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(57) ABSTRACT 

A system and method are disclosed wherein a processor of a 
plurality of processors coupled to shared memory, is config 
ured to initiate execution of a section of code according to a 
first transactional mode of the processor. The processor is 
configured to execute a plurality of protected memory access 
operations to the shared memory within the section of code as 
a single atomic transaction with respect to the plurality of 
processors. The processor is further configured to initiate, 
within the section of code, execution of a subsection of the 
section of code according to a second transactional mode of 
the processor, wherein the first and second transactional 
modes are each associated with respective recovery actions 
that the processor is configured to perform in response to 
detecting an abort condition. 
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PROCESSOR WITH SUPPORT FOR NESTED 
SPECULATIVE SECTIONS WITH 

DIFFERENT TRANSACTIONAL MODES 

0001. This application claims benefit of priority to U.S. 
Provisional Patent Application No. 61/084,008, filed Jul. 28, 
2008. The preceding provisional application is incorporated 
herein by reference in its entirety. To the extent that material 
in the Provisional Application conflicts with material 
expressly set forth herein, the material expressly set forth 
herein controls. 

BACKGROUND 

0002 Shared-memory computer systems allow multiple 
concurrent threads of execution to access shared memory 
locations. Unfortunately, writing correct multi-threaded pro 
grams is difficult due to the complexities of coordinating 
concurrent memory access. 
0003 Traditionally, to ensure program correctness, pro 
grammers have used locks or other mutual exclusion mecha 
nisms for coordinating access to shared memory locations. 
For example, using traditional locks, a thread may be config 
ured to acquire and hold a lock on each memory location to 
which it needs exclusive access. While the thread holds the 
lock, no other thread may acquire the lock, and therefore, no 
other thread may access the memory location protected by 
that lock. However, traditional locking techniques are Vulner 
able to various pitfalls, including dead-lock, race conditions, 
priority inversions, Software complexity, and performance 
limitations. 
0004 An alternative approach to concurrency control is 
transactional memory. In a transactional memory program 
ming model, a programmer may designate a section of code 
(i.e., an execution path or a set of program instructions) as a 
“transaction” which should be executed atomically with 
respect to other threads of execution. For example, if the 
transaction includes two memory store operations, then the 
transactional memory system ensures that all other threads 
may only observe either the cumulative effects of both 
memory operations or of neither, but not the effects of only 
one. In addition to a simplified programming model, transac 
tional memory systems can also increase application perfor 
mance since they may allow finer grained memory sharing 
than do traditional locks. 
0005 Various transactional memory systems have been 
proposed in the past, including those implemented in Soft 
ware, in hardware, or in a combination thereof. However, 
many previous concepts and implementations are bound by 
various limitations. For example, Software-based transac 
tional memory systems (STMs) suffer an undesirable perfor 
mance overhead while hardware proposals (HTMs) may be 
prohibitively complex to implement. 

SUMMARY 

0006. A system and method are disclosed wherein a pro 
cessor of a plurality of processors coupled to shared memory, 
may be configured to initiate execution of a section of code 
according to a first transactional mode of the processor. The 
processor may be further configured to execute a plurality of 
protected memory access operations to the shared memory 
within the section of code as a single atomic transaction with 
respect to the plurality of processors. The processor may be 
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further configured to initiate, within the section of code, 
execution of a Subsection of the section of code according to 
a second transactional mode of the processor. According to 
Some embodiments, the first and second transactional modes 
may each be associated with respective recovery actions that 
the processor is configured to perform in response to detect 
ing an abort condition. 
0007. In some embodiments, the first transactional mode 
may be a rollback mode. In Such embodiments, if the proces 
Sor detects an abort condition while executing the section of 
code in rollback mode, the processor may be configured to 
discard any modifications to the shared memory made by one 
or more of the protected memory access operations and to roll 
back execution to the start of the section of code. For example, 
rolling back execution to the start of the section of code may 
include modifying values held in one or more registers (e.g., 
stack pointer, instruction pointer, etc.) to return program con 
trol flow to the start of the section of code. 
0008. In some embodiments, the second transactional 
mode may be a store-conditional mode. In Such embodi 
ments, if the processor detects an abort condition while 
executing the Subsection in store-conditional mode, the pro 
cessor may be configured to discard any modifications to the 
shared memory made by one or more of the protected 
memory access operations, but rather than rolling back execu 
tion to the start of the section of code, the processor may 
continue execution of the subsection of code but without 
executing Subsequent store operations to shared memory. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009 FIG. 1 is a block diagram illustrating components of 
a multi-processor computer system configured to implement 
ASF, according to various embodiments. 
0010 FIG. 2 is a block diagram illustrating a more detailed 
view of components comprising a processor, according to one 
embodiment. 
0011 FIG. 3 is a general flow diagram illustrating a 
method for executing a transaction using ASF, according to 
various embodiments. 
0012 FIG. 4 is a block diagram illustrating an example of 
a nested transaction, according to one embodiment. 
0013 FIG. 5 is a flow diagram illustrating an implemen 
tation of a SPECULATE instruction to begin a speculative 
section in rollback mode, according to Some embodiments. 
0014 FIG. 6 is a flow diagram illustrating the steps of 
executing a BEGIN instruction to begin a speculative section 
in store-conditional mode, according to Some embodiments. 
0015 FIG. 7 is a table summarizing a set of rules defining 
how various ASF implementations may handle data conten 
tion, according to some embodiments. 
0016 FIG. 8 is a flow diagram illustrating a method by 
which, according to various embodiments, ASF mechanisms 
may execute a transaction in rollback mode. 
0017 FIG. 9 illustrates a method for committing a trans 
action, such as by executing a COMMIT instruction, accord 
ing to Some embodiments. 
0018 FIG. 10 is a flow diagram illustrating a method for 
executing a transaction in store-conditional mode, according 
to some embodiments. 

0019 FIG. 11 is a flowchart illustrating a method for con 
figuring ASF-based transactions to interoperate with lock 
based code, according to one embodiment. 
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0020 FIG. 12 illustrates one embodiment of a computer 
system configured to implement various embodiments of 
ASF, as described herein. 
0021 While the invention is described herein by way of 
example for several embodiments and illustrative drawings, 
those skilled in the art will recognize that the invention is not 
limited to the embodiments or drawings described. It should 
be understood that the drawings and detailed description 
hereto are not intended to limit the invention to the particular 
form disclosed, but on the contrary, the invention is to cover 
all modifications, equivalents and alternatives falling within 
the spirit and scope of the present invention as defined by the 
appended claims. Any headings used herein are for organiza 
tional purposes only and are not meant to limit the scope of 
the description or the claims. As used herein, the word “may 
is used in a permissive sense (i.e., meaning having the poten 
tial to) rather than the mandatory sense (i.e. meaning must). 
Similarly, the words “include”, “including, and “includes’ 
mean including, but not limited to. 

DETAILED DESCRIPTION OF EMBODIMENTS 

0022 Transactional memory systems may allow software 
threads in multi-threaded systems to access (read and/or 
write) a set of shared memory locations atomically with 
respect to other threads, without requiring the overhead and 
programming complexity associated with traditional Syn 
chronization mechanisms such as mutual-exclusion using 
locks. However, further techniques are necessary for increas 
ing the efficiency of transactional memory systems. 
0023. According to some embodiments, various hardware 
mechanisms may be used to implement efficient transactional 
memory mechanisms, as described herein. In some embodi 
ments, computationally inexpensive primitives (e.g., pro 
gram instructions) may be defined for instructing the hard 
ware to perform various synchronization functions, which 
may be used to synthesize higher-level synchronization 
mechanisms. The hardware mechanisms and/or program 
instructions may collectively be referred to herein as the 
Advanced Synchronization Facility (ASF). 
0024. In some embodiments, an existing processor archi 
tecture (e.g., x86) may be augmented to implement ASF 
mechanisms. For clarity of explication, the remainder of this 
disclosure describes how the known 64-bit x86 architecture 
AMD64 may be augmented with ASF mechanisms to imple 
ment transactional memory. However, these example 
embodiments are not intended to limit ASF mechanisms to 
this architecture alone and given the benefit of this disclosure, 
implementations of ASF mechanisms in other processor 
architectures will become evident to those skilled in the art. 
0025 FIG. 1 is a block diagram illustrating components of 
a multi-processor computer system configured to implement 
ASF, according to various embodiments. According to the 
illustrated embodiment, computer system 100 may include 
multiple processors, such as processors 110a and 110b. In 
Some embodiments, processors 110 may comprise multiple 
physical or logical (e.g., SMT) cores and be coupled to each 
other and/or to a shared memory 150 over an interconnect, 
such as 140. In various embodiments, different interconnects 
may be used. Such as a shared system bus or a point-to-point 
network in various topographies (e.g., fully connected, torus, 
etc.). 
0026. According to the illustrated embodiment, each pro 
cessor 110 may include one or more levels of memory caches 
130. Levels of memory caches may be hierarchically 
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arranged (e.g., L1 cache, L2 cache, L3 cache, etc.) and may be 
used to cache local copies of values stored in shared memory 
150. 

