
(19) United States
US 2010.0023707A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0023707 A1
HOhmuth et al. (43) Pub. Date: Jan. 28, 2010

(54) PROCESSOR WITH SUPPORT FOR NESTED
SPECULATIVE SECTIONS WITH
DIFFERENT TRANSACTIONAL MODES

(76) Inventors: Michael P. Hohmuth, Dresden
(DE); David S. Christie, Austin,
TX (US); Stephan Diestelhorst,
Dresden (DE)

Correspondence Address:
MEYERTONS, HOOD, KIVLIN, KOWERT &
GOETZEL (AMD)
P.O. BOX 398
AUSTIN, TX 78767-0398 (US)

(21) Appl. No.: 12/510,856

(22) Filed: Jul. 28, 2009

Related U.S. Application Data

(60) Provisional application No. 61/084,008, filed on Jul.
28, 2008.

PrOCeSSOr
11 Og

ASF meChariSnS
12Oa

Memory cache?s)
130a

CaChe coherence
mechanisms

132a

InterCOnnect

Publication Classification

(51) Int. Cl.
G06F 2/16 (2006.01)

(52) U.S. Cl. 711/152; 711/E12.103

(57) ABSTRACT

A system and method are disclosed wherein a processor of a
plurality of processors coupled to shared memory, is config
ured to initiate execution of a section of code according to a
first transactional mode of the processor. The processor is
configured to execute a plurality of protected memory access
operations to the shared memory within the section of code as
a single atomic transaction with respect to the plurality of
processors. The processor is further configured to initiate,
within the section of code, execution of a subsection of the
section of code according to a second transactional mode of
the processor, wherein the first and second transactional
modes are each associated with respective recovery actions
that the processor is configured to perform in response to
detecting an abort condition.

100

-

PrOCeSSOr
110b

ASF meChaniSmS
12Ob

Memory cache?s)
13Ob

CaChe COherence
mechanisms

132b

Shared memory
150

Patent Application Publication Jan. 28, 2010 Sheet 1 of 12 US 2010/0023707 A1

1 OO

PrOCeSSOr PrOCeSSOr
1 10a 11 Ob

ASF neChanisms ASF neChanisms
1.20a 12Ob

Memory cache?s) Memory cache?s)
130a 130b

CaChe COherence CaChe coherence
meChaniSmS meChanismS

132a 132b

InterCOnnect

Shared memory
150

FIG. 1

Patent Application Publication Jan. 28, 2010 Sheet 2 of 12 US 2010/0023707 A1

PrOCeSSOr
200

Register file
210

rSP register rlP register
212 214

rAX register rFLAGS register
216 218

General purpose registerS Floating point registerS
220 222

XMM registers Other Registers
224 226

Memory cache?s)
230

CaChe-COherence reChariSriS
232

ASF meChanisms
24O

LOCked line buffer Nesting level register
242 244

Transaction Active Flag Store-Conditional Mode Flag
246 248

FIG 2

Patent Application Publication Jan. 28, 2010 Sheet 3 of 12 US 2010/0023707 A1

Execute instruction indicating
Start Of a tranSaCtion

310

Execute sequence of Execute recovery actions
instructions including one or 350
nOre memory acceSSes uSing

declarators declaring
protecteded memory locations

320

ROIbaCK nOde?
340

TranSaCtion abOrted?
330

Execute instruction indicating Deactivate tranSaCtion
end Of tranSaCtion 360

380

COntinue tranSaCtion,
COntinue eXecution ignoring Stores to protected

390 memory locations
370

FIG. 3

Patent Application Publication Jan. 28, 2010 Sheet 4 of 12 US 2010/0023707 A1

Top-level parent transaction
(rollback mode)

400

Nested parent transaction
(rollback mode)

410

NeSted tranSaCtion
(rollback mode)

420

Nested TranSaCtion
(store-conditional)

430

Nested tranSaCtion
(Store Conditional)

440

FIG. 4

Patent Application Publication Jan. 28, 2010 Sheet 5 of 12 US 2010/0023707 A1

-

Maximum nesting
depth reached?

505

Within a
Store-COnditional

Section?
510

NO

Reset raX register to 0 Raise GP fault
520 515

Increment nesting level
525

YeS Top-level
transaction?

530
Record value of Stack pointer

535

Record value of instruction pointer
for instruction immediately after

SPECULATE in StrLICtion
540

COntinue tranSaCtion
545

FIG. 5

Patent Application Publication Jan. 28, 2010 Sheet 6 of 12 US 2010/0023707 A1

600

-

Maximum
nesting depth
reached?

605

Within
a Store-COnditional

Section?
610

NO

Reset raX register to 0 Raise GP fault
620 615

Increment nesting level
625

Set flag indicating
Store-COnditional mode

630

COntinue tranSaCtion
635

FIG. 6

Patent Application Publication Jan. 28, 2010 Sheet 7 of 12 US 2010/0023707 A1

CPU A node CPUA operation CPU B CaChe-line State

Protected Shared Protected OWned

"OWned' --MOOdified Or OWned

FIG. 7

Patent Application Publication Jan. 28, 2010 Sheet 8 of 12 US 2010/0023707 A1

800

-

ExeCLIte SPECULATE in StrLICtion
805

AbOrt
Status COde Set?

810
Jump to recovery routine(s)

NO 815
Protect memory location(s) using

declarator instruction(s)
820

Write to one or more protected
memory locations

825

NO COndition detected?

COmnit transaction

DiSCard mOdificationS to all
protected memory locations

835

Release all protected
memory locations

840

Set abOrt Status Value in raX
845

Roll back riPand rSP using
Checkpointed values

850

FIG. 8

Patent Application Publication Jan. 28, 2010 Sheet 9 of 12 US 2010/0023707 A1

900

N
Raise #GP exception

NO

In
Store-COnditional

nOde 2
945

TranSaCtion
iS active?

905
NO

YeS YeS

Store 0 in raX register Store abOrt StatuS
910 in raX register

955

Indicate eXecution is not in
Store COnditional Section Jump to recovery routine

915 960

Decrement nesting level
920

Top-level
transaction?

925

NO

COmnit modificationS to
protected memory locations

930

Release protected
memory locations

935

End tranSaCtion
940 FIG. 9

Patent Application Publication Jan. 28, 2010 Sheet 10 of 12 US 2010/0023707 A1

ExeCute BEGIN instruction
1005

Protect memory location(s)
using declarator instruction(s)

101 O

Write to One Or more
protected memory locations

10 15

AbOrt
COndition detected?

1025

AbOrt tranSaCtion
1030

Continue executing transaction
body excluding Speculative Stores
to protected memory locations and

treating declarators as regular
memory references

1035

Execute VALIDATE in Struction
1040

NO

NO

TranSaCtion active?
1045

YeS Execute recovery actions
COmnit tranSaCtion 1055

1050

FIG. 10

Patent Application Publication Jan. 28, 2010 Sheet 11 of 12 US 2010/0023707 A1

1 100

Start transaction
1 11 O

Atomically read the value of each lock
associated with each lock-protected
memory location in the transaction's
read-Set (e.g., uSing a declarator)

1 120

Are any lockS
read in 1120 held?

1130

Execute transaction body
1140

AbOrt
COndition detected?

1 150

COmnit tranSaCtion
117O

FIG 11

AbOrt tranSaCtion and
execute recovery actions

1160

Patent Application Publication Jan. 28, 2010 Sheet 12 of 12 US 2010/0023707 A1

Computer system
1200

Shared memory
1210

Program instructions
122O

ASF-based transactional memory application(s)
1222

Operating System(S)
1224

Data StructureS and variableS
1230

LOCKS
1240

InterCOnnect

PrOCeSSOrS PerSistent
1270 Storage

device(s)
Dynamic Scheduling mechanisms 1260

1272

Load/Store queue(s)
1274

File
System(s) Registers

1276 1262

ASF neChanisms
1278

CaChe COherenCe neChanismS
1279

FIG. 12

US 2010/0023707 A1

PROCESSOR WITH SUPPORT FOR NESTED
SPECULATIVE SECTIONS WITH

DIFFERENT TRANSACTIONAL MODES

0001. This application claims benefit of priority to U.S.
Provisional Patent Application No. 61/084,008, filed Jul. 28,
2008. The preceding provisional application is incorporated
herein by reference in its entirety. To the extent that material
in the Provisional Application conflicts with material
expressly set forth herein, the material expressly set forth
herein controls.

BACKGROUND

0002 Shared-memory computer systems allow multiple
concurrent threads of execution to access shared memory
locations. Unfortunately, writing correct multi-threaded pro
grams is difficult due to the complexities of coordinating
concurrent memory access.
0003 Traditionally, to ensure program correctness, pro
grammers have used locks or other mutual exclusion mecha
nisms for coordinating access to shared memory locations.
For example, using traditional locks, a thread may be config
ured to acquire and hold a lock on each memory location to
which it needs exclusive access. While the thread holds the
lock, no other thread may acquire the lock, and therefore, no
other thread may access the memory location protected by
that lock. However, traditional locking techniques are Vulner
able to various pitfalls, including dead-lock, race conditions,
priority inversions, Software complexity, and performance
limitations.
0004 An alternative approach to concurrency control is
transactional memory. In a transactional memory program
ming model, a programmer may designate a section of code
(i.e., an execution path or a set of program instructions) as a
“transaction” which should be executed atomically with
respect to other threads of execution. For example, if the
transaction includes two memory store operations, then the
transactional memory system ensures that all other threads
may only observe either the cumulative effects of both
memory operations or of neither, but not the effects of only
one. In addition to a simplified programming model, transac
tional memory systems can also increase application perfor
mance since they may allow finer grained memory sharing
than do traditional locks.
0005 Various transactional memory systems have been
proposed in the past, including those implemented in Soft
ware, in hardware, or in a combination thereof. However,
many previous concepts and implementations are bound by
various limitations. For example, Software-based transac
tional memory systems (STMs) suffer an undesirable perfor
mance overhead while hardware proposals (HTMs) may be
prohibitively complex to implement.

