
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

1 
11

9 
80

6
B

1
*EP001119806B1*
(11) EP 1 119 806 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
10.12.2003 Bulletin 2003/50

(21) Application number: 99949181.4

(22) Date of filing: 08.10.1999

(51) Int Cl.7: G06F 9/445

(86) International application number:
PCT/GB99/03334

(87) International publication number:
WO 00/022520 (20.04.2000 Gazette 2000/16)

(54) CONFIGURING SYSTEM UNITS

KONFIGURIERUNG VON SYSTEMEINHEITEN

CONFIGURATION D’UNITES DE SYSTEME

(84) Designated Contracting States:
DE FR GB IE NL

(30) Priority: 09.10.1998 GB 9822132
21.12.1998 GB 9828200

(43) Date of publication of application:
01.08.2001 Bulletin 2001/31

(73) Proprietor: Sun Microsystems, Inc.
Santa Clara, California 95054 (US)

(72) Inventors:
• BROWN, Roger, S.

London E14 3JY (GB)

• ROLES, Karen C.
Send Surrey GU23 7ED (GB)

• APPLEBAUM, Simon G.
Eton Wick Berkshire SL4 6NB (GB)

(74) Representative: Harris, Ian Richard
D. Young & Co.,
21 New Fetter Lane
London EC4A 1DA (GB)

(56) References cited:
EP-A- 0 584 909 US-A- 5 768 568
US-A- 5 787 019



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

2

Description

BACKGROUND OF THE INVENTION

[0001] The invention relates to the integration of a unit in an apparatus, for example, for configuring a field replaceable
unit (FRU) into apparatus such as a computer system.
[0002] FRUs can be used in many different systems. They find particular but not exclusive application to computer
systems, for example to fault tolerant computer systems where it is desirable to be able readily to replace units which
have developed a fault or have been superseded by a more recent version.
[0003] Examples of FRUs for such a system can include, for example, a CPU, a PCI card, power supply units (PSUs),
a motherboard, or any other system components. One FRU, for example a field replaceable card, can include hardware
for implementing several devices (e.g. a multiple Ethernet adapter, or a SCSI adapter with an Ethernet adapter).
[0004] It is known to provide FRUs with non-volatile memory (e.g. EEPROMs), which can contain information relating
to the FRU. In a known system, FRUs can include basic FRU identification information in the non-volatile memory.
[0005] It is also known to provide a system management suite, collectively known as a configuration management
system (CMS) which manages the FRUs, other devices and system resources using objects to represent the FRUs,
devices and other system resources. An object forms a particular instance of a CMS class, which is defined by a CMS
definition (CMSDEF).
[0006] For example, a CAF (Console and Fans unit) CMSDEF defines the CAF CMS class of which the object CAF_1
is an instance that represents a particular CAF FRU. The CAF_1 object may have an attribute called LOCATION having
the value A_CAF, indicating that the FRU represented by the CAF_1 object has been inserted into location A_CAF in
the chassis of the computer system.
[0007] A problem when initiating a system is to establish an initial configuration for the system, by supplying initial
values to object attributes which represent that configuration.
[0008] In the known system mentioned above, the CMS used a chassis type number read from the EEPROM of
control-panel FRU to establish a default configuration for the system. However, this provided only a crude configuration
for the system, as it relied in effect on 'fine-tuning' a pre-defined configuration to the specific needs of that type of
system. Only 'standard' parts of the configuration (e.g. the boot disks and their controllers and the CPUs) could be
established in this way so much of the more complex configuration (e.g. serial ports) had to be performed manually.
[0009] US Patent 5,809,329 describes a system for managing the configuration of devices of a computer system.
Device information is obtained to uniquely identify each device and to describe the device characteristics associated
with device operation. To obtain device information, a particular device is detected on a selected system bus and
thereafter assigned an identification code that uniquely identifies the detected device. A system bus code, which unique-
ly identifies the selected system bus, is appended to the identification code, thereby forming a device identification
code associated with the particular device. Logical configuration data, which supplies configuration requirements for
device operation, is also obtained for the detected device. This data collection process is repeated until device infor-
mation is obtained for each of the devices connected to the selected system bus. Resources are allocated to each
device based on the device identification code and the logical configuration data. This resource allocation process
prevents a potential conflicting use of the resources by the devices. A device driver, which enables communications
between the corresponding device and the computer system, is identified and loaded for each of the devices in response
to the device information. If the computer system contains more than one system bus, then the tasks of collecting
device information, allocating resources, and identifying and loading device drivers are completed for each of the
remaining system buses.

SUMMARY OF THE INVENTION

[0010] Various aspects of the invention are set out in the accompanying independent and dependent claims.
[0011] One aspect of the invention provides a method of automatic configuration of a unit forming a component of
an apparatus, the method comprising: accessing class information held in the unit on insertion of the unit into the
apparatus prior to integrating the unit functionally in the apparatus, said class information representing an object class
for the unit; using the accessed class information to reference, in storage in the apparatus separate from the unit,
object definitions for the class of unit, which object definitions include initialization code operable on receipt of the
accessed class information to produce object configuration statements for the unit that comprise at least one of the
object class for the unit, an object instance number, an attribute name and a value for the attribute; and verifying the
validity of the configuration information and, where the configuration information is valid, storing the configuration in-
formation in a configuration file for the apparatus including a location of the unit in the apparatus to enable the functional
integration of the unit in the apparatus.
[0012] Another aspect of the invention provides apparatus comprising: a plurality of units that each include unit



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

3

storage for holding class information for the unit that represents an object class for the unit; a configuration mechanism
operable: to access class information held in the unit on insertion of the unit into the apparatus prior to integrating the
unit functionally in the apparatus, said class information representing an object class for the unit; to use the accessed
class information to reference, in storage in the apparatus separate from the unit, object definitions for the class of
unit, which object definitions include initialization code operable on receipt of the accessed class information to produce
object configuration statements for the unit that comprise at least one of the object class for the unit, an object instance
number, an attribute name and a value for the attribute; and to verify the validity of the configuration information and,
where the configuration information is valid, to store the configuration information in a configuration file for the apparatus
including a location of the unit in the apparatus to enable the functional integration of the unit in the apparatus.
[0013] A configuration management system program can be operable on this apparatus to perform the steps of this
method.
[0014] By initially accessing the class information for the unit, and deriving initial configuration information (configu-
ration statements) from class information prior to functional integration of the unit, rapid and reliable integration of the
unit can be achieved.
[0015] The class information can be held in non-volatile memory (e.g., in an EEPROM) in the unit. This information
can be read on inserting the unit into the system and can be used to establish the initial configuration prior to full
integration of the unit into the system.
[0016] In an embodiment of the invention, a unit contains information defining one or more configuration management
system (CMS) classes for a FRU. A management class is identified for managing the FRU.
[0017] Verification of the derived configuration information can be employed to check on the operability and com-
patability of the unit to other units in the system prior to integration thereof.
[0018] More detailed information regarding the unit, for example relating to the configuration of devices in the unit,
can be effected in a second stage. For example, in an embodiment of the invention, a FRU contains information defining
a configuration management system (CMS) class for the unit. The unit can include one or more devices (resources),
and each device can be associated with its own CMS class as well. The CMS class information for the unit can be
accessed and used to derive the initial configuration information for the unit. The class information for the devices can
then be accessed and used for further configuring those devices.
[0019] The CMS class information stored in the unit can be in the form of a name for the class of unit, which is used
to identify or point to configuration code for configuring that class of unit. The configuration code can form part of the
object definitions (CMS definitions) which are held outside the units, for example in computer system memory, on a
disk, or at a remote site via a telecommunication interface. The CMS class information effectively performs the function
of providing a handle for accessing the means for generating the initial configuration.
[0020] Holding the configuration code and the definitions for the units outside those units provides for a flexible
configuration of the units. For example, an Ethernet card might typically include information such as its MAC address
preconfigured into it. With an embodiment of the invention, this information can instead be held as part of the CMS
definition for a class and instance of the unit, so that when a card is replaced, the card can be configured in a reliable
and repeatable manner using a standard definition. By storing configuration information as part of the CMSDEFs when
a card is initially installed, subsequent configuration when the card is replaced is facilitated, the information needed
for this thus being already held in the system. This is particularly important in a fault tolerant system, where continuity
is required across hardware failures and replacement and repair. Thus, an embodiment of the invention can facilitate
fault tolerance management and thereby facilitate the management of hot-swappable FRUs.
[0021] In one embodiment, the CMS class information from a unit identifies one of a number of possible configuration
management system (CMS) definitions (CMSDEFs) which can be used to control the management of that class of
unit. A CMS definition includes declarations, attributes (including relationships with other objects), state evaluations
(statements for evaluating the states of objects), and transition code which is executed when a transition occurs be-
tween the states of an object. Optionally associated with a CMSDEF is an initialization script forming the configuration
code. This configuration code can emit configuration statements for the object. This script can be permitted to interro-
gate the non-volatile memory in the unit (e.g., a FRU) for further information (e.g. device properties such as MAC
address) and receives as arguments the class for the unit and an instance of the unit. The instance number is generated
by an initialization component of the configuration management system (CMS) (which can be in the form of a program
called CMSINITIALIZE).
[0022] To establish the initial configuration, the initialization component probes each location in the computer system
chassis, and when the location is occupied by a unit with storage for a class information, the class information for that
unit is read.
[0023] The initialization component derives a pathname for the initialization script from the CMS management class
name for the unit as stored therein. If the initialization script is present, it is executed, with the class name and the
instance number (i.e. an integer per class, starting at zero, and incremented by one each time that class initialization
script is invoked), and the location of the unit, as arguments.