0027. In various embodiments, memory caches 130 may 
include various cache-coherence mechanisms 132. Cache 
coherence mechanisms 132 may, in one embodiment, imple 
ment a cache coherence communication protocol among the 
interconnected processors to ensure that the values contained 
in memory caches 130 of each processor 110 are coherent 
with values stored in shared memory and/or in the memory 
caches of other processors. Several Such protocols exist (in 
cluding the MESI (i.e., Illinois protocol) and MOESI proto 
cols), and may be implemented in various embodiments. 
Cache coherence protocols may define a set of messages and 
rules by which processors may inform one another of modi 
fications to shared data and thereby maintain cache coher 
ence. For example, according to the MESI protocol, each 
block stored in a cache must be marked as being in one of four 
states: modified, exclusive, shared, or invalid. A given proto 
col defines a set of messages and rules for sending and inter 
preting those messages, by which processors maintain the 
proper markings on each block. Depending on the State of a 
given cache block, a processor may be restricted from per 
forming certain operations. For example, a processor may not 
execute program instructions that depend on a cache block 
that is marked as invalid. Cache coherence mechanisms may 
be implemented in hardware, Software, or in a combination 
thereof, in different embodiments. Cache coherence mes 
sages may be may be communicated across interconnect 140 
and may be broadcast or point-to-point. 
0028. According to the illustrated embodiment, each pro 
cessor 110 may also include various ASF mechanisms for 
implementing transactional memory, as described herein. In 
various embodiments, more processors 110 may be con 
nected to interconnect 140, and various levels of cache 
memories may be shared among multiple such processors 
and/or among multiple cores on each processor. 
0029 FIG. 2 is a block diagram illustrating a more detailed 
view of components comprising a processor, such as proces 
sors 110, according to one embodiment. According to the 
illustrated embodiment of FIG. 2, processor 200 comprises 
register file 210, which may include various registers, each of 
which may be of any size (e.g., 16-bit, 32-bit, 64-bit, 128-bit, 
etc.) For example, register file 210 may include various 
known x86 registers, such as rSP register 212 (stack pointer), 
rIP register 214 (instruction pointer), raX register 216 (accu 
mulator register), and/or rFLAGS register 218 (flags register 
indicating processor State). In some embodiments, register 
file 210 may further comprise any number of general purpose 
registers 220 and/or floating point registers 222. In some 
embodiments, register file 210 may include one or more 128 
bit registers, such as XMM registers 224. In various embodi 
ments, register file 210 may comprise any number of other 
registers 226, which may be of various sizes. 
0030. According to the illustrated embodiment, processor 
200 may include memory caches 230 for storing local copies 
of values in shared memory and cache-coherence mecha 
nisms 232 for maintaining the consistency of those values 
across various copies dispersed within shared memory, the 
cache, and other caches. Processor 200 may also include ASF 
mechanisms 240 for implementing transactional synchroni 
Zation mechanisms, as described herein. ASF mechanisms 
240 may include the data structures and/or logic to implement 
memory transactions as described herein, according to vari 
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ous embodiments. In some embodiments, ASF mechanisms 
240 may include a locked line buffer 242, which may be used 
in case of an abort to roll back memory changes made by a 
partially executed transaction, as described below. In some 
embodiments, ASF mechanisms 240 may include a nesting 
level register 244, which may hold a value indicating the 
depth to which the current transaction is nested in other trans 
actions, as described below in more detail. In some embodi 
ments ASF mechanisms may include a flag to indicate 
whether a transaction is active. Such as transaction active flag 
246. In some embodiments, ASF mechanisms may include a 
flag indicating a transactional mode, Such as store-condi 
tional mode flag 248, which may be set to indicate whetheran 
executing transaction is executing in store-conditional mode 
or in another mode. In further embodiments, other flags and/ 
or registers may be implemented in ASF mechanisms 240 in 
Support of transactional execution. 
0031 FIG. 3 is a general flow diagram illustrating a 
method for executing a transaction using ASF, according to 
various embodiments. According to the illustrated embodi 
ment, ASF may allow software (e.g., a thread) to begin a 
transaction (i.e., a critical section of code) by executing a 
given instruction (or multiple instructions) indicating the start 
of a transaction, as in 310. As discussed later, in various 
embodiments, ASF instructions such as SPECULATE or 
BEGIN may be used to indicate the start of a critical section. 
0032. After beginning a transaction, the thread may 
execute a series of instructions comprising the transaction 
body, as in 320. Such instructions may include a number of 
memory access (read and/or write) operations, Some number 
of which may designate that the accessed memory location 
should be protected. A thread may designate that a given 
memory location should be protected by using one or more 
special declarator instructions provided by ASF. ASF mecha 
nisms may ensure that access to protected memory (as des 
ignated by declarator instructions) occur atomically with 
respect to all other concurrently executing threads in the 
system (i.e., all at once or not at all). For example, if the 
transaction includes multiple protected writes to memory, 
then ASF mechanisms may ensure that no other thread may 
observe the result of only a subset of those protected writes to 
memory. In another example, according to some embodi 
ments, if the transaction includes one or more protected 
memory read operations, then ASF mechanisms may ensure 
that the transaction completes Successfully only if no other 
thread has modified the protected read locations before the 
transaction has completed. In various embodiments, a 
“memory location' protected by a declarator operation may 
be of different sizes, such as that of a system dependent cache 
block or of another size. 

0033 According to such embodiments, ASF may be con 
figured to protect only memory lines that have been specified 
using designated declarator instructions. In Such embodi 
ments, all other memory locations may remain unprotected 
and may be modified inside a critical section using standard 
x86 instructions. These modifications to unprotected memory 
may become visible to other CPUs immediately upon execu 
tion, for example, in program order. In some embodiments, a 
transaction body (e.g., instructions executed in 320) may 
comprise one or more other transactions (i.e., nested transac 
tions). 
0034. According to various embodiments, if one or more 
conditions of the transactional execution have been violated, 
then the transaction may abort (as indicated by the affirmative 
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exit from 330). In various embodiments, transactional 
attempts may be aborted at any point because of contention 
with other processors, far control transfers (such as those 
caused by interrupt and faults), execution of explicit software 
ABORT instructions, insufficient hardware resources, other 
implementation-specific conditions, etc. 
0035. In various embodiments, when a transactional 
attempt aborts, different recovery actions may be taken 
depending on the mode of transactional execution. In various 
embodiments, for each transaction, ASF may support a roll 
back mode of execution and/or a store-conditional mode of 
execution. In some embodiments, the mode of execution may 
determine what actions are performed in response to a trans 
actional attempt being aborted. For example, in some 
embodiments, aborting a transaction in rollback mode may 
cause execution to be “rolled back to the start of the trans 
action while aborting a transactional attempt in store-condi 
tional mode may cause the transaction to continue but with 
transactional store operations not being performed (i.e., 
execution of transactional stores may be conditional on the 
transaction not having been aborted). 
0036. According to the illustrated embodiment, when a 
transaction executing in rollback mode aborts (as indicated by 
the affirmative exit from 340), ASF mechanisms may be 
configured to execute recovery actions, as in 350, which may 
include discarding modifications to the contents of the pro 
tected lines. By discarding such modifications, as in 350. ASF 
mechanisms may cause the modifications to be unobservable 
to other threads in the system, thereby complying by the 
atomicity property of the transaction. However, ASF mecha 
nisms may be configured to not roll back modifications to 
unprotected memory, such as those performed using conven 
tional x86 memory instructions. In some embodiments, the 
application programmer may provide Software for accommo 
dating these unprotected modifications, such as Software 
recovery routines configured to reenter an initialization 
sequence leading up to the critical section. 
0037. In various embodiments, the recovery actions of 350 
may be configured to roll back only a Subset of the system 
registers (e.g., rIP and rSP) rather than all registers. In such 
embodiments, software may therefore be written to not rely 
on the content of various registers when entering transac 
tional execution (e.g., by ignoring the initial contents of some 
registers after an abort event and/or to not modifying various 
registers during transactional execution). 
0038. In some instances, before an interrupt or exception 
handler returns, operating system code or other processes 
may have executed in the interim. Furthermore, in some 
instances, other processes may have even executed ASF trans 
actions that inspected and/or modified locations targeted by 
the interrupted transaction. In some embodiments, ASF 
mechanisms may obviate these concerns by not maintaining 
any ASF-related State across context Switches. Instead, in 
such embodiments, when the interrupted thread returns to the 
processor, ASF mechanisms may be configured to automati 
cally abort and reattempt the transaction. 
0039. According to the illustrated embodiment, after 
executing some recovery action or actions, the thread may 
then reattempt the transaction, as indicated by the feedback 
loop from 350 to 310. 
0040. In some embodiments, an abort of a transaction 
executing in store-conditional mode (as indicated by the 
negative exit from 340) may be handled differently from an 
abort of a transaction executing in rollback (as indicated by 