SUMMARY

0006. A system and method are disclosed wherein a pro
cessor of a plurality of processors coupled to shared memory,
may be configured to initiate execution of a section of code
according to a first transactional mode of the processor. The
processor may be further configured to execute a plurality of
protected memory access operations to the shared memory
within the section of code as a single atomic transaction with
respect to the plurality of processors. The processor may be

Jan. 28, 2010

further configured to initiate, within the section of code,
execution of a Subsection of the section of code according to
a second transactional mode of the processor. According to
Some embodiments, the first and second transactional modes
may each be associated with respective recovery actions that
the processor is configured to perform in response to detect
ing an abort condition.
0007. In some embodiments, the first transactional mode
may be a rollback mode. In Such embodiments, if the proces
Sor detects an abort condition while executing the section of
code in rollback mode, the processor may be configured to
discard any modifications to the shared memory made by one
or more of the protected memory access operations and to roll
back execution to the start of the section of code. For example,
rolling back execution to the start of the section of code may
include modifying values held in one or more registers (e.g.,
stack pointer, instruction pointer, etc.) to return program con
trol flow to the start of the section of code.
0008. In some embodiments, the second transactional
mode may be a store-conditional mode. In Such embodi
ments, if the processor detects an abort condition while
executing the Subsection in store-conditional mode, the pro
cessor may be configured to discard any modifications to the
shared memory made by one or more of the protected
memory access operations, but rather than rolling back execu
tion to the start of the section of code, the processor may
continue execution of the subsection of code but without
executing Subsequent store operations to shared memory.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 FIG. 1 is a block diagram illustrating components of
a multi-processor computer system configured to implement
ASF, according to various embodiments.
0010 FIG. 2 is a block diagram illustrating a more detailed
view of components comprising a processor, according to one
embodiment.
0011 FIG. 3 is a general flow diagram illustrating a
method for executing a transaction using ASF, according to
various embodiments.
0012 FIG. 4 is a block diagram illustrating an example of
a nested transaction, according to one embodiment.
0013 FIG. 5 is a flow diagram illustrating an implemen
tation of a SPECULATE instruction to begin a speculative
section in rollback mode, according to Some embodiments.
0014 FIG. 6 is a flow diagram illustrating the steps of
executing a BEGIN instruction to begin a speculative section
in store-conditional mode, according to Some embodiments.
0015 FIG. 7 is a table summarizing a set of rules defining
how various ASF implementations may handle data conten
tion, according to some embodiments.
0016 FIG. 8 is a flow diagram illustrating a method by
which, according to various embodiments, ASF mechanisms
may execute a transaction in rollback mode.
0017 FIG. 9 illustrates a method for committing a trans
action, such as by executing a COMMIT instruction, accord
ing to Some embodiments.
0018 FIG. 10 is a flow diagram illustrating a method for
executing a transaction in store-conditional mode, according
to some embodiments.

0019 FIG. 11 is a flowchart illustrating a method for con
figuring ASF-based transactions to interoperate with lock
based code, according to one embodiment.

US 2010/0023707 A1

0020 FIG. 12 illustrates one embodiment of a computer
system configured to implement various embodiments of
ASF, as described herein.
0021 While the invention is described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that the invention is not
limited to the embodiments or drawings described. It should
be understood that the drawings and detailed description
hereto are not intended to limit the invention to the particular
form disclosed, but on the contrary, the invention is to cover
all modifications, equivalents and alternatives falling within
the spirit and scope of the present invention as defined by the
appended claims. Any headings used herein are for organiza
tional purposes only and are not meant to limit the scope of
the description or the claims. As used herein, the word “may
is used in a permissive sense (i.e., meaning having the poten
tial to) rather than the mandatory sense (i.e. meaning must).
Similarly, the words “include”, “including, and “includes’
mean including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

0022 Transactional memory systems may allow software
threads in multi-threaded systems to access (read and/or
write) a set of shared memory locations atomically with
respect to other threads, without requiring the overhead and
programming complexity associated with traditional Syn
chronization mechanisms such as mutual-exclusion using
locks. However, further techniques are necessary for increas
ing the efficiency of transactional memory systems.
0023. According to some embodiments, various hardware
mechanisms may be used to implement efficient transactional
memory mechanisms, as described herein. In some embodi
ments, computationally inexpensive primitives (e.g., pro
gram instructions) may be defined for instructing the hard
ware to perform various synchronization functions, which
may be used to synthesize higher-level synchronization
mechanisms. The hardware mechanisms and/or program
instructions may collectively be referred to herein as the
Advanced Synchronization Facility (ASF).
0024. In some embodiments, an existing processor archi
tecture (e.g., x86) may be augmented to implement ASF
mechanisms. For clarity of explication, the remainder of this
disclosure describes how the known 64-bit x86 architecture
AMD64 may be augmented with ASF mechanisms to imple
ment transactional memory. However, these example
embodiments are not intended to limit ASF mechanisms to
this architecture alone and given the benefit of this disclosure,
implementations of ASF mechanisms in other processor
architectures will become evident to those skilled in the art.
0025 FIG. 1 is a block diagram illustrating components of
a multi-processor computer system configured to implement
ASF, according to various embodiments. According to the
illustrated embodiment, computer system 100 may include
multiple processors, such as processors 110a and 110b. In
Some embodiments, processors 110 may comprise multiple
physical or logical (e.g., SMT) cores and be coupled to each
other and/or to a shared memory 150 over an interconnect,
such as 140. In various embodiments, different interconnects
may be used. Such as a shared system bus or a point-to-point
network in various topographies (e.g., fully connected, torus,
etc.).
0026. According to the illustrated embodiment, each pro
cessor 110 may include one or more levels of memory caches
130. Levels of memory caches may be hierarchically

Jan. 28, 2010

arranged (e.g., L1 cache, L2 cache, L3 cache, etc.) and may be
used to cache local copies of values stored in shared memory
150.

0027. In various embodiments, memory caches 130 may
include various cache-coherence mechanisms 132. Cache
coherence mechanisms 132 may, in one embodiment, imple
ment a cache coherence communication protocol among the
interconnected processors to ensure that the values contained
in memory caches 130 of each processor 110 are coherent
with values stored in shared memory and/or in the memory
caches of other processors. Several Such protocols exist (in
cluding the MESI (i.e., Illinois protocol) and MOESI proto
cols), and may be implemented in various embodiments.
Cache coherence protocols may define a set of messages and
rules by which processors may inform one another of modi
fications to shared data and thereby maintain cache coher
ence. For example, according to the MESI protocol, each
block stored in a cache must be marked as being in one of four
states: modified, exclusive, shared, or invalid. A given proto
col defines a set of messages and rules for sending and inter
preting those messages, by which processors maintain the
proper markings on each block. Depending on the State of a
given cache block, a processor may be restricted from per
forming certain operations. For example, a processor may not
execute program instructions that depend on a cache block
that is marked as invalid. Cache coherence mechanisms may
be implemented in hardware, Software, or in a combination
thereof, in different embodiments. Cache coherence mes
sages may be may be communicated across interconnect 140
and may be broadcast or point-to-point.
0028. According to the illustrated embodiment, each pro
cessor 110 may also include various ASF mechanisms for
implementing transactional memory, as described herein. In
various embodiments, more processors 110 may be con
nected to interconnect 140, and various levels of cache
memories may be shared among multiple such processors
and/or among multiple cores on each processor.
0029 FIG. 2 is a block diagram illustrating a more detailed
view of components comprising a processor, such as proces
sors 110, according to one embodiment. According to the
illustrated embodiment of FIG. 2, processor 200 comprises
register file 210, which may include various registers, each of
which may be of any size (e.g., 16-bit, 32-bit, 64-bit, 128-bit,
etc.) For example, register file 210 may include various
known x86 registers, such as rSP register 212 (stack pointer),
rIP register 214 (instruction pointer), raX register 216 (accu
mulator register), and/or rFLAGS register 218 (flags register
indicating processor State). In some embodiments, register
file 210 may further comprise any number of general purpose
registers 220 and/or floating point registers 222. In some
embodiments, register file 210 may include one or more 128
bit registers, such as XMM registers 224. In various embodi
ments, register file 210 may comprise any number of other
registers 226, which may be of various sizes.
0030. According to the illustrated embodiment, processor
200 may include memory caches 230 for storing local copies
of values in shared memory and cache-coherence mecha
nisms 232 for maintaining the consistency of those values
across various copies dispersed within shared memory, the
cache, and other caches. Processor 200 may also include ASF
mechanisms 240 for implementing transactional synchroni
Zation mechanisms, as described herein. ASF mechanisms
240 may include the data structures and/or logic to implement
memory transactions as described herein, according to vari

