98 are radically different windows having radically different
attributes.
An IEP event capturing process is shown in FIG. 7. The

input events are captured when the user moves the pointer
into the Shared window. An event from the pointer, key or
button is sent to IEP rather than to the client that would
normally have received the event. IEP processes the event
and then multicasts the event to the appropriate shared
application windows, thereby causing functions associated
with the event to be executed concurrently.

In contrast to the pseudo Server interception mechanism
that has been used to share applications, IEP uses a new
event capturing mechanism to share existing applications
without modification. As illustrated in FIG. 7, IEP captures
window input events on window 1 when the user's pointer
enters (702) window 1. The event capturing from window 1
ends when the user's pointer leaves window 1 (704).
An IEP event processing Session builds on a Standard

window inter-client communication (e.g., an X window
client communication). Session management and floor pass
ing are handled in IEP using a six part Structure: define
IEP agent communication, the IEP window hierarchy data
array, IEP Lib, Session management, shared/unshared
applications and floor controls.

15

25

35

40

45

50

55

60

65

10
Define IEP agent communication is used to initiate con

nect and define shared atoms. It also includes IEP Connect
that builds the share control window and defines commu
nication atoms/windows. Thus, define IEP agent commu
nication initializes the IEP window hierarchy data array
shared atoms, windows and resources.
The IEP Lib is used by session management, shared/

unshared applications and floor control Sections to update
the IEP window hierarchy data array. Thus, IEP Lib is the
IEP runtime library (i.e., Run Lib 504 of FIG. 5). It contains
Various protocols for window initiation/allocation/
asSociation, and event capturing/multicasting.

For example, an embodiment of IEP Lib contains the
following components:
IEP INIT to initialize a shared application session.
IEP DATA: to construct an inter-access multi-window

data area.

IEP ENTER: to enter a shared application window.
IEP CAPTURE: to capture shared application window.
IEP MCAST: to multicast input events to shared appli

cations.
Session management is used to establish a Session and

provides Support for multiple Sessions. An embodiment of
session Management includes: SCW (session control
window), receive service (invitation), IEP Bulletin (open
communication windows), IEP App and IEP Exit.

Floor control provides focus change. Floor control
handles one single input source; IEP GetFloor/IEP
FreeFloor; an explicit basic floor control mechanism and
open floor policies.

Finally, the shared/unshared applications provide agent
assistance for shared/unshared applications. This includes
IEP Capture of motion, key and button events; IEP ESP
for multicast, click/ease of use; and IEP Visual to identify
shared windows.
With regard to application programming interface (API),

IEP library calls provide a runtime library 504 and are used
for event capturing/multicasting/sync/session management
and floor control. One part of IEP lib is IEPShareWin/
IEPShareApp that is made up of IEP Button, IEP Motion
and IEP key to handle button, pointer and text, respec
tively. Also part of IEP lib are: IEP agent (session), IEP
connect (atom), IEP floor (getFloor, freeFloor, time), IEP
Capture (private win event), IEP getWin sendWin (event
proc), IEP sync (make views consistent) and IEP
VisualCue (ease of use).

FIG. 8 illustrates parallel actions used to construct a
shared window data area. Generic window capturing begins
with a click on the Select shared application window button
802. This, in turn, causes the retrieval of the selected
window name 804.
ASSuming three agents, the three agents will perform the

following actions in parallel: query select window 806, build
window hierarchy data array 808 and send the window
hierarchy data array 810 to IEP. The shared win data area
will then be constructed by IEP from this information 812.

FIG. 9 illustrates an alternate embodiment for a multiple
WorkStation collaboration wherein agents are employed at
remote stations. Thus, IEP can be extended from a central
ized IEP (illustrated at FIG. 2) to a distributed IEP. The
overall distributed architecture is shown in the FIG. 9. The
IEP 902 has a Session manager to map input events, capture
input events from multiple application windows, put them in
proper execution order (based on floor control policy), and
then multicast them to each corresponding application win
dow. The advantage of using a distributed IEP operation is

5,844,553
11

that causing remote event capture to be performed locally
further reduces network traffic. Also, each local agent can
mediate any environmental differences.