US 2010/0023707 A1 

the affirmative exit from 340). For example, while an abort of 
a rollback mode transaction may automatically reset execu 
tion flow to the beginning of the critical section (or to other 
recovery code), an abort of a transaction in store-conditional 
mode may be handled by undoing or otherwise discarding 
changes made by the critical section to values in protected 
memory locations and then and “deactivating the transac 
tion, as in 360. In various embodiments, deactivating the 
transaction may include setting a status code indicating that 
an abort has occurred and/or that the transaction is no longer 
active. In store-conditional mode, after the transaction is 
deactivated (as in 360), the system may continue to execute 
the critical section without executing any store operations to 
protected memory locations (as in 370). For example, after 
the transaction is deactivated, Subsequent store operations to 
protected memory locations may be treated as no-ops. 
0041. In some embodiments, when the aborted transaction 
completes, a status code may be set in a register, Such as raX 
register 216 to indicate that the transaction was aborted. In 
Some embodiments, the thread may be configured to detect 
that an abort status code has been set and perform one or more 
recovery actions, as indicated by the feedback loop from 370 
to 350. In various embodiments, the recovery actions of 350 
may be different for transactions that were aborted in store 
conditional mode (i.e., from 370) than for those that were 
aborted in rollback mode (i.e., from 340). A more detailed 
discussion of transactions in rollback and store-conditional 
modes is provided below. 
0042. According to the illustrated embodiment, once the 
transaction body has been completed, the thread may execute 
one or more instructions indicating the end of the transaction 
to the ASF mechanisms, as in 380, such as a COMMIT 
instruction as discussed below. After committing the transac 
tion, as in 380, the thread may continue execution, as in 390. 
0043. In some embodiments, ASF may support nesting of 
one or more transactions within one or more other transac 
tions. For example, after a transaction is started as in 310 (e.g., 
by executing a SPECULATE command), the instructions of 
the transaction body being executed in 320 may begin another 
transaction (e.g., by executing another SPECULATE com 
mand) before the first transaction completed. In this case, the 
second (“child') transaction may be said to be “nested 
within the first (“parent’) transaction. A transaction that is not 
nested within any other transaction may be referred to herein 
as a “top-level transaction. 
0044 FIG. 4 illustrates an example of a nested transaction, 
according to one embodiment. According to FIG. 4, top-level 
parent transaction 400 is a rollback mode transaction that 
comprises two nested transactions: nested parent transaction 
410, which is also in rollback mode and nested transaction 
440, which is store-conditional mode. According to the illus 
trated embodiment, nested parent transaction 400 contains 
two nested transactions, including nested transaction 420 and 
nested transaction 430, which are in rollback and store-con 
ditional modes respectively. 
0045. In some embodiments, ASF mechanisms may be 
configured to flatten nested transactions (e.g., composed of 
multiple SPECULATE-COMMIT pairs) into a single trans 
action. In some embodiments, nested transactions may share 
ASF hardware resources. That is, in some embodiments, dur 
ing execution of a nested transaction, the memory locations 
protected by the parent transaction remain protected in the 
child transaction. Furthermore, in some embodiments, 
memory locations protected in a nested transaction may 
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remain protected in the parent transaction, even after the 
nested transaction has completed. Thus, in some embodi 
ments, parent transactions may need to continue to use pro 
tected memory operations when dealing with memory loca 
tions protected by a child transaction. In Such embodiments, 
use of a regular memory write operation by the parent on a 
memory location protected by a child transaction may result 
in a general protection fault being raised (i.e., HGP excep 
tion). 
0046. In some embodiments, one or more store-condi 
tional transactions may be nested within one or more rollback 
transactions. In some embodiments, due to the flattening of 
the nested transactions, ASF mechanisms may be configured 
to respond to an abort of a nested Store-conditional transac 
tion by performing the recovery actions of the top-level parent 
transaction (as in 350). However, according to some embodi 
ments, a nested transaction may not be permitted inside of a 
store-conditional transaction. 
0047. To enable transactional execution, ASF mechanisms 
may define and expose various coherency control instructions 
that can be invoked by software threads. While some instruc 
tions may be named differently in different embodiments, 
various embodiments may expose coherency control instruc 
tions matching or analogous to one or more of the following. 
0048 FIG. 5 illustrates an implementation of a SPECU 
LATE instruction, according to some embodiments. As dis 
cussed above, in some embodiments, the SPECULATE 
instruction may be executed by a thread to indicate the start of 
a transaction in rollback mode. According to the illustrated 
embodiment, executing the SPECULATE operation may 
comprise checking whether the transaction is nested beyond 
a maximum nesting depth supported by the system, as in 505. 
In various embodiments, different registers and/or memory 
locations may be used to hold the depth of the currently 
executing transaction. If the transaction is deeper than the 
system-defined maximum nesting depth, as indicated by the 
affirmative exit from 505, then ASF mechanisms may be 
configured to raise a general protection fault (#GPO), as in 
515. 

0049 According to the illustrated embodiment, executing 
the SPECULATE instruction may further comprise determin 
ing whether the transaction is nested within a store-condi 
tional transaction, as in 510. In some embodiments wherein 
transactions cannot be nested within store-conditional trans 
actions, in response to detecting that the parent transaction is 
a store-conditional transaction, as indicated by the affirmative 
exit from 510, then the ASF mechanisms may be configured 
to raise a general protection fault (or take some other action), 
as in 515. In various embodiments, a register or memory 
location used to indicate the current mode of execution may 
be read to determine whether a parent transaction is executing 
in store-conditional mode. In further embodiments, various 
other checks for the transaction's validity may be performed 
and a GP fault may be raised if one or more are violated. 
0050. According to the illustrated embodiment, if the 
transaction is valid (e.g., does not exceed a maximum nesting 
depth and is not nested within a store-conditional transac 
tion), then the rAX register (or other suitable register) may be 
reset, such as by setting it to a Zero value. In some embodi 
ments, the rAX register may hold various values and codes 
indicative of transactional execution status, as is described 
below. 
0051. According to the illustrated embodiment, the execu 
tion of SPECULATE may then determine whether the trans 
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action is a top level transaction, as in 530. In some embodi 
ments, this determination may comprise checking the value 
of the incremented nesting level to determine whether the 
current transaction is nested. If the transaction is a top-level 
transaction, as indicated by the affirmative exit from 530, then 
executing SPECULATE may comprise recording a check 
point including information usable by the processor to return 
execution to a given rollback point if the transaction is 
aborted. In some embodiments, recording the checkpoint 
may include recording the values that the instruction pointer 
(e.g., rIP 214) and stack pointer (e.g., rSP 212) will have 
immediately after the SPECULATE instruction has been 
executed, as in 535 and 540. Thus, in case of an abort, the 
recorded checkpoint may be used to transfer control to the 
instruction immediately following the SPECULATE instruc 
tion. In some embodiments, executing SPECULATE may 
further comprise setting or modifying values in one or more 
other registers, such as in rELAGS register 218 to indicate 
processor states. 
0052. In some embodiments, while a SPECULATE 
instruction may begin a transaction in rollback mode, a dif 
ferent instruction (e.g., BEGIN) may begin a transaction in 
store-conditional mode. 

0053 FIG. 6 illustrates the steps of executing a BEGIN 
instruction, according to some embodiments. Method 600 
may begin by determining one or more validity conditions for 
the transaction. In some embodiments, these conditions may 
be analogous to those checked when executing a SPECU 
LATE transaction. For example, in method 600, executing 
BEGIN comprises determining whether a maximum nesting 
level has been reached (as in 605) and determining whether 
the current transaction is being nested within another store 
conditional section (as in 610). If either condition is true (as 
indicated by the affirmative exits from 605 and 610 respec 
tively), ASF mechanisms may be configured to raise a GP or 
other fault, as in 615. Otherwise, according to method 600, 
executing BEGIN may include resetting the rAX or other 
register (e.g., to Zero), as in 620, incrementing the nesting 
level (as in 625), and setting a flag indicating that the current 
transaction is in store-conditional mode (as in 630) and pro 
ceeding with transactional execution of the transaction body 
(as in 635). In various embodiments, the flag set in 630 may be 
used to determine whether the current transaction is in store 
conditional mode, such as in steps 510 and 610. 
0054. In some embodiments, ASF mechanisms may 
define various memory-reference instructions, called 
declarators, for designating which memory locations should 
be protected as part of a transaction (i.e., the memory loca 
tions for which atomic access is desired). For example, in 
Some embodiments, ASF mechanisms may expose a declara 
tor memory access instruction for reading memory that is 
analogous to the standard x86 MOV instruction. Like the 
traditional MOV instruction, an ASF-defined LOCK MOV 
instruction may be used for loading values from memory. 
However, according to some embodiments, ifa thread reads a 
memory location inside of a transaction using the LOCK 
MOV instruction, then ASF mechanisms may add the 
memory cache block containing the first byte of the refer 
enced memory location to the set of protected cache blocks. 
In Some embodiments, Software mechanisms may ensure that 
unaligned memory accesses do not span both protected and 
unprotected lines. According to Some embodiments, a 
declarator instruction referencing an already protected cache 
block may behave like a regular memory reference and not 
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change the protected Status of the block. In some embodi 
ments, declarators may not be permitted outside of a critical 
section (e.g., an exception may be raised). In some embodi 
ments declarators outside of critical section may be treated 
like regular memory operations. This may be the case for 
Some embodiments wherein store-conditional mode is avail 
able. 