US 2010/0023707 A1

ous embodiments. In some embodiments, ASF mechanisms
240 may include a locked line buffer 242, which may be used
in case of an abort to roll back memory changes made by a
partially executed transaction, as described below. In some
embodiments, ASF mechanisms 240 may include a nesting
level register 244, which may hold a value indicating the
depth to which the current transaction is nested in other trans
actions, as described below in more detail. In some embodi
ments ASF mechanisms may include a flag to indicate
whether a transaction is active. Such as transaction active flag
246. In some embodiments, ASF mechanisms may include a
flag indicating a transactional mode, Such as store-condi
tional mode flag 248, which may be set to indicate whetheran
executing transaction is executing in store-conditional mode
or in another mode. In further embodiments, other flags and/
or registers may be implemented in ASF mechanisms 240 in
Support of transactional execution.
0031 FIG. 3 is a general flow diagram illustrating a
method for executing a transaction using ASF, according to
various embodiments. According to the illustrated embodi
ment, ASF may allow software (e.g., a thread) to begin a
transaction (i.e., a critical section of code) by executing a
given instruction (or multiple instructions) indicating the start
of a transaction, as in 310. As discussed later, in various
embodiments, ASF instructions such as SPECULATE or
BEGIN may be used to indicate the start of a critical section.
0032. After beginning a transaction, the thread may
execute a series of instructions comprising the transaction
body, as in 320. Such instructions may include a number of
memory access (read and/or write) operations, Some number
of which may designate that the accessed memory location
should be protected. A thread may designate that a given
memory location should be protected by using one or more
special declarator instructions provided by ASF. ASF mecha
nisms may ensure that access to protected memory (as des
ignated by declarator instructions) occur atomically with
respect to all other concurrently executing threads in the
system (i.e., all at once or not at all). For example, if the
transaction includes multiple protected writes to memory,
then ASF mechanisms may ensure that no other thread may
observe the result of only a subset of those protected writes to
memory. In another example, according to some embodi
ments, if the transaction includes one or more protected
memory read operations, then ASF mechanisms may ensure
that the transaction completes Successfully only if no other
thread has modified the protected read locations before the
transaction has completed. In various embodiments, a
“memory location' protected by a declarator operation may
be of different sizes, such as that of a system dependent cache
block or of another size.

0033 According to such embodiments, ASF may be con
figured to protect only memory lines that have been specified
using designated declarator instructions. In Such embodi
ments, all other memory locations may remain unprotected
and may be modified inside a critical section using standard
x86 instructions. These modifications to unprotected memory
may become visible to other CPUs immediately upon execu
tion, for example, in program order. In some embodiments, a
transaction body (e.g., instructions executed in 320) may
comprise one or more other transactions (i.e., nested transac
tions).
0034. According to various embodiments, if one or more
conditions of the transactional execution have been violated,
then the transaction may abort (as indicated by the affirmative

Jan. 28, 2010

exit from 330). In various embodiments, transactional
attempts may be aborted at any point because of contention
with other processors, far control transfers (such as those
caused by interrupt and faults), execution of explicit software
ABORT instructions, insufficient hardware resources, other
implementation-specific conditions, etc.
0035. In various embodiments, when a transactional
attempt aborts, different recovery actions may be taken
depending on the mode of transactional execution. In various
embodiments, for each transaction, ASF may support a roll
back mode of execution and/or a store-conditional mode of
execution. In some embodiments, the mode of execution may
determine what actions are performed in response to a trans
actional attempt being aborted. For example, in some
embodiments, aborting a transaction in rollback mode may
cause execution to be “rolled back to the start of the trans
action while aborting a transactional attempt in store-condi
tional mode may cause the transaction to continue but with
transactional store operations not being performed (i.e.,
execution of transactional stores may be conditional on the
transaction not having been aborted).
0036. According to the illustrated embodiment, when a
transaction executing in rollback mode aborts (as indicated by
the affirmative exit from 340), ASF mechanisms may be
configured to execute recovery actions, as in 350, which may
include discarding modifications to the contents of the pro
tected lines. By discarding such modifications, as in 350. ASF
mechanisms may cause the modifications to be unobservable
to other threads in the system, thereby complying by the
atomicity property of the transaction. However, ASF mecha
nisms may be configured to not roll back modifications to
unprotected memory, such as those performed using conven
tional x86 memory instructions. In some embodiments, the
application programmer may provide Software for accommo
dating these unprotected modifications, such as Software
recovery routines configured to reenter an initialization
sequence leading up to the critical section.
0037. In various embodiments, the recovery actions of 350
may be configured to roll back only a Subset of the system
registers (e.g., rIP and rSP) rather than all registers. In such
embodiments, software may therefore be written to not rely
on the content of various registers when entering transac
tional execution (e.g., by ignoring the initial contents of some
registers after an abort event and/or to not modifying various
registers during transactional execution).
0038. In some instances, before an interrupt or exception
handler returns, operating system code or other processes
may have executed in the interim. Furthermore, in some
instances, other processes may have even executed ASF trans
actions that inspected and/or modified locations targeted by
the interrupted transaction. In some embodiments, ASF
mechanisms may obviate these concerns by not maintaining
any ASF-related State across context Switches. Instead, in
such embodiments, when the interrupted thread returns to the
processor, ASF mechanisms may be configured to automati
cally abort and reattempt the transaction.
0039. According to the illustrated embodiment, after
executing some recovery action or actions, the thread may
then reattempt the transaction, as indicated by the feedback
loop from 350 to 310.
0040. In some embodiments, an abort of a transaction
executing in store-conditional mode (as indicated by the
negative exit from 340) may be handled differently from an
abort of a transaction executing in rollback (as indicated by

US 2010/0023707 A1

the affirmative exit from 340). For example, while an abort of
a rollback mode transaction may automatically reset execu
tion flow to the beginning of the critical section (or to other
recovery code), an abort of a transaction in store-conditional
mode may be handled by undoing or otherwise discarding
changes made by the critical section to values in protected
memory locations and then and “deactivating the transac
tion, as in 360. In various embodiments, deactivating the
transaction may include setting a status code indicating that
an abort has occurred and/or that the transaction is no longer
active. In store-conditional mode, after the transaction is
deactivated (as in 360), the system may continue to execute
the critical section without executing any store operations to
protected memory locations (as in 370). For example, after
the transaction is deactivated, Subsequent store operations to
protected memory locations may be treated as no-ops.
0041. In some embodiments, when the aborted transaction
completes, a status code may be set in a register, Such as raX
register 216 to indicate that the transaction was aborted. In
Some embodiments, the thread may be configured to detect
that an abort status code has been set and perform one or more
recovery actions, as indicated by the feedback loop from 370
to 350. In various embodiments, the recovery actions of 350
may be different for transactions that were aborted in store
conditional mode (i.e., from 370) than for those that were
aborted in rollback mode (i.e., from 340). A more detailed
discussion of transactions in rollback and store-conditional
modes is provided below.
0042. According to the illustrated embodiment, once the
transaction body has been completed, the thread may execute
one or more instructions indicating the end of the transaction
to the ASF mechanisms, as in 380, such as a COMMIT
instruction as discussed below. After committing the transac
tion, as in 380, the thread may continue execution, as in 390.
0043. In some embodiments, ASF may support nesting of
one or more transactions within one or more other transac
tions. For example, after a transaction is started as in 310 (e.g.,
by executing a SPECULATE command), the instructions of
the transaction body being executed in 320 may begin another
transaction (e.g., by executing another SPECULATE com
mand) before the first transaction completed. In this case, the
second (“child') transaction may be said to be “nested
within the first (“parent’) transaction. A transaction that is not
nested within any other transaction may be referred to herein
as a “top-level transaction.
0044 FIG. 4 illustrates an example of a nested transaction,
according to one embodiment. According to FIG. 4, top-level
parent transaction 400 is a rollback mode transaction that
comprises two nested transactions: nested parent transaction
410, which is also in rollback mode and nested transaction
440, which is store-conditional mode. According to the illus
trated embodiment, nested parent transaction 400 contains
two nested transactions, including nested transaction 420 and
nested transaction 430, which are in rollback and store-con
ditional modes respectively.
0045. In some embodiments, ASF mechanisms may be
configured to flatten nested transactions (e.g., composed of
multiple SPECULATE-COMMIT pairs) into a single trans
action. In some embodiments, nested transactions may share
ASF hardware resources. That is, in some embodiments, dur
ing execution of a nested transaction, the memory locations
protected by the parent transaction remain protected in the
child transaction. Furthermore, in some embodiments,
memory locations protected in a nested transaction may

Jan. 28, 2010

remain protected in the parent transaction, even after the
nested transaction has completed. Thus, in some embodi
ments, parent transactions may need to continue to use pro
tected memory operations when dealing with memory loca
tions protected by a child transaction. In Such embodiments,
use of a regular memory write operation by the parent on a
memory location protected by a child transaction may result
in a general protection fault being raised (i.e., HGP excep
tion).
0046. In some embodiments, one or more store-condi
tional transactions may be nested within one or more rollback
transactions. In some embodiments, due to the flattening of
the nested transactions, ASF mechanisms may be configured
to respond to an abort of a nested Store-conditional transac
tion by performing the recovery actions of the top-level parent
transaction (as in 350). However, according to some embodi
ments, a nested transaction may not be permitted inside of a
store-conditional transaction.
0047. To enable transactional execution, ASF mechanisms
may define and expose various coherency control instructions
that can be invoked by software threads. While some instruc
tions may be named differently in different embodiments,
various embodiments may expose coherency control instruc
tions matching or analogous to one or more of the following.
0048 FIG. 5 illustrates an implementation of a SPECU
LATE instruction, according to some embodiments. As dis
cussed above, in some embodiments, the SPECULATE
instruction may be executed by a thread to indicate the start of
a transaction in rollback mode. According to the illustrated
embodiment, executing the SPECULATE operation may
comprise checking whether the transaction is nested beyond
a maximum nesting depth supported by the system, as in 505.
In various embodiments, different registers and/or memory
locations may be used to hold the depth of the currently
executing transaction. If the transaction is deeper than the
system-defined maximum nesting depth, as indicated by the
affirmative exit from 505, then ASF mechanisms may be
configured to raise a general protection fault (#GPO), as in
515.

