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57) ABSTRACT 

A computer-implemented algorithm for dividing numbers 
involves subtracting the divisor from the divided to generate 
a first intermediate result, which is then shifted by N-bits to 
obtain a remainder value. A portion of the remainder and a 
portion of the divisor are utilized to generate one or more 
multiples from a look-up table, each of which is multiplied 
by the divisor to generate corresponding second intermedi 
ate results. The second intermediate results are subtracted 

from the remainder to generate corresponding third inter 
mediate results. The largest multiple which corresponds to a 
third intermediate result having a smallest positive value is 
the quotient digit. The third intermediate result that corre 
sponds to the largest multiple is the remainder for the next 
iteration. 
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DVISION ALGORTHM FOR FLOATNG 
PONT OR INTEGER NUMBERS 

FIELD OF THE INVENTION 

This invention relates generally to the field of computer 
arithmetic; specifically, to computer implemented methods 
and circuits for dividing floating point or integer numbers. 

BACKGROUND OF THE INVENTION 

Computer implemented algorithms for performing arith 
metic operations have existed since the advent of computers. 
Most often, these algorithms represent a sort of binary 
version of the paper-and-pencil method taught in elementary 
school. Many of the algorithms differ according to the 
particular number system that is employed. For example, 
there are four common representations for N-bit numbers: 
signed magnitude, two's complement, one's complement, 
and bias. As one would expect, algorithms also differ based 
upon the type of operation performed (e.g., addition, 
subtraction, multiplication, division), the precision to be 
implemented, exception handling, and so on. 

Division algorithms are generally classified into two 
types, restoring and non-restoring. Examples of both restor 
ing and non-restoring types of division algorithms can be 
found in the book, "Computer Architecture-AQuantitative 
Approach". Second Edition, by Patterson and Hennesy, 
Appendix A. Morgan Kaufmann Publishers, Inc. (1996). 
As practitioners in the field understand, restoring division 

algorithms get their name because when a subtraction step 
involving the divisor yields a negative result, the register 
containing the remainder is restored to its old value. 
Conversely, in non-restoring type division algorithms, the 
remainder does not have to be restored at any stage of the 
calculation. 
Much effort in the field of computer arithmetic has been 

devoted to simplifying or minimizing the number of opera 
tions that must be performed. By way of example, in 
non-restoring SRT division an arithmetic logic unit (ALU) 
operation is normally performed at each step. (SRT is an 
acronym for Sweeney, Roberson, and Tocher, who originally 
proposed algorithms of this nature). SRT division is widely 
employed in computer systems such as those which include 
the popular Pentium3) processor, manufactured by Intel 
Corporation. 

Despite its popularity, SRT division is not without its 
complications. For instance, one drawback of SRT division 
is that quotient bits cannot be determined immediately as 
they can in ordinary non-restoring division. Another draw 
back is that the quotient is calculated in a redundant repre 
sentation that typically requires relatively complex logic. 
Furthermore, in SRT division negative quotient values are 
needed which further add to the computational logic. 
Obviously, complications in the compute logic add delay to 
the calculating steps. 
As an alternative to existing SRT and multiplicative 

algorithms, the present invention presents a computer that 
implements a novel division algorithm of the non-restoring 
type. The algorithm is well-suited for dividing floating point 
or integer numbers and enables implementing robust, simple 
and fast dividers. Moreover, the dividers are easy to verify 
and provide high speed performance compared to many 
existing computer designs. Additionally, the logic for cal 
culating the next group of quotient bits is simplified and 
permits iteratively calculating N-bits of the quotient per 
cycle. 
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2 
SUMMARY OF THE INVENTION 

The present invention covers a computer-implemented 
method and apparatus for dividing numbers in either 
floating-point or integer representation. In one 
implementation, the algorithm begins by first choosing 
either a zero or a one as a quotient digit to the left of the 
decimal point based upon a comparison of the divisor and 
the dividend. Next, the divisor is subtracted from the divi 
dend to generate a first intermediate result. The first inter 
mediate result is then shifted in a register by N-bits to obtain 
a remainder value, 