0055. In some embodiments, ASF mechanisms may 
define declarators other than LOCKMOV instructions. For 
examples, instructions analogous to x86 PREFETCH and/or 
PREFETCHW may be used (e.g., LOCK PREFETCH, 
LOCK PREFETCHW). Like their x86 analogs, LOCK 
PREFETCH and LOCK PREFETCHW may be used to fetch 
a value from memory into cache for reading (PREFETCH) or 
for writing (PREFETCHW). However, unlike standard 
prefetches without a LOCK prefix, LOCK PREFETCH and 
LOCK PREFETCHW may make a memory location pro 
tected. In addition, in some embodiments, LOCK 
PREFETCH and LOCK PREFETCHW may also check the 
specified memory address for translation faults and memory 
access permission (read or write, respectively) and generate a 
page fault if unsuccessful. In some embodiments, LOCK 
PREFETCH and LOCK PREFETCHW may generate a #DB 
exception when they reference a memory address for which a 
data breakpoint has been configured. 
0056. In some embodiments, once a memory location has 
been protected using a declarator, it may be modified again 
speculatively, but not nonspeculatively, within the transac 
tion. For example, in some embodiments, after a memory 
location has been read using a LOCKMOV read instruction, 
the value Stored in the memory location may be speculatively 
modified using an ASF-defined LOCK MOV store instruc 
tion. According to embodiments, such speculative updates 
may become visible only when the transaction is committed. 
According to Such embodiments, if the transactional attempt 
aborts, then speculative updates are rolled back and/or other 
wise discarded. In some embodiments, during transactional 
execution, a memory location that has been protected using a 
declarator may only be modified using a speculative store 
instruction. In Such embodiments, if a thread in transactional 
mode attempts to modify the value of a protected memory 
location using conventional non-speculative store operations, 
ASF mechanisms may raise an exception/fault (e.g., iiGP(0)). 
0057. In some embodiments, if a speculative store instruc 
tion (e.g., LOCK MOV) is executed outside of a critical 
section, then an exception may be raised. In other embodi 
ments, such as those wherein store-conditional mode is avail 
able, speculative stores outside of a critical section may be 
treated as a no-op. 
0058. In various embodiments, declarator memory 
instructions may participate in a system's cache coherence 
protocol. For example, if a LOCK MOV or LOCK 
PREFETCH instruction for reading a memory location 
misses in cache, it may send a non-invalidating probe to other 
processors, as dictated by the system's cache coherence pro 
tocols. In another example, if a given cache line does not 
already reside in the local cache in exclusive/owned Status, 
then modifying it using a LOCKMOV instruction may result 
in sending an invalidating probe to other processors, as dic 
tated by the system's cache coherence protocols. In some 
embodiments, executing a LOCKPREFETCHW instruction 
may also result in sending an invalidating probe, etc. 
0059 Various ASF mechanisms may be used to monitor 
and/or enforce protected memory locations (e.g., protected 
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cache blocks). In some embodiments, ASF mechanisms may 
include an extension to one or more of the system's caches 
(e.g., memory caches 230), to indicate which cache lines (i.e., 
blocks) are protected. For example, in one embodiment, each 
line in a given cache may comprise a “protected flag, which 
is set if the cache line is protected in a currently executing 
transaction and unset if it is not protected. In some embodi 
ments, the protected flag may comprise one or more bits. 
0060. In some embodiments, ASF mechanisms for track 
ing protected cache lines may comprise a locked line buffer. 
In Such embodiments, when a value in a protected memory 
location is modified (e.g., using a LOCKMOV instruction), 
an entry may be made into the locked line buffer to indicate 
the cache block and the value it held before the modification. 
In such embodiments, in the event of an abort of the transac 
tion, the entries of the locked line buffer may be used to 
restore the pre-transaction values of each protected cache line 
to the local cache. In such embodiments, the locked line 
buffer may participate in a cache coherence protocol of the 
system, as described below. 
0061. In other embodiments, instead of using a locked line 
buffer to undo memory stores as described above, various 
ASF implements may instead prevent store instructions to 
protected memory locations in a critical section from being 
written to cache and/or memory before the transaction is 
committed. For example, ASF may be configured to keep all 
memory modifications in an internal store buffer and forward 
buffered values to Subsequent load operations in the transac 
tion. In Such embodiments, once the transaction commits, 
ASF mechanisms may allow the buffered store operations in 
the internal store buffer to be written back to the cache. 
0062. In some embodiments, due to the fixed capacity of 
various ASF hardware components, various limitations may 
exist on the number of memory locations that may be simul 
taneously protected during a transaction (or set of nested 
transactions). For example, as discussed above, according to 
Some embodiments, an implementation may require that all 
protected memory locations simultaneously reside in a data 
cache (e.g., memory caches 230) for the duration of the criti 
cal section. In Such an embodiment, if a protected line is 
evicted from the cache during a transaction (e.g., due to 
capacity constraints), the critical section may be aborted. For 
example, a critical section that happened to reference N+1 
memory locations that all mapped to the same set in an N-way 
associative data cache may fail to complete since at least one 
protected cache line would be evicted from cache when pro 
tected memory location N+1 is accessed. However, if a trans 
action performs a more distributed reference pattern, then it 
may be able to concurrently protect more memory locations 
than N before any one cache index is exceeded and a protected 
line is displaced from the data cache. 
0063. In various embodiments, capacity limitations other 
than cache associativity may exist. For example, in embodi 
ments in which a locked line buffer is used, the maximum 
number of concurrently protected modified memory loca 
tions may be determined by the capacity of the locked line 
buffer. In another example, in embodiments utilizing a store 
buffering scheme, ASF hardware capacity may be dependent 
on the capacity of the store buffer (i.e., the maximum number 
of outstanding stores Supported by the system pipeline). 
0064. In various embodiments, ASF mechanisms may 
guarantee that a critical section will not fail due to insufficient 
hardware capacity as long as the number of protected loca 
tions does not exceed a given minimum guaranteed capacity. 
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In various embodiments, this guarantee may be made regard 
less of where in the cacheable address space protected 
memory locations reside. For example, in embodiments that 
require that all protected memory locations simultaneously 
reside in a data cache, the minimum guaranteed capacity may 
be dependent upon the data cache's associativity (i.e., size of 
associativity sets). In various embodiments, if a transaction 
exceeds the hardware capacity, then the transactional attempt 
may abort. 
0065. In some embodiments, ASF mechanisms may allow 
a thread executing a transaction to remove an unmodified 
protected memory location from the transaction's set of pro 
tected memory locations. In some embodiments, the thread 
may accomplish this by executing an explicit RELEASE 
instruction provided by ASF. In some embodiments, when a 
protected memory location is released (e.g., using the 
RELEASE instruction), then it is no longer monitored for 
contention with other threads. For example, in embodiments 
wherein a protected flag is utilized, the value of the protected 
flag associated with the released cache block may be modified 
to indicate that the block is no longer protected. Thus, by 
removing an unmodified protected memory location from the 
set of protected memory locations, a thread may avoid unnec 
essary data conflicts with other threads and/or exceeding an 
ASF implementation's hardware capacity, which may lead to 
transactional aborts. In some embodiments, a RELEASE 
instruction may or may not guarantee that the specified pro 
tected memory location will be released. In some embodi 
ments, only protected cache lines that have not been modified 
may be released. 
0066. As described above, in some embodiments, if a 
transaction attempts to protect (using declarators) more 
memory locations (e.g., cache blocks) than the ASF imple 
mentation's capacity can Support then the transaction may be 
aborted. In other embodiments, the abort may be executed in 
response to a fault being raised. 
0067. In various embodiments, transactional aborts may 
also be caused by conditions other than insufficient hardware 
capacity. For example, an abort may be caused by memory 
contention, that is, interference caused by another processor 
attempting to access protected memory locations. In various 
embodiments, ASF mechanisms may be configured to detect 
various cache coherence messages (e.g., invalidating and/or 
non-invalidating probes) that may be relevant to one or more 
protected cache lines and determine whether the probe indi 
cates that a data conflict exists. In response to detecting a data 
conflict, the ASF-mechanism may abort a transactional 
attempt. For example, consider a first thread executing in 
transactional mode and protecting a memory location (i.e., 
reading a memory location using a declarator instruction). If 
a second thread Subsequently attempts a store to the protected 
memory location, then the processor executing the second 
thread may send an invalidating probe to the processor 
executing the first thread, in accordance with the particular 
cache coherence protocol deployed by the system. If the first 
processor receives the invalidating probe while the memory 
location is still protected (e.g., before the first thread commits 
its transaction or otherwise releases the memory location) 
then a data conflict may exist. In Such an instance, ASF 
mechanisms may be configured to detect that the invalidating 
probe is relevant to a protected memory location and in 
response, abort the first thread's transaction. 
0068 According to various embodiments, a transaction 
may be aborted if ASF mechanisms detect that an invalidating 
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probe relevant to a protected cache line is received. In some 
embodiments, a transaction may also be aborted if ASF 
mechanisms detect that a non-invalidating probe relevant to a 
modified protected cache line is received. 
0069 FIG. 7 is a table summarizing a set of rules defining 
how various ASF implementations may handle data conten 
tion, according to some embodiments. The table of FIG. 7 
describes the outcomes when a first thread executing on a first 
processor (CPUA) performs a given memory access opera 
tion on a given memory location, while a second thread on a 
second processor (CPUB) is executing a transaction that has 
protected that location. As described above, various cache 
coherence protocols allow memory caches to cache memory 
values in different “states', such as “shared’ state for read 
only access, or in “owned' or “exclusive' state for write 
access. The “Protected Shared and “Protected Owned col 
umns correspond to a protected cache line being in shared and 
owned State respectively. 
0070 For example, the top entry in the table of FIG. 7 
details how to handle a situation, according to one embodi 
ment, where CPU A is executing in any mode (inside or 
outside of a critical section) and performs a read operation to 
a memory location that CPUB is protecting in either shared or 
owned state. According to the illustrated embodiment, if CPU 
B is protecting the location in owned State, then the transac 
tion of CPU Baborts and otherwise, the transaction of CPUB 
does not abort. Similar outcomes would result if CPU A had 
executed a prefetch operation in any mode or if it had 
executed a LOCK MOV or LOCK PREFETCH operation 
from inside of a transaction. However, according to the illus 
trated embodiment, if CPU A were to perform a write or 
PREFETCHW operation to the memory location in any mode 
or a LOCK PREFETCHW operation to the memory location 
in transactional mode, then CPU B would abort the transac 
tion regardless of whether it held the memory location in 
shared or owned states. 
0071. In some embodiments, a transaction may be aborted 
explicitly using an ASF-defined ABORT instruction. In some 
embodiments, a transaction may be aborted because it 
attempts to execute a disallowed instruction, such as one that 
results in a far control transfer. In various embodiments, far 
control transfers may include instructions that transfer con 
trol to a location in another segment, such as by changing the 
content of the CS register in x86 implementations. Far control 
transfers may include traps, faults, exceptions, NMIs, SMIs. 
unmasked and nondeferred interrupts, disallowed instruc 
tions converted into exceptions, etc. In some embodiments, 
disallowed instructions may include privileged instructions, 
Such as those that must be executed at an elevated privilege 
level (e.g., CPL-0), instructions that cause a far control trans 
fer or an exception, and any instructions that may be inter 
cepted by a secure virtual machine (SVM) hypervisor. In 
various embodiments, disallowed instructions may include: 