Regardless of whether or not IEP is distributed, IEP also
permits application window event mapping. That is, IEP
makes it possible for events typed in an application window
to be multicast to other windows which may be owned by
another instance of the same application with identical
window Structure, another instance of the same application
with different window structure, or a completely different
application. The first situation can be called a "homoge
neous” environment; the last, “heterogeneous”. The middle
case then becomes "semi-homogeneous”. In all three cases,
there are times when it is important for the user to be able
to control the mapping of the window objects to those on
other windows. In a heterogeneous environment, one must
connect different fields together. For example, when a user
pushes the “execute” button on one window, the “go' button
will be pressed on the window of another application, and
the “run” button on a third.
One may also need a mapping in a Semi-homogeneous

environment where there are different versions of the same
application being used. For example, the version running on
a WorkStation made by one manufacturer may have the
buttons at the top of the window while the version on a
WorkStation made by another manufacturer has them at the
bottom. Or, a newer release of the same application, may
have combined the functions of two button presses of a
previous version into one.

Even in the case of a homogeneous environment, one may
need the mapping function. In the case where windows are
sized differently, a click on one button will cause similar
clicks to be multicast. This can be done because IEP maps
the button child windows, rather than mapping Screen pixel
locations.
More elaborate mappings can be made. Consider an

interactive game, Say a tank battle. This game falls into the
Set of homogeneous applications because each player views
the same window configuration, even though the battlefield
views will be different.
Some buttons should be mapped to all instances of the

game, for example, "Time Out'. When a player presses the
“Fire' button, however, that player does not want the “Fire”
button on the window of an opponent to be pressed. Other
mappings may be of interest. For example, when a player
locks a “Guided Missile' onto an opponent, the other player
may wish to have a “Radar Lock' indicator turn on. IEP
allows one to provide all these functions without Sending
Specially constructed messages among instances of the game
running on different computers.

IEP incorporates a mechanism to map an object in one
window to an object in another window. One way to
implement the mapping function is for IEP to read a file
during Start-up that describes the meaning of each object in
the application window. Various instances of IEP then com
municate this information to each other to provide the
complete mapping.

This file can be created in a number of ways. One way is
for a perSon to create the file manually. For example, when
Writing a game program, the programmer will know which
buttons get shared, which are not shared, and which turn
certain events on and off in windows of other players. This
file may have a format like

5

15

25

35

40

45

50

55

60

65

Buttons: “Tank Battle

Function Label Scope

Shoot Fire: Local
Pause Time Out: All

In other situations, one may wish to create the mapping
interactively. In this case, the user of the applications may
bring up windows and invoke an IEP Map-Window func
tion. The user would use mouse clicks to connect together
those buttons that are to be pressed Simultaneously. Asample
Sequence might begin with the user clicking on a button
labeled “Map object”. The user would then click on an
object in one window and then click on a corresponding
object in another window. Finally, the user would click on a
button labeled “End mapping”. The IEP Map-Window func
tion would then create a file with entries describing the
mapping.
For example, the file for two versions (i.e., versions 1.0

and 2.0) of the same program might have entries like:

Buttons: Version-1.0 Version-2.0

Function Label Label Scope

Input Read File Read Fle All
Output Save Fle Save All
Savef(uit Done All
Quit Cancel Quit All

In this notation, when a user presses “Done” in Version
2.0 of the program, IEP would send the events for “Save
File’ then “Cancel to Version-1.0.

After this file exists, it can be read by IEP upon applica
tion Start-up just as though it had been created manually. The
instances of IEP can then associate the buttons on these
applications using the information in these files.

These examples of the contents of the configuration files
are illustrative only; other mechanisms to describe Similar
function are possible.