After obtaining the remainder, a memory containing a 
table of multipliers is referenced. The table is indexed by a 
portion of the remainder and a portion of the divisor. 
Referencing the table produces one or more multipliers. 
The next step in the algorithm involves multiplying the 

divisor by each of the previously referenced multipliers. 
This generates corresponding second intermediate results. 
Each of the second intermediate results are then subtracted 
from the remainder to generate corresponding third inter 
mediate results. The current quotient digit is selected as the 
largest multiplier which corresponds to the third intermedi 
ate result having the smallest positive value (as among all of 
the third intermediate results). These steps can be repeated 
to calculate additional quotient digits. For each iteration, the 
third intermediate subtraction result that corresponds to the 
selected multiplier is used as the partial remainder in the 
next iteration. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention will be understood more fully from 
the detailed description which follows and from the accom 
panying drawings, which however, should not be taken to 
limit the invention to the specific embodiments shown, but 
rather are for explanation and understanding only. 

FIGS. 1A-1C illustrate various terms used in the field of 
computer arithmetic; particularly, in performing division. 

FIG. 2 shows the relationship between the partial remain 
der upper bits and the upper divisor bits used to evaluate the 
next quotient digit in accordance with the present invention. 

FIG. 3 is a diagram showing bit ranges of the partial 
remainder and divisor and the corresponding quotient digit 
sets for logic minimization in accordance with one embodi 
ment of the present invention. 

FIG. 4 a table which specifies formation of the divisor 
according to one embodiment of the present invention. 

FIG. 5 is a simple numerical example of the steps 
involved in one possible implementation of the invented 
division algorithm. 

FIG. 6 is a block diagram of a circuit for dividing two 
numbers according to the present invention. 

FIG. 7 shows a comparison of two numbers to generate a 
leading digit according to one embodiment of the present 
invention. 

DETALED DESCRIPTION 

A method and apparatus for performing floating point or 
integer division is presented. The method enables imple 
menting robust, simple, fast dividers that is suitable for 
performing remainder instructions as well. The proposed 
algorithm is of the non-restoring type, meaning that the 
remainder does not have to be restored at any stage in the 
calculation. Unlike common SRT algorithms, the quotient is 
not calculated in a redundant representation. This simplifies 
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and speeds up the logic required for calculating the next 
group of quotient bits. The proposed algorithm is iterative. 
calculating N-bits of the results, per cycle, where N is an 
area/speed tradeoff. 

Referring now to FIGS. 1A-1C, there are illustrated terms 
and numerical representations that will be used throughout 
the remainder of this specification. FIG. 1A shows a simple 
division example involving three digits: 24 is the dividend, 
which is divided by 8. the divisor. The result of this 
calculation is the number 3, i.e., the quotient digit. 

FIG. 1B illustrates a non-integer representation that has 
gained widespread use in the field of computer arithmetic. 
This representation is known as floating point. In floating 
point representation, the computer word or number is broken 
into two parts: an exponent and a significand. As can be seen 
in FIG. B. the significand is the number 1.50, while the 
exponent is -3. The result of this calculation is 0.1875. The 
decimal part of a fractional number is commonly referred to 
as the mantissa. 
The example of FIG. 1C illustrates how most floating 

point division algorithms are carried out. That is, the quo 
tient is typically calculated by dividing the two significands, 
with the exponent portion being calculated by a simple 
subtraction. Thus, in the example of FIG. 1C the quotient 
value is given by (S/S), whereas the exponent portion is 
simply 20e-e). 
Although the present invention will be described in par 

ticular embodiments utilizing floating point representations, 
it should be understood hat the present invention is also 
applicable to integer division. Integer division may be 
performed in accordance with the present invention by first 
normalizing the integer values, and then proceeding with the 
steps described below. Practitioners in the art will further 
appreciate that the proposed division algorithm is well 
Suited for a variety of floating point representations, includ 
ing the format specified by IEEE standard 754-1985 (also 
International Standard, IEC 559). This format is described in 
"A Proposed Radix-Hand Word-Length-Independent Stan 
dard for Floating-Point Arithmetic" EEE Micro 4:486-100, 
Cody, et al. (1984). 
The invented division algorithm is based on the following 

iterative formula. 