0072 FARJMP, FAR CALL, FAR RET 
0073 SYSCALL, SYSRET, SYSENTER, SYSEXIT 
0074 INT, INTx, IRET, RSM 
0075 BOUND, UD2 
0.076 PUSHF, POPF, PAUSE, HLT, CPUID, MONI 
TOR, MWAIT, RDTSC, RDTSCP, RDPMC 

10077. IN, OUT 
0078 All privileged instructions 
0079 All SVM instructions 

0080. As used herein, the term SVM instructions may 
refer to any instructions that a virtual machine monitor and/or 
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virtual machine may use to interact across the boundary of the 
virtual machines. In various embodiments, such instructions 
may include, but are not limited to, VMRUN (i.e., run a 
virtual machine), VMLOAD/VMSAVE (i.e., load/save vari 
ous virtual machine state into a processor and/or to a save area 
in memory), and/or VMMCALL (i.e., to execute a system call 
to a virtual machine monitor). 
0081. In various embodiments, a virtual machine monitor 
may prevent execution of a configurable set of instructions on 
a processor, Such as by intercepting those operations. Such 
instructions may be referred to herein as “interceptable'. 
According to some embodiments, various or all SVM instruc 
tions may be interceptable. In some embodiments, the execu 
tion of any interceptable instruction inside of a transaction 
may cause the transaction to be aborted. 
I0082 In some embodiments, ASF mechanisms may pro 
hibit instructions within a transaction that operate differently 
in a virtualized environment (e.g., virtual machine) than in a 
native environment. By imposing such restrictions, embodi 
ments may be fully virtualizable and can be used within a 
virtual machine without suffering from the unpredictable or 
incorrect behavior that such instructions may cause when 
executed in a virtual environment. For example, in some 
embodiments, all interceptable instructions may be prohib 
ited inside of a transaction. In some embodiments, virtual 
machine specific instructions and/or privileged instructions 
may be prohibited. 
I0083. In some embodiments, attempting to execute disal 
lowed or far control transfer causing instructions inside of a 
critical section may generate an exception (e.g., HGP excep 
tion), which may cause the transactional attempt to be 
aborted. In some embodiments, the far control transfer may 
be executed after the abort. In such embodiments, upon return 
from the far control transfer (or the fault handler invoked by 
the exception caused by the disallowed transaction), a soft 
ware recovery routine may be executed. 
0084 As described above, in various embodiments, ASF 
mechanisms may abort a transactional attempt due to hard 
ware capacity limitations, memory contention with another 
thread, the thread executing a disallowed instruction (e.g., far 
control transfer), and/or if the thread executes an explicit 
ABORT instruction. 
I0085 FIG. 8 is a flow diagram illustrating a method by 
which, according to various embodiments, ASF mechanisms 
may execute a transaction in rollback mode. According to 
method 800, a thread may begin a transaction in rollback 
mode by first executing a SPECULATE instruction. As 
detailed in FIG. 5, executing SPECULATE may include 
checkpointing (i.e., saving) the instruction and stack pointer 
values for later use. However, in some embodiments, if the 
transaction is nested within another transaction, then a check 
point may already exist and the SPECULATE instruction 
would not result in another checkpoint being recorded, as in 
FIG.S. 

I0086. After executing the SPECULATE instruction, the 
thread may determine whetheran abort status has been set, as 
in 810, and if so, jump to and execute a recovery routine. Such 
as 815. In some embodiments, software may determine 
whetheran abort status code has been set by examining one or 
more registers (e.g., raX register) where various abort status 
codes may be placed. In some embodiments, different abort 
status codes may indicate whether and for what reason the 
previous transactional attempt was aborted. In various 
embodiments, different abort status codes may be set, Such as 
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those indicating that the previous transactional attempt was 
not aborted or was aborted due to contention, capacity con 
straints, execution of a disallowed instruction, a far control 
transfer, or other reasons. In some embodiments, recovery 
routine(s) 815 may take different recovery actions depending 
on the determined abort status code. For example, in some 
instances, recovery routine(s) 815 may determine that the 
thread should not reattempt transactional execution using 
ASF. 

0087. According to the method 800, the thread may then 
begin to execute the transaction body, which may include 
protecting some number of protected memory locations, as in 
820. In some embodiments, protecting memory locations 
may be performed using various declarator instructions as 
described above, such as LOCK MOV. In some embodi 
ments, a protected flag corresponding to the cache block of 
each protected memory location may be set to indicate that 
the location is protected. According to the illustrated example 
of FIG. 8, executing the transaction body may further include 
writing to one or more protected memory locations, as in 825. 
In some embodiments, this may be performed by using vari 
ous speculative store operations as described above. Such as 
LOCKMOV. In embodiments utilizing a locked line buffer, 
writing to a protected memory location may include storing 
the unmodified value to the locked line buffer and then per 
forming the write operation to a local cache. 
0088 According to method 800, an abort condition may 
be encountered during execution, as indicated by the affirma 
tive exit from 830. As described above, in different instances, 
an abort condition may be caused by contention with other 
threads, capacity limitations, far control transfers, disallowed 
instructions, and/or by the thread executing an explicit 
ABORT instruction. If an abort condition is detected (affir 
mative exit from 830) then ASF mechanisms may be config 
ured to discard any modifications made by the partially 
executed transaction to all protected memory locations. 
0089. In various embodiments, discarding modifications 

to all protected memory locations, as in 835, may be accom 
plished in different manners, dependent on the particular 
speculative execution mechanism being used. For example, in 
some embodiments wherein ASF utilizes a store buffer to 
delay the write-back phase of store operations to protected 
memory as described above, discarding modifications (as in 
835) may comprise discarding any store operations to pro 
tected memory locations that are waiting in the store buffer. In 
some embodiments in which a locked line buffer is used, 
discarding modifications (as in 835) may comprise writing 
the old values of each memory location (values of each 
memory location before it was modified by the transaction), 
stored in the locked line buffer, back to the local cache. 
0090 According to method 800, aborting the transaction 
in rollback mode may further comprise releasing all protected 
memory locations, as in 840, Such that they are no longer 
protected. For example, releasing the protected memory loca 
tions may include unsetting one or more protected flags asso 
ciated with each memory location protected by the aborted 
transaction. In embodiments utilizing locked line buffers, 
releasing the protected memory locations may further include 
removing the entries of the locked line buffer corresponding 
to the protected memory locations modified in the transac 
tion. 

