
United States Patent 19
Sheaffer

DIVISION ALGORTHM FOR FLOATNG
PONT OR INTEGER NUMBERS

54

Inventor: Gad S. Sheaffer. Haifa, Israel 75

73) Assignee: Intel Corporation, Santa Clara, Calif.

21
22)
(51)
(52)
(58)

Appl. No.: 657,779
Filed: May 31, 1996
int. Cl. ...r. G06F 7/52
U.S. Cl. 364/766; 364/767
Field of Search 364/752, 761,

364/762, 764, 766, 767

References Cited

U.S. PATENT DOCUMENTS

7/1990 Fandrianto 364/752
10/1994 Sharangpani et al. ... 364/767
12/1994 Kuroiwa 364,767
1/1995 Girard et al. 364,767

OTHER PUBLICATIONS

"Computer Architecture A Quantitative Approach. Second
Edition". David A. Patterson and John L. Hennessy, Morgan
Kaufmann Publishers. Inc. 1996. p. Al-A73.

(56)

4,939,686
5,357,455
5.377,135
5,386,376

150 B
1.1000

A

III
USO05784307A

11 Patent Number: 5,784,307
45 Date of Patent: Jul. 21, 1998

Primary Examiner-Chuong Dinh Ngo
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafiman

57) ABSTRACT

A computer-implemented algorithm for dividing numbers
involves subtracting the divisor from the divided to generate
a first intermediate result, which is then shifted by N-bits to
obtain a remainder value. A portion of the remainder and a
portion of the divisor are utilized to generate one or more
multiples from a look-up table, each of which is multiplied
by the divisor to generate corresponding second intermedi
ate results. The second intermediate results are subtracted

from the remainder to generate corresponding third inter
mediate results. The largest multiple which corresponds to a
third intermediate result having a smallest positive value is
the quotient digit. The third intermediate result that corre
sponds to the largest multiple is the remainder for the next
iteration.

37 Claims, 7 Drawing Sheets

5 (DECIMAL) 12
1.01.00 (BINARY)

COMPUTEA-B = 1.50 | 1.25

STEP 1:

A > B, SOCHOOSE 1

STEP2:
1000

- 10100

0.0100
STEP 3:

O100,000 - REM
(= 4)

STEP 4:
FROM FIG.2, USE:

2, 3 4
/ \ STEP5a:

100.00 100.00 100.00
010.10-011.11-101.00
POS. POS. NEG, STEP 5

SO, SELECT3AS THE
QUOTIENT DIGIT

STEP 6

COMPAREA & BTO CHOOSE OOR
AS THE FIRST DIGIT (TO THE LEFT OF THE
DECIMAL POINT).

SUBTRACTBFROMATOGET REMAINDER
(UNSHIFTED).

SHIFTREMAINDER BY 4BITS (SHIFT BY
NWHERE 2N = R; R IS THE RADIX).

PERFORMOOK-UPTO OBTAINMULTIPLES.

MULTIPLYBBYEACH MULTIPLE AND
SUBTRACT THE RESULT FROM REM.

SELECT THE LARGEST MULTIPLE THAT
YELDSAPOSITIVENUMBER INSTEP 5a
AS THE QUOTIENT.

CALCUATE THENEXTREMANDERUSING
THE SELECTED QUOTENT FROM STEP 5b.

U.S. Patent Jul. 21, 1998 Sheet 1 of 7 5,784,307

? QUOTIENT
3

8 24

DVISOR / \
DIVIDEND

F. H. A

r EXPONENT
1.50 x 23 = 0.1875

SIGNIFICAND 1 MANTISSA

P. P.

(Six 2")/(s x 22) =

(s/s) x 2 (2)
OUOTENT

U.S. Patent Jul. 21, 1998 Sheet 2 of 7 5,784,307

1 1

1 11 O

1 101

1 100

O 1

1010

1001
O -
2 Mo s 1000

Hi O 111 -

es
5 0 1 1 0

O 1 O1

O 100

0 0 1 1

0 0 1 0

000

0000

1.00 1.25 150 1.75 2.00

DIVISOR (UPPER BITS)

a

U.S. Patent Jul. 21, 1998 Sheet 3 of 7 5,784,307

1 11

110
0,12,13,14,15

101

1 100

1011
11,12,13,14,15 0,10,11,12,13

1010 0,12,13,14,15
0,12,13,14,15

1001
9,10,11,12,13 0,8,9,10,11

1000 10,11,12,13,14

0 1 11 11,12,13,14,15
8,9,10,11,12

0 1 1 0 9,10,11,12,13

0 1 01 0,8,9,10,11 0,6,7,8,9

O 100 5,6,7,8,9

0 0 1 1

0 0 1 0

000

0000

00 011 10 11

DIVISOR (MSBs)