where Pr(i) is the partial remainder in the i'th iteration, Dis 
the divisor and Q(i+1) is the quotient digit currently being 
calculated. An example of this algorithm is demonstrated 
below (see FIG. 5) in a version which calculates four 
quotient bits per clock (radix 16). It should be appreciated, 
however, that the algorithm is quite generalized and can be 
extended to more (or less) bits per cycle. The calculation is 
iterative and continues until the required precision has been 
achieved or the remainder reaches zero. The latency is thus 
the width of the mantissa divided by four. (An additional 
cycle is typically needed for the rounding action.) 
According to the invention, at each clock cycle of the 

computer system the upper bits of the partial remainder are 
inspected along with the upper bits of the divisor to deter 
mine the possible values of the next quotient digit. The 
number of bits that are inspected depends upon the maxi 
mum number of possible values permitted. In the example 
provided below, four most significant bits (MSBs) are 
inspected for the partial remainder and two MSBs are 
inspected for the divisor. This yields up to five possible 
quotient digit values. Note that since the divisor is typically 
normalized it is always in the range of 1-2. This means that 
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4 
its most significant bit is always one, so that the actual bits 
inspected are the two bits immediately following the deci 
mal point (i.e. to the right of the decimal point). 
Those persons familiar with computer arithmetic will 

appreciate that tradeoffs can be made between the total 
number of bits inspected from the divisor and from the 
partial remainder, as well as the number of possible quotient 
digits out of the radix possible. 

With reference now to FIG. 2. there is shown graphically 
the relationship between the partial remainder upper bits and 
the upper divisor bits. The horizontal scale is for a normal 
ized divisor, as in a floating point divider where the divisor 
is always in the range of 1-2. Of course, for integer dividers, 
the divisor would be pre-normalized to fall within such a 
range. The vertical divisions in the graph of FIG. 2 corre 
spond to the number of divisor MSBs chosen. In the 
example shown, two most significant bits are to be inspected 
to evaluate the next quotient. Thus, there are four distinct 
divisor regions corresponding to the bits 00, 01. 10 and 11. 
By restricting the number of bits that are inspected, the size 
of the table shown in FIG. 2 is restricted and the speed at 
which the calculation is performed is increased. 
The vertical scale for the radix, for example, extends from 

0 to 32 (as the partial remainder lies in the range of 0-2'). 
After being multiplied by the radix (16 in our example) as 
per the above equations, this covers the range 0-32. The 
divisions on the vertical scale (16 of them) correspond to the 
number of partial remainder MSBs (4 bits) chosen for the 
purpose of evaluating the next quotient. Hence. the sixteen 
vertical regions correspond to the binary numbers 
0000-1111, as shown along the right hand side of FIG. 2. 
The possible quotient digit results are shown in FIG. 2 as 

being from 0-15. These are the lines which mark the regions 
for each value of the quotient bits. For instance, the line 
which extends from the partial remainder value 1 to the 
partial remainder value 2, and across the divisor upper bit 
values 1-2, marks the area where the correct quotient value 
is zero. Similarly, the area between the lines marked 1 and 
2 (along the vertical axis) is the one in which the divisor and 
remainder values produce a quotient digit of 1. The area 
above the line extending from a partial remainder value of 
15 to 30, and across the full range of the divisor bits. 
produces a correct quotient of 15. 

During each iteration of the invented division algorithm, 
a table containing information such as that shown in FIG. 2 
is accessed to determine how many times the divisor “fits” 
into the present or current remainder. Consider, for example. 
the case in which the upper partial remainder bits are 0010 
and the divisor upper bits are 01. A table look-up (e.g., to a 
ROM containing the values shown in FIG. 2) produces 
probable quotient digit results of 2, 3 or 4. This is shown by 
the shaded region in FIG. 2. In other words, because a 
decision has been made to pick the correct quotient value 
based upon reduced precision versions of the divisor and the 
partial remainder, the shaded region of FIG. 2 encompasses 
several values of the quotient that may provide the correct 
quotient digit value. In this respect, each of the rectangular 
regions of FIG. 2 can be thought of as representing a zone 
of uncertainty, since at this stage of the algorithm it is not 
known exactly which quotient will fit into the remainder 
without producing a negative next remainder. 
The regions are designed so that, atmost, up to N possible 

