US 20200052957A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0052957 A1

Tubillara et al. 43) Pub. Date: Feb. 13, 2020
(54) CENTRALIZED RATE LIMITERS FOR (52) US. CL
SERVICES IN CLOUD BASED COMPUTING CPC ......cc..... HO4L 41/08 (2013.01); HO4L 67/10
ENVIRONMENTS (2013.01)
(71) Applicant: International Business Machines (57) ABSTRACT

(72)

@
(22)

(1)

Corporation, Armonk, NY (US)

Inventors: Elvin D. Tubillara, Austin, TX (US);

Edward Shvartsman, Austin, TX (US);

Bradley O. Simpson, Pflugerville, TX
(US); Shawn P. Mullen, Buda, TX
(US)

Appl. No.: 16/056,621
Filed: Aug. 7, 2018

Publication Classification

Int. CL.
HO4L 12/24 (2006.01)
HO4L 29/08 (2006.01)

Coordination of rate limiting calculations and updates, for
multiple interrelated services, at a single computer at a
single logical location on a computer network, instead of
coordinating rate limit calculations by direct data commu-
nications among and between the various machines hosting
the interrelated services that are subject to rate limiting. In
some of these embodiments, advantages to doing this may
include: (i) reducing the number and/or bandwidth con-
sumption of data communications needed to perform rate
limiting calculations and determinations; and/or (ii) setting
appropriate rate limits for only the “highest level” services
(that is, the services that are initially called by users, as
opposed to the services that the highest level service call
(directly or indirectly)).

250

RECEIVE SOA SERVICES N
DEPENDENCIES AND CAPACITIES [~ 5295

l

RECEIVE IDENTIFICATION | S260
OF TOP LEVEL SERVICES

l

DETERMINE RATE LIMIT VALUES
FOR TOP LEVEL SERVICES ~— 5265

l

OPERATE SOA SYSTEM BASED ON RATE

LIMIT VALUES FOR TOP LEVEL SERVICES [~ 5270




Patent Application Publication  Feb. 13,2020 Sheet 1 of 4 US 2020/0052957 A1

NETWORKED COMPUTERS SYSTEM 100

SERVICE D SERVICEC| | SERVICEB| | SERVICE A
5§ 107 s 106 | | S5 105 | | S5 104
SERVICE E
55 108
NETWORK
114
SERVICEF ~
S-S 109
SERVICE G SERVICE H B
5§ 110 5 113 5 112
CENTRALIZED RATE LIMITING SUB-SYSTEM 102
CENTRALIZED RATE LIMITING COMPUTER 200
COMMUNICATION TENORY PERSISTENT STORAGE
UNIT e 210
202 £5
: RAM 230 jat> PROGRAM
PROCESSOR SET  |=- CACHE - 300
204 232
IO INTERFACE SET -

206
[ [
| A
DISPLAY EXTERNAL
DEVICES
2z 214

FIG. 1



Patent Application Publication  Feb. 13,2020 Sheet 2 of 4 US 2020/0052957 A1

250

RECEIVE SOA SERVICES
DEPENDENCIES AND CAPACITIES

~— 5255

l

RECEIVE IDENTIFICATION

l

DETERMINE RATE LIMIT VALUES
FOR TOP LEVEL SERVICES

OF TOP LEVEL SERVICES [~ S260

~ S265

l

OPERATE SOA SYSTEM BASED ON RATE | S270
LIMIT VALUES FOR TOP LEVEL SERVICES

FIG. 2

PROGRAM 300

302

SOA DEPENDENCY DETERMINE TOP LEVEL
DATA STORE SERVICE RATE LIMIT
VALUES MOD
320

SOA SERVICES
NODES

SOA

304 RATE LIMITS OUTPUT MOD
330

DEPENDENCIES
INFO
306

TOP LEVEL
SERVICES

308

FIG. 3



Patent Application Publication  Feb. 13,2020 Sheet 3 of 4 US 2020/0052957 A1

400

DIRECT
SERVICE
REQUESTS

'\

SECONDARY
SERVICE
REQUESTS

FIG. 4



Patent Application Publication  Feb. 13,2020 Sheet 4 of 4 US 2020/0052957 A1

500
@)
(=) CLIENT CONSOLE 502 ‘ w 5 510
ACTOR
ROOT
504
' CLIENT
! ' SERVICES | COGNITIVE Al
GHOST SECURITY 512 SERVICES
506 508 514
POLICY
ENFORCEMENT
POINT
516
' CLOUD
MANAGEMENT
POLICY
INTERNAL ADMIN POINT | PLATFORM
ADOPTIVE 520 518
SERVICES L 2
530 Y
POLICY
DECISION POINT |
EXTERNAL 522
ADOPTIVE
SERVICES DB CACHE
532 524
XACML ENGINE
526
GHOST GLOBAL
SEARCH AND TAGGING
528

CLOUD DB
CLOUD DB DALLAS

LONDON

536 534




US 2020/0052957 Al

CENTRALIZED RATE LIMITERS FOR
SERVICES IN CLOUD BASED COMPUTING
ENVIRONMENTS

BACKGROUND

[0001] The present invention relates generally to the field
of cloud based service environments, and more particularly
to providing services in a service oriented architecture
deployed in a cloud based computing environment.