CH

U.S. Patent Jul. 21, 1998 Sheet 4 of 7 5,784,307

FIRST SECOND THIRD
MUTFF SUMMAND SOMMAND SUMMAND

o O
2 o | 2 || 0
3 o 2
4. 4

9

1 1 9

FIH 4.

U.S. Patent Jul. 21, 1998

150 B
1.1000

A

COMPUTE A-i-B =

STEP 1

A> B, SO CHOOSE 1

STEP2:
1.1000

- 10100

0.01.00

STEP 3:

000.000 = REM
(= 4)

STEP 4:

FROM FIG.2, USE:
2 3 4
/ \ STEP 5a.

100.00 100.00 100.00
-010.10-011.11-101.00
POS, POS, NEG, STEP 5b

SO, SELECT3AS THE
OUOTIENT DIGIT

STEP 6:

5,784,307 Sheet 5 of 7

1.25 (DECIMAL)
1.01.00 (BINARY)

150 / 1.25

COMPAREA & BTO CHOOSE O OR 1
AS THE FIRST DIGIT (TO THE LEFT OF THE
DECIMAL POINT).

SUBTRACT B FROMATO GET REMAINDER
(UNSHIFTED).

SHIFTREMAINDER BY 4BITS (SHIFTBY
NWHERE 2N = R; RIS THE RADIX).

PERFORMLOOK-UP TO OBTAIN MULTIPLES.

MULTIPLY BBYEACH MULTIPLE AND
SUBTRACT THE RESULT FROM REM.

: SELECT THE LARGEST MULTIPLE THAT
YELDSA POSITIVENUMBER INSTEP5a
AS THE QUOTIENT.

CALCULATE THE NEXTREMAINDER USENG
THE SELECTED CUOTIENT FROM STEP5b.

U.S. Patent Jul. 21, 1998 Sheet 6 of 7 5,784,307

15

TABLE
MEMORY

(e.g., ROM) PRIORITY
ENCODER

PARTAL
REMANDER

40

U.S. Patent Jul. 21, 1998 Sheet 7 of 7 5,784,307

A -->
= 0 (ACB)

COMPARATOR
= 1 (A>B)

B ->

FIG. 7

5,784.307
1

DVISION ALGORTHM FOR FLOATNG
PONT OR INTEGER NUMBERS

FIELD OF THE INVENTION

This invention relates generally to the field of computer
arithmetic; specifically, to computer implemented methods
and circuits for dividing floating point or integer numbers.

BACKGROUND OF THE INVENTION

Computer implemented algorithms for performing arith
metic operations have existed since the advent of computers.
Most often, these algorithms represent a sort of binary
version of the paper-and-pencil method taught in elementary
school. Many of the algorithms differ according to the
particular number system that is employed. For example,
there are four common representations for N-bit numbers:
signed magnitude, two's complement, one's complement,
and bias. As one would expect, algorithms also differ based
upon the type of operation performed (e.g., addition,
subtraction, multiplication, division), the precision to be
implemented, exception handling, and so on.

Division algorithms are generally classified into two
types, restoring and non-restoring. Examples of both restor
ing and non-restoring types of division algorithms can be
found in the book, "Computer Architecture-AQuantitative
Approach". Second Edition, by Patterson and Hennesy,
Appendix A. Morgan Kaufmann Publishers, Inc. (1996).
As practitioners in the field understand, restoring division

algorithms get their name because when a subtraction step
involving the divisor yields a negative result, the register
containing the remainder is restored to its old value.
Conversely, in non-restoring type division algorithms, the
remainder does not have to be restored at any stage of the
calculation.
Much effort in the field of computer arithmetic has been

devoted to simplifying or minimizing the number of opera
tions that must be performed. By way of example, in
non-restoring SRT division an arithmetic logic unit (ALU)
operation is normally performed at each step. (SRT is an
acronym for Sweeney, Roberson, and Tocher, who originally
proposed algorithms of this nature). SRT division is widely
employed in computer systems such as those which include
the popular Pentium3) processor, manufactured by Intel
Corporation.