candidates are selected. The number of candidates is the 
function of the number of bits used in the look-up, and can 
be minimized by judicious selection of the regions. Accord 
ing to one embodiment of the invention, up to five values are 
determined in each clock. These values represent all of the 
possible (i.e. a superset) quotient digits for the current 
iteration. 
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Once all of the five possible quotient bit-values have been 
generated from the table look-up, all five multiples of the 
divisor by those values are calculated, and then subtracted 
from the current partial remainder in a parallel operation. 
The result yielding the smallest positive result is then chosen 
as the correct value for the current quotient digit. The 
corresponding subtraction result is the new partial remainder 
for the next iteration. To restate it differently, the algorithm 
picks the largest multiple (i.e., multiplier) from the table 
(e.g. FIG. 2) that still provides a positive result following 
subtraction. Based on the number of bits that are inspected 
for both the partial remainder and the divisor, the table 
look-up generates all of the quotient bit values that-when 
multiplied by the divisor-are likely to fall within the 
quotient domain. 

FIG. 3 illustrates quotient digit sets for various values of 
the partial remainder and divisor according to one embodi 
ment of the present invention. As can be seen, five possible 
values for the next digit are always provided by the table 
represented by FIG. 3-even when the actual range of 
possible values may be smaller. For instance, in some 
situations a zero ("0") multiplier is used, whereas in other 
cases, redundant values are input. This embodiment permits 
minimization in the control logic and minimization of the 
required multiplexer network. In other words, even though 
only one or two values need be provided (depending upon a 
particular partial remainder and divisor values), five multi 
pliers are always generated (see FIG. 3) so that various logic 
minimizations can be achieved. Note that in FIG. 3, different 
zones are combined into larger areas. By way of example, 
whenever the partial remainder upper bits falls in the range 
1100-1111, the values 0, 12, 13.14, 15 are always produced, 
irrespective of the divisor MSBs. 
To better understand how division is performed according 

to the present invention, consider the example presented in 
FIG. 5. In this example it is desired to divide A (=1.5) by B 
(=1.25). Both the decimal and binary representations of 
these values are shown in FIG. 5. The initial step involves 
comparing the values of A and B to choose either 0 or 1 as 
the leading digit (to the left of the decimal point). This 
selection can be made simply by comparing A to B to 
determine which is larger, as shown in FIG. 7. In this case, 
Ais greater than B, so 1 is chosen as the leading or first digit. 

In the second step, the divisor is subtracted from the 
dividend to generate an unshifted remainder. In our example, 
this subtraction step is shown below. 

1.1000 
1000 
OOOO 

Next, the remainder is shifted by 4-bit locations 
basically multiplying the remainder by 16 in accordance 
with the radix of our computation. As can be seen below, this 
shifting step produces the remainder value 0100.000. 

00000:010 (before multiplying by the radix) 
00100,000 (after shifting left by 4) 
{0010} --> the bits used in the look-up. 

After shifting, a memory containing the look-up table 
values is accessed to obtain the multipliers containing the 
correct quotient digit for the current iteration. Referring to 
the graph of FIG. 2, the partial remainder and divisor, for 
example, would produce values 2, 3 and 4. One of these 
values represents the correct quotient digit for the current 
iteration. 
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6 
After the multipliers are obtained from the look-up opera 

tion each value is multiplied by the divisor, with the result 
being subtracted from the remainder. This yields three 
corresponding intermediate results. In our example, two of 
the results are positive and one is negative. According to the 
invented division algorithm, the largest multiplier that yields 
the smallest positive result is selected as the quotient digit. 
Applying this selection rule to the example of FIG. 5 means 
that "3" is selected as the quotient digit for the current 
iteration. The next partial remainder is calculated using the 
selected quotient, and the same process is repeated for the 
next iteration. 

Practitioners in the art will appreciate that the proposed 
division algorithm offers a number of advantages compared 
with conventional SRT algorithms. One benefit is that the 
redundant representation of the quotient is avoided. Quotient 
bits are calculated directly, therefore they do not need to be 
later calculated into a final non-redundant form. 

Look-up tables for the quotient selection are also smaller, 
with a whole range of possible tradeoffs in the selection and 
number of bits used for the lookup. Because the algorithm 
is numerically simple, error analysis is likewise easier to 
perform. 