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

4

[0024] The output from the script, which is in the form of a set of object configuration data for the respective units
(FRUs), is collected by the initialization component and is stored in a configuration file. On subsequent invocations of
the system, this configuration file can be used as the source of the configuration information.
[0025] A configuration management system daemon (CMSD) can be configured to be sensitive to bad configuration
data. Accordingly, the object configuration data for each object (FRU device) is passed to the CMSD. The CMSD is
operated in a test mode to verify the object configuration data. The initialization component only saves the object
configuration data for a particular unit if it is acceptable to the CMSD.
[0026] As an alternative to providing CMS class information in the form of a reference (e.g., name or a pointer) for
identifying CMSDEFs and initialization scripts which are not held in the unit to be integrated, the storage could contain
the CMSDEF and initialization scripts directly. However, this would of course require more storage in the FRU for this
information, rather than reference to the information. It would also reduce the overall flexibility of the system.
[0027] The initialization script could be arranged to access the FRU non-volatile memory for further information such
as a MAC address and other FRU specific information, required for configuration.
[0028] The configuration management system can be in the form of one or more computer programs comprising
computer code, or instructions, defining the functionality of the configuration management system.
[0029] Accordingly, an aspect of the invention also provides a carrier medium carrying at least an initialization com-
ponent of a configuration management system. The initialization is component configured to access class information
held in a unit of the apparatus and to use the accessed class information for deriving an initial configuration for the unit.
[0030] The carrier medium can be any form of carrier medium for carrying computer program code, whether that be
a magnetic, optical or any other form of data storage such as a tape, disk, solid state, or other form of storage providing
random or read-only or any other form of access, or a transmission medium such as a telephone wire, radio waves, etc.
[0031] The operations indicated above are effected on initiation of the system. However, they could optionally be
also effected during running of the system for changing a configuration.
[0032] The storage in the unit can contain much more information in each volatile memory than that described above.
[0033] For example, it can additionally be used to store certain status information relating to the system operation,
in order that the state of the system can be consistent across re-starts.
[0034] Also it can be used to store a history for the unit. This information could then be used off-line at some later
stage, (for example on return of an allegedly faulty FRU) to establish whether it is the FRU or, perhaps, a slot in which
it has been inserted, which is faulty.
[0035] Although the invention finds particular application to a configuration management system responsive to con-
figuration management system definitions, the invention could also be applied to other forms of system and network
management. For example, in a Telecommunications Management Network (TMN) environment, the memory of a unit
could contain (either directly, or via a reference to a disk file) the GDMO definitions of the unit and its devices, and
these could be passed to a local agent and a remote manager to allow the unit to be managed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] Exemplary embodiments of the present invention will be described hereinafter, by way of example only, with
reference to the accompanying drawings in which like reference signs relate to like elements and in which:

Figure 1 is a schematic overview of a fault tolerant computer system incorporating an embodiment of the invention;
Figure 2 is a schematic overview of a specific implementation of a system based on that of Figure 1;
Figures 3 and 4 are schematic diagrams of examples of processing sets;
Figure 5 is a schematic block diagram of an embodiment of a bridge for the system of Figure 1;
Figure 6 is a schematic representation of a physical configuration of a computer system chassis with field replace-
able units locatable in respective slots;
Figure 7 is a schematic representation of configuration management system representation of the physical con-
figuration of Figure 7;
Figure 8 is a device hierarchy model and Figure 9 is a service hierarchy model;
Figure 10 illustrates the relationships between a configuration management system daemon and further compo-
nents of the computer system;
Figures 11, 12 and 13 represent various stages in initiating a configuration system daemon;
Figure 14 is a flow diagram illustrating the operation of a process monitor;
Figure 15 illustrates details of the operation of the process monitor;
Figure 16 is a flow diagram illustrating handing over of one process to another;
Figure 17 is a schematic representation of a FRU in a chassis slot;
Figure 18 represents a configuration file;
Figure 19 represents an example of CMSDEFs and associated instances and attributes;



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

5

Figure 20 is a flow diagram illustrating the process of configuring a FRU.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0037] Figure 1 is a schematic overview of a fault tolerant computing system 10 comprising a plurality of CPUsets
(processing sets) 14 and 16 and a bridge 12. As shown in Figure 1, there are two processing sets 14 and 16, although
in other embodiments there may be three or more processing sets. The bridge 12 forms an interface between the
processing sets and I/O devices such as devices 28, 29, 30, 31 and 32. In this document, the term "processing set" is
used to denote a group of one or more processors, possibly including memory, which output and receive common
outputs and inputs. It should be noted that the alternative term mentioned above, "CPUset", could be used instead,
and that these terms could be used interchangeably throughout this document. Also, it should be noted that the term
"bridge" is used to denote any device, apparatus or arrangement suitable for interconnecting two or more buses of the
same or different types.
[0038] The first processing set 14 is connected to the bridge 12 via a first processing set I/O bus (PA bus) 24, in the
present instance a Peripheral Component Interconnect (PCI) bus. The second processing set 16 is connected to the
bridge 12 via a second processing set I/O bus (PB bus) 26 of the same type as the PA bus 24 (i.e. here a PCI bus).
The I/O devices are connected to the bridge 12 via a device I/O bus (D bus) 22, in the present instance also a PCI bus.
[0039] Although in the particular example described, the buses 22, 24 and 26 are all PCI buses, this is merely by
way of example, and in other embodiments other bus protocols may be used and the D-bus 22 may have a different
protocol from that of the PA bus and the PB bus (P buses) 24 and 26.
[0040] The processing sets 14 and 16 and the bridge 12 are operable in synchronism under the control of a common
clock 20, which is connected thereto by clock signal lines 21.
[0041] Some of the devices including an Ethernet (E-NET) interface 28 and a Small Computer System Interface
(SCSI) interface 29 are permanently connected to the device bus 22, but other I/O devices such as I/O devices 30, 31
and 32 can be hot insertable into individual switched slots 33, 34 and 35. Dynamic field effect transistor (FET) switching
can be provided for the slots 33, 34 and 35 to enable hot insertability of the devices such as devices 30, 31 and 32.
The provision of the FETs enables an increase in the length of the D bus 22 as only those devices which are active
are switched on, reducing the effective total bus length. It will be appreciated that the number of I/O devices which may
be connected to the D bus 22, and the number of slots provided for them, can be adjusted according to a particular
implementation in accordance with specific design requirements.
[0042] Figure 2 is a schematic overview of a particular implementation of a fault tolerant computer employing a bridge
structure of the type illustrated in Figure 1. In Figure 2, the fault tolerant computer system includes a plurality (here
four) of bridges 12 on first and second I/O motherboards (MB 40 and MB 42) order to increase the number of I/O
devices which may be connected and also to improve reliability and redundancy. Thus, in the embodiment shown in
Figure 2, two processing sets 14 and 16 are each provided on a respective processing set board 44 and 46, with the
processing set boards 44 and 46 'bridging' the I/O motherboards MB 40 and MB 42. A first, master clock source 20A
is mounted on the first motherboard 40 and a second, slave clock source 20B is mounted on the second motherboard
42. Clock signals are supplied to the processing set boards 44 and 46 via respective connections (not shown in Figure
2).
[0043] First and second bridges 12.1 and 12.2 are mounted on the first I/O motherboard 40. The first bridge 12.1 is
connected to the processing sets 14 and 16 by P buses 24.1 and 26.1, respectively. Similarly, the second bridge 12.2
is connected to the processing sets 14 and 16 by P buses 24.2 and 26.2, respectively. The bridge 12.1 is connected
to an I/O databus (D bus) 22.1 and the bridge 12.2 is connected to an I/O databus (D bus) 22.2.
[0044] Third and fourth bridges 12.3 and 12.4 are mounted on the second I/O motherboard 42. The bridge 12.3 is
connected to the processing sets 14 and 16 by P buses 24.3 and 26.3, respectively. Similarly, the bridge 4 is connected
to the processing sets 14 and 16 by P buses 24.4 and 26.4, respectively. The bridge 12.3 is connected to an I/O databus
(D bus) 22.3 and the bridge 12.4 is connected to an I/O databus (D bus) 22.4.
[0045] It can be seen that the arrangement shown in Figure 2 can enable a large number of I/O devices to be con-
nected to the two processing sets 14 and 16 via the D buses 22.1, 22.2, 22.3 and 22.4 for either increasing the range
of I/O devices available, or providing a higher degree of redundancy, or both.
[0046] Figure 3 is a schematic overview of one possible configuration of a processing set, such as the processing
set 14 of Figure 1. The processing set 16 could have the same configuration. In Figure 3, a plurality of processors
(here four) 52 are connected by one or more buses 54 to a processing set bus controller 50. As shown in Figure 3,
one or more processing set output buses 24 are connected to the processing set bus controller 50, each processing
set output bus 24 being connected to a respective bridge 12. For example, in the arrangement of Figure 1, only one
processing set I/O bus (P bus) 24 would be provided, whereas in the arrangement of Figure 2, four such processing
set I/O buses (P buses) 24 would be provided. In the processing set 14 shown in Figure 3, individual processors operate
using the common memory 56, and receive inputs and provide outputs on the common P bus(es) 24.