Despite its popularity, SRT division is not without its
complications. For instance, one drawback of SRT division
is that quotient bits cannot be determined immediately as
they can in ordinary non-restoring division. Another draw
back is that the quotient is calculated in a redundant repre
sentation that typically requires relatively complex logic.
Furthermore, in SRT division negative quotient values are
needed which further add to the computational logic.
Obviously, complications in the compute logic add delay to
the calculating steps.
As an alternative to existing SRT and multiplicative

algorithms, the present invention presents a computer that
implements a novel division algorithm of the non-restoring
type. The algorithm is well-suited for dividing floating point
or integer numbers and enables implementing robust, simple
and fast dividers. Moreover, the dividers are easy to verify
and provide high speed performance compared to many
existing computer designs. Additionally, the logic for cal
culating the next group of quotient bits is simplified and
permits iteratively calculating N-bits of the quotient per
cycle.

5

10

15

20

25

30

35

45

55

65

2
SUMMARY OF THE INVENTION

The present invention covers a computer-implemented
method and apparatus for dividing numbers in either
floating-point or integer representation. In one
implementation, the algorithm begins by first choosing
either a zero or a one as a quotient digit to the left of the
decimal point based upon a comparison of the divisor and
the dividend. Next, the divisor is subtracted from the divi
dend to generate a first intermediate result. The first inter
mediate result is then shifted in a register by N-bits to obtain
a remainder value,

After obtaining the remainder, a memory containing a
table of multipliers is referenced. The table is indexed by a
portion of the remainder and a portion of the divisor.
Referencing the table produces one or more multipliers.
The next step in the algorithm involves multiplying the

divisor by each of the previously referenced multipliers.
This generates corresponding second intermediate results.
Each of the second intermediate results are then subtracted
from the remainder to generate corresponding third inter
mediate results. The current quotient digit is selected as the
largest multiplier which corresponds to the third intermedi
ate result having the smallest positive value (as among all of
the third intermediate results). These steps can be repeated
to calculate additional quotient digits. For each iteration, the
third intermediate subtraction result that corresponds to the
selected multiplier is used as the partial remainder in the
next iteration.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from
the detailed description which follows and from the accom
panying drawings, which however, should not be taken to
limit the invention to the specific embodiments shown, but
rather are for explanation and understanding only.

FIGS. 1A-1C illustrate various terms used in the field of
computer arithmetic; particularly, in performing division.

FIG. 2 shows the relationship between the partial remain
der upper bits and the upper divisor bits used to evaluate the
next quotient digit in accordance with the present invention.

FIG. 3 is a diagram showing bit ranges of the partial
remainder and divisor and the corresponding quotient digit
sets for logic minimization in accordance with one embodi
ment of the present invention.

FIG. 4 a table which specifies formation of the divisor
according to one embodiment of the present invention.

FIG. 5 is a simple numerical example of the steps
involved in one possible implementation of the invented
division algorithm.

FIG. 6 is a block diagram of a circuit for dividing two
numbers according to the present invention.

FIG. 7 shows a comparison of two numbers to generate a
leading digit according to one embodiment of the present
invention.

DETALED DESCRIPTION

A method and apparatus for performing floating point or
integer division is presented. The method enables imple
menting robust, simple, fast dividers that is suitable for
performing remainder instructions as well. The proposed
algorithm is of the non-restoring type, meaning that the
remainder does not have to be restored at any stage in the
calculation. Unlike common SRT algorithms, the quotient is
not calculated in a redundant representation. This simplifies

5,784.307
3

and speeds up the logic required for calculating the next
group of quotient bits. The proposed algorithm is iterative.
calculating N-bits of the results, per cycle, where N is an
area/speed tradeoff.

Referring now to FIGS. 1A-1C, there are illustrated terms
and numerical representations that will be used throughout
the remainder of this specification. FIG. 1A shows a simple
division example involving three digits: 24 is the dividend,
which is divided by 8. the divisor. The result of this
calculation is the number 3, i.e., the quotient digit.