Thus, it can be seen that IEP is the foundation of sharing
applications among multiple workStations and can be used in
many situations. It captures and multicasts events from the
application windows directly without depending on Simu
lated child windows, Such as the buttons, text fields for event
multicasting.
IEP broadens the usage of application sharing. Also, it

removes server platform dependency. Therefore, IEP is
portable. In addition, it is easy to use. The startup for IEP is
very simple because it only requires the user to provide the
names of the applications and WorkStations which the user
wants to access. Furthermore, it permits a user to multicast
commands that are input directly to the window of an
application using the Standard GUI of the application. This
application sharing technology can assist real time remote
consultation and collaborative work among users viewing
Same images and data Sets. It also provides for high Security
in applications because of the use of window event capturing
and multicasting to replicated Servers and databases. There
is no output data Sent acroSS the network.
IEP has application in many areas. For example, it can be

used in concurrent engineering to permit the Sharing of an
unmodified CAD/CAM application or the sharing of 3-D
modeling/rotation, for a multi-client, multi-server System.
IEP can be used to simultaneously update different
documents/spreadsheets from a single Source. IEP can be

5,844,553
13

used with a world-wide-web browser to permit the sharing
of a HTML (hypertext markup language) document. It can
be used as a video player to present real-time presentation by
sharing video/audio (e.g., MPEG files). It can also be used
as an interactive visualization debugger when performing
distributed/parallel debugging of multiple clients of a single
SCWC.

The many features and advantages of the invention are
apparent from the written description and thus it is intended
by the appended claims to cover all Such features and
advantages of the invention. Further, because numerous
modifications and changes will readily occur to those skilled
in the art, it is not desired to limit the invention to the exact
construction and operation as illustrated and described.
Hence, all Suitable modifications and equivalents may be
resorted to as falling within the Scope of the invention.
What is claimed is:
1. An inter-access event protocol (IEP) graphical user

interface for a windows computing environment, compris
ing:
means for capturing private input events, and
means for multicasting the captured input events based
upon a window hierarchical data array.

2. A graphical user interface as recited in claim 1,
wherein the IEP handles motion, button and keyboard

event capturing.
3. A graphical user interface as recited in claim 1,
wherein the IEP provides generic window hierarchy tree

creation and mapping.
4. A graphical user interface as recited in claim 1,
wherein the IEP handles the processing of shared and

unshared applications.
5. A System for capturing window events and multicasting

the window events to a plurality of application programs,
Said System comprising:

at least one remote computer having at least a first running
application program residing thereon, and

a host computer, operatively connected to Said remote
computer, having a display Screen, an inter-acceSS
event process procedure, and at least a Second running
application program residing thereon, Said display
Screen captures incoming window events for Said Sec
ond running application program and forwards the
window events to Said inter-access event process
procedure, and Said inter-access event proceSS proce
dure multicasts the window events to Said first and
Second running application programs.

6. A system as recited in claim 5, wherein the window
events captured are motion, button and keyboard events.

15

25

35

40

45

14
7. A system as recited in claim 5, wherein a subset of the

captured window events are grouped.
8. A system as recited in claim 5, wherein a subset of the

captured window events are ignored.
9. A system as recited in claim 5, wherein at least one of

the captured window events is mapped to another event and
multicast as the other event to at least one of the running
applications.

10. A method for multicasting window events to applica
tion windows of running window-based application
programs, Said method comprising:

capturing an incoming window event when a pointer is in
a window;

Selecting a plurality of the application windows which are
to receive the window event; and

multicasting the window event to the plurality of the
application windows Selected to receive the window
event based on a window hierarchical data array.

11. A method as recited in claim 10, wherein the step of
multicasting includes multicasting the window event to first
and Second windows wherein:

the first window corresponds to a first window-based
application program running on a first computer; and

the Second window corresponds to a Second window
based application program running on a Second
computer, different from the first computer.

12. A method as recited in claim 10, wherein the step of
multicasting the window event includes multicasting the
window event to first and second child windows wherein:

the first child window corresponds to a first window
based application program; and

the Second child window corresponds to a Second
window-based application program; and

wherein the first and Second window-based application
programs are running on the same computer.

13. A method as recited in claim 10, wherein the step of
capturing includes receiving the incoming window event
based upon the pointer entering the window having the
incoming window event.

14. A method as recited in claim 10, wherein the step of
Selecting includes Selecting the plurality of the application
windows which are to receive the window event based upon
a mapping window hierarchy.

15. A method as recited in claim 10, wherein the mapping
window hierarchy includes child windows.