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

6

[0047] Figure 4 illustrates an alternative configuration of a processing set, such as the processing set 14 of Figure
1. Here a simple processing set includes a single processor 72 and associated memory 76 connected via a common
bus 74 to a processing set bus controller 70. The processing set bus controller 70 provides an interface between the
internal bus 74 and the processing set I/O bus(es) (P bus(es)) 24 for connection to the bridge(s) 12.
[0048] Accordingly, it will be appreciated from Figures 3 and 4 that the processing set may have many different forms
and that the particular choice of a particular processing set structure can be made on the basis of the processing
requirement of a particular application and the degree of redundancy required. In the following description, it is assumed
that the processing sets 14 and 16 referred to have a structure as shown in Figure 3, although it will be appreciated
that another form of processing set could be provided.
[0049] The bridge(s) 12 are operable in a number of operating modes. In a first, combined mode, a bridge 12 is
operable to route addresses and data between the processing sets 14 and 16 (via the PA and PB buses 24 and 26,
respectively) and the devices (via the D bus 22). In this combined mode, I/O cycles generated by the processing sets
14 and 16 are compared to ensure that both processing sets are operating correctly. Comparison failures force the
bridge 12 into an error limiting mode (EState) in which device I/O is prevented and diagnostic information is collected.
In a second, split mode, the bridge 12 routes and arbitrates addresses and data from one of the processing sets 14
and 16 onto the D bus 22 and/or onto the other one of the processing sets 16 and 14, respectively. In this mode of
operation, the processing sets 14 and 16 are not synchronized and no I/O comparisons are made. DMA operations
are also permitted in both modes.
[0050] Figure 5 is a schematic functional overview of the bridge 12 of Figure 1.
[0051] First and second processing set I/O bus interfaces, PA bus interface 84 and PB bus interface 86, are connected
to the PA and PB buses 24 and 26, respectively. A device I/O bus interface, D bus interface 82, is connected to the D
bus 22. It should be noted that the PA, PB and D bus interfaces need not be configured as separate elements but could
be incorporated in other elements of the bridge. Accordingly, within the context of this document, where a reference
is made to a bus interface, this does not require the presence of a specific separate component, but rather the capability
of the bridge to connect to the bus concerned, for example by means of physical or logical bridge connections for the
lines of the buses concerned.
[0052] Routing (hereinafter termed a routing matrix) 80 is connected via a first internal path 94 to the PA bus interface
84 and via a second internal path 96 to the PB bus interface 86. The routing matrix 80 is further connected via a third
internal path 92 to the D bus interface 82. The routing matrix 80 is thereby able to provide I/O bus transaction routing
in both directions between the PA and PB bus interfaces 84 and 86. It is also able to provide routing in both directions
between one or both of the PA and PB bus interfaces and the D bus interface 82. The routing matrix 80 is connected
via a further internal path 100 to storage control logic 90. The storage control logic 90 controls access to bridge registers
110 and to a random access memory (SRAM) 126. The routing matrix 80 is therefore also operable to provide routing
in both directions between the PA, PB and D bus interfaces 84, 86 and 82 and the storage control logic 90. The routing
matrix 80 is controlled by bridge control logic 88 over control paths 98 and 99. The bridge control logic 88 is responsive
to control signals, data and addresses on internal paths 93, 95 and 97, and also to clock signals on the clock line(s) 21.
[0053] In the embodiment of the invention, each of the P buses (PA bus 24 and PB bus 26) operates under a PCI
protocol. The processing set bus controllers 50 (see Figure 3) also operate under the PCI protocol. Accordingly, the
PA and PB bus interfaces 84 and 86 each provide all the functionality required for a compatible interface providing
both master and slave operation for data transferred to and from the D bus 22 or internal memories and registers of
the bridge in the storage subsystem 90. The bus interfaces 84 and 86 can provide diagnostic information to internal
bridge status registers in the storage subsystem 90 on transition of the bridge to an error state (EState) or on detection
of an I/O error.
[0054] The device bus interface 82 performs all the functionality required for a PCI compliant master and slave
interface for transferring data to and from one of the PA and PB buses 84 and 86. The D bus 82 is operable during
direct memory access (DMA) transfers to provide diagnostic information to internal status registers in the storage
subsystem 90 of the bridge on transition to an EState or on detection of an I/O error.
[0055] Figure 6 is a schematic overview of a chassis 200 with the various slots for receiving field replaceable units
(FRUs) including components, or devices, of the fault tolerant computing system 10 described with reference to Figures
1 to 5. Each FRU may contain one or more devices.
[0056] Examples of the field replaceable units for use in the system include the two motherboards 40 and 42. These
are mounted at locations 201 and 203 in the upper and lower portions of the chassis 200 as viewed in Figure 6. The
first and second processor sets 44 and 46, which also form FRUs, are mounted at locations 45 and 47 bridging the
motherboards 40 and 42.
[0057] Other field replaceable units illustrated in Figure 6 are Removable Media Module (RMM) FRUs 210, which
are mounted in slots 211. Disk drive chassis FRUs 212 are mounted in slots 213. The disk drives in the disk drive
chassis 212 are typically configured as FRUs. Console and Fan (CAF) FRUs 214, which include switches, ports, alarms
and LEDs, are mounted in slots 215. PCI frame FRUs 216 are mounted in slots 217. The PCI cards in the PCI frame