0049 According to the illustrated embodiment, executing
the SPECULATE instruction may further comprise determin
ing whether the transaction is nested within a store-condi
tional transaction, as in 510. In some embodiments wherein
transactions cannot be nested within store-conditional trans
actions, in response to detecting that the parent transaction is
a store-conditional transaction, as indicated by the affirmative
exit from 510, then the ASF mechanisms may be configured
to raise a general protection fault (or take some other action),
as in 515. In various embodiments, a register or memory
location used to indicate the current mode of execution may
be read to determine whether a parent transaction is executing
in store-conditional mode. In further embodiments, various
other checks for the transaction's validity may be performed
and a GP fault may be raised if one or more are violated.
0050. According to the illustrated embodiment, if the
transaction is valid (e.g., does not exceed a maximum nesting
depth and is not nested within a store-conditional transac
tion), then the rAX register (or other suitable register) may be
reset, such as by setting it to a Zero value. In some embodi
ments, the rAX register may hold various values and codes
indicative of transactional execution status, as is described
below.
0051. According to the illustrated embodiment, the execu
tion of SPECULATE may then determine whether the trans

US 2010/0023707 A1

action is a top level transaction, as in 530. In some embodi
ments, this determination may comprise checking the value
of the incremented nesting level to determine whether the
current transaction is nested. If the transaction is a top-level
transaction, as indicated by the affirmative exit from 530, then
executing SPECULATE may comprise recording a check
point including information usable by the processor to return
execution to a given rollback point if the transaction is
aborted. In some embodiments, recording the checkpoint
may include recording the values that the instruction pointer
(e.g., rIP 214) and stack pointer (e.g., rSP 212) will have
immediately after the SPECULATE instruction has been
executed, as in 535 and 540. Thus, in case of an abort, the
recorded checkpoint may be used to transfer control to the
instruction immediately following the SPECULATE instruc
tion. In some embodiments, executing SPECULATE may
further comprise setting or modifying values in one or more
other registers, such as in rELAGS register 218 to indicate
processor states.
0052. In some embodiments, while a SPECULATE
instruction may begin a transaction in rollback mode, a dif
ferent instruction (e.g., BEGIN) may begin a transaction in
store-conditional mode.

0053 FIG. 6 illustrates the steps of executing a BEGIN
instruction, according to some embodiments. Method 600
may begin by determining one or more validity conditions for
the transaction. In some embodiments, these conditions may
be analogous to those checked when executing a SPECU
LATE transaction. For example, in method 600, executing
BEGIN comprises determining whether a maximum nesting
level has been reached (as in 605) and determining whether
the current transaction is being nested within another store
conditional section (as in 610). If either condition is true (as
indicated by the affirmative exits from 605 and 610 respec
tively), ASF mechanisms may be configured to raise a GP or
other fault, as in 615. Otherwise, according to method 600,
executing BEGIN may include resetting the rAX or other
register (e.g., to Zero), as in 620, incrementing the nesting
level (as in 625), and setting a flag indicating that the current
transaction is in store-conditional mode (as in 630) and pro
ceeding with transactional execution of the transaction body
(as in 635). In various embodiments, the flag set in 630 may be
used to determine whether the current transaction is in store
conditional mode, such as in steps 510 and 610.
0054. In some embodiments, ASF mechanisms may
define various memory-reference instructions, called
declarators, for designating which memory locations should
be protected as part of a transaction (i.e., the memory loca
tions for which atomic access is desired). For example, in
Some embodiments, ASF mechanisms may expose a declara
tor memory access instruction for reading memory that is
analogous to the standard x86 MOV instruction. Like the
traditional MOV instruction, an ASF-defined LOCK MOV
instruction may be used for loading values from memory.
However, according to some embodiments, ifa thread reads a
memory location inside of a transaction using the LOCK
MOV instruction, then ASF mechanisms may add the
memory cache block containing the first byte of the refer
enced memory location to the set of protected cache blocks.
In Some embodiments, Software mechanisms may ensure that
unaligned memory accesses do not span both protected and
unprotected lines. According to Some embodiments, a
declarator instruction referencing an already protected cache
block may behave like a regular memory reference and not

Jan. 28, 2010

change the protected Status of the block. In some embodi
ments, declarators may not be permitted outside of a critical
section (e.g., an exception may be raised). In some embodi
ments declarators outside of critical section may be treated
like regular memory operations. This may be the case for
Some embodiments wherein store-conditional mode is avail
able.

0055. In some embodiments, ASF mechanisms may
define declarators other than LOCKMOV instructions. For
examples, instructions analogous to x86 PREFETCH and/or
PREFETCHW may be used (e.g., LOCK PREFETCH,
LOCK PREFETCHW). Like their x86 analogs, LOCK
PREFETCH and LOCK PREFETCHW may be used to fetch
a value from memory into cache for reading (PREFETCH) or
for writing (PREFETCHW). However, unlike standard
prefetches without a LOCK prefix, LOCK PREFETCH and
LOCK PREFETCHW may make a memory location pro
tected. In addition, in some embodiments, LOCK
PREFETCH and LOCK PREFETCHW may also check the
specified memory address for translation faults and memory
access permission (read or write, respectively) and generate a
page fault if unsuccessful. In some embodiments, LOCK
PREFETCH and LOCK PREFETCHW may generate a #DB
exception when they reference a memory address for which a
data breakpoint has been configured.
0056. In some embodiments, once a memory location has
been protected using a declarator, it may be modified again
speculatively, but not nonspeculatively, within the transac
tion. For example, in some embodiments, after a memory
location has been read using a LOCKMOV read instruction,
the value Stored in the memory location may be speculatively
modified using an ASF-defined LOCK MOV store instruc
tion. According to embodiments, such speculative updates
may become visible only when the transaction is committed.
According to Such embodiments, if the transactional attempt
aborts, then speculative updates are rolled back and/or other
wise discarded. In some embodiments, during transactional
execution, a memory location that has been protected using a
declarator may only be modified using a speculative store
instruction. In Such embodiments, if a thread in transactional
mode attempts to modify the value of a protected memory
location using conventional non-speculative store operations,
ASF mechanisms may raise an exception/fault (e.g., iiGP(0)).
0057. In some embodiments, if a speculative store instruc
tion (e.g., LOCK MOV) is executed outside of a critical
section, then an exception may be raised. In other embodi
ments, such as those wherein store-conditional mode is avail
able, speculative stores outside of a critical section may be
treated as a no-op.
0058. In various embodiments, declarator memory
instructions may participate in a system's cache coherence
protocol. For example, if a LOCK MOV or LOCK
PREFETCH instruction for reading a memory location
misses in cache, it may send a non-invalidating probe to other
processors, as dictated by the system's cache coherence pro
tocols. In another example, if a given cache line does not
already reside in the local cache in exclusive/owned Status,
then modifying it using a LOCKMOV instruction may result
in sending an invalidating probe to other processors, as dic
tated by the system's cache coherence protocols. In some
embodiments, executing a LOCKPREFETCHW instruction
may also result in sending an invalidating probe, etc.
0059 Various ASF mechanisms may be used to monitor
and/or enforce protected memory locations (e.g., protected