0091. According to the illustrated embodiment, ASF 
mechanisms may then determine the cause of the abort to 
determine an appropriate abort status code. In some embodi 
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ments, ASF mechanisms may communicate the abort status 
code to software mechanisms by encoding the code into a 
status register (e.g., raX register 216), as in 845. 
0092. In some embodiments, a status register (e.g., the 
rAX register) may be used to simultaneously hold a plurality 
of status codes. For example, Some Subset of the status reg 
ister bits may be used to hold an abort status code while one 
or more other subsets may hold additional information. For 
example, if the abort was caused by the thread executing an 
ABORT instruction, a subset of the bits of status register may 
hold one or more values passed to the ABORT instruction by 
the thread when invoked. In some embodiments, a subset of 
the bits of the status register may also hold an indication of the 
nesting depth of the current transaction. In further embodi 
ments, different subsets of bits in the status register may hold 
various other sets of status information. 
0093. According to method 800, ASF mechanisms may 
then roll back execution to the beginning of the transaction, 
Such as by rolling back the instruction and stack pointers to 
the checkpointed values, as in 850. In some instances, if the 
transaction is a top level transaction, then the checkpoint may 
have been recorded as part of executing the SPECULATE 
instruction (as in 805) and rolling back execution may result 
in returning control flow to the start of the transaction body, as 
indicated by the feedback loop from 850 to 810. In other 
embodiments, if the transaction is a nested transaction, then 
the checkpoint may have been recorded in the top level trans 
action and rolling back execution may result in returning 
control flow to the beginning of the top-level transaction's 
body. Thus, in some embodiments, aborting a nested transac 
tion may comprise aborting all parent transactions in which 
the nested transaction is nested. 
0094. According to method 800, the transaction body may 
be attempted until it completes without an abort condition 
being detected. If the transactional attempt completes without 
abort, as indicated by the negative exit from 830, then the 
thread may commit the transaction, as in 855. In some 
embodiments, committing the transaction may comprise 
executing a COMMIT instruction. 
0.095 FIG. 9 illustrates a method for committing a trans 
action, such as by executing a COMMIT instruction, accord 
ing to Some embodiments. 
0096 FIG. 9 is a flow diagram illustrating a method by 
which ASF mechanisms may abort a transaction that is 
executing in store-conditional mode, according to various 
embodiments. According to the illustrated embodiment, 
method 900 may begin by determining if a transaction is 
active, as in 905. If a transaction is active, as indicated by the 
affirmative exit from 905, then the transaction did not abort 
during execution. Thus, in some embodiments, a code indi 
cating a successful execution may be stored in a status regis 
ter. For example, in some embodiments, the rAX register may 
be cleared as in 910, such as by storing a 0 value in the register. 
0097. According to method 900 committing the transac 
tion may further comprise setting a flag to indicate that execu 
tion is not in store-conditional mode, as in 915, and decre 
menting a counter that indicates the nesting level of the active 
transaction, as in 920. In some embodiments, if the transac 
tion being committed is a nested transaction, as indicated by 
the negative exit from 925, then the transaction may be ended, 
as in 940. Thus, in such embodiments, speculative stores 
executed inside of a nested transaction may remain specula 
tive (and susceptible to contention) even after the nested 
transaction has committed. 
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0098. According to the embodiment of FIG.9, if the trans 
action is a top-level transaction, as indicated by the affirma 
tive exit from 925, then ASF mechanisms may commit all 
modifications to protected memory locations so that they are 
globally visible to other threads in the system, as in 930. In 
various embodiments, committing modifications to protected 
memory locations may involve different actions, which may 
depend on the speculative mechanism used. For example, in 
embodiments where speculative store operations to protected 
memory are delayed in the store buffer until the transaction 
commits, committing the modifications may imply perform 
ing a write-back of these values to memory (e.g., to local 
cache and/or to main memory). In various embodiments, 
committing a top level transaction may further comprise 
releasing all protected memory locations, as in 935, such that 
they are no longer protected by ASF mechanisms. For 
example, in embodiments wherein a protected flag is used to 
indicate protected cache blocks, the value of each flag asso 
ciated with each protected cache block may be set to indicate 
that the cache block is no longerprotected. Thus, ASF mecha 
nisms need not ensure atomicity with respect to released 
memory locations. 
0099. In some embodiments, a thread attempts to commit 
a transaction that is not active, as indicated by the negative 
exit from 905, then the behavior may depend on whether or 
not the mode of execution is store-conditional or rollback. If 
the execution mode is rollback, as indicated by the negative 
exit from 945, then ASF mechanisms may be configured to 
raise an exception, such as a #GP exception. Otherwise, if the 
execution mode is store-conditional (as indicated by the affir 
mative exit from 945), then ASF mechanisms may be config 
ured to store the abort status code in a status register, such as 
rAX (as in 955) and jump to a recovery routine, as in 960. The 
transaction may then be reattempted as needed. 
0100 FIG. 10 is a flow diagram illustrating a method for 
executing a transaction in store-conditional mode, according 
to some embodiments. According to method 1000, executing 
a transaction in store-conditional mode may begin by execut 
ing a BEGIN instruction, as in 1005. In some embodiments, 
executing a BEGIN instruction may include executing 
method 600 of FIG. 6. In various embodiments, the BEGIN 
instruction may set one or more flags that may be used to 
determine that a transaction executing in store-conditional 
mode is active. 

0101. According to the illustrated embodiment, the trans 
action may then protect one or more memory locations using 
declarator instructions, as in 1010. In some instances, the 
transaction may also attempt to write to one or more of the 
memory locations protected in 1010, as in 1015. 
0102) According to method 1000, if ASF mechanisms do 
not detect an abort condition (e.g., contention, capacity limits 
exceeded, far control transfer, disallowed transaction, etc.), as 
in the negative exit from 1025, then the thread may commit 
the transaction, as in 1040. In some embodiments, commit 
ting the transaction, as in 1025, may include executing a 
commit instruction, such as that illustrated by FIG. 9. 
0103. In some embodiments, if an abort condition is 
detected during execution, as indicated by the affirmative exit 
from 1025, then the transaction may be aborted, as in 1030. In 
Some embodiments, aborting the transaction may include 
undoing or otherwise discarding any modifications to pro 
tected memory locations made by Store operations of the 
transaction. In some embodiments, an abort status code indi 
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cating the cause of the abort (e.g., conflict, capacity, disal 
lowed transaction, etc.) may be recorded as part of aborting 
the transaction, as in 1030. 
0104. According the illustrated embodiment, after the 
transaction is aborted (as in 1030), the control flow may 
remain in the transaction body and the transaction may con 
tinue to be executed with the exclusion of speculative stores to 
protected memory locations, as in 1035. In some embodi 
ments, after the transactional attempt is aborted, declarator 
instructions appearing in the transaction body may be 
executed as regular memory references (e.g., read instruc 
tions that do not set a protected flag for the memory location) 
and/or accesses to protected memory locations may be 
ignored (e.g., treated as a no-op instruction). 
0105. According to some embodiment, a thread executing 
a transaction in store-conditional mode may be configured to 
verify whether or not the transaction has been aborted. For 
example, in some embodiments, the thread may execute a 
VALIDATE instruction, as in 1040, to determine whether a 
transaction is still active (i.e., not yet aborted). In some 
embodiments, the VALIDATE instruction may be executable 
to copy the current abort status code into a program readable 
status register (e.g., into the rAX register) where the value 
may be read by software. If the transaction has not been 
aborted, then the VALIDATE instruction may be executable 
to set the status register to a value indicating that the transac 
tion is still active (e.g., set raX to 0 value). 
0106. According to the illustrated embodiment, if the 
thread executes a VALIDATE instruction, it may then check 
the status (e.g., raX) register to determine whether the trans 
action has been aborted. If the transaction is not active, as 
indicated by the negative exit from 1045, then the thread may 
execute some recovery actions, as in 1055. According to 
various embodiments, executing the recovery actions may 
include releasing any protected memory locations and/or 
returning program control to the start of the transaction for 
re-execution. If the transaction is still active, as indicated by 
the affirmative exit from 1045, then the thread may continue 
executing the transaction and/or commit the transaction, as in 
1050. 