Perhaps the greatest advantage over conventional SRT 
algorithms is that the operating frequency according to the 
present invention is superior when a large number of quo 
tient bits (e.g. more than three) are to be calculated per 
cycle. This is primarily due to the smaller number of bits 
used in the next quotient look-up table and the larger 
parallelism inherent in the algorithm. Compared with other 
prior art algorithm, such as multiplicative algorithms, the 
present invention may be implemented via a relatively 
simple network of multiplexers and adders. Because the 
algorithm is numerically simple, it also does not require 
expert numerical analysis or the use of a relatively large 
multiplier array. 
One possibility for generating the quotient times divisor 

multiples is shown in the table of FIG. 4. All of the multiples 
of the divisor are produced in FIG. 4 by a summation of up 
to three shifted versions of the divisor. Thus, each of the 
multiples 0-15 can be produced by summing first, second 
and third summands. By way of example, the multiple 13 is 
produced by summing the divisor with the divisor shifted 
left by two places, and the divisor shifted left by three 
places. Mathematically this may be written as: 

The table of FIG. 4 specifies how each multiple of the 
divisor may be formed in accordance with one embodiment 
of the invention. The numbers in the table denote multiples 
by that particular number, For example, the multiple "8" 
means 8D (i.e., eight times the divisor). Practitioners in the 
art will readily appreciate that multiples by powers of two 
are relatively easy to generate as they are produced by 
simple shifts. Multiples by 14 and 15 are performed by 
subtraction from the multiple of 16. Subtraction is per 
formed by addition of the inverted multiple (i.e., 1# or 2#) 
and the binary number one (i.e., '1). 

FIG. 6 is a circuit schematic block diagram showing one 
possible implementation of the division algorithm of the 
present invention. The illustrated embodiment selects five 
multiples in accordance with the look-up information shown 
in FIG. 3. These five multiples are produced by five 
multiply-and-subtract (MAS) units 20. In the embodiment of 
FIG. 6, 2 carry-save adders (CSAs) 12 and 13 are employed 
along with a carry-look-ahead adder (CLA) 14. (Carry-save 
adders are well known circuits that comprise a collection of 
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N independent full adders). Each addition operation results 
in a pair of bits: a sum, and a carry bit. 
To form the various multiples shown in the table of FIG. 

4, up to three numbers need to be added (radix 16). Hence, 
a three input adder 12 is utilized with its three inputs being 
coupled to a multiplexer network 11 that produces the first, 
second, and third summands. Multiplexer network 11 
coupled to memory 15 provides the summand values listed 
in the table of FIG. 4 as inputs to carry-save adder 12. It 
should be apparent that the multiplexerfor the first and third 
Summand may be implemented using a 4:1 multiplexer 
stage, while a 5:1 multiplexer will suffice to produce the 
second summand. 
The two stages of the 3:2 CSAs 12 and 13 are connected 

in series with CLA 14. CSA 12 produces the multiple of the 
divisor in a sum and carry form that is connected to the 
inputs of the CSA 13. The third input to CSA 13 is the 
current partial remainder of the iteration. 

In FIG. 6, the partial remainder is shown being stored in 
a register 50. Thus, CSA 13 subtracts the multiple of the 
divisor from the partial remainder and again produces a sum 
and carry pair as outputs coupled to the inputs of CLA 14. 
The CLA. in turn, produces the next partial remainder, 
which is coupled to one input of a 5:1 multiplexer 40. Each 
MAS 20 produces a potential next partial remainder that 
corresponds to the multiple generated from the look-up. 
Each of the CLAS also produce a carry out signal that is 
input to the priority encoder 30. 

Priority encoder 30 controls which partial remainder to 
select next, i.e., which result goes into the partial remainder 
register 50 for the next iteration. 

This is shown in FIG. 6 by control line 31 coupled to the 
select input of multiplexer 40. Priority encoder 30 also 
selects which quotient digit is selected as the correct digit for 
the current iteration. To make the quotient digit selection, 
priority encoder 30 controls another multiplexer (not shown 
in FIG. 6) that selects the correct quotient digit to be loaded 
into the appropriate location in the quotient result register. 
The quotient result register is shifted each iteration by the 
number of quotient bits computed, so that the currently 
computed bits are always inserted at the least significant bit 
locations. As explained previously, the correct quotient for 
the current iteration is the largest one that produces a 
multiple that still provides a positive result following sub 
traction from the remainder. Subtracting the quotient digit 
from the remainder produces the next partial remainder for 
the next iteration. 