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

7

are also configured as FRUs. Power supply FRUs 218 are mounted in further slots 219. Sub-assemblies (not shown)
of the power supply FRUs 218 could also be provided and be configured as FRUs.
[0058] The FRUs for insertion in the various slots are provided with an identification label (e.g., DSK) 232. A corre-
sponding label (e.g., A-DSK) 234 is associated with each slot to indicate to the operator where each FRU is to be
located. In an embodiment of the invention a FRU comprises a memory 230 (e.g., a non-volatile memory such as an
EEPROM) for containing information relating to the FRU and the device(s) it carries. As will be described later, this
information includes configuration management system class information for the FRU for use by a configuration man-
agement system (CMS) 400 (not shown in Figure 6) to configure the FRU within the system. It should be noted that
an embodiment of the invention may include, in addition to FRUs that include a memory 230, some units that are
replaceable in the field, for example a disk drive, but which might not be provided with a memory 230. This may be
desirable where, for reasons of economy, a conventional field replaceable unit is used.
[0059] Figure 7 is the schematic representation of the manner in which the CMS models the physical structure of
the system.
[0060] The CMS does not model the system chassis. The CMS does, however, model the FRUs and the devices
therein. The CMS models a containment hierarchy of the FRUs. The model shows the physical dependency of the
respective elements. The model indicates the dependency of the FRUs on one of the motherboards. It does not show
the dependency of the motherboards on the power supply units. The dependency of the system on the processing sets
is shown by the service hierarchy for the processor set sub-system.
[0061] As shown in Figure 7, the CMS models the processing set 14 with the associated processing set devices 52,
56, etc. (see Figures 3-5) as dependent on the first motherboard 42. Also modelled as dependent on the first mother-
board 42 is a first disk chassis 240 with associated disk drives 244. CAF FRUs 250 with associated CAF devices 254
are also modelled as being dependent on the first motherboard 42, as are PCI adapters 260 and the associated PCI
devices 264. A removable media FRU (RMM) 270 and associated media devices (e.g., including tape and CD ROM
drives) 274 are further modelled as dependent upon the first motherboard 42, as are the power supply units 280
(possibly also with power supply sub-systems 284). The various motherboard devices 292 of the first motherboard 42
are also modelled by the CMS.
[0062] The CMS models the processing set 16 with the associated processing set devices 52, 56, etc. (see Figures
3-5) as dependent on the second motherboard 44. Also modelled as dependent on the second motherboard 44 is a
second disk chassis 242 with associated disk drives 246. CAF FRUs 252 with associated CAF devices 256 are also
modelled as being dependent on the second motherboard 44, as are PCI adapters 262 and the associated PCI devices
266. A removable media FRU (RMM) 272 and associated media devices (e.g., including tape and CD ROM drives)
276 are further modelled as dependent upon the second motherboard 44, as are the power supply units 282 (possibly
also with power supply sub-systems 286). The various motherboard devices 294 of the first motherboard 44 are also
modelled by the CMS.
[0063] In Figure 7, the solid lines (e.g., 296) illustrate the dependencies of the FRU constituents on the motherboards
42 and 44 (it being remembered that the motherboards are also FRUs). The dashed lines (e.g., 298) illustrate the
dependencies of the device constituents on the FRU constituents.
[0064] Figure 8 is a schematic representation of the modeling of a device hierarchy by the CMS. The device hierarchy
is independent of the FRU hierarchy described with reference to Figure 7 and is independent of the physical arrange-
ment of the FRUs as different devices can be on different FRUs. The CMS creates this device hierarchy from the class
information, and possibly other information, read from non-volatile memory on the FRUs.
[0065] The CMS models parts of some of the device tree, with the various elements being shown as nodes, or objects
in the tree. Thus, a first node, or object, 300 representing the bridge is linked to individual nodes, or objects 302
representing slot controllers. Similarly, individual devices, such as devices D0, D1, D2 and D3 represented by nodes,
or objects 304, are linked to a slot object 302. The CMS is able to use this tree to communicate with individual device
drivers, and allows the CMS to model dependencies between the devices.
[0066] Figure 9 illustrates a service hierarchy. Service hierarchies can be defined with a service 310 being repre-
sented as a node or object within the service hierarchy. A service can define, for example, a sub-system such as a
fault tolerant core service. The services define system availability and are dependent on the devices of the system.
Devices are also defined in the service hierarchy by nodes, or objects 312 in the service hierarchy. As shown in Figure
9, dependencies between individual devices 312 such as devices D0 and D1 and the service 310 are represented.
The service hierarchy could be derived automatically, but may also be derived manually.
[0067] The combination of the hierarchies shown in Figure 7, 8 and 9 form the configuration management system
(CMS) model which is used to control the operation of the system. The model can be stored in the form of a database
in a configuration file. The CMS uses this model to be able to support fault tolerance at a high level. It allows users to
configure the various components of the system to carry out desired functions, and to oversee the functioning of the
system.
[0068] Figure 10 illustrates the relationship between a configuration management system daemon CMSD 400 and



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

8

various components of the system. The CMSD 400 is a daemon for implementing the control management system of
the computer system illustrated in the earlier Figures. A daemon is a background management process. Such a process
may be available at any time from system initiation until shutdown.
[0069] The CMSD 400 manages various system entities (objects) which can be physical devices and/or software
entities. The CMSD 400 is connected via a UNIX socket forming an application program interface (API) 446 to one or
more application programs 440. In the present instance two application programs 442 and 444 are shown.
[0070] The behavior of the CMSD 400 is specified using CMS definitions (CMSDEFs) 410. The CMSDEFs include
declarations for objects that are managed by the CMSD 400, state evaluations (statements for evaluating the states
of objects), and transition code that is executed when a transition occurs between the states of an object. The CMSDEFs
410 can be thought of as being similar to a set of state machines for the objects managed by the CMSD 400, with the
CMSD 400 executing the state machines.
[0071] An initialization component 402 of the CMS is operative on a first initialization of the CMS to create a model
of the system as described with reference to Figure 7, 8 and 9 and stores this in a configuration file 404. The config-
uration file 404 forms a persistent copy of the model which can be used by the current invocation of the CMSD and on
a subsequent re-boot or re-initialization of the system, assuming that the configuration has not changed or the config-
uration file has not been lost or damaged. The storage of the model in such a persistent manner can save initialization
time as it is not necessary to go through the process of recreating the model. It can also provide consistency between
system initializations. As a result, in a fault tolerant system. it can enable better detection of faults where system
elements have failed or changed between system initializations.
[0072] The CMSD 400 is operationally connected to various system entities that are managed by the CMSD 400.
These entities can include physical devices 420 (for example disk drives 422 and 424) or software entities (for example
databases 432 and 434). As will be described hereinafter, the CMSD 400 is associated with a unique processor iden-
tification (PID) 450, which the CMSD stores in a storage location, or file 452, known to a monitor process when the
CMSD initiates successfully. The operation of the CMSD 400 is monitored by a process monitor 460 using the PID 450
stored by the CMSD 400 in the file 452. The process monitor 460 is configured as a monitor process (program) operable
on the computer system. The monitor process 460 and the CMSD 400 are stored in the system memory of the process-
ing sets and are executed by the processor(s) of the processing sets of the system. The file for the PID 450 can also
be held in a system register or in memory.
[0073] The process monitor 460 is able to access the file 452 in order to determine the unique PID 450 for the CMSD
400. PID 450 is truly unique to the actual invocation of the CMSD 400, and is not to be confused with a simple name
which could be associated with various versions of the CMSD 400, or even with another process or program masquer-
ading as the CMSD 400. The process monitor 460 then uses the PID 450 from the file 452 to access status information
identified by the PID 450 (at 472) in a process table (/proc) 470. The process table 470 can be held in a system register
or in memory. The process table forms part of the resources of the operating system 475 of the computer system. The
status information at location 472 in the process table 470 defines the current status of the CMSD 400, and, in particular,
indicates whether it is currently active, and healthy, or whether it has died.
[0074] The CMSD 400 is normally started in the same way as any system daemon by a system process at system
start-up. Following this, the process monitor 460 is then started. The process monitor is then able to monitor the CMSD
400 for failure of the CMSD 400. If the process monitor 460 detects failure of the CMSD 400, it initiates a restart of the
CMSD 400.
[0075] Figures 11- 13 illustrate various steps for restarting the CMSD 400.
[0076] In a first step, illustrated in Figure 11, following the detection of CMSD failure, the process monitor 460 starts
the CMSD 400, which then proceeds to check that it is operable (i.e. is able to execute or function successfully). This
can involve checking that the various data on which it relies is available and can be assembled into a database (if this
has not already been done). The new CMSD is critical of its own operation at this stage and will indicate a fault if any
inconsistencies or omissions are detected. At this step in the process, a handshaking exchange 480 occurs between
the CMSD 400 and the process monitor 460 in order to test whether or not the CMSD 400 will execute successfully.
[0077] Figure 12 illustrates a second step in the initialization of the CMSD 400. This step is reached where the CMSD
determines that it is operable. The CMSD 400 then writes its unique process identification (PID) 450 to the predeter-
mined location, or file 452 and also informs (at 485) the process monitor 460 that it is operable. The predetermined
location, or file, 452 is a storage location, or file, known to the process monitor 460.
[0078] Figure 13 illustrates the operational state of the process monitor 460 and the CMSD 400 following initialization
of the CMSD 400. The process monitor 460 is operable to access to the PID 450 in the file 452 and to use the PID 450
from the file 452 to access the process status information 472 identified by the CMSD PID in the process table 470 of
the system operating system.
[0079] As described above, the CMSD 400 is started by a standard system start-up process prior to starting the
process monitor 460. However, it would be possible to start the process monitor first and then to allow the process
monitor 460 to discover the lack of a CMSD and to start the CMSD as described above with reference to Figures 11 to 13.