0107 According to the illustrated embodiment, once the 
thread finishes executing the transaction, it may attempt to 
commit the transaction, as in 1050. As indicated above, com 
mitting the transaction may include executing a commit 
instruction, such as that illustrated in FIG. 9. As part of 
executing the commit instruction, ASF mechanisms may 
detect whether the transaction is active (as in 905) and if not, 
store an abort status in a software readable register (e.g., in 
rAX as in 955) and jump to a recovery routine (as in 960), 
which may be analogous to or the same as recovery actions 
1055. Executing the recovery routine may include releasing 
any protected memory locations and/or returning program 
control to the start of the transaction for re-execution. In some 
embodiments, if the section is nested within one or more 
rollback mode transactions, those parent transactions may be 
aborted and control may be returned to the checkpoint taken 
by the highest level SPECULATE instruction, as described 
above in reference to FIG. 8. 

0108. In various embodiments, a programmer may com 
pose applications that utilize a transactional memory pro 
gramming model for ASF-enabled systems. In Such embodi 
ments, a programmer may configure a program to begin a 
transaction by executing a transactional start instruction (e.g., 
SPECULATE, BEGIN, etc), execute one or more accesses to 
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protected memory (e.g., LOCKMOV, etc.), and then execute 
one or more instructions to commit the transaction (e.g., 
COMMIT). 
0109. In some embodiments, a program may be written to 

utilize an ASF-enabled transactional memory programming 
model in conjunction with other concurrency control mecha 
nisms, such as non-ASF, lock-based code. For example, con 
sider a data structure Such as a B-tree. Concurrent threads in 
a shared-memory application may perform frequent insert 
and delete operations to the B-tree in a transactional, lock 
free manner using ASF-based transactional memory. Occa 
sionally the B-tree may need to be rebalanced for efficiency, 
an operation that may include atomically operating on many 
memory locations of the B-tree. However, since this opera 
tion may include protecting many memory locations, 
attempting to complete it as a transaction may result in fre 
quent aborts. For example, conflict aborts may result from 
conflicts with other concurrently executing threads that per 
form delete and/or insert operations on the B-tree. In another 
example, protecting so many memory locations simulta 
neously may be beyond the capacity of the ASF implemen 
tation, therefore causing capacity aborts of the transaction. In 
Such situations, rather than using transactional memory to 
execute the rebalancing operation, the operation may be more 
efficient if configured to use traditional, lock-based mutual 
exclusion. For example, a lock may be associated with the 
entire B-tree and may be acquired for mutually exclusive 
access to the B-tree. In this example, the rebalancing opera 
tion may begin by acquiring lock for the B-tree, then execut 
ing the rebalancing operation, and then releasing the lock. 
However, in Such instances, care must be taken to ensure that 
code that utilizes lock-based mutual exclusion semantics 
interoperates safely with code that utilizes ASF-based trans 
actional memory semantics. 
0110 FIG. 11 is a flowchart illustrating a method for con 
figuring ASF-based transactions to interoperate with lock 
based code, according to one embodiment. According to the 
illustrated embodiment, a thread may begin a transaction, as 
in 1110, such as by executing a SPECULATE or BEGIN 
instruction, as described above. 
0111. The set of memory locations that are protected 
inside of a transaction may be referred to herein as the read 
set of the transaction. In the presence of lock-based code, the 
read-set of a transaction may include one or more memory 
locations that are associated with locks. Any memory location 
associated with and protected by a lock may be referred to 
herein as lock-protected. 
0112 According to the illustrated embodiment, a thread 
may be configured to atomically read (e.g., using a declarator 
operation) the value of each lock associated with each lock 
protected memory location in the transaction's read-set, as in 
1120. Thus, by atomically reading the values of the locks, the 
thread adds the locks to the read-set of the transaction (i.e., 
ASF mechanisms monitor the locks and protect them as part 
of the transaction). For example, in the B-tree example above, 
a transactional insert operation may begin by first atomically 
reading the value of a lock associated with the entire B-tree 
structure. In some embodiments, atomically reading the value 
of the lock may include reading the lock value using a 
declarator operation. 
0113. According to the illustrated embodiment, the thread 
may then determine if any of the locks read in step 1120 are 
held. If any are held, as indicated by the affirmative exit from 
1130, then the thread may retry the transaction. In some 
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embodiments, the thread may continue to reread the values of 
each lock until all of the locks are free, as indicated by the 
negative exit from 1130. In some embodiments, if any of the 
locks are held, then the thread may abort the transaction (e.g., 
by executing an ABORT instruction) and then reattempt 
executing the transaction. In other embodiments, if any of the 
locks are held, the thread may attempt to roll back any modi 
fications that the transaction has made to values in protected 
memory locations and then to commit the transaction. 
0114. According to the illustrated embodiment, once the 
thread detects that no lock read in 1120 is held, as indicated by 
the negative exit from 1130, the thread may continue to 
execute the transaction body, as in 1140. In the illustrated 
embodiment, since the memory locations of various locks are 
protected using a declarator operation, any change to the 
value of the lock (e.g., a different thread acquiring the lock) 
may cause a conflict abort of the transaction. Therefore, an 
abort condition is detected during transactional execution 
(e.g., a conflict abort due to a lock being acquired), then 
ASF-mechanisms and/or the thread may abort the transaction 
and execute Some recovery actions (as in 1160) and reattempt 
the transaction (as indicated by the feedback loop from 1160 
to 1120). For example, continuing the B-tree example from 
above, if a different thread attempts to acquire the lock asso 
ciated with the B-tree (e.g., as part of performing a rebalanc 
ing operation), then a cache coherence message may be sent 
to the executing thread, causing a conflict abort of the insert 
operation transaction. 
0115 According to the illustrated embodiment, if no abort 
condition is detected (as indicated by the negative exit from 
1150), then the thread may commit the transaction, as in 
1160. 

0116 FIG. 12 illustrates one embodiment of a computer 
system configured to implement various embodiments of 
ASF, as described herein. Computer system 1200 may be any 
of various types of devices, including, but not limited to, a 
personal computer system, desktop computer, laptop or note 
book computer, mainframe computer system, handheld com 
puter, workstation, network computer, a consumer device, 
application server, storage device, a peripheral device Such as 
a Switch, modem, router, etc, or in general any type of com 
puting device. 
0117 Computer system 1200 may include a plurality of 
processors 1270, each of which may include multiple cores, 
any of which may be single or multi-threaded (e.g., simulta 
neous multi-processing, HyperthreadingTM, etc.). In some 
embodiments, processors 1270 may include dynamic sched 
uling mechanisms 1272, Such as those capable of delaying 
speculative stores in load/store queues 1274 for implement 
ing a speculative store buffer, as described herein. In some 
embodiments, processors 1270 may include various load, 
store, and/or load/store queues, such as 1274, for holding 
in-flight memory operations in the processor pipeline. Pro 
cessors 1270 may also include registers 1276, such as raX. 
rFLAGS or other special purpose registers, such as ones used 
for recording nesting depth, transactional mode, or status 
(active VS. inactive) of a transaction. In some embodiments, 
processors 1270 may include any number of ASF hardware 
transactional memory mechanisms 1278, as described herein. 
For example, ASF mechanisms 1278 may include a locked 
line buffer and/or hardware logic for monitoring memory 
locations protected by an active transaction. In some embodi 
ments, processors 1270 may also include various cache 
coherence mechanisms 1279, which may be use to implement 
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different cache coherence protocols (e.g., MESI, MOESI, 
etc.) and may be used by ASF mechanisms to detect conflict 
aborts, as described herein. 
0118. The computer system 1200 may also include one or 
more persistent storage devices 1260 (e.g. optical storage, 
magnetic storage, hard drive, tape drive, Solid state memory, 
etc), which may store files, for example, by using a file sys 
tem, such as file system 1262. Computer system 1200 may 
include one or more memories 1210 (e.g., one or more of 
cache, SRAM, DRAM, RDRAM, EDO RAM, DDR 10 
RAM, SDRAM, Rambus RAM, EEPROM, etc.) shared by 
the multiple processors. Various embodiments may include 
fewer or additional components not illustrated in FIG. 12 
(e.g., video cards, audio cards, additional network interfaces, 
peripheral devices, a network interface such as an ATM inter 
face, an Ethernet interface, a Frame Relay interface, etc.) 
0119 Processors 1270, storage device(s) 1260, and shared 
memory 1210 may be coupled to system interconnect 1250. 
One or more of the system memories 1210 may contain 
program instructions 1220. Program instructions 1220 may 
be encoded in platform native binary, any interpreted lan 
guage such as JavaM byte-code, or in any otherlanguage Such 
as C/C++, JavaTM, etc or in any combination thereof. 
0120 Program instructions 1220 may include program 
instructions executable to implement one or more ASF-based 
transactional memory applications 1222. Each application 
1222 may be multithreaded and may be configured to utilize 
ASF transactional memory mechanisms. In some embodi 
ments, one or more of applications 1222 may be configured to 
operate using both ASF transactional memory instructions as 
well as mutual exclusion locks, as described herein. In Such 
embodiments, shared memory 1210 may include various data 
structures and variables 1230, any of which may be associated 
with one or more mutual exclusion locks 1240. 
0121. In some embodiments, program instructions 1220 
and/or ASF-based transactional memory applications 1222 
may be provided as an article of manufacture that may include 
a computer-readable storage medium having stored thereon 
instructions that may be used to program a computer system 
(or other electronic devices) to perform a process according to 
various embodiments. A computer-readable storage medium 
may include any mechanism for storing information in a form 
(e.g., Software, processing application) readable by a 
machine (e.g., a computer). The machine-readable storage 
medium may include, but is not limited to, magnetic storage 
medium (e.g., floppy diskette); optical storage medium (e.g., 
CD-ROM); magneto-optical storage medium; read only 
memory (ROM); random access memory (RAM); erasable 
programmable memory (e.g., EPROM and EEPROM); flash 
memory; electrical, or other types of tangible medium Suit 
able for storing program instructions. In addition, program 
instructions may be communicated using intangible media— 
optical, acoustical or other form of propagated signal (e.g., 
carrier waves, infrared signals, digital signals, etc.). 
0122 Although the embodiments above have been 
described in considerable detail, numerous variations and 
modifications will become apparent to those skilled in the art 
once the above disclosure is fully appreciated. It is intended 
that the following claims be interpreted to embrace all such 
variations and modifications. 