[0002] A service oriented architecture (SOA) is a style of
executing a computer program, or software design, where
services are provided to the other components by application
components through a communication protocol over a net-
work (often the internet or a cloud network). Typical basic
principles of SOA are independent of vendors, products
and/or technologies. A service is a discrete unit of function-
ality that can be accessed remotely and acted upon and
updated independently, such as retrieving a utility account
statement online. A typical service has four properties: (i) it
logically represents a business activity with a specified
outcome; (ii) it is self-contained; (iii) it is a black box for its
consumers; and (iv) it may consist of other underlying
services. Different services can be used together to provide
the functionality of a large computer program, or software
application. SOA is typically less about how to modularize
an application, and more about how to compose an appli-
cation by integrating distributed, separately-maintained and
deployed software components. SOA is typically enabled by
technologies and standards that make it easier for compo-
nents to communicate and cooperate over a network, espe-
cially an IP (internet protocol) network.

[0003] One implementation of service oriented architec-
ture typical in the current state of the art is Kubernetes
(commonly stylized as K8s). Kubernetes is an open-source
container-orchestration system for automating deployment,
scaling and management of containerized applications,
including services as described above. An application or
service that has been containerized is packaged with a
virtualized environment for running the application, instead
of requiring a virtual machine on a host computer for the
containerized application to run.

[0004] Identity management, also known as identity and
access management (IAM) is, in the field of computer
security, a security and/or business discipline for “enabling
the right individuals to access the right resources at the right
times and for the right reasons.” IAM addresses the need to
ensure appropriate access to resources across increasingly
heterogeneous technology environments and to meet
increasingly rigorous compliance requirements set forth by
law in diverse geographical settings. The terms “identity
management” (IdM) and “identity and access management”
are often used interchangeably in the area of Identity access
management. Identity-management systems, products,
applications and platforms manage identifying and ancillary
data about entities that typically include individuals, com-
puter-related hardware, and software applications. IAM cov-
ers issues such as how users gain an identity, the protection
of that identity, what resources that identity is allowed to
access, and the technologies supporting that protection (e.g.,
network protocols, digital certificates, passwords, etc.).
[0005] One typical service known in the art for imple-
menting IAM is XACML, which stands for “eXtensible
Access Control Markup Language” and is a standard that
defines a declarative fine-grained, attribute-based access

Feb. 13, 2020

control policy language, an architecture, and a processing
model describing how to evaluate access requests according
to a set of rules defined within policies. XACML is primarily
an Attribute-Based Access Control system (ABAC), where
attributes (bits of data and/or metadata) associated with a
user or action or resource are inputs into the decision making
process of whether the given user may be granted access to
a given resource in a particular way. Role-based access
control (RBAC) can also be implemented in XACML as a
specialization of ABAC. One recognized advantage of the
XACML model is that it supports and encourages separating
the access decision from the point of use. When access
decisions are included within the client applications (or
alternatively, based on local machine user IDs and Access
Control Lists (ACLs)), it is very difficult to update the
decision criteria when the governing policy changes. When
the client is decoupled from the access decision, such as in
XACML, it is possible to update authorization policies on
the fly and affect all clients immediately.

[0006] Individual services hosted within datacenters typi-
cally use rate-limiting to control the share of resources given
to different tenants and applications according to their
service level agreement (SLA). Rate-limiting typically lim-
its the amount of requests for computing services that user(s)
can make within a unit of time, from a geographical area
and/or from a logical location(s) on a computer network. A
variety of rate-limiting techniques are applied in typical
datacenters, using a combination of software and hardware.
Three types of rate-limiting are: (i) user rate limiting (that is,
limiting a number of requests a user is making to their API
key or IP—typically, if the user exceeds the rate limit, then
any further requests will be denied until they reach out to the
developer to increase the limit or wait until the rate limit
timeframe resets; (i) geographic rate limiting (sets rate
limits for particular regions and particular time periods); and
(iii) server rate limiting. Virtualized datacenters in some
implementations also apply rate-limiting at the hypervisor
layer if using virtual machines. Two important performance
metrics of rate-limiters in datacenters are resource footprint
(memory and CPU usage). These resource footprint param-
eter values impact scalability and precision.