FIG. 1B illustrates a non-integer representation that has
gained widespread use in the field of computer arithmetic.
This representation is known as floating point. In floating
point representation, the computer word or number is broken
into two parts: an exponent and a significand. As can be seen
in FIG. B. the significand is the number 1.50, while the
exponent is -3. The result of this calculation is 0.1875. The
decimal part of a fractional number is commonly referred to
as the mantissa.
The example of FIG. 1C illustrates how most floating

point division algorithms are carried out. That is, the quo
tient is typically calculated by dividing the two significands,
with the exponent portion being calculated by a simple
subtraction. Thus, in the example of FIG. 1C the quotient
value is given by (S/S), whereas the exponent portion is
simply 20e-e).
Although the present invention will be described in par

ticular embodiments utilizing floating point representations,
it should be understood hat the present invention is also
applicable to integer division. Integer division may be
performed in accordance with the present invention by first
normalizing the integer values, and then proceeding with the
steps described below. Practitioners in the art will further
appreciate that the proposed division algorithm is well
Suited for a variety of floating point representations, includ
ing the format specified by IEEE standard 754-1985 (also
International Standard, IEC 559). This format is described in
"A Proposed Radix-Hand Word-Length-Independent Stan
dard for Floating-Point Arithmetic" EEE Micro 4:486-100,
Cody, et al. (1984).
The invented division algorithm is based on the following

iterative formula.

where Pr(i) is the partial remainder in the i'th iteration, Dis
the divisor and Q(i+1) is the quotient digit currently being
calculated. An example of this algorithm is demonstrated
below (see FIG. 5) in a version which calculates four
quotient bits per clock (radix 16). It should be appreciated,
however, that the algorithm is quite generalized and can be
extended to more (or less) bits per cycle. The calculation is
iterative and continues until the required precision has been
achieved or the remainder reaches zero. The latency is thus
the width of the mantissa divided by four. (An additional
cycle is typically needed for the rounding action.)
According to the invention, at each clock cycle of the

computer system the upper bits of the partial remainder are
inspected along with the upper bits of the divisor to deter
mine the possible values of the next quotient digit. The
number of bits that are inspected depends upon the maxi
mum number of possible values permitted. In the example
provided below, four most significant bits (MSBs) are
inspected for the partial remainder and two MSBs are
inspected for the divisor. This yields up to five possible
quotient digit values. Note that since the divisor is typically
normalized it is always in the range of 1-2. This means that

1.

5

25

30

35

45

50

55

65

4
its most significant bit is always one, so that the actual bits
inspected are the two bits immediately following the deci
mal point (i.e. to the right of the decimal point).
Those persons familiar with computer arithmetic will

appreciate that tradeoffs can be made between the total
number of bits inspected from the divisor and from the
partial remainder, as well as the number of possible quotient
digits out of the radix possible.

With reference now to FIG. 2. there is shown graphically
the relationship between the partial remainder upper bits and
the upper divisor bits. The horizontal scale is for a normal
ized divisor, as in a floating point divider where the divisor
is always in the range of 1-2. Of course, for integer dividers,
the divisor would be pre-normalized to fall within such a
range. The vertical divisions in the graph of FIG. 2 corre
spond to the number of divisor MSBs chosen. In the
example shown, two most significant bits are to be inspected
to evaluate the next quotient. Thus, there are four distinct
divisor regions corresponding to the bits 00, 01. 10 and 11.
By restricting the number of bits that are inspected, the size
of the table shown in FIG. 2 is restricted and the speed at
which the calculation is performed is increased.
The vertical scale for the radix, for example, extends from

0 to 32 (as the partial remainder lies in the range of 0-2').
After being multiplied by the radix (16 in our example) as
per the above equations, this covers the range 0-32. The
divisions on the vertical scale (16 of them) correspond to the
number of partial remainder MSBs (4 bits) chosen for the
purpose of evaluating the next quotient. Hence. the sixteen
vertical regions correspond to the binary numbers
0000-1111, as shown along the right hand side of FIG. 2.
The possible quotient digit results are shown in FIG. 2 as

being from 0-15. These are the lines which mark the regions
for each value of the quotient bits. For instance, the line
which extends from the partial remainder value 1 to the
partial remainder value 2, and across the divisor upper bit
values 1-2, marks the area where the correct quotient value
is zero. Similarly, the area between the lines marked 1 and
2 (along the vertical axis) is the one in which the divisor and
remainder values produce a quotient digit of 1. The area
above the line extending from a partial remainder value of
15 to 30, and across the full range of the divisor bits.
produces a correct quotient of 15.