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

9

[0080] Figure 14 illustrates the operation of the process monitor 460 for verifying the correct operation of the CMSD
400.
[0081] The process monitor 460 is operable at predetermined times (as represented by step S1) to test the current
status of the CMSD 400. This test could be performed after a predetermined interval and/or after specified system
events have occurred.
[0082] In step S2 the monitor process 460 attempts to retrieve the PID 450 for the CMSD 400 from the predetermined
file location 452. If the monitored process 400 is unable to retrieve the PID 450 for any reason, an alarm A is asserted
in step S5 and an attempt is made to restart the CMSD 400 in step S6.
[0083] If the PID 450 is retrieved from the location 452, the validity of the PID 450 is tested in step S3. If the validity
test on the PID is negative, the alarm A is asserted in step S5 and an attempt is made to restart the CMSD 400 in step S6.
[0084] If the validity test on the PID 450 is positive, the process monitor 460 then proceeds to use the PID 450 in
step S4 to test the status of the CMSD 400 by accessing status information for the CMSD 400 at a location 472,
identified by the PID 450 in the operating system process table 470.
[0085] The process monitor 460 is able to recognize various states for the CMSD 400. These include the states:

[0086] When the process monitor 460 identifies that the CMSD is running correctly, control passes from step S4
back to step S1, where the process monitor 460 waits until the next test on the operation of the CMSD 400 is to be
performed.
[0087] Where the process monitor 460 identifies in step S4 that the CMSD appears to be dead, an alarm A is asserted
in step S5 and an attempt is made to restart the CMSD 400 in step S6. Optionally, the process monitor 460 can be
operable to set an alarm and send a warning message in step S5. The process monitor 460 is then operable to attempt,
in step S6, to restart the CMSD 400 where the CMSD status is identified as being anything other than that the CMSD
400 appears to be running correctly.
[0088] Figure 15 illustrates step S6 of Figure 14 in more detail. This corresponds essentially to the process repre-
sented in Figures 11, 12 and 13.
[0089] In step S6.1, the process monitor 460 starts the CMSD 400. In step S6.2 the CMSD 400 carries out self-
checks as described with reference to Figure 11, above. If the CMSD 400 is not operable, then the CMSD 400 exits
at step S6.3 and a failed indication (e.g., a non-zero value) is returned to the monitor. Alternatively, if the CMSD 400
is operable, then in step S6.4 the CMSD 400 forks. The child CMSD 400 then executes in step S6.5 and provides
appropriate CMSD services. In step S6.6 the parent CMSD 400 writes the child CMSD's PID to the PID file. The parent
CMSD 400 then exits in step S6.7 and returns a successful indication (e.g., a zero value) that it can operate correctly
to the process monitor 460. In step S6.8 the process monitor 460 cancels the alarm and sends a successful restart
message. Otherwise, the alarm is not cancelled and an error message is generated to request intervention by a system
operator. It can be seen that as a result of the above method, the CMSD 'backgrounds itself' (i.e. it forks, then the
parent exits), so that the monitor is not the parent.
[0090] In the process illustrated in Figure 14, a simple test as to the current status of the CMSD 400 is performed in
step S4 by means of the process monitor 460 referring to the process table 470. As an alternative, this test could be
replaced by a test in which the process monitor 460 tries to establish a connection to the CMSD 400 and reacts to a
returned value indicative of whether the CMSD is active or not. Although this more direct approach will give a higher
degree of certainty as to whether this CMSD 400 is operating correctly, or not, it will involve a higher system overhead
than the more simple test of testing the process table 470 of the operating system. Accordingly, the simple test, which
provides sufficient reliability, is preferred in the present embodiment of the invention.
[0091] It is to be noted that the CMSD 400 utilizes a process similar to that illustrated in Figure 15 for handing over
control to a new CMSD 400 in a situation where, for example, the CMSDEFs 410 are changed. The process utilized
by the CMSD 400, which is illustrated in Figure 16, ensures that the process monitor 460 can reliably be informed of
the transfer of control from the old CMSD 400 to the new CMSD 400.
[0092] Figure 16 illustrates various operations for an old CMSD process in the left-hand column, for a new CMSD
process in the middle column and for the monitor process in the right hand column. Time increases from top to bottom
in Figure 16.
[0093] It is assumed in Figure 16 that an existing (old) CMSD 400 is operating at S11 when new CMSDEFs 410

CMSD_ok CMSD is running correctly
CMSD_unknown CMSD status cannot be determined
CMSD_dead CMSD has died
CMSD_slow CMSD appears to be alive but not responding
System_error There is some system error affecting CMSD tests
CMSD_restart There has been a restart error



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

10

become available at S21. At that time, if the monitor process 400 reads the PID file 452, it will find the PID 450.0 for
the old CMSD 400 and will check that the old CMSD is operating correctly.
[0094] An invocation of the CMSD 400 is associated with a particular set of CMSDEFs 410 in order to protect against
errors in the CMSDEFs 410. Thus, it is necessary for a new CMSD 400 to be established to handle the new CMSDEFs
410. Accordingly, in step S22, a new CMSD 400 is spawned.
[0095] The new CMSD 400 then carries out self-checks at step S23 as before. If the new CMSD is non-operable,
then the new CMSD exits at S24. Examples of situations where a new invocation of the CMSD 400 may not be able
to execute correctly are where there is an error in the new CMSDEFs 410, or possibly where there is an error in a new
version of the CMSD 400.
[0096] Alternatively, if the new CMSD is operable, the new CMSD 400 handshakes S12/S25 with the old CMSD 400.
The new CMSD then writes its PID 450.1 to the PID file in step S26.
[0097] In step S27, the new CMSD tells the old CMSD that it is taking over and, in step S13, the old CMSD exits. In
step S28 it is the new CMSD that is, therefore, running.
[0098] If, after step S26, the monitor process 460 reads the PID from the PID file, it will find the PID 450.1 for the
new CMSD and will then check that the new CMSD is operating correctly.
[0099] It can also be seen from the above method that the new CMSD effectively 'backgrounds itself and that the
monitor is not the parent.
[0100] As mentioned above, the CMSD 400 is responsive to, and is operable to execute, CMSDEFs 410 for the
current configuration of the system to be managed. The CMSD definitions 410 can be provided from a disk, or other
storage medium forming part of the system, or can be supplied from a remote source. Configuration software in the
form of scripts can also be used to generate configuration statements for configuring the CMSD 400. The configuration
scripts can also be provided from a disk, or other storage medium forming part of the system, or can be supplied from
a remote source. The CMSDEFs and scripts could also be provided from non-volatile storage in the FRUs inserted in
the sockets in the chassis of the system.
[0101] The process monitor and/or the monitored process (CMSD) can be in the form of computer programs com-
prising computer code, or instructions, defining the functionality of the process monitor and/or monitored process,
respectively. The process monitor and/or the CMSD can be provided on a carrier medium. The carrier medium can be
any form of carrier medium for carrying computer program code, whether that be a magnetic, optical or any other form
of data storage such as a tape, disk, solid state, or other form of storage providing random or read-only or any other
form of access, or a transmission medium such as a telephone wire, radio waves, etc.
[0102] There follows a description of the manner in which the system can automatically be configured to take account
of the FRUs, with their associated devices, which are inserted within the sockets of the chassis 200 of the system.
[0103] As mentioned earlier, the configuration management system of the present embodiment serves to provide
high level fault tolerance monitoring for the fault tolerant computer system in that it models the interactions between
the elements of the system and indeed manages the configuration of the system in response to user requirements. In
order to be able to do this in an efficient manner, the component units and their constituent devices need to be configured
in themselves and the computer system as a whole needs to be configured as regards, for example, the interactions
between the units and/or the devices.
[0104] An advantageous method of auto-configuration of such components will be described hereinafter.
[0105] Figure 17 illustrates a FRU 214, which is inserted in a slot 215 in the chassis 200. It can be seen that the FRU
214 carries a label 234 that can be matched to a label 232 adjacent to the slot 215 to assist in identification of the
correct slot 215 for the FRU 214. As illustrated Figure 17, the FRU 214 is an RMM FRU containing a tape drive 236
and a CD-ROM drive 238. The FRU 214 also includes a non-volatile memory 230 which contains configuration infor-
mation to be used by the CMSD 400 in order correctly to configure the FRU 214 and its associated devices 236 and
238. In the present example of the invention, the non-volatile memory includes the following information:

EE.GEN.ID.PARTNO = 5431
EE.GEN.ID.SERIALNO = 9991
EE.MSP.FRUNAME = RMM
EE.MSP.DEV0.NAME = CDROM
EE.MSP.DEV0.SCSIID = 0
EE.MSP.DEV1.NAME = TAPE
EE.MSP.DEV1.SCSIID = 1

[0106] In a prior art FRU, only the part number from the information indicated above would have been present. In
this embodiment, however, in addition to the part number, the non-volatile memory contains class information for the
FRU, namely the FRUname: RMM. Other information is also provided as will be described later.
[0107] A component of the CMSD, forming a configuration (initialization) mechanism in the form of a program (CM-



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

11

SINITIALIZE) is operable to probe each slot, or FRU receiving location, of the chassis looking for the non-volatile
memories 230. The class information for the FRU (here the FRU class name RMM) is used by the initialization com-
ponent to derive a path to the CMS object definitions (CMSDEFs) for this class of FRU (here the RMM class). The
CMSDEFs can include initialization code (initialization scripts) which are specific to the class of FRU and are operable
on receipt of the FRU class and an instance number generated by the initialization component, to produce configuration
information (configuration scripts) which are then stored in the CMS configuration file 404, which is held in system
storage. If required, the initialization code can further access the FRU memory for further information needed to gen-
erate the initial configuration information. The configuration statements typically comprise an object class (e.g. RMM)
and instance number (e.g. 1), an attribute (e.g. Action) and a value (e.g. enable). An example of entries in a CMS
configuration file for the FRU 214 of Figure 17 is illustrated in Figure 18.
[0108] Once the CMS configuration table has been established and the initial checks have been completed. the
CMSD is then able to establish which FRUs exist from the information stored in the CMS configuration file. In order
correctly to set the device instances for the tape and CD ROM, the CMS "CMSDEFS" will further interrogate RMM
FRU. The CMS model of the FRU and its devices are dynamically created from the information in the non-volatile
memory 230. Figure 19 illustrates an example of the CMSDEF's instances and attributes for the example FRU shown
in Figure 17.
[0109] Figure 20 is a flow diagram in summarizing the operation of a CMS initialization component 402 for initially
configuring the FRU into the system, as described with reference to Figure 17 to 19. In an embodiment of the invention,
this is only operable on the first initialization of the system, with the configuration file providing the necessary information
on subsequent initializations. The use of a configuration file is preferred in the present fault tolerant system as it provides
continuity between initializations and assists in identifying faults. It should be appreciated that in other systems, how-
ever, it may be desired to carry out this process at other times.
[0110] In step S41, the CMS initialization component 500 scans the FRU receiving locations looking for non-volatile
memory elements 320. As a result, when a FRU is inserted in such a receiving location, and before the FRU devices
become integrated within the system, the CMS initialization component is able to detect the presence of that FRU.
[0111] In step S42, when the CMS initialization component identifies a non-volatile memory element in the FRU in
a receiving location, it extracts the FRU class information (e.g., the FRU class name) provided therein.
[0112] This FRU class information is then used in step S43 by the CMS initialization component to access the ini-
tialization code (scripts) for the class identified by the class information. As indicated, the initialization scripts can be
associated with the CMSDEFs for that class of FRU.
[0113] In step S44 the initialization scripts produce the configuration statements for the FRU as described with ref-
erence to Figure 18. If required, this step can involve the initialization code accessing the non-volatile memory in the
FRU.
[0114] The configuration statements output by the initialization scripts are verified by the initialization component in
step S45 (this could be effected by a separate component of the CMS).
[0115] If the initialization component detects any errors during this checking, it discards all code lines associated
with the FRU concerned. This is to ensure that the CMSD can start and so that subsequent corrective action can be
undertaken. Otherwise, if the configuration statements check out, then the configuration statements are written to the
configuration file 404 in step S46. Once all of the configuration statements have been stored in the CMS configuration
file, and this all checks out, the control can be passed to the configuration system daemon.
[0116] The CMSD then completes the configuration of the system in step S47, including configuration of the FRU
devices, as illustrated in Figure 19. As part of the process it accesses the FRU memory, if required, to extract device
class information and further device information. The CMSD is then able to configure the FRU devices as defined by
the CMSDEFs and/or scripts. The CMSD is operable automatically to generate at least the physical and device hier-
archies referenced in Figures 7 and 8 by establishing links between the various objects in accordance with the infor-
mation in the CMSDEFs, which includes declarations for objects managed by the CMSD, state evaluations (statements
for evaluating the states of objects), and transition code that is executed when a transition occurs between the states
of an object. The service hierarchy may be partially configured with operator intervention (e.g., to specify specific
services as required by the user).
[0117] This two-stage process enables the creation of a database for providing a representative state for starting
the CMSD.
[0118] There has, therefore, been described a configuration management system which can enable automatic con-
figuration of FRUs and their associated devices.
[0119] The memory in the FRUs can be used to store additional data other than that used specifically for the con-
figuration processes described. For example, it can additionally be used to store certain status information relating to
the system operation, in order that the state of the system can be consistent across re-starts. Also it can be used to
store a history for the unit. This information could then be used off-line at some later stage, (for example on return of
an allegedly faulty FRU) to establish whether it is the FRU or, perhaps, a slot in which it has been inserted, which is faulty.



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

12

[0120] There has been described a configuration management system including a configuration management system
daemon (CMSD). The continued correct functioning of the CMSD can be ensured by detecting the failure of the CMSD
and restarting the CMSD as appropriate. Thrashing of the system caused by continual, rapid attempts to restart a
CMSD that would never execute successfully can be avoided.
[0121] It will be appreciated that although particular embodiments of the invention have been described, many mod-
ifications/additions and/or substitutions may be made within the scope of the present invention as defined in the ap-
pended claims.
[0122] For example, although an example of the invention has been described in the context of a fault tolerant com-
puting system, it is not limited in its application to such a system. Indeed, it could indeed find application in any system
where it is desirable to monitor the operation of a potentially critical process, for example a process controlled by a
daemon program. Also, although in the preferred embodiments the process monitor and the monitored process (CMSD)
are implemented by program code, it will be appreciated that they could, at least in part, be implemented by means of
special purpose hardware, for example using one or more special purpose circuits, such as application specific inte-
grated circuits (ASICs).
[0123] Accordingly, the particular example described is intended to be illustrative only, and not limitative.

Claims

1. A method of automatic configuration of a unit (214) forming a component of an apparatus, the method comprising:

accessing (S42) class information held in the unit on insertion of the unit into the apparatus prior to integrating
the unit functionally in the apparatus, said class information representing an object class for the unit;
using (S43, S44) the accessed class information to reference, in storage in the apparatus separate from the
unit, object definitions for the class of unit, which object definitions include initialization code operable on
receipt of the accessed class information to produce object configuration statements for the unit that comprise
at least one of the object class for the unit, an object instance number, an attribute name and a value for the
attribute; and
verifying (S45) the validity of the configuration information and, where the configuration information is valid,
storing (S46) the configuration information in a configuration file for the apparatus including a location of the
unit in the apparatus to enable the functional integration of the unit in the apparatus.