What is claimed: 
1. A system, comprising: 
a processor of a plurality of processors coupleable to a 

shared memory; 
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wherein the processor is configured to initiate execution of 
a section of code according to a first transactional mode 
of the processor, wherein the processor is configured to 
execute a plurality of protected memory access opera 
tions to the shared memory within the section of code as 
a single atomic transaction with respect to the plurality 
of processors; 

wherein the processor is configured to initiate, within the 
section of code, execution of a Subsection of the section 
of code according to a second transactional mode of the 
processor, and 

wherein the first and second transactional modes are each 
associated with respective recovery actions that the pro 
cessor is configured to perform in response to detecting 
an abort condition. 

2. The system of claim 1, wherein the recovery actions 
associated with the first transactional mode comprise: 

discarding any modifications to the shared memory made 
by one or more of the plurality of protected memory 
access operations; and 

modifying values held in one or more registers to return 
program control flow to the start of the section of code. 

3. The system of claim 2, wherein the recovery actions 
associated with the second transactional mode comprise: 

discarding any modifications to the shared memory made 
by one or more of the plurality of protected memory 
access operations of the Subsection of code; and 

continue execution of the subsection of code without 
executing any store operations of the plurality of pro 
tected memory access operations that are within the 
Subsection of code. 

4. The system of claim 3 wherein in response to detecting 
an abort condition during execution of the Subsection of code, 
the processor is further configured to abort execution of the 
section of code, wherein said aborting comprises performing 
the recovery actions associated with the first transactional 
mode for the section of code. 

5. The system of claim 1, wherein the processor is further 
configured to execute the section of code according to the first 
transactional mode in response to executing an instruction 
indicative of the first transactional mode at the start of the 
section of code, and wherein the processor is further config 
ured to execute the Subsection of code according to the second 
transactional mode in response to executing an instruction 
indicative of the second transactional mode at the start of the 
Subsection of code. 

6. The system of claim 5, wherein the processor is config 
ured to execute the instruction indicative of the first transac 
tional mode by recording a checkpoint at the start of the 
section of code, wherein said recording includes recording 
one or more respective values of one or more hardware reg 
isters of the processor. 

7. The system of claim 1, wherein the section of code 
comprises a group of one or more unprotected memory access 
operations to the shared memory distinct from the protected 
memory access operations, and wherein the processor is fur 
ther configured to execute the group of unprotected memory 
access operations such that the group is not guaranteed to be 
executed as a single atomic transaction with respect to the 
plurality of processors. 

8. A method, comprising: 
a processor of a plurality of processors coupled to a shared 
memory executing a section of code comprising a plu 
rality of protected memory access operations to the 
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shared memory as a single atomic transaction with 
respect to the plurality of processors, wherein the pro 
cessor is configured to execute the section of code 
according to a first transactional mode; 

wherein executing the section of code includes the proces 
Sor executing a Subsection of the section of code, 
wherein the processor is configured to execute the Sub 
section according to a second transactional mode; and 

wherein the first and second transactional modes are each 
associated with different respective recovery actions 
that the processor is configured to perform in response to 
detecting an abort condition, wherein the abort condi 
tion indicates that the executing section or Subsection of 
code is not being executed as a single atomic transaction 
with respect to the plurality of processors. 

9. The method of claim 8, wherein the recovery actions 
associated with the first transactional mode comprise: 

the processor discarding any modifications to the shared 
memory made by one or more of the protected memory 
access operations; and 

the processor modifying values held in one or more regis 
ters to return program control flow to the start of the 
section of code. 

10. The method of claim 8, wherein the recovery actions 
associated with the second transactional mode comprise: 

discarding any modifications to the shared memory made 
by one or more of the plurality of protected memory 
access operations of the Subsection of code; and 

continue execution of the subsection of code without 
executing any store operations of the plurality of pro 
tected memory access operations that are within the 
Subsection of code. 

11. The method of claim 10, the method further compris 
ing: 

detecting an abort condition during execution of the Sub 
section of code; and 

aborting the section of code by performing one or more 
recovery actions associated with the first transactional 
mode. 

12. The method of claim 8, further comprising the proces 
Sor executing an instruction indicative of the first transac 
tional mode at the start of the section of code and the proces 
Sor executing an instruction indicative of the second 
transactional mode at the start of the Subsection of code. 

13. The method of claim 12, wherein said executing an 
instruction indicative of the first transactional mode com 
prises recording a checkpoint at the start of the section of 
code, and wherein said recording includes recording one or 
more respective values of one or more hardware registers of 
the processor. 

14. The method of claim 8, wherein the section comprises 
a group of one or more unprotected memory access opera 
tions distinct from the protected memory access operations, 
and wherein the method further comprises executing the 
group of unprotected memory access operations such that it is 
not guaranteed to be executed as a single atomic transaction 
with respect to the plurality of processors. 

15. An article of manufacture comprising a computer-read 
able storage medium having program instructions stored 
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thereon that, if executed by a processor in a plurality of 
processors that is coupled to a shared memory, cause the 
processor to perform a method comprising: 

initiating execution of a section of code according to a first 
transactional mode of the processor, wherein the first 
transactional mode is associated with a first set of recov 
ery actions, wherein the section of code includes a plu 
rality of protected memory access operations to the 
shared memory, and wherein execution of the section of 
code includes executing the plurality of protected 
memory access operations as a single atomic transaction 
with respect to the plurality of processors; and 

while executing the section of code, initiating execution of 
a Subsection of the section of code according to a second 
transactional mode of the processor, wherein the second 
transactional mode is associated with a second set of 
recovery actions that is not identical to the first set of 
recovery actions; 

wherein the processor is configured to perform one or more 
of the second set of recovery actions in response to 
detecting an abort condition during execution of the 
Subsection of code; and 

wherein the processor is configured to perform one or more 
of the first set of recovery actions in response to detect 
ing an abort condition during execution of a portion of 
the section of code for which a transactional mode other 
than the first transactional mode is not specified. 

16. The article of manufacture of claim 15, wherein the first 
set of recovery actions comprise: 

discarding any modifications to the shared memory made 
by one or more of the plurality of protected memory 
access operations; and 

modifying values held in one or more registers to return 
program control flow to the start of the section of code. 

17. The article of manufacture of claim 16, wherein the 
second set of recovery actions comprise: 

discarding any modifications to the shared memory made 
by one or more of the plurality of protected memory 
access operations of the Subsection of code; and 

continuing execution of the Subsection of code without 
executing any store operations of the plurality of pro 
tected memory access operations that are within the 
Subsection of code. 

18. The article of manufacture of claim 15, wherein said 
initiating execution of the section of code comprises execut 
ing a first instruction corresponding to the first transactional 
mode, and wherein said initiating execution of the Subsection 
of code comprises executing a second instruction correspond 
ing to the second transactional mode, wherein the second 
instruction is different from the first instruction. 

19. The article of manufacture of claim 15, wherein said 
executing the first instruction comprises recording a check 
point at the start of the section of code. 

20. The article of manufacture of claim 19, wherein the 
abort condition is caused by another one of the plurality of 
processors. 