During each iteration of the invented division algorithm,
a table containing information such as that shown in FIG. 2
is accessed to determine how many times the divisor “fits”
into the present or current remainder. Consider, for example.
the case in which the upper partial remainder bits are 0010
and the divisor upper bits are 01. A table look-up (e.g., to a
ROM containing the values shown in FIG. 2) produces
probable quotient digit results of 2, 3 or 4. This is shown by
the shaded region in FIG. 2. In other words, because a
decision has been made to pick the correct quotient value
based upon reduced precision versions of the divisor and the
partial remainder, the shaded region of FIG. 2 encompasses
several values of the quotient that may provide the correct
quotient digit value. In this respect, each of the rectangular
regions of FIG. 2 can be thought of as representing a zone
of uncertainty, since at this stage of the algorithm it is not
known exactly which quotient will fit into the remainder
without producing a negative next remainder.
The regions are designed so that, atmost, up to N possible

candidates are selected. The number of candidates is the
function of the number of bits used in the look-up, and can
be minimized by judicious selection of the regions. Accord
ing to one embodiment of the invention, up to five values are
determined in each clock. These values represent all of the
possible (i.e. a superset) quotient digits for the current
iteration.

5,784.307
S

Once all of the five possible quotient bit-values have been
generated from the table look-up, all five multiples of the
divisor by those values are calculated, and then subtracted
from the current partial remainder in a parallel operation.
The result yielding the smallest positive result is then chosen
as the correct value for the current quotient digit. The
corresponding subtraction result is the new partial remainder
for the next iteration. To restate it differently, the algorithm
picks the largest multiple (i.e., multiplier) from the table
(e.g. FIG. 2) that still provides a positive result following
subtraction. Based on the number of bits that are inspected
for both the partial remainder and the divisor, the table
look-up generates all of the quotient bit values that-when
multiplied by the divisor-are likely to fall within the
quotient domain.

FIG. 3 illustrates quotient digit sets for various values of
the partial remainder and divisor according to one embodi
ment of the present invention. As can be seen, five possible
values for the next digit are always provided by the table
represented by FIG. 3-even when the actual range of
possible values may be smaller. For instance, in some
situations a zero ("0") multiplier is used, whereas in other
cases, redundant values are input. This embodiment permits
minimization in the control logic and minimization of the
required multiplexer network. In other words, even though
only one or two values need be provided (depending upon a
particular partial remainder and divisor values), five multi
pliers are always generated (see FIG. 3) so that various logic
minimizations can be achieved. Note that in FIG. 3, different
zones are combined into larger areas. By way of example,
whenever the partial remainder upper bits falls in the range
1100-1111, the values 0, 12, 13.14, 15 are always produced,
irrespective of the divisor MSBs.
To better understand how division is performed according

to the present invention, consider the example presented in
FIG. 5. In this example it is desired to divide A (=1.5) by B
(=1.25). Both the decimal and binary representations of
these values are shown in FIG. 5. The initial step involves
comparing the values of A and B to choose either 0 or 1 as
the leading digit (to the left of the decimal point). This
selection can be made simply by comparing A to B to
determine which is larger, as shown in FIG. 7. In this case,
Ais greater than B, so 1 is chosen as the leading or first digit.

In the second step, the divisor is subtracted from the
dividend to generate an unshifted remainder. In our example,
this subtraction step is shown below.

1.1000
1000
OOOO

Next, the remainder is shifted by 4-bit locations
basically multiplying the remainder by 16 in accordance
with the radix of our computation. As can be seen below, this
shifting step produces the remainder value 0100.000.

00000:010 (before multiplying by the radix)
00100,000 (after shifting left by 4)
{0010} --> the bits used in the look-up.

After shifting, a memory containing the look-up table
values is accessed to obtain the multipliers containing the
correct quotient digit for the current iteration. Referring to
the graph of FIG. 2, the partial remainder and divisor, for
example, would produce values 2, 3 and 4. One of these
values represents the correct quotient digit for the current
iteration.

O

15

25

30

35

45

50

55

65

6
After the multipliers are obtained from the look-up opera

tion each value is multiplied by the divisor, with the result
being subtracted from the remainder. This yields three
corresponding intermediate results. In our example, two of
the results are positive and one is negative. According to the
invented division algorithm, the largest multiplier that yields
the smallest positive result is selected as the quotient digit.
Applying this selection rule to the example of FIG. 5 means
that "3" is selected as the quotient digit for the current
iteration. The next partial remainder is calculated using the
selected quotient, and the same process is repeated for the
next iteration.