US 2010/0023707 A1

cache blocks). In some embodiments, ASF mechanisms may
include an extension to one or more of the system's caches
(e.g., memory caches 230), to indicate which cache lines (i.e.,
blocks) are protected. For example, in one embodiment, each
line in a given cache may comprise a “protected flag, which
is set if the cache line is protected in a currently executing
transaction and unset if it is not protected. In some embodi
ments, the protected flag may comprise one or more bits.
0060. In some embodiments, ASF mechanisms for track
ing protected cache lines may comprise a locked line buffer.
In Such embodiments, when a value in a protected memory
location is modified (e.g., using a LOCKMOV instruction),
an entry may be made into the locked line buffer to indicate
the cache block and the value it held before the modification.
In such embodiments, in the event of an abort of the transac
tion, the entries of the locked line buffer may be used to
restore the pre-transaction values of each protected cache line
to the local cache. In such embodiments, the locked line
buffer may participate in a cache coherence protocol of the
system, as described below.
0061. In other embodiments, instead of using a locked line
buffer to undo memory stores as described above, various
ASF implements may instead prevent store instructions to
protected memory locations in a critical section from being
written to cache and/or memory before the transaction is
committed. For example, ASF may be configured to keep all
memory modifications in an internal store buffer and forward
buffered values to Subsequent load operations in the transac
tion. In Such embodiments, once the transaction commits,
ASF mechanisms may allow the buffered store operations in
the internal store buffer to be written back to the cache.
0062. In some embodiments, due to the fixed capacity of
various ASF hardware components, various limitations may
exist on the number of memory locations that may be simul
taneously protected during a transaction (or set of nested
transactions). For example, as discussed above, according to
Some embodiments, an implementation may require that all
protected memory locations simultaneously reside in a data
cache (e.g., memory caches 230) for the duration of the criti
cal section. In Such an embodiment, if a protected line is
evicted from the cache during a transaction (e.g., due to
capacity constraints), the critical section may be aborted. For
example, a critical section that happened to reference N+1
memory locations that all mapped to the same set in an N-way
associative data cache may fail to complete since at least one
protected cache line would be evicted from cache when pro
tected memory location N+1 is accessed. However, if a trans
action performs a more distributed reference pattern, then it
may be able to concurrently protect more memory locations
than N before any one cache index is exceeded and a protected
line is displaced from the data cache.
0063. In various embodiments, capacity limitations other
than cache associativity may exist. For example, in embodi
ments in which a locked line buffer is used, the maximum
number of concurrently protected modified memory loca
tions may be determined by the capacity of the locked line
buffer. In another example, in embodiments utilizing a store
buffering scheme, ASF hardware capacity may be dependent
on the capacity of the store buffer (i.e., the maximum number
of outstanding stores Supported by the system pipeline).
0064. In various embodiments, ASF mechanisms may
guarantee that a critical section will not fail due to insufficient
hardware capacity as long as the number of protected loca
tions does not exceed a given minimum guaranteed capacity.

Jan. 28, 2010

In various embodiments, this guarantee may be made regard
less of where in the cacheable address space protected
memory locations reside. For example, in embodiments that
require that all protected memory locations simultaneously
reside in a data cache, the minimum guaranteed capacity may
be dependent upon the data cache's associativity (i.e., size of
associativity sets). In various embodiments, if a transaction
exceeds the hardware capacity, then the transactional attempt
may abort.
0065. In some embodiments, ASF mechanisms may allow
a thread executing a transaction to remove an unmodified
protected memory location from the transaction's set of pro
tected memory locations. In some embodiments, the thread
may accomplish this by executing an explicit RELEASE
instruction provided by ASF. In some embodiments, when a
protected memory location is released (e.g., using the
RELEASE instruction), then it is no longer monitored for
contention with other threads. For example, in embodiments
wherein a protected flag is utilized, the value of the protected
flag associated with the released cache block may be modified
to indicate that the block is no longer protected. Thus, by
removing an unmodified protected memory location from the
set of protected memory locations, a thread may avoid unnec
essary data conflicts with other threads and/or exceeding an
ASF implementation's hardware capacity, which may lead to
transactional aborts. In some embodiments, a RELEASE
instruction may or may not guarantee that the specified pro
tected memory location will be released. In some embodi
ments, only protected cache lines that have not been modified
may be released.
0066. As described above, in some embodiments, if a
transaction attempts to protect (using declarators) more
memory locations (e.g., cache blocks) than the ASF imple
mentation's capacity can Support then the transaction may be
aborted. In other embodiments, the abort may be executed in
response to a fault being raised.
0067. In various embodiments, transactional aborts may
also be caused by conditions other than insufficient hardware
capacity. For example, an abort may be caused by memory
contention, that is, interference caused by another processor
attempting to access protected memory locations. In various
embodiments, ASF mechanisms may be configured to detect
various cache coherence messages (e.g., invalidating and/or
non-invalidating probes) that may be relevant to one or more
protected cache lines and determine whether the probe indi
cates that a data conflict exists. In response to detecting a data
conflict, the ASF-mechanism may abort a transactional
attempt. For example, consider a first thread executing in
transactional mode and protecting a memory location (i.e.,
reading a memory location using a declarator instruction). If
a second thread Subsequently attempts a store to the protected
memory location, then the processor executing the second
thread may send an invalidating probe to the processor
executing the first thread, in accordance with the particular
cache coherence protocol deployed by the system. If the first
processor receives the invalidating probe while the memory
location is still protected (e.g., before the first thread commits
its transaction or otherwise releases the memory location)
then a data conflict may exist. In Such an instance, ASF
mechanisms may be configured to detect that the invalidating
probe is relevant to a protected memory location and in
response, abort the first thread's transaction.
0068 According to various embodiments, a transaction
may be aborted if ASF mechanisms detect that an invalidating

US 2010/0023707 A1

probe relevant to a protected cache line is received. In some
embodiments, a transaction may also be aborted if ASF
mechanisms detect that a non-invalidating probe relevant to a
modified protected cache line is received.
0069 FIG. 7 is a table summarizing a set of rules defining
how various ASF implementations may handle data conten
tion, according to some embodiments. The table of FIG. 7
describes the outcomes when a first thread executing on a first
processor (CPUA) performs a given memory access opera
tion on a given memory location, while a second thread on a
second processor (CPUB) is executing a transaction that has
protected that location. As described above, various cache
coherence protocols allow memory caches to cache memory
values in different “states', such as “shared’ state for read
only access, or in “owned' or “exclusive' state for write
access. The “Protected Shared and “Protected Owned col
umns correspond to a protected cache line being in shared and
owned State respectively.
0070 For example, the top entry in the table of FIG. 7
details how to handle a situation, according to one embodi
ment, where CPU A is executing in any mode (inside or
outside of a critical section) and performs a read operation to
a memory location that CPUB is protecting in either shared or
owned state. According to the illustrated embodiment, if CPU
B is protecting the location in owned State, then the transac
tion of CPU Baborts and otherwise, the transaction of CPUB
does not abort. Similar outcomes would result if CPU A had
executed a prefetch operation in any mode or if it had
executed a LOCK MOV or LOCK PREFETCH operation
from inside of a transaction. However, according to the illus
trated embodiment, if CPU A were to perform a write or
PREFETCHW operation to the memory location in any mode
or a LOCK PREFETCHW operation to the memory location
in transactional mode, then CPU B would abort the transac
tion regardless of whether it held the memory location in
shared or owned states.
0071. In some embodiments, a transaction may be aborted
explicitly using an ASF-defined ABORT instruction. In some
embodiments, a transaction may be aborted because it
attempts to execute a disallowed instruction, such as one that
results in a far control transfer. In various embodiments, far
control transfers may include instructions that transfer con
trol to a location in another segment, such as by changing the
content of the CS register in x86 implementations. Far control
transfers may include traps, faults, exceptions, NMIs, SMIs.
unmasked and nondeferred interrupts, disallowed instruc
tions converted into exceptions, etc. In some embodiments,
disallowed instructions may include privileged instructions,
Such as those that must be executed at an elevated privilege
level (e.g., CPL-0), instructions that cause a far control trans
fer or an exception, and any instructions that may be inter
cepted by a secure virtual machine (SVM) hypervisor. In
various embodiments, disallowed instructions may include:

0072 FARJMP, FAR CALL, FAR RET
0073 SYSCALL, SYSRET, SYSENTER, SYSEXIT
0074 INT, INTx, IRET, RSM
0075 BOUND, UD2
0.076 PUSHF, POPF, PAUSE, HLT, CPUID, MONI
TOR, MWAIT, RDTSC, RDTSCP, RDPMC

10077. IN, OUT
0078 All privileged instructions
0079 All SVM instructions

0080. As used herein, the term SVM instructions may
refer to any instructions that a virtual machine monitor and/or

Jan. 28, 2010

virtual machine may use to interact across the boundary of the
virtual machines. In various embodiments, such instructions
may include, but are not limited to, VMRUN (i.e., run a
virtual machine), VMLOAD/VMSAVE (i.e., load/save vari
ous virtual machine state into a processor and/or to a save area
in memory), and/or VMMCALL (i.e., to execute a system call
to a virtual machine monitor).
0081. In various embodiments, a virtual machine monitor
may prevent execution of a configurable set of instructions on
a processor, Such as by intercepting those operations. Such
instructions may be referred to herein as “interceptable'.
According to some embodiments, various or all SVM instruc
tions may be interceptable. In some embodiments, the execu
tion of any interceptable instruction inside of a transaction
may cause the transaction to be aborted.
I0082 In some embodiments, ASF mechanisms may pro
hibit instructions within a transaction that operate differently
in a virtualized environment (e.g., virtual machine) than in a
native environment. By imposing such restrictions, embodi
ments may be fully virtualizable and can be used within a
virtual machine without suffering from the unpredictable or
incorrect behavior that such instructions may cause when
executed in a virtual environment. For example, in some
embodiments, all interceptable instructions may be prohib
ited inside of a transaction. In some embodiments, virtual
machine specific instructions and/or privileged instructions
may be prohibited.
I0083. In some embodiments, attempting to execute disal
lowed or far control transfer causing instructions inside of a
critical section may generate an exception (e.g., HGP excep
tion), which may cause the transactional attempt to be
aborted. In some embodiments, the far control transfer may
be executed after the abort. In such embodiments, upon return
from the far control transfer (or the fault handler invoked by
the exception caused by the disallowed transaction), a soft
ware recovery routine may be executed.
0084 As described above, in various embodiments, ASF
mechanisms may abort a transactional attempt due to hard
ware capacity limitations, memory contention with another
thread, the thread executing a disallowed instruction (e.g., far
control transfer), and/or if the thread executes an explicit
ABORT instruction.
I0085 FIG. 8 is a flow diagram illustrating a method by
which, according to various embodiments, ASF mechanisms
may execute a transaction in rollback mode. According to
method 800, a thread may begin a transaction in rollback
mode by first executing a SPECULATE instruction. As
detailed in FIG. 5, executing SPECULATE may include
checkpointing (i.e., saving) the instruction and stack pointer
values for later use. However, in some embodiments, if the
transaction is nested within another transaction, then a check
point may already exist and the SPECULATE instruction
would not result in another checkpoint being recorded, as in
FIG.S.