[0007] Some conventional SOA service providing systems
use “distributed rate limiting.” In these distributed rate
limiting systems, each computer of a set of host computers
for one or more services implements a distributed rate
limiter protocol that shares traffic information for a given
host computer to every other host computer that is part of the
set, to build a consensus of traffic information and rate limits
amongst a set of computers hosting the various SOA ser-
vices. This type of communication between host computers
is sometimes described as “gossip protocol.” If there are 8
host computers in this type of implementation, each host
computer sends out 7 communications, with each commu-
nication including their rate limit information, for a total of
56 communications being sent and received (and processed)
by each host computer on each round of rate limiting related
communications. If there are 9 host computers, the number
of communications increases to 72. If the number of host
computers increases to 18, the number of communications
increases to 306.

SUMMARY

[0008] According to one aspect of the present invention, a
method, computer program product and/or computer system



US 2020/0052957 Al

perform the following operations (not necessarily in the
following order: (i) receiving a service oriented architecture
(SOA) services interdependency data set that includes infor-
mation indicative of: (a) identity of a plurality of interrelated
SOA services, (b) dependencies among and between the
SOA services of the plurality of interrelated SOA services;
(c) identification of top level SOA services of the plurality
of interrelated SOA services that may be directly called by
clients, and (d) capacity information for each SOA service of
the plurality of interrelated SOA services; (ii) for each given
top level SOA service of the plurality of SOA services and
only for the top level SOA services of the plurality of SOA
services, determining a set of rate limit value(s) for the given
top level SOA service based upon: (a) capacity information
for the given top level SOA service, (b) capacity information
for any SOA services of the plurality of interrelated services
upon which the given top level service directly depends, and
(c) capacity information for any SOA services of the plu-
rality of interrelated services upon which the given top level
service indirectly depends; and (iii) operating the plurality of
interrelated services by servicing user requests to the top
level SOA services in a manner that: (a) is governed by the
set of rate limit value(s) for the top level SOA services, and
(b) does not apply rate limiting at the SOA services of the
plurality of SOA services that are not top level SOA ser-
vices.

[0009] According to a further aspect of the present inven-
tion, a method and/or computer program product is used
with a computer system including a centralized rate limiting
machine and a plurality of host machines that respectively
host a plurality of interrelated SOA services. The method,
computer program product and/or computer system per-
forms the following operations (not necessarily in the fol-
lowing order): (i) receiving, by the centralized rate limiting
machine, over a computer network and from the plurality of
host machines, a service oriented architecture (SOA) ser-
vices interdependency data set that includes information
indicative of: (a) identity of the plurality of interrelated SOA
services, (b) dependencies among and between the SOA
services of the plurality of interrelated SOA services; and (¢)
capacity information for each SOA service of the plurality of
interrelated SOA services; (ii) determining, by the central-
ized rate limiting machine, a set of rate limit value(s)
respectively for at least some of the SOA services of the
plurality of interrelated SOA services based upon the service
oriented architecture (SOA) services interdependency data
set; (iii) sending, by the centralized rate limiting machine,
over the computer network and to at least some of the
plurality of host machines, the set of rate limiting value(s)
corresponding to the SOA service hosted on the host
machine; and (iv) operating the plurality of interrelated
services by servicing user requests to the top level SOA
services in a manner that is governed by the sets of rate limit
value(s).

[0010] According to a further aspect of the present inven-
tion, a method and/or computer program product is used
with a computer system including a centralized rate limiting
machine and a plurality of host machines that respectively
host a plurality of interrelated SOA services. The method,
computer program product and/or computer system per-
forms the following operations (not necessarily in the fol-
lowing order): (i) receiving, by the centralized rate limiting
machine, over a computer network and from the plurality of
host machines, a service oriented architecture (SOA) ser-

Feb. 13, 2020

vices interdependency data set that includes information
indicative of: (a) identity of a plurality of interrelated SOA
services, (b) dependencies among and between the SOA
services of the plurality of interrelated SOA services; (c)
identification of top level SOA services of the plurality of
interrelated SOA services that may be directly called by
clients, and (d) capacity information for each SOA service of
the plurality of interrelated SOA services; (ii) for each given
top level SOA service of the plurality of SOA services and
only for the top level SOA services of the plurality of SOA
services, determining, by the centralized rate limiting
machine, a set of rate limit value(s) for the given top level
SOA service based upon: (a) capacity information for the
given top level SOA service, (b) capacity information for
any SOA services of the plurality of interrelated services
upon which the given top level service directly depends, and
(c) capacity information for any SOA services of the plu-
rality of interrelated services upon which the given top level
service indirectly depends; (iii) sending, by the centralized
rate limiting machine, over the computer network and each
given host machine that hosts a given top level SOA service,
the set of rate limiting value(s) corresponding to the given
top level SOA service; and (iv) operating the plurality of
interrelated services by servicing user requests to the top
level SOA services in a manner that: (a) is governed by the
set of rate limit value(s) for the top level SOA services, and
(b) does not apply rate limiting at the SOA services of the
plurality of SOA services that are not top level SOA ser-
vices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a block diagram view of a first embodi-
ment of a system according to the present invention;
[0012] FIG. 2 is a flowchart showing a first embodiment
method performed, at least in part, by the first embodiment
system,