2. A method according to claim 1, further comprising accessing the unit when integrated functionally in the apparatus
for further configuration data held therein.

3. A method according to claim 2, wherein the further configuration data comprises a device object class and device
object attributes for a device of the unit.

4. A method according to any preceding claim, wherein the class information is held in non-volatile memory in the unit.

5. A method according to claim 1, for configuring a plurality of units for a configuration management system, wherein
the class information identifies at least one configuration management system class for the unit.

6. A method according to any preceding claim, wherein each location in the apparatus for receiving a said unit is
probed for accessing class information held in a unit at that location.

7. A method according to claim 6, wherein a set of object configuration statements for respective units are stored in
the configuration file.

8. A method according to any preceding claim, wherein the unit is a field replaceable unit.

9. Apparatus comprising: a plurality of units that each include unit storage for holding class information for the unit
that represents an object class for the unit; a configuration mechanism operable:

to access (S42) class information held in the unit on insertion of the unit into the apparatus prior to integrating
the unit functionally in the apparatus, said class information representing an object class for the unit;
to use (S43, S44) the accessed class information to reference, in storage in the apparatus separate from the
unit, object definitions for the class of unit, which object definitions include initialization code operable on



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

13

receipt of the accessed class information to produce object configuration statements for the unit that comprise
at least one of the object class for the unit, an object instance number, an attribute name and a value for the
attribute; and
to verify (S45) the validity of the configuration information and, where the configuration information is valid, to
store (S46) the configuration information in a configuration file for the apparatus including a location of the
unit in the apparatus to enable the functional integration of the unit in the apparatus.

10. Apparatus according to claim 9, wherein the unit storage comprises non-volatile memory.

11. Apparatus according to claim 10, wherein the non-volatile memory is an EEPROM.

12. Apparatus according to any one of claims 9 to 11, wherein the configuration mechanism is part of a configuration
management system and the class information identifies at least one configuration management system class for
the unit.

13. Apparatus according to claim 12 comprising a chassis for a plurality of units locatable within the chassis.

14. Apparatus according to claim 13, wherein the configuration mechanism probes each location in the apparatus for
receiving a said unit for accessing class information held in a said unit at that location.

15. Apparatus according to claim 14, comprising a configuration file in system storage for persistent storage of a set
of object configuration statements for respective units.

16. Apparatus according to any one of claims 9 to 15, wherein a said unit is a field replaceable unit.

17. Apparatus according to any one of claims 9 to 16, forming a computer system.

18. Apparatus according to claim 17, wherein the computer system is a fault-tolerant computer system.

19. A configuration management system program operable on apparatus according to any one of claims 9 to 18, the
configuration management system program comprising an initialization component and being operable to perform
the steps of a method according to any one of claims 1 to 8.

20. A configuration management system program according to claim 19, wherein the initialization component is con-
figured to probe each location in the apparatus for receiving a unit and, when a location is occupied by a unit, to
read class information from storage in the unit.

21. A configuration management system program according to any one of claims 19 to 20 on a carrier medium.

Patentansprüche

1. Verfahren zur automatischen Konfigurierung einer Einheit (214), die einen Bestandteil einer Vorrichtung bildet,
wobei das Verfahren aufweist:

Zugreifen (S42) auf Klasseninformation, die in der Einheit gehalten wird, beim Einsetzen der Einheit in die
Vorrichtung, bevor die Einheit funktionell in die Vorrichtung integriert wird, wobei die Klasseninformation eine
Objektklasse für die Einheit wiedergibt,
Verwenden (S43, S44) der erfaßten Klasseninformation, um in einem Speicher in der Vorrichtung getrennt
von der Einheit Objektdefinitionen für die Klasse der Einheit aufzurufen, wobei die Objektdefinitionen einen
Initialisierungscode enthalten, der bei Empfang der erfaßten Klasseninformation so betreibbar ist, daß er Ob-
jektkonfigurierungsaussagen für die Einheit erzeugt, die zumindest eine der folgenden umfassen, nämlich die
Objektklasse für die Einheit, eine Objektinstanznummer, einen Attributnamen oder einen Wert für das Attribut,
und
Verifizieren (S45) der Gültigkeit der Konfigurierungsinformation und, wenn die Konfigurierungsinformation gül-
tig ist, Speichern (S46) der Konfigurierungsinformation in einer Konfigurationsdatei für die Vorrichtung ein-
schließlich einer Position für die Einheit in der Vorrichtung, um die funktionelle Integration der Einheit in die
Vorrichtung zu ermöglichen.



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

14

2. Verfahren nach Anspruch 1, welches weiterhin das Zugreifen auf die Einheit aufweist, wenn sie in die Vorrichtung
funktionell integriert ist, für weitere Konfigurierungsdaten, die in dieser gehalten werden.

3. Verfahren nach Anspruch 2, wobei die weiteren Konfigurierungsdaten eine Geräteobjektklasse und Geräteobjek-
tattribute für ein Gerät der Einheit aufweisen.

4. Verfahren nach einem der vorstehenden Ansprüche, wobei die Klasseninformation in der Einheit in einem nicht
flüchtigen Speicher gehalten wird.

5. Verfahren nach Anspruch 1 für das Konfigurieren einer Mehrzahl von Einheiten für ein Konfigurierungsverwal-
tungssystem, wobei die Klasseninformation zumindest eine Konfigurierungsverwaltungssystemklasse für die Ein-
heit identifiziert.

6. Verfahren nach einem der vorstehenden Ansprüche, wobei jede Stelle in der Vorrichtung für die Aufnahme der
Einheit für den Zugriff auf Klasseninformation, die in einer Einheit an der Stelle gehalten wird, untersucht wird.

7. Verfahren nach Anspruch 6, wobei ein Satz von Objektkonfigurierungsaussagen für entsprechende Einheiten in
der Konfigurierungsdatei gespeichert wird.

8. Verfahren nach einem der vorstehenden Ansprüche, wobei die Einheit eine als Feld bzw. durch ein Feld ersetzbare
Einheit ist.

9. Vorrichtung mit: einer Mehrzahl von Einheiten, die jeweils einen Speicher der Einheit enthalten, um Klasseninfor-
mation für die Einheit zu erhalten, welche eine Objektklasse für die Einheit wiedergibt, und mit einem Konfigurie-
rungsmechanismus, der so betreibbar ist, daß

er auf Klasseninformation, die in der Einheit gehalten wird, beim Einsetzen der Einheit in die Vorrichtung
zugreift (S42), bevor die Einheit funktionell in die Vorrichtung integriert wird, wobei die Klasseninformation eine
Objektklasse für die Einheit wiedergibt,

die zugegriffene Klasseninformation benutzt (S43, S44), um in einem Speicher in der Vorrichtung getrennt
von der Einheit Objektdefinitionen für die Klasse der Einheit aufzurufen, wobei die Objektdefinitionen Initialisie-
rungscode enthalten, der auf den Empfang der zugegriffenen Klasseninformation in der Weise betreibbar ist, daß
er Objektkonfigurierungsaussagen für die Einheit erzeugt, welche zumindest eine der folgenden umfassen, näm-
lich die Objektklasse für die Einheit, eine Objektinstanznummer, einen Attributnamen oder einen Wert für das
Attribut, und

die Gültigkeit der Konfigurierungsinformation verifiziert (S45), und, falls die Konfigurierungsinformation gültig
ist, die Konfigurierungsinformation in einer Konfigurationsdatei für die Vorrichtung einschließlich einer Position der
Einheit in der Einrichtung speichert, um eine funktionelle Integration der Einheit in die Vorrichtung zu ermöglichen.

10. Vorrichtung nach Anspruch 9, wobei der Speicher der Einheit einen nicht flüchtigen Speicher aufweist.

11. Vorrichtung nach Anspruch 10, wobei der nicht flüchtige Speicher ein EEPROM ist.

12. Vorrichtung nach einem der Ansprüche 9 bis 11, wobei der Konfigurierungsmechanismus Teil eines Konfigurati-
onsvervvaltungssystems ist und die Klasseninformation zumindest eine Klasse eines Konfigurierungsverwaltungs-
systems für die Einheit identifiziert.