Practitioners in the art will appreciate that the proposed
division algorithm offers a number of advantages compared
with conventional SRT algorithms. One benefit is that the
redundant representation of the quotient is avoided. Quotient
bits are calculated directly, therefore they do not need to be
later calculated into a final non-redundant form.

Look-up tables for the quotient selection are also smaller,
with a whole range of possible tradeoffs in the selection and
number of bits used for the lookup. Because the algorithm
is numerically simple, error analysis is likewise easier to
perform.

Perhaps the greatest advantage over conventional SRT
algorithms is that the operating frequency according to the
present invention is superior when a large number of quo
tient bits (e.g. more than three) are to be calculated per
cycle. This is primarily due to the smaller number of bits
used in the next quotient look-up table and the larger
parallelism inherent in the algorithm. Compared with other
prior art algorithm, such as multiplicative algorithms, the
present invention may be implemented via a relatively
simple network of multiplexers and adders. Because the
algorithm is numerically simple, it also does not require
expert numerical analysis or the use of a relatively large
multiplier array.
One possibility for generating the quotient times divisor

multiples is shown in the table of FIG. 4. All of the multiples
of the divisor are produced in FIG. 4 by a summation of up
to three shifted versions of the divisor. Thus, each of the
multiples 0-15 can be produced by summing first, second
and third summands. By way of example, the multiple 13 is
produced by summing the divisor with the divisor shifted
left by two places, and the divisor shifted left by three
places. Mathematically this may be written as:

The table of FIG. 4 specifies how each multiple of the
divisor may be formed in accordance with one embodiment
of the invention. The numbers in the table denote multiples
by that particular number, For example, the multiple "8"
means 8D (i.e., eight times the divisor). Practitioners in the
art will readily appreciate that multiples by powers of two
are relatively easy to generate as they are produced by
simple shifts. Multiples by 14 and 15 are performed by
subtraction from the multiple of 16. Subtraction is per
formed by addition of the inverted multiple (i.e., 1# or 2#)
and the binary number one (i.e., '1).

FIG. 6 is a circuit schematic block diagram showing one
possible implementation of the division algorithm of the
present invention. The illustrated embodiment selects five
multiples in accordance with the look-up information shown
in FIG. 3. These five multiples are produced by five
multiply-and-subtract (MAS) units 20. In the embodiment of
FIG. 6, 2 carry-save adders (CSAs) 12 and 13 are employed
along with a carry-look-ahead adder (CLA) 14. (Carry-save
adders are well known circuits that comprise a collection of

5,784,307
7

N independent full adders). Each addition operation results
in a pair of bits: a sum, and a carry bit.
To form the various multiples shown in the table of FIG.

4, up to three numbers need to be added (radix 16). Hence,
a three input adder 12 is utilized with its three inputs being
coupled to a multiplexer network 11 that produces the first,
second, and third summands. Multiplexer network 11
coupled to memory 15 provides the summand values listed
in the table of FIG. 4 as inputs to carry-save adder 12. It
should be apparent that the multiplexerfor the first and third
Summand may be implemented using a 4:1 multiplexer
stage, while a 5:1 multiplexer will suffice to produce the
second summand.
The two stages of the 3:2 CSAs 12 and 13 are connected

in series with CLA 14. CSA 12 produces the multiple of the
divisor in a sum and carry form that is connected to the
inputs of the CSA 13. The third input to CSA 13 is the
current partial remainder of the iteration.

In FIG. 6, the partial remainder is shown being stored in
a register 50. Thus, CSA 13 subtracts the multiple of the
divisor from the partial remainder and again produces a sum
and carry pair as outputs coupled to the inputs of CLA 14.
The CLA. in turn, produces the next partial remainder,
which is coupled to one input of a 5:1 multiplexer 40. Each
MAS 20 produces a potential next partial remainder that
corresponds to the multiple generated from the look-up.
Each of the CLAS also produce a carry out signal that is
input to the priority encoder 30.

Priority encoder 30 controls which partial remainder to
select next, i.e., which result goes into the partial remainder
register 50 for the next iteration.