[0013] FIG. 3 is a block diagram showing a machine logic
(for example, software) portion of the first embodiment
system,

[0014] FIG. 4 is a dependency graph for SOA services
used by the first embodiment system; and

[0015] FIG. 5 is a block diagram view of a second
embodiment of a system according to the present invention.

DETAILED DESCRIPTION

[0016] Some embodiments of the present invention coor-
dinate rate limiting calculations and updates, for multiple
interrelated services, at a single computer at a single logical
location on a computer network, instead of coordinating rate
limit calculations by direct data communications among and
between the various machines hosting the interrelated ser-
vices that are subject to rate limiting. In some of these
embodiments, advantages to doing this may include: (i)
reducing the number and/or bandwidth consumption of data
communications needed to perform rate limiting calcula-
tions and determinations; and/or (ii) setting appropriate rate
limits for only the “highest level” services (that is, the
services that are initially called by users, as opposed to the
services that the highest level service call (directly or
indirectly)). This Detailed Description section is divided
into the following sub-sections: (i) The Hardware and Soft-
ware Environment; (ii) Example Embodiment; (iii) Further
Comments and/or Embodiments; and (iv) Definitions.



US 2020/0052957 Al

1. The Hardware and Software Environment

[0017] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0018] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0019] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0020] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of

Feb. 13, 2020

network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0021] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0022] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0023] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0024] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the



US 2020/0052957 Al

specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0025] An embodiment of a possible hardware and soft-
ware environment for software and/or methods according to
the present invention will now be described in detail with
reference to the Figures. FI1G. 1 is a functional block diagram
illustrating various portions of networked computers system
100, including: centralized rate limiter sub-system 102 (or,
more simply, sub-system 102); service A hosting sub-system
104 (which is in the form of a server computer); service B
hosting sub-system 105; service C hosting sub-system 106;
service D hosting sub-system 107; service E hosting sub-
system 108; service F hosting sub-system 109; service G
hosting sub-system 110; user A sub-system 111; user B
sub-system 112; service H hosting sub-system 113; and;
communication network 114. Sub-system 102 includes: cen-
tralized rate limiting computer 200; display device 212; and
external device set 214. Centralized rate limiting computer
includes: communication unit 202; processor set 204; input/
output (I/O) interface set 206; memory device 208; persis-
tent storage device 210; random access memory (RAM)
devices 230; cache memory device 232; and program 300.
[0026] Sub-system 102 is, in many respects, representa-
tive of the various computer sub-system(s) in the present
invention. Accordingly, several portions of sub-system 102
will now be discussed in the following paragraphs.

[0027] Sub-system 102 may be a laptop computer, tablet
computer, nethook computer, personal computer (PC), a
desktop computer, a personal digital assistant (PDA), a
smart phone, or any programmable electronic device
capable of communicating with the client sub-systems via
network 114. Program 300 is a collection of machine read-
able instructions and/or data that is used to create, manage
and control certain software functions that will be discussed
in detail, below, in the Example Embodiment sub-section of
this Detailed Description section.

[0028] Sub-system 102 is capable of communicating with
other computer sub-systems via network 114. Network 114
can be, for example, a local area network (LLAN), a wide area
network (WAN) such as the Internet, or a combination of the
two, and can include wired, wireless, or fiber optic connec-
tions. In general, network 114 can be any combination of
connections and protocols that will support communications
between server and client sub-systems.

[0029] Sub-system 102 is shown as a block diagram with
many double arrows. These double arrows (no separate
reference numerals) represent a communications fabric,
which provides communications between various compo-
nents of sub-system 102. This communications fabric can be
implemented with any architecture designed for passing data
and/or control information between processors (such as
microprocessors, communications and network processors,
etc.), system memory, peripheral devices, and any other
hardware components within a system. For example, the
communications fabric can be implemented, at least in part,
with one or more buses.

[0030] Memory 208 and persistent storage 210 are com-
puter-readable storage media. In general, memory 208 can
include any suitable volatile or non-volatile computer-read-
able storage media. It is further noted that, now and/or in the
near future: (i) external device(s) 214 may be able to supply,
some or all, memory for sub-system 102; and/or (ii) devices
external to sub-system 102 may be able to provide memory
for sub-system 102.