13. Vorrichtung nach Anspruch 12, welche ein Gestell für eine Mehrzahl von in dem Gestell anzuordnenden Einheiten
aufweist.

14. Vorrichtung nach Anspruch 13, wobei der Konfigurierungsmechanismus jede Stelle in der Vorrichtung für die Auf-
nahme einer derartigen Einheit für den Zugriff auf Klasseninformation, die in einer derartigen Einheit an der Stelle
gehalten wird, untersucht.

15. Vorrichtung nach Anspruch 14, welche eine Konfigurationsdatei in dem Systemspeicher für eine dauerhafte Spei-
cherung eines Satzes von Objektkonfigurierungsaussagen für entsprechende Einheiten aufweist.

16. Vorrichtung nach einem der Ansprüche 9 bis 15, wobei eine solche Einheit eine als Feld bzw. in einem Feld aus-
tauschbare Einheit ist.



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

15

17. Vorrichtung nach einem der Ansprüche 9 bis 16, welche ein Computersystem bildet.

18. Vorrichtung nach Anspruch 17, wobei das Computersystem ein fehlertolerantes Computersystem ist.

19. Konfigurierungsverwaltungssystemprogramm, welches auf einer Vorrichtung gemäß einem der Ansprüche 9 bis
18 lauffähig ist, wobei das Programm für das Konfigurierungsverwaltungssystem einen Initialisierungsbestandteil
aufweist und in der Weise betreibbar ist, daß es die Schritte nach einem Verfahren nach einem der Ansprüche 1
bis 8 durchführt.

20. Programm eines Konfigurierungsverwaltungssystems nach Anspruch 19, wobei die Initialisierungskomponente so
ausgestaltet ist, daß sie jede Stelle in der Vorrichtung für die Aufnahme einer Einheit untersucht und, wenn eine
Stelle durch eine Einheit besetzt ist, Klasseninformation aus dem Speicher in der Einheit liest.

21. Programm für ein Konfigurationsverwaltungssystem nach einem der Ansprüche 19 und 20 auf einem Trägerme-
dium.

Revendications

1. Procédé de configuration automatique d'une unité (214) constituant un composant d'un dispositif, le procédé
comprenant :

accéder (S42) à l'information de classe détenue dans l'unité, lors de l'insertion de l'unité dans le dispositif,
avant d'intégrer fonctionnellement l'unité dans le dispositif, ladite information de classe représentant une clas-
se d'objet pour l'unité ;
utiliser (S43, S44) l'information de classe à laquelle on a accédé pour référencer, dans le stockage dans le
dispositif distinct de l'unité, les définitions d'objet pour la classe de l'unité, lesquelles définitions d'objet com-
prennent un code d'initialisation utilisable lors de la réception de l'information de classe à laquelle on a accédé,
pour produire des relevés de configuration d'objet pour l'unité qui comprennent au moins l'une des classes
d'objet pour l'unité, un numéro d'instance d'objet, un nom d'attribut et une valeur pour l'attribut ; et
vérifier (S45) la validité de l'information de configuration et, quand l'information de configuration est valide,
socker (S46) l'information de configuration dans un fichier de configuration pour le dispositif, comprenant
l'emplacement de l'unité dans le dispositif pour autoriser l'intégration fonctionnelle de l'unité dans le dispositif.

2. Procédé selon la revendication 1, comprenant de plus le fait d'accéder à l'unité quand elle est fonctionnellement
intégrée au dispositif pour des données de configuration supplémentaires détenues dedans.

3. Procédé selon la revendication 2, dans lequel les données de configuration supplémentaires comprennent une
classe d'objet de dispositif et des attributs d'objet de dispositif pour un dispositif de l'unité.

4. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'information de classe est détenue
dans une mémoire non volatile dans l' unité .

5. Procédé selon la revendication 1, pour configurer une pluralité d'unités pour un système de gestion de configura-
tion, dans lequel l'information de classe identifie au moins une classe de système de gestion de configuration pour
l'unité.

6. Procédé selon l'une quelconque des revendications précédentes, dans lequel chaque emplacement dans le dis-
positif pour recevoir unedite unité est interrogé pour accéder à l'information de classe détenue par une unité à cet
emplacement.

7. Procédé selon la revendication 6, dans lequel un ensemble de relevés de configuration d'objet pour les unités
respectives est stocké dans le fichier de configuration.

8. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'unité est une unité remplaçable
sur le terrain.

9. Dispositif comprenant : une pluralité d'unités, qui chacune comprend une unité de stockage pour détenir une in-



EP 1 119 806 B1

5

10

15

20

25

30

35

40

45

50

55

16

formation de classe pour l'unité qui représente une classe d'objet pour l'unité ; un mécanisme de configuration
utilisable :

pour accéder (S42) à l'information de classe détenue par une unité lors de l'insertion de l'unité dans le dispositif,
avant d'intégrer fonctionnellement l'unité dans le dispositif, ladite information de classe représentant une clas-
se d'objet pour l'unité ;
pour utiliser (S43, S44) l'information de classe à laquelle on a accédé pour référencer, dans le stockage dans
le dispositif distinct de l'unité, les définitions d'objet pour la classe de l'unité, lesquelles définitions d'objet
comprennent un code d'initialisation utilisable lors de la réception de l'information de classe à laquelle on a
accédé, pour produire des relevés de configuration d'objet pour l'unité qui comprennent au moins l'une des
classes d'objet pour l'unité, un numéro d'instance d'objet, un nom d'attribut et une valeur pour l'attribut ; et
pour vérifier (S45) la validité de l'information de configuration et, quand l'information de configuration est valide,
stocker (S46) l'information de configuration dans un fichier de configuration pour le dispositif comprenant
l'emplacement de l'unité dans le dispositif pour autoriser l'intégration fonctionnelle de l'unité dans le dispositif.

10. Dispositif selon la revendication 9, dans lequel l'unité de stockage comprend une mémoire non volatile.

11. Dispositif selon la revendication 10, dans lequel la mémoire non volatile est une EEPROM.

12. Dispositif selon l'une quelconque des revendications 9 à 11, dans lequel le mécanisme de configuration est une
partie d'un système de gestion de configuration et l'information de classe identifie au moins une classe de système
de gestion de configuration pour l'unité.

13. Dispositif selon la revendication 12, comprenant un châssis pour une pluralité d'unités enfichables dans le châssis.

14. Dispositif selon la revendication 13, dans lequel le mécanisme de configuration interroge chaque emplacement
dans le dispositif pour recevoir unedite unité pour accéder à l'information de classe détenue par unedite unité à
cet emplacement.

15. Dispositif selon la revendication 14, comprenant un fichier de configuration dans un système de stockage pour un
stockage persistant d'un ensemble de relevés de configuration d'objet pour les unités respectives.

16. Dispositif selon l'une quelconque des revendications 9 à 15, dans lequel unedite unité est une unité remplaçable
sur site.

17. Dispositif selon l'une quelconque des revendications 9 à 16, constituant un système informatique.

18. Dispositif selon la revendication 17, dans lequel le système informatique est un système informatique à tolérance
de panne.

19. Programme de système de gestion de configuration utilisable sur un dispositif selon l'une quelconque des reven-
dications 9 à 18, le programme de système de gestion de configuration comprenant un composant d'initialisation
et étant utilisable pour réaliser les étapes d'un procédé selon l'une quelconque des revendications 1 à 8.

20. Programme de système de gestion de configuration selon la revendication 19, dans lequel le composant d'initia-
lisation est configuré pour interroger chaque emplacement dans le dispositif pour recevoir une unité et, quand un
emplacement est occupé par une unité, pour lire l'information de classe à partir du stockage de l'unité.

21. Programme de système de gestion de configuration selon l'une quelconque des revendications 19 à 20, sur un
moyen porteur.



EP 1 119 806 B1

17



EP 1 119 806 B1

18



EP 1 119 806 B1

19



EP 1 119 806 B1

20



EP 1 119 806 B1

21



EP 1 119 806 B1

22



EP 1 119 806 B1

23



EP 1 119 806 B1

24



EP 1 119 806 B1

25



EP 1 119 806 B1

26



EP 1 119 806 B1

27



EP 1 119 806 B1

28



EP 1 119 806 B1

29



EP 1 119 806 B1

30


	bibliography
	description
	claims
	drawings