This is shown in FIG. 6 by control line 31 coupled to the
select input of multiplexer 40. Priority encoder 30 also
selects which quotient digit is selected as the correct digit for
the current iteration. To make the quotient digit selection,
priority encoder 30 controls another multiplexer (not shown
in FIG. 6) that selects the correct quotient digit to be loaded
into the appropriate location in the quotient result register.
The quotient result register is shifted each iteration by the
number of quotient bits computed, so that the currently
computed bits are always inserted at the least significant bit
locations. As explained previously, the correct quotient for
the current iteration is the largest one that produces a
multiple that still provides a positive result following sub
traction from the remainder. Subtracting the quotient digit
from the remainder produces the next partial remainder for
the next iteration.

Practitioners in the art will appreciate that the present
invention is flexible enough to compute a variety of different
numbers of bits each clock cycle. For instance, if one wanted
to compute five bits of the result per cycle-as may be the
case in computing radix 32 computations-a circuit would
be needed that could produce multiples ranging from 0 to 31.
This could be achieved, for example, by summing four
different numbers together.
Another possibility is to reduce the number of multipliers

by choosing finer granularity in the table. In this respect, if
three bits were used as the upper bits of the divisor, then the
size of the columns (see FIG. 2) would be reduced in half.
This, in turn, would reduce the number of multiples that
need to be generated.
The division algorithm of the present invention therefore

allows a tradeoff: fewer bits may be used for both the partial
remainder and divisor with faster look-up table access, but
at the expense of more multiples. On the other hand, more
bits may be used to reduce the number of multiples produced
for each iteration, but at the expense of slower look-up

5

10

15

20

25

30

35

45

50

55

65

8
circuitry. The benefits of the proposed division algorithm,
however, provide advantages in both speed and circuit size
over previous division methods.

I claim:
1. A computer-implemented method of dividing numbers

according to a radix comprising the steps of:
(a) Subtracting a divisor from a dividend to generate a first

intermediate result in a storage location having a plu
rality of bits;

(b) shifting the first intermediate result by N-bits, where
N is an integer and 2 is equal to the radix, to obtain a
remainder;

(c) referencing a memory unit containing a table of
multipliers that is indexed by a portion of the remainder
and a portion of the divisor, the table providing one or
more multipliers;

(d) multiplying the divisor by each of the one or more
multipliers to generate one or more second intermediate
results;

(e) subtracting from the remainder each of the one or more
Second intermediate results to generate one or more
corresponding third intermediate results:

(f) selecting as a quotient digit a largest multiplier from
the one or more multipliers which corresponds to a
third intermediate result having a smallest positive
value as among the one or more third intermediate
results.

2. The method of claim 1 further comprising the initial
step of:

choosing either 0 or 1 as a quotient value to the left of a
decimal point based upon a comparison of the divisor
and the dividend,

3. The method of claim 2 wherein the choosing step
comprises the step of:

choosing 1 as the quotient value to the left of the decimal
point when the dividend is greater than or equal to the
divisor,

4. The method of claim 2 wherein the choosing step
comprises the step of:

choosing 0 as the quotient value to the left of the decimal
point when the dividend is less than the divisor.

5. The method of claim 1 wherein N is equal to 4.
6. The method of claim 5 wherein step (c) provides five

multipliers from the table of multipliers.
7. The method of claim 1 wherein step (c) provides up to

five multipliers from the table of multipliers.
8. The method of claim 1 wherein the dividend and divisor

are integer numbers and further comprising the step of:
normalizing the dividend and the divisor.
9. The method of claim 1 wherein the portion of the

remainder comprises an upper N-bit portion of the remain
der.

10. The method of claim 1 wherein the portion of the
divisor comprises an upper (N/2)-bit portion of the divisor.

11. The method of claim 10 wherein N=4.
12. The method of claim 1 further comprising the step of:
calculating a next quotient digit by repeating steps (b)-(f)

utilizing the third intermediate result from step (f) as
the first intermediate result.

13. The method of claim 1 wherein the memory unit
comprises a read-only memory (ROM).

14. A computer apparatus for dividing numbers according
to a radix comprising:

a storage location having a plurality of bit positions;
means for subtracting a divisor from a dividend to gen

erate a first intermediate result in the storage location;

5,784.307
9

means for shifting the first intermediate result in the
storage location by N-bits, where N is an integer and 2'
is equal to the radix. to obtain a remainder;

a read-only memory (ROM) containing a table of multi
pliers that is indexed by a portion of the remainder and
a portion of the divisor, the table providing one or more
multipliers;

means for multiplying the divisor by each of the one or
more multipliers to generate one or more second inter
mediate results;

means for subtracting from the remainder each of the one
or more second intermediate results to generate one or
more corresponding third intermediate results;

means for selecting as a quotient digit a largest multiplier
from the one or more multipliers which corresponds to
a third intermediate result having a smallest positive
value as among the one or more third intermediate
results.