Feb. 13, 2020

[0031] Program 300 is stored in persistent storage 210 for
access and/or execution by one or more of the respective
computer processors 204, usually through one or more
memories of memory 208. Persistent storage 210: (i) is at
least more persistent than a signal in transit; (ii) stores the
program (including its soft logic and/or data), on a tangible
medium (such as magnetic or optical domains); and (iii) is
substantially less persistent than permanent storage. Alter-
natively, data storage may be more persistent and/or perma-
nent than the type of storage provided by persistent storage
210.

[0032] Program 300 may include both machine readable
and performable instructions and/or substantive data (that is,
the type of data stored in a database). In this particular
embodiment, persistent storage 210 includes a magnetic
hard disk drive. To name some possible variations, persistent
storage 210 may include a solid state hard drive, a semi-
conductor storage device, read-only memory (ROM), eras-
able programmable read-only memory (EPROM), flash
memory, or any other computer-readable storage media that
is capable of storing program instructions or digital infor-
mation.

[0033] The media used by persistent storage 210 may also
be removable. For example, a removable hard drive may be
used for persistent storage 210. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are inserted into a drive for transfer onto another
computer-readable storage medium that is also part of per-
sistent storage 210.

[0034] Communications unit 202, in these examples, pro-
vides for communications with other data processing sys-
tems or devices external to sub-system 102. In these
examples, communications unit 202 includes one or more
network interface cards. Communications unit 202 may
provide communications through the use of either or both
physical and wireless communications links. Any software
modules discussed herein may be downloaded to a persistent
storage device (such as persistent storage device 210)
through a communications unit (such as communications
unit 202).

[0035] 1/O interface set 206 allows for input and output of
data with other devices that may be connected locally in data
communication with server computer 200. For example, [/O
interface set 206 provides a connection to external device set
214. External device set 214 will typically include devices
such as a keyboard, keypad, a touch screen, and/or some
other suitable input device. External device set 214 can also
include portable computer-readable storage media such as,
for example, thumb drives, portable optical or magnetic
disks, and memory cards. Software and data used to practice
embodiments of the present invention, for example, program
300, can be stored on such portable computer-readable
storage media. In these embodiments the relevant software
may (or may not) be loaded, in whole or in part, onto
persistent storage device 210 via I/O interface set 206. I/O
interface set 206 also connects in data communication with
display device 212.

[0036] Display device 212 provides a mechanism to dis-
play data to a user and may be, for example, a computer
monitor or a smart phone display screen.

[0037] The programs described herein are identified based
upon the application for which they are implemented in a
specific embodiment of the invention. However, it should be
appreciated that any particular program nomenclature herein



US 2020/0052957 Al

is used merely for convenience, and thus the invention
should not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

[0038] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

1I. Example Embodiment

[0039] FIG. 2 shows flowchart 250 depicting a method
according to the present invention. FIG. 3 shows program
300 for performing at least some of the method operations
of flowchart 250. This method and associated software will
now be discussed, over the course of the following para-
graphs, with extensive reference to FIG. 2 (for the method
operation blocks) and FIG. 3 (for the software blocks).
[0040] Processing begins at operation 5255, where data
about the SOA services to be used in the operation of the
SOA system (see FIG. 1) is stored in SOA interdependency
data store 302. More specifically, this data store includes: (i)
identification of the service nodes (stored at SOA services
node 304 of data store 302); (ii) respective capacities of the
service nodes (also stored at SOA services node 304 of data
store 302); and (iii) SOA dependencies information (stored
at SOA dependencies info 306 of data store 302). These
various types of information will now be discussed in the
following paragraphs with reference to dependency graph
400 of FIG. 4.

[0041] IDENTIFICATION OF SERVICE NODES: In this
simplified example SOA system, the SOA services are: (i)
service A (hosted by service A sub-system 104, see FIG. 1);
(ii) service B (hosted by service B sub-system 105, see FIG.
1); (iii) service C (hosted by service C sub-system 106, see
FIG. 1); (iv) service D (hosted by service D sub-system 107,
see FIG. 1); (v) service E (hosted by service E sub-system
108, see FIG. 1); (vi) service F (hosted by service F
sub-system 109, see FIG. 1); (vii) service G (hosted by
service G sub-system 110, see FIG. 1); and (viii) service H
(hosted by service H sub-system 113, see FIG. 1). Each of
these services is shown as a node in dependency graph 400.

[0042] CAPACITIES: Each of the services has an associ-
ated capacity. That is to say, each service has some number
of requests per unit time that it can reliably handle. These
capacities will be used to calculate the rate limits for the top
level services in the system, as will be discussed further,
below. In this simplified example, the capacity for each
service A to H is 6 requests per second.