Practitioners in the art will appreciate that the present 
invention is flexible enough to compute a variety of different 
numbers of bits each clock cycle. For instance, if one wanted 
to compute five bits of the result per cycle-as may be the 
case in computing radix 32 computations-a circuit would 
be needed that could produce multiples ranging from 0 to 31. 
This could be achieved, for example, by summing four 
different numbers together. 
Another possibility is to reduce the number of multipliers 

by choosing finer granularity in the table. In this respect, if 
three bits were used as the upper bits of the divisor, then the 
size of the columns (see FIG. 2) would be reduced in half. 
This, in turn, would reduce the number of multiples that 
need to be generated. 
The division algorithm of the present invention therefore 

allows a tradeoff: fewer bits may be used for both the partial 
remainder and divisor with faster look-up table access, but 
at the expense of more multiples. On the other hand, more 
bits may be used to reduce the number of multiples produced 
for each iteration, but at the expense of slower look-up 
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8 
circuitry. The benefits of the proposed division algorithm, 
however, provide advantages in both speed and circuit size 
over previous division methods. 

I claim: 
1. A computer-implemented method of dividing numbers 

according to a radix comprising the steps of: 
(a) Subtracting a divisor from a dividend to generate a first 

intermediate result in a storage location having a plu 
rality of bits; 

(b) shifting the first intermediate result by N-bits, where 
N is an integer and 2 is equal to the radix, to obtain a 
remainder; 

(c) referencing a memory unit containing a table of 
multipliers that is indexed by a portion of the remainder 
and a portion of the divisor, the table providing one or 
more multipliers; 

(d) multiplying the divisor by each of the one or more 
multipliers to generate one or more second intermediate 
results; 

(e) subtracting from the remainder each of the one or more 
Second intermediate results to generate one or more 
corresponding third intermediate results: 

(f) selecting as a quotient digit a largest multiplier from 
the one or more multipliers which corresponds to a 
third intermediate result having a smallest positive 
value as among the one or more third intermediate 
results. 

2. The method of claim 1 further comprising the initial 
step of: 

choosing either 0 or 1 as a quotient value to the left of a 
decimal point based upon a comparison of the divisor 
and the dividend, 

3. The method of claim 2 wherein the choosing step 
comprises the step of: 

choosing 1 as the quotient value to the left of the decimal 
point when the dividend is greater than or equal to the 
divisor, 

4. The method of claim 2 wherein the choosing step 
comprises the step of: 

choosing 0 as the quotient value to the left of the decimal 
point when the dividend is less than the divisor. 

5. The method of claim 1 wherein N is equal to 4. 
6. The method of claim 5 wherein step (c) provides five 

multipliers from the table of multipliers. 
7. The method of claim 1 wherein step (c) provides up to 

five multipliers from the table of multipliers. 
8. The method of claim 1 wherein the dividend and divisor 

are integer numbers and further comprising the step of: 
normalizing the dividend and the divisor. 
9. The method of claim 1 wherein the portion of the 

remainder comprises an upper N-bit portion of the remain 
der. 

10. The method of claim 1 wherein the portion of the 
divisor comprises an upper (N/2)-bit portion of the divisor. 

11. The method of claim 10 wherein N=4. 
12. The method of claim 1 further comprising the step of: 
calculating a next quotient digit by repeating steps (b)-(f) 

utilizing the third intermediate result from step (f) as 
the first intermediate result. 

13. The method of claim 1 wherein the memory unit 
comprises a read-only memory (ROM). 

14. A computer apparatus for dividing numbers according 
to a radix comprising: 

a storage location having a plurality of bit positions; 
means for subtracting a divisor from a dividend to gen 

erate a first intermediate result in the storage location; 
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means for shifting the first intermediate result in the 
storage location by N-bits, where N is an integer and 2' 
is equal to the radix. to obtain a remainder; 

a read-only memory (ROM) containing a table of multi 
pliers that is indexed by a portion of the remainder and 
a portion of the divisor, the table providing one or more 
multipliers; 

means for multiplying the divisor by each of the one or 
more multipliers to generate one or more second inter 
mediate results; 

means for subtracting from the remainder each of the one 
or more second intermediate results to generate one or 
more corresponding third intermediate results; 

means for selecting as a quotient digit a largest multiplier 
from the one or more multipliers which corresponds to 
a third intermediate result having a smallest positive 
value as among the one or more third intermediate 
results. 