I0086. After executing the SPECULATE instruction, the
thread may determine whetheran abort status has been set, as
in 810, and if so, jump to and execute a recovery routine. Such
as 815. In some embodiments, software may determine
whetheran abort status code has been set by examining one or
more registers (e.g., raX register) where various abort status
codes may be placed. In some embodiments, different abort
status codes may indicate whether and for what reason the
previous transactional attempt was aborted. In various
embodiments, different abort status codes may be set, Such as

US 2010/0023707 A1

those indicating that the previous transactional attempt was
not aborted or was aborted due to contention, capacity con
straints, execution of a disallowed instruction, a far control
transfer, or other reasons. In some embodiments, recovery
routine(s) 815 may take different recovery actions depending
on the determined abort status code. For example, in some
instances, recovery routine(s) 815 may determine that the
thread should not reattempt transactional execution using
ASF.

0087. According to the method 800, the thread may then
begin to execute the transaction body, which may include
protecting some number of protected memory locations, as in
820. In some embodiments, protecting memory locations
may be performed using various declarator instructions as
described above, such as LOCK MOV. In some embodi
ments, a protected flag corresponding to the cache block of
each protected memory location may be set to indicate that
the location is protected. According to the illustrated example
of FIG. 8, executing the transaction body may further include
writing to one or more protected memory locations, as in 825.
In some embodiments, this may be performed by using vari
ous speculative store operations as described above. Such as
LOCKMOV. In embodiments utilizing a locked line buffer,
writing to a protected memory location may include storing
the unmodified value to the locked line buffer and then per
forming the write operation to a local cache.
0088 According to method 800, an abort condition may
be encountered during execution, as indicated by the affirma
tive exit from 830. As described above, in different instances,
an abort condition may be caused by contention with other
threads, capacity limitations, far control transfers, disallowed
instructions, and/or by the thread executing an explicit
ABORT instruction. If an abort condition is detected (affir
mative exit from 830) then ASF mechanisms may be config
ured to discard any modifications made by the partially
executed transaction to all protected memory locations.
0089. In various embodiments, discarding modifications

to all protected memory locations, as in 835, may be accom
plished in different manners, dependent on the particular
speculative execution mechanism being used. For example, in
some embodiments wherein ASF utilizes a store buffer to
delay the write-back phase of store operations to protected
memory as described above, discarding modifications (as in
835) may comprise discarding any store operations to pro
tected memory locations that are waiting in the store buffer. In
some embodiments in which a locked line buffer is used,
discarding modifications (as in 835) may comprise writing
the old values of each memory location (values of each
memory location before it was modified by the transaction),
stored in the locked line buffer, back to the local cache.
0090 According to method 800, aborting the transaction
in rollback mode may further comprise releasing all protected
memory locations, as in 840, Such that they are no longer
protected. For example, releasing the protected memory loca
tions may include unsetting one or more protected flags asso
ciated with each memory location protected by the aborted
transaction. In embodiments utilizing locked line buffers,
releasing the protected memory locations may further include
removing the entries of the locked line buffer corresponding
to the protected memory locations modified in the transac
tion.

0091. According to the illustrated embodiment, ASF
mechanisms may then determine the cause of the abort to
determine an appropriate abort status code. In some embodi

Jan. 28, 2010

ments, ASF mechanisms may communicate the abort status
code to software mechanisms by encoding the code into a
status register (e.g., raX register 216), as in 845.
0092. In some embodiments, a status register (e.g., the
rAX register) may be used to simultaneously hold a plurality
of status codes. For example, Some Subset of the status reg
ister bits may be used to hold an abort status code while one
or more other subsets may hold additional information. For
example, if the abort was caused by the thread executing an
ABORT instruction, a subset of the bits of status register may
hold one or more values passed to the ABORT instruction by
the thread when invoked. In some embodiments, a subset of
the bits of the status register may also hold an indication of the
nesting depth of the current transaction. In further embodi
ments, different subsets of bits in the status register may hold
various other sets of status information.
0093. According to method 800, ASF mechanisms may
then roll back execution to the beginning of the transaction,
Such as by rolling back the instruction and stack pointers to
the checkpointed values, as in 850. In some instances, if the
transaction is a top level transaction, then the checkpoint may
have been recorded as part of executing the SPECULATE
instruction (as in 805) and rolling back execution may result
in returning control flow to the start of the transaction body, as
indicated by the feedback loop from 850 to 810. In other
embodiments, if the transaction is a nested transaction, then
the checkpoint may have been recorded in the top level trans
action and rolling back execution may result in returning
control flow to the beginning of the top-level transaction's
body. Thus, in some embodiments, aborting a nested transac
tion may comprise aborting all parent transactions in which
the nested transaction is nested.
0094. According to method 800, the transaction body may
be attempted until it completes without an abort condition
being detected. If the transactional attempt completes without
abort, as indicated by the negative exit from 830, then the
thread may commit the transaction, as in 855. In some
embodiments, committing the transaction may comprise
executing a COMMIT instruction.
0.095 FIG. 9 illustrates a method for committing a trans
action, such as by executing a COMMIT instruction, accord
ing to Some embodiments.
0096 FIG. 9 is a flow diagram illustrating a method by
which ASF mechanisms may abort a transaction that is
executing in store-conditional mode, according to various
embodiments. According to the illustrated embodiment,
method 900 may begin by determining if a transaction is
active, as in 905. If a transaction is active, as indicated by the
affirmative exit from 905, then the transaction did not abort
during execution. Thus, in some embodiments, a code indi
cating a successful execution may be stored in a status regis
ter. For example, in some embodiments, the rAX register may
be cleared as in 910, such as by storing a 0 value in the register.
0097. According to method 900 committing the transac
tion may further comprise setting a flag to indicate that execu
tion is not in store-conditional mode, as in 915, and decre
menting a counter that indicates the nesting level of the active
transaction, as in 920. In some embodiments, if the transac
tion being committed is a nested transaction, as indicated by
the negative exit from 925, then the transaction may be ended,
as in 940. Thus, in such embodiments, speculative stores
executed inside of a nested transaction may remain specula
tive (and susceptible to contention) even after the nested
transaction has committed.

US 2010/0023707 A1

0098. According to the embodiment of FIG.9, if the trans
action is a top-level transaction, as indicated by the affirma
tive exit from 925, then ASF mechanisms may commit all
modifications to protected memory locations so that they are
globally visible to other threads in the system, as in 930. In
various embodiments, committing modifications to protected
memory locations may involve different actions, which may
depend on the speculative mechanism used. For example, in
embodiments where speculative store operations to protected
memory are delayed in the store buffer until the transaction
commits, committing the modifications may imply perform
ing a write-back of these values to memory (e.g., to local
cache and/or to main memory). In various embodiments,
committing a top level transaction may further comprise
releasing all protected memory locations, as in 935, such that
they are no longer protected by ASF mechanisms. For
example, in embodiments wherein a protected flag is used to
indicate protected cache blocks, the value of each flag asso
ciated with each protected cache block may be set to indicate
that the cache block is no longerprotected. Thus, ASF mecha
nisms need not ensure atomicity with respect to released
memory locations.
0099. In some embodiments, a thread attempts to commit
a transaction that is not active, as indicated by the negative
exit from 905, then the behavior may depend on whether or
not the mode of execution is store-conditional or rollback. If
the execution mode is rollback, as indicated by the negative
exit from 945, then ASF mechanisms may be configured to
raise an exception, such as a #GP exception. Otherwise, if the
execution mode is store-conditional (as indicated by the affir
mative exit from 945), then ASF mechanisms may be config
ured to store the abort status code in a status register, such as
rAX (as in 955) and jump to a recovery routine, as in 960. The
transaction may then be reattempted as needed.
0100 FIG. 10 is a flow diagram illustrating a method for
executing a transaction in store-conditional mode, according
to some embodiments. According to method 1000, executing
a transaction in store-conditional mode may begin by execut
ing a BEGIN instruction, as in 1005. In some embodiments,
executing a BEGIN instruction may include executing
method 600 of FIG. 6. In various embodiments, the BEGIN
instruction may set one or more flags that may be used to
determine that a transaction executing in store-conditional
mode is active.