[0043] DEPENDENCIES: Dependency graph 400 show
dependencies by arrows drawn from one node to another to
shown that the source node of the arrow is dependent upon
the target node of the arrow. In operation, this means that
when the source node service is called, then it calls the target
node(s) upon which it is dependent. As is understood in the
art, a dependent node may call node(s) upon which it is, in
turn, dependent.

Feb. 13, 2020

[0044] DIRECT SERVICE REQUESTS: Dependency
graph 400 shows direct service requests as arrows stemming
down from solid black circles near the top of the figure,
representing incoming requests for services from sources
external to the SOA represented in dependency graph 400.
These requests might be initiated directly by a user through
a computer device or might be called by a different SOA
environment.

[0045] SECONDARY SERVICE REQUESTS: Depen-
dency graph 400 shows secondary service requests as arrows
drawn from one node to another and is also known above as
DEPENDENCIES.

[0046] Processing proceeds to operation 5260, where the
identification of “top level services” is received at top level
services 308 of SOA dependency store 302. Top level
services are those services which can receive requests
directly from users. Top level services do not include ser-
vices that only receive requests from other services. Turning
attention to FIG. 4, dependency graph 400 shows that the top
level services in this simple example are service A, service
B and service C.

[0047] Processing proceeds to operation 5265, where
determine top level service rate limit value module (“mod™)
320 determines rate limit values only for the top level
services (that is services A, B and C in this simple example).
There are various ways of calculating the top level service
rate limit values, but a simple algorithm for making such
calculations will now be discussed in the following para-
graphs.

[0048] First, it is determined how many times each service
will be called if each top level service gets one request for
service—that is, it is assumed that services A, B and C each
receive one request for service (from users A and B (see FIG.
1 at user A sub-system 111 and user B sub-system 112).
Alternatively, it could be assumed that different top level
services get different numbers of service requests from users
to effectively give different priority levels to the various top
level services. By consulting dependency graph 400 it can be
seen that, under this assumption of one user request to each
top level service, the number of calls to each of the services
A to H will be as follows:

[0049] SERVICE A: gets two (2) calls—one from the user
request directly to service A and one based on the user
request made to service B.

[0050] SERVICE B: gets one (1) call—that is, the user
request directly to service B.

[0051] SERVICE C: gets one (1) call—that is, the user
request directly to service C.

[0052] SERVICE D: gets two (2) calls—one based on the
user request to service A and one based on the user request
made to service B.

[0053] SERVICE E: gets two (2) calls—one based on the
user request to service B and one based on the user request
made to service C.

[0054] SERVICE F: gets three (3) calls—one based on the
user request to service A, one based on the user request to

service B and one based on the user request made to service
C.

[0055] SERVICE G: gets two (2) calls—one based on the
user request to service A and one based on the user request
made to service B.



US 2020/0052957 Al

[0056] SERVICE H: gets three (3) calls—one based on the
user request to service A, one based on the user request to
service B and one based on the user request made to service
C.

[0057] Calculations now proceed to determination of the
rate limiting values for top level services A, B and C.
Because services F and H each receive three service calls
when one user request is sent to each of services A, B and
C, this means that each of services A, B and C can handle
two (2) requests per second. To explain further, if services A,
B and C get two (2) requests per second then services F and
H will each receive six (6) service calls per second, which
is their maximum capacity. So, two (2) requests per second
will be set as the rate limit values for each of the top level
services in this simple example. As will be understood by
those of skill in the art, calculations can become much more
complicated when the dependency graph has more nodes
and a more complex web of dependencies. This simple
example, is only intended to illustrate the concept of how
capacities and dependencies are used as a basis for calcu-
lating top level service rate limit values.

[0058] Processing proceeds to operation 5270, where the
SOA system is operated using the rate limit values for the
top level services. The services that are not top level service
do not need to be independently rate limited because their
respective capacity limits (specifically, the capacity limits of
services F and G) have already been accounted for in
determining the rate limit values for the top level services.
In this example, rate limits output mod 330 outputs the rate
limit values to the top level services to service A sub-system
104, service B sub-system 105 and service C 106 where they
are effected locally (according to any rate limiting tech-
niques now known or to be developed in the future).
Alternatively, the rate limiting could be effected at another
computer (such as centralized rate limiting computer 200) as
long as this doesn’t slow operations down too much. It is
noted that setting the rate limits at a centralized rate limiting
sub-system reduces the number of rate limiting communi-
cations that must be made among and between the various
service hosting sub-systems.