15. The computer apparatus of claim 14 further compris 
ing: 

means for choosing either 0 or 1 as a quotient value to the 
left of a decimal point based upon a comparison of a 
divisor and dividend. 

16. The computer apparatus of claim 15 wherein 1 is 
chosen as the quotient value to the left of the decimal point 
when the dividend is greater than or equal to the divisor. 

17. The computer apparatus of claim 15 wherein 0 is 
chosen as the quotient value to the left of the decimal point 
when the dividend is less than the divisor. 

18. The computer apparatus of claim 14 wherein N=4. 
19. The computer apparatus of claim 18 wherein the table 

of multipliers provides five multipliers. 
20. The computer apparatus of claim 14 the table of 

multipliers provides up to five multipliers. 
21. The computer apparatus of claim 14 wherein the 

dividend and divisor are integer numbers. 
22. The computer apparatus of claim 14 wherein the 

portion of the remainder comprises an upper N-bit portion of 
the remainder. 

23. The computer apparatus of claim 14 wherein the 
portion of the divisor comprises an upper (N/2)-bit portion 
of the divisor. 

24. The computer apparatus of claim 23 wherein N-4. 
25. The computer apparatus of claim 14 further compris 

1ng: 
means for computing a next quotient digit utilizing the 

third intermediate result generated by the selecting 
means as the first intermediate result coupled to the 
shifting means. 

26. A computer apparatus for performing division com 
prising: 

a register for storing a remainder which is a N-bit shifted 
result of subtracting a divisor from a dividend; 
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a memory containing a table of multipliers that is indexed 
by a portion of the remainder and a portion of the 
divisor the memory providing K multipliers, where K 
is an integer greater than 1; 

Karithmetic units, each of which is to the memory to 
receive a corresponding one of the K multipliers and 
the remainder stored in the register; during an iteration 
cycle, the arithmetic units producing Knext remainders 
each of which is computed by 
(i) multiplying the divisor by the corresponding one of 

the K multipliers to generate a first result; 
(ii) subtracting the first result from the remainder; and 

control logic, coupled to the K arithmetic units, that 
selects a current quotient digit as a largest one of the K 
multipliers which corresponds to a next remainder 
having a smallest positive value as among the K next 
remainders. 

27. The computer apparatus of claim 26 wherein the 
control logic further selects the next remainder having a 
smallest positive value for storage in the register for a next 
iteration cycle. 

28. The computer apparatus of claim 26 wherein K=5. 
29. The computer apparatus of claim 28 wherein N=4. 
30, The computer apparatus of claim 26 wherein each of 

the arithmetic units comprises a multiply-and-subtract unit. 
31. The computer apparatus of claim 30 wherein each of 

the multiply-and-subtract units comprises: 
a first carry-save adder (CSA) which receives the corre 

sponding one of the Kimultipliers as a set of summands, 
the first CSA computing a multiple of the divisor 
therefrom; and 

a second CSA coupled to receive the multiple of the 
divisor and the remainder, the second CSA subtracting 
the multiple of the divisor from the remainder. 

32. The computer apparatus of claim 26 wherein the 
control logic comprises a priority encoder coupled to each of 
the Karithmetic units. 

33. The computer apparatus of claim 31 wherein N=4 and 
K=5. 

34. The computer apparatus of claim 26 wherein the 
memory comprises a read-only memory (ROM) device. 

35. The computer apparatus of claim 26 further compris 
ing: 

a circuit that generates a quotient digit to the left of a 
decimal point based on a comparison of the dividend 
and the divisor. 

36. The computer apparatus of claim 26 wherein the 
portion of the remainder comprises an upper N-bit portion of 
the remainder. 

37. The computer apparatus of claim 26 wherein the 
portion of the divisor comprises an upper (N/2)-bit portion 
of the divisor. 
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