15. The computer apparatus of claim 14 further compris
ing:

means for choosing either 0 or 1 as a quotient value to the
left of a decimal point based upon a comparison of a
divisor and dividend.

16. The computer apparatus of claim 15 wherein 1 is
chosen as the quotient value to the left of the decimal point
when the dividend is greater than or equal to the divisor.

17. The computer apparatus of claim 15 wherein 0 is
chosen as the quotient value to the left of the decimal point
when the dividend is less than the divisor.

18. The computer apparatus of claim 14 wherein N=4.
19. The computer apparatus of claim 18 wherein the table

of multipliers provides five multipliers.
20. The computer apparatus of claim 14 the table of

multipliers provides up to five multipliers.
21. The computer apparatus of claim 14 wherein the

dividend and divisor are integer numbers.
22. The computer apparatus of claim 14 wherein the

portion of the remainder comprises an upper N-bit portion of
the remainder.

23. The computer apparatus of claim 14 wherein the
portion of the divisor comprises an upper (N/2)-bit portion
of the divisor.

24. The computer apparatus of claim 23 wherein N-4.
25. The computer apparatus of claim 14 further compris

1ng:
means for computing a next quotient digit utilizing the

third intermediate result generated by the selecting
means as the first intermediate result coupled to the
shifting means.

26. A computer apparatus for performing division com
prising:

a register for storing a remainder which is a N-bit shifted
result of subtracting a divisor from a dividend;

5

10

15

20

25

30

35

40

45

50

10
a memory containing a table of multipliers that is indexed
by a portion of the remainder and a portion of the
divisor the memory providing K multipliers, where K
is an integer greater than 1;

Karithmetic units, each of which is to the memory to
receive a corresponding one of the K multipliers and
the remainder stored in the register; during an iteration
cycle, the arithmetic units producing Knext remainders
each of which is computed by
(i) multiplying the divisor by the corresponding one of

the K multipliers to generate a first result;
(ii) subtracting the first result from the remainder; and

control logic, coupled to the K arithmetic units, that
selects a current quotient digit as a largest one of the K
multipliers which corresponds to a next remainder
having a smallest positive value as among the K next
remainders.

27. The computer apparatus of claim 26 wherein the
control logic further selects the next remainder having a
smallest positive value for storage in the register for a next
iteration cycle.

28. The computer apparatus of claim 26 wherein K=5.
29. The computer apparatus of claim 28 wherein N=4.
30, The computer apparatus of claim 26 wherein each of

the arithmetic units comprises a multiply-and-subtract unit.
31. The computer apparatus of claim 30 wherein each of

the multiply-and-subtract units comprises:
a first carry-save adder (CSA) which receives the corre

sponding one of the Kimultipliers as a set of summands,
the first CSA computing a multiple of the divisor
therefrom; and

a second CSA coupled to receive the multiple of the
divisor and the remainder, the second CSA subtracting
the multiple of the divisor from the remainder.

32. The computer apparatus of claim 26 wherein the
control logic comprises a priority encoder coupled to each of
the Karithmetic units.

33. The computer apparatus of claim 31 wherein N=4 and
K=5.

34. The computer apparatus of claim 26 wherein the
memory comprises a read-only memory (ROM) device.

35. The computer apparatus of claim 26 further compris
ing:

a circuit that generates a quotient digit to the left of a
decimal point based on a comparison of the dividend
and the divisor.

36. The computer apparatus of claim 26 wherein the
portion of the remainder comprises an upper N-bit portion of
the remainder.

37. The computer apparatus of claim 26 wherein the
portion of the divisor comprises an upper (N/2)-bit portion
of the divisor.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 5,784,307
DATED : July 21, 1998
INVENTOR(S) : Gad S. Sheaffer

It is certified that error appears in the above-identified patent and that said Letters
Patent is hereby corrected as shown below:

In column 3 at line 29 delete "hat" insert --that--

Signed and Sealed this
Second Day of February, 1999

Acting Commissioner of Patents and Trademarks Attesting Officer