II1. Further Comments and/or Embodiments

[0059] Some embodiments of the present invention rec-
ognize the following facts, potential problems and/or poten-
tial areas for improvement with respect to the current state
of the art: (i) current state of the art for Rate Limiters (RLs)
does not account for the inter-service dependencies of cloud
computing; (ii) the most advanced features of RLs (listed in
this section) have a major drawback: the conditions, reg/ex,
discovery, learning, all add more RL rules to the decision
point on the node or service they are protecting; (iii) this
adds to the processing and response time of the service, i.e.
complex RL features slow down the service they are trying
to protect; (iv) the most advanced features and current state
of the art of Rate Limiters act/protect from a single node
perspective or at best allow for a common policy to be
applied across nodes of similar function; (v) some of the
current state of the art RLs include: conditional modes,
discovery/learning modes, labeling, blacklist, expiring
labels, reg/ex, and control plan policing; (vi) Rate Limiters
(RL) prevent denial of service attacks and can prioritize
service, usually web-service, requests and response; (vii)
rate limiters solutions have been around for many years and
include learning capabilities; (viii) these learning capabili-

Feb. 13, 2020

ties still consist of a single service point of view; (ix) in
today’s cloud configurations it is common for that initial
service to call multiple backend service; (x) several internet
edge services may call the same backend services; (xi)
commonly the initial internet facing edge service may rely
upon a chain of backend service calls to satisfy a single
request; and/or (xii) it is also common for each of the service
to deploy a rate limiter which protects each individual
service in the chain from being overrun.

[0060] Some embodiments of the present invention may
include one, or more, of the following features, character-
istics and/or advantages: (i) use a cloud monitoring system
to provide insight into the multi-service processing flow to
coordinate and adjust the rate limiters within the individual
services; (ii) this provides a balanced service to service
processing flow and reduces the number of rules within the
RL which increases the RL runtime speeds; (iii) using a
cloud service monitoring tool to also monitor the service’s
RLs settings and triggers to dynamically and “cognitively”
load balance the frontend and service to service call flow to
increase overall performance and reduce failover thrashing;
(iv) the algorithms vary but all with the intended goal of
reducing internal service’s RLs from returning hypertext
transfer protocol (HTTP) error codes (429, 503 typically);
(v) it is not a load balancer, instead it pushes the RL
enforcement to the edge nodes; and/or (vi) this allows the
internal services of the cloud to work more efficiently
because they are not processing a request which is only
destined to be denied by a deep internal service RL.
[0061] An embodiment of a possible hardware and soft-
ware environment for software and/or methods according to
the present invention will now be described with reference
to FIG. 5. FIG. 5 is a functional block diagram that describes
an example cloud environment 500 including: (i) client
console 502; (ii) root 504; (iii)) GHOST 506; (iv) security
508; (v) actor 510; (vi) client services 512; (vii) cognitive Al
services 514; (viii) policy enforcement point 516; (ix) cloud
management platform 518; (x) policy admin point 520; (xi)
policy decision point 522; (xii) database (DB) cache 524;
(xiii) XACML engine 526; (xiv) GHOST global search and
tagging 528; (xv) internal adoptive services 530; (xvi)
external adoptive services 532; (xvii) cloud DB Dallas 534;
and (xviii) cloud DB London 536.

[0062] In example cloud environment 500, before any
requests can be initiated by actor 510, internal adoptive
services 530, or external adoptive services 532, cloud man-
agement platform 518 must be calibrated to accommodate
such requests. Calibration can include client console 502,
root 504, security 508, internal adoptive services 530 and
external adoptive services 532 providing identity access
management (IAM) information to policy admin point 520,
which is then propagated to cloud databases cloud DB
Dallas 534 and cloud DB London 536. GHOST 506 pro-
vides search and tagging related data to GHOST global
search and tagging block 528, which in turn provides search
and tagging related data to policy decision point 522.
[0063] In this example, actor 510 initiates a request to
access cognitive Al services 514, a cloud based service, of
client services 512. Before actor 510 can be provided access
to cognitive Al services 514, policy enforcement point 516
verifies that actor 510 has appropriate privileges to access
cognitive Al services 514. This verification process proceeds
to policy decision point 522, which queries cloud databases
cloud DB Dallas 534 and cloud DB London 536 through



US 2020/0052957 Al

XACML engine 526, using global search and tagging sup-
plied by GHOST 506 in GHOST global search and tagging
528, for identity access management related to the request of
actor 510 and stores the queried information in DB cache
524. Policy decision point 522 verifies this request and
grants actor 510 the requested access to cognitive Al ser-
vices 514 of client services 512. While policy decision point
522 provides IAM services for requests to access cognitive
Al services 514, it also provides IAM services for internal
adoptive services 530 and external adoptive services 532. In
this example, policy enforcement point 516, policy decision
point 522, XACML engine 526, and cloud DB Dallas 534
and cloud DB London 536 each individually have a rate
limit applied to them, respectively defining the upper limit
of requests that they can process for a given unit of time. In
this example, the following rate limits at the moment of the
request by actor 510 are given for the following services: (i)
policy decision point 522 has a rate limit of processing 100
requests for IAM services per second; (ii) cloud databases
cloud DB Dallas 534 and cloud DB London 536 have rate
limits of 30 requests per second; (iii) policy enforcement
point 516 has a limit of 75 requests per second; and (iv)
XACML engine 526 has a limit of 60 requests per second.