0101. According to the illustrated embodiment, the trans
action may then protect one or more memory locations using
declarator instructions, as in 1010. In some instances, the
transaction may also attempt to write to one or more of the
memory locations protected in 1010, as in 1015.
0102) According to method 1000, if ASF mechanisms do
not detect an abort condition (e.g., contention, capacity limits
exceeded, far control transfer, disallowed transaction, etc.), as
in the negative exit from 1025, then the thread may commit
the transaction, as in 1040. In some embodiments, commit
ting the transaction, as in 1025, may include executing a
commit instruction, such as that illustrated by FIG. 9.
0103. In some embodiments, if an abort condition is
detected during execution, as indicated by the affirmative exit
from 1025, then the transaction may be aborted, as in 1030. In
Some embodiments, aborting the transaction may include
undoing or otherwise discarding any modifications to pro
tected memory locations made by Store operations of the
transaction. In some embodiments, an abort status code indi

Jan. 28, 2010

cating the cause of the abort (e.g., conflict, capacity, disal
lowed transaction, etc.) may be recorded as part of aborting
the transaction, as in 1030.
0104. According the illustrated embodiment, after the
transaction is aborted (as in 1030), the control flow may
remain in the transaction body and the transaction may con
tinue to be executed with the exclusion of speculative stores to
protected memory locations, as in 1035. In some embodi
ments, after the transactional attempt is aborted, declarator
instructions appearing in the transaction body may be
executed as regular memory references (e.g., read instruc
tions that do not set a protected flag for the memory location)
and/or accesses to protected memory locations may be
ignored (e.g., treated as a no-op instruction).
0105. According to some embodiment, a thread executing
a transaction in store-conditional mode may be configured to
verify whether or not the transaction has been aborted. For
example, in some embodiments, the thread may execute a
VALIDATE instruction, as in 1040, to determine whether a
transaction is still active (i.e., not yet aborted). In some
embodiments, the VALIDATE instruction may be executable
to copy the current abort status code into a program readable
status register (e.g., into the rAX register) where the value
may be read by software. If the transaction has not been
aborted, then the VALIDATE instruction may be executable
to set the status register to a value indicating that the transac
tion is still active (e.g., set raX to 0 value).
0106. According to the illustrated embodiment, if the
thread executes a VALIDATE instruction, it may then check
the status (e.g., raX) register to determine whether the trans
action has been aborted. If the transaction is not active, as
indicated by the negative exit from 1045, then the thread may
execute some recovery actions, as in 1055. According to
various embodiments, executing the recovery actions may
include releasing any protected memory locations and/or
returning program control to the start of the transaction for
re-execution. If the transaction is still active, as indicated by
the affirmative exit from 1045, then the thread may continue
executing the transaction and/or commit the transaction, as in
1050.

0107 According to the illustrated embodiment, once the
thread finishes executing the transaction, it may attempt to
commit the transaction, as in 1050. As indicated above, com
mitting the transaction may include executing a commit
instruction, such as that illustrated in FIG. 9. As part of
executing the commit instruction, ASF mechanisms may
detect whether the transaction is active (as in 905) and if not,
store an abort status in a software readable register (e.g., in
rAX as in 955) and jump to a recovery routine (as in 960),
which may be analogous to or the same as recovery actions
1055. Executing the recovery routine may include releasing
any protected memory locations and/or returning program
control to the start of the transaction for re-execution. In some
embodiments, if the section is nested within one or more
rollback mode transactions, those parent transactions may be
aborted and control may be returned to the checkpoint taken
by the highest level SPECULATE instruction, as described
above in reference to FIG. 8.

0108. In various embodiments, a programmer may com
pose applications that utilize a transactional memory pro
gramming model for ASF-enabled systems. In Such embodi
ments, a programmer may configure a program to begin a
transaction by executing a transactional start instruction (e.g.,
SPECULATE, BEGIN, etc), execute one or more accesses to

US 2010/0023707 A1

protected memory (e.g., LOCKMOV, etc.), and then execute
one or more instructions to commit the transaction (e.g.,
COMMIT).
0109. In some embodiments, a program may be written to

utilize an ASF-enabled transactional memory programming
model in conjunction with other concurrency control mecha
nisms, such as non-ASF, lock-based code. For example, con
sider a data structure Such as a B-tree. Concurrent threads in
a shared-memory application may perform frequent insert
and delete operations to the B-tree in a transactional, lock
free manner using ASF-based transactional memory. Occa
sionally the B-tree may need to be rebalanced for efficiency,
an operation that may include atomically operating on many
memory locations of the B-tree. However, since this opera
tion may include protecting many memory locations,
attempting to complete it as a transaction may result in fre
quent aborts. For example, conflict aborts may result from
conflicts with other concurrently executing threads that per
form delete and/or insert operations on the B-tree. In another
example, protecting so many memory locations simulta
neously may be beyond the capacity of the ASF implemen
tation, therefore causing capacity aborts of the transaction. In
Such situations, rather than using transactional memory to
execute the rebalancing operation, the operation may be more
efficient if configured to use traditional, lock-based mutual
exclusion. For example, a lock may be associated with the
entire B-tree and may be acquired for mutually exclusive
access to the B-tree. In this example, the rebalancing opera
tion may begin by acquiring lock for the B-tree, then execut
ing the rebalancing operation, and then releasing the lock.
However, in Such instances, care must be taken to ensure that
code that utilizes lock-based mutual exclusion semantics
interoperates safely with code that utilizes ASF-based trans
actional memory semantics.
0110 FIG. 11 is a flowchart illustrating a method for con
figuring ASF-based transactions to interoperate with lock
based code, according to one embodiment. According to the
illustrated embodiment, a thread may begin a transaction, as
in 1110, such as by executing a SPECULATE or BEGIN
instruction, as described above.
0111. The set of memory locations that are protected
inside of a transaction may be referred to herein as the read
set of the transaction. In the presence of lock-based code, the
read-set of a transaction may include one or more memory
locations that are associated with locks. Any memory location
associated with and protected by a lock may be referred to
herein as lock-protected.
0112 According to the illustrated embodiment, a thread
may be configured to atomically read (e.g., using a declarator
operation) the value of each lock associated with each lock
protected memory location in the transaction's read-set, as in
1120. Thus, by atomically reading the values of the locks, the
thread adds the locks to the read-set of the transaction (i.e.,
ASF mechanisms monitor the locks and protect them as part
of the transaction). For example, in the B-tree example above,
a transactional insert operation may begin by first atomically
reading the value of a lock associated with the entire B-tree
structure. In some embodiments, atomically reading the value
of the lock may include reading the lock value using a
declarator operation.
0113. According to the illustrated embodiment, the thread
may then determine if any of the locks read in step 1120 are
held. If any are held, as indicated by the affirmative exit from
1130, then the thread may retry the transaction. In some

Jan. 28, 2010

embodiments, the thread may continue to reread the values of
each lock until all of the locks are free, as indicated by the
negative exit from 1130. In some embodiments, if any of the
locks are held, then the thread may abort the transaction (e.g.,
by executing an ABORT instruction) and then reattempt
executing the transaction. In other embodiments, if any of the
locks are held, the thread may attempt to roll back any modi
fications that the transaction has made to values in protected
memory locations and then to commit the transaction.
0114. According to the illustrated embodiment, once the
thread detects that no lock read in 1120 is held, as indicated by
the negative exit from 1130, the thread may continue to
execute the transaction body, as in 1140. In the illustrated
embodiment, since the memory locations of various locks are
protected using a declarator operation, any change to the
value of the lock (e.g., a different thread acquiring the lock)
may cause a conflict abort of the transaction. Therefore, an
abort condition is detected during transactional execution
(e.g., a conflict abort due to a lock being acquired), then
ASF-mechanisms and/or the thread may abort the transaction
and execute Some recovery actions (as in 1160) and reattempt
the transaction (as indicated by the feedback loop from 1160
to 1120). For example, continuing the B-tree example from
above, if a different thread attempts to acquire the lock asso
ciated with the B-tree (e.g., as part of performing a rebalanc
ing operation), then a cache coherence message may be sent
to the executing thread, causing a conflict abort of the insert
operation transaction.
0115 According to the illustrated embodiment, if no abort
condition is detected (as indicated by the negative exit from
1150), then the thread may commit the transaction, as in
1160.

0116 FIG. 12 illustrates one embodiment of a computer
system configured to implement various embodiments of
ASF, as described herein. Computer system 1200 may be any
of various types of devices, including, but not limited to, a
personal computer system, desktop computer, laptop or note
book computer, mainframe computer system, handheld com
puter, workstation, network computer, a consumer device,
application server, storage device, a peripheral device Such as
a Switch, modem, router, etc, or in general any type of com
puting device.
0117 Computer system 1200 may include a plurality of
processors 1270, each of which may include multiple cores,
any of which may be single or multi-threaded (e.g., simulta
neous multi-processing, HyperthreadingTM, etc.). In some
embodiments, processors 1270 may include dynamic sched
uling mechanisms 1272, Such as those capable of delaying
speculative stores in load/store queues 1274 for implement
ing a speculative store buffer, as described herein. In some
embodiments, processors 1270 may include various load,
store, and/or load/store queues, such as 1274, for holding
in-flight memory operations in the processor pipeline. Pro
cessors 1270 may also include registers 1276, such as raX.
rFLAGS or other special purpose registers, such as ones used
for recording nesting depth, transactional mode, or status
(active VS. inactive) of a transaction. In some embodiments,
processors 1270 may include any number of ASF hardware
transactional memory mechanisms 1278, as described herein.
For example, ASF mechanisms 1278 may include a locked
line buffer and/or hardware logic for monitoring memory
locations protected by an active transaction. In some embodi
ments, processors 1270 may also include various cache
coherence mechanisms 1279, which may be use to implement

US 2010/0023707 A1

different cache coherence protocols (e.g., MESI, MOESI,
etc.) and may be used by ASF mechanisms to detect conflict
aborts, as described herein.
0118. The computer system 1200 may also include one or
more persistent storage devices 1260 (e.g. optical storage,
magnetic storage, hard drive, tape drive, Solid state memory,
etc), which may store files, for example, by using a file sys
tem, such as file system 1262. Computer system 1200 may
include one or more memories 1210 (e.g., one or more of
cache, SRAM, DRAM, RDRAM, EDO RAM, DDR 10
RAM, SDRAM, Rambus RAM, EEPROM, etc.) shared by
the multiple processors. Various embodiments may include
fewer or additional components not illustrated in FIG. 12
(e.g., video cards, audio cards, additional network interfaces,
peripheral devices, a network interface such as an ATM inter
face, an Ethernet interface, a Frame Relay interface, etc.)
0119 Processors 1270, storage device(s) 1260, and shared
memory 1210 may be coupled to system interconnect 1250.
One or more of the system memories 1210 may contain
program instructions 1220. Program instructions 1220 may
be encoded in platform native binary, any interpreted lan
guage such as JavaM byte-code, or in any otherlanguage Such
as C/C++, JavaTM, etc or in any combination thereof.
0120 Program instructions 1220 may include program
instructions executable to implement one or more ASF-based
transactional memory applications 1222. Each application
1222 may be multithreaded and may be configured to utilize
ASF transactional memory mechanisms. In some embodi
ments, one or more of applications 1222 may be configured to
operate using both ASF transactional memory instructions as
well as mutual exclusion locks, as described herein. In Such
embodiments, shared memory 1210 may include various data
structures and variables 1230, any of which may be associated
with one or more mutual exclusion locks 1240.
0121. In some embodiments, program instructions 1220
and/or ASF-based transactional memory applications 1222
may be provided as an article of manufacture that may include
a computer-readable storage medium having stored thereon
instructions that may be used to program a computer system
(or other electronic devices) to perform a process according to
various embodiments. A computer-readable storage medium
may include any mechanism for storing information in a form
(e.g., Software, processing application) readable by a
machine (e.g., a computer). The machine-readable storage
medium may include, but is not limited to, magnetic storage
medium (e.g., floppy diskette); optical storage medium (e.g.,
CD-ROM); magneto-optical storage medium; read only
memory (ROM); random access memory (RAM); erasable
programmable memory (e.g., EPROM and EEPROM); flash
memory; electrical, or other types of tangible medium Suit
able for storing program instructions. In addition, program
instructions may be communicated using intangible media—
optical, acoustical or other form of propagated signal (e.g.,
carrier waves, infrared signals, digital signals, etc.).
0122 Although the embodiments above have been
described in considerable detail, numerous variations and
modifications will become apparent to those skilled in the art
once the above disclosure is fully appreciated. It is intended
that the following claims be interpreted to embrace all such
variations and modifications.

What is claimed:
1. A system, comprising:
a processor of a plurality of processors coupleable to a

shared memory;

Jan. 28, 2010

wherein the processor is configured to initiate execution of
a section of code according to a first transactional mode
of the processor, wherein the processor is configured to
execute a plurality of protected memory access opera
tions to the shared memory within the section of code as
a single atomic transaction with respect to the plurality
of processors;

wherein the processor is configured to initiate, within the
section of code, execution of a Subsection of the section
of code according to a second transactional mode of the
processor, and

wherein the first and second transactional modes are each
associated with respective recovery actions that the pro
cessor is configured to perform in response to detecting
an abort condition.

2. The system of claim 1, wherein the recovery actions
associated with the first transactional mode comprise:

discarding any modifications to the shared memory made
by one or more of the plurality of protected memory
access operations; and

modifying values held in one or more registers to return
program control flow to the start of the section of code.

3. The system of claim 2, wherein the recovery actions
associated with the second transactional mode comprise:

discarding any modifications to the shared memory made
by one or more of the plurality of protected memory
access operations of the Subsection of code; and

continue execution of the subsection of code without
executing any store operations of the plurality of pro
tected memory access operations that are within the
Subsection of code.

4. The system of claim 3 wherein in response to detecting
an abort condition during execution of the Subsection of code,
the processor is further configured to abort execution of the
section of code, wherein said aborting comprises performing
the recovery actions associated with the first transactional
mode for the section of code.

5. The system of claim 1, wherein the processor is further
configured to execute the section of code according to the first
transactional mode in response to executing an instruction
indicative of the first transactional mode at the start of the
section of code, and wherein the processor is further config
ured to execute the Subsection of code according to the second
transactional mode in response to executing an instruction
indicative of the second transactional mode at the start of the
Subsection of code.

6. The system of claim 5, wherein the processor is config
ured to execute the instruction indicative of the first transac
tional mode by recording a checkpoint at the start of the
section of code, wherein said recording includes recording
one or more respective values of one or more hardware reg
isters of the processor.

7. The system of claim 1, wherein the section of code
comprises a group of one or more unprotected memory access
operations to the shared memory distinct from the protected
memory access operations, and wherein the processor is fur
ther configured to execute the group of unprotected memory
access operations such that the group is not guaranteed to be
executed as a single atomic transaction with respect to the
plurality of processors.

8. A method, comprising:
a processor of a plurality of processors coupled to a shared
memory executing a section of code comprising a plu
rality of protected memory access operations to the

US 2010/0023707 A1

shared memory as a single atomic transaction with
respect to the plurality of processors, wherein the pro
cessor is configured to execute the section of code
according to a first transactional mode;

wherein executing the section of code includes the proces
Sor executing a Subsection of the section of code,
wherein the processor is configured to execute the Sub
section according to a second transactional mode; and

wherein the first and second transactional modes are each
associated with different respective recovery actions
that the processor is configured to perform in response to
detecting an abort condition, wherein the abort condi
tion indicates that the executing section or Subsection of
code is not being executed as a single atomic transaction
with respect to the plurality of processors.

9. The method of claim 8, wherein the recovery actions
associated with the first transactional mode comprise:

the processor discarding any modifications to the shared
memory made by one or more of the protected memory
access operations; and

the processor modifying values held in one or more regis
ters to return program control flow to the start of the
section of code.

10. The method of claim 8, wherein the recovery actions
associated with the second transactional mode comprise:

discarding any modifications to the shared memory made
by one or more of the plurality of protected memory
access operations of the Subsection of code; and

continue execution of the subsection of code without
executing any store operations of the plurality of pro
tected memory access operations that are within the
Subsection of code.

11. The method of claim 10, the method further compris
ing:

detecting an abort condition during execution of the Sub
section of code; and

aborting the section of code by performing one or more
recovery actions associated with the first transactional
mode.

12. The method of claim 8, further comprising the proces
Sor executing an instruction indicative of the first transac
tional mode at the start of the section of code and the proces
Sor executing an instruction indicative of the second
transactional mode at the start of the Subsection of code.

13. The method of claim 12, wherein said executing an
instruction indicative of the first transactional mode com
prises recording a checkpoint at the start of the section of
code, and wherein said recording includes recording one or
more respective values of one or more hardware registers of
the processor.

14. The method of claim 8, wherein the section comprises
a group of one or more unprotected memory access opera
tions distinct from the protected memory access operations,
and wherein the method further comprises executing the
group of unprotected memory access operations such that it is
not guaranteed to be executed as a single atomic transaction
with respect to the plurality of processors.

15. An article of manufacture comprising a computer-read
able storage medium having program instructions stored

Jan. 28, 2010

thereon that, if executed by a processor in a plurality of
processors that is coupled to a shared memory, cause the
processor to perform a method comprising:

initiating execution of a section of code according to a first
transactional mode of the processor, wherein the first
transactional mode is associated with a first set of recov
ery actions, wherein the section of code includes a plu
rality of protected memory access operations to the
shared memory, and wherein execution of the section of
code includes executing the plurality of protected
memory access operations as a single atomic transaction
with respect to the plurality of processors; and

while executing the section of code, initiating execution of
a Subsection of the section of code according to a second
transactional mode of the processor, wherein the second
transactional mode is associated with a second set of
recovery actions that is not identical to the first set of
recovery actions;

wherein the processor is configured to perform one or more
of the second set of recovery actions in response to
detecting an abort condition during execution of the
Subsection of code; and

wherein the processor is configured to perform one or more
of the first set of recovery actions in response to detect
ing an abort condition during execution of a portion of
the section of code for which a transactional mode other
than the first transactional mode is not specified.

16. The article of manufacture of claim 15, wherein the first
set of recovery actions comprise:

discarding any modifications to the shared memory made
by one or more of the plurality of protected memory
access operations; and

modifying values held in one or more registers to return
program control flow to the start of the section of code.

17. The article of manufacture of claim 16, wherein the
second set of recovery actions comprise:

discarding any modifications to the shared memory made
by one or more of the plurality of protected memory
access operations of the Subsection of code; and

continuing execution of the Subsection of code without
executing any store operations of the plurality of pro
tected memory access operations that are within the
Subsection of code.

18. The article of manufacture of claim 15, wherein said
initiating execution of the section of code comprises execut
ing a first instruction corresponding to the first transactional
mode, and wherein said initiating execution of the Subsection
of code comprises executing a second instruction correspond
ing to the second transactional mode, wherein the second
instruction is different from the first instruction.

19. The article of manufacture of claim 15, wherein said
executing the first instruction comprises recording a check
point at the start of the section of code.

20. The article of manufacture of claim 19, wherein the
abort condition is caused by another one of the plurality of
processors.