[0064] Typically, rate limits are defined dynamically by
each given service based on underlying computer hardware
and current processing conditions. If hardware for a given
service suffers a failure or receives improvements, the rate
limit would decrease or increase, respectively. If a different
client service requires a minimum amount of available
processing availability and has a higher priority, the rate
limit of that service for a given client service would expe-
rience a decrease. This dynamic determination of rate limits
costs some amount of processing availability provided to the
service, with more advanced determinations requiring addi-
tional processing availability. One embodiment of the pres-
ent invention determines which service (in this example,
cloud DB Dallas 534 and cloud DB London 536) has the
lowest rate limit within a chain of services required to
complete a request and adjusts the rate limiters of all
services in the chain to match, preventing requests from near
the beginning of the chain to begin, only for a service further
down the chain to cause a failure as a result of reaching the
service rate limiter.

[0065] Some embodiments of the present invention may
include one, or more, of the following features, character-
istics and/or advantages: (i) IAM has four geographical
(Geo) zones; (i) in each Geo zone they are two availability
zones; (iii) each availability zone consent contains several
instances of IAM services; (iv) each Geo only has a singular
cloud based database; (v) requests are spread out, load
balancing and active-active failover; (vi) like any cloud
service, there can be a single choke point; (vii) in this
example it is the cloud based database; (viii) every autho-
rization call for all services such as writes or reads to a
services that have adopted IAM, must check the access
policies in the cloud based database service; (ix) IAM
typically resolves these request in 30 ms; (x) Rate limiters
are (or in planning) placed in front of every service through-
out these call paths; (xi) there is also a rate limiter on the
cloud based database; (xii) if the cloud database rate limiters
started reading and triggering service outages above them it
would cause a fail over; (xiii) using built in service monitors,
which are typically monitoring the health of the service, to
also include data on their rate limiters and win those rate

Feb. 13, 2020

limiters are triggering; (xiv) this rate limit data goes to a
single service that uses an algorithm to make a decision to
balance the rate limiting across all of the services in the call
path to reduce incidences of service requests returning
failures; (xv) these failures include http responses 429 (too
many requests) and 503 (service outage); and/or (xvi)
include other load balancers (for example, Dyn and Kuber-
netes) into the algorithm to automate their failover triggers.
[0066] Some embodiments of the present invention may
include one, or more, of the following features, character-
istics and/or advantages: (i) using a central controlled rate
limiter across multiple services to improve efficiency and
scale as opposed to distributed rate limiting models; (ii) the
centralized system provides a global holistic view required
for global data center service distributions across multiple
Geo zones; (iii) for example, one cloud service console is
experienced as a single instance despite that it is globally
distributed across many different Geo zones including: Dal-
las (USA), Montreal (Canada), Sao Paolo (Brazil), Toronto
(Canada), Washington D.C. (USA), London (UK), Frankfurt
(Germany), Sydney (Australia) and Tokyo (Japan); (iv) the
central control model can apply Network Flow and other
modeling; (v) the central control model can make holistic
and intelligent corrective throttling policy changes; (vi) the
central control model orchestrates pushing new policies to
all of the rate limiters to adjust their parameters to rectify
issues; (vii) not all service requests have equal costs; (viii)
for example, one service request may be relatively light,
such as a ping request; (ix) this is in contrast to a request that
requires the service to allocate memory, call a database, etc;
(x) the central control model of some embodiments of the
present invention provides a technique to determine a holis-
tic view and corrective actions; (xi) rate limiters herein
relate to computer processing, storage impacts, and other
hardware limitations of computers in a cloud based service;
(xii) network bandwidth is not typically an issue that con-
cerns rate limiters in cloud based service environments,
because network traffic is mostly short, chatty, request/
response packets; (xiii) each packet is a request/response
that requires a lot of computer processing or storage
impacts; (xiv) network bandwidth or lack thereof never
comes into play from the perspective of the rate limiter;
and/or (xv) some embodiments of the present invention are
directed towards reducing instances of a cloud service from
being overrun by requests that causing the cloud service to
exhaust all of their compute/CPU or storage resources.

IV. Definitions

[0067] Present invention: should not be taken as an abso-
lute indication that the subject matter described by the term
“present invention” is covered by either the claims as they
are filed, or by the claims that may eventually issue after
patent prosecution; while the term “present invention™ is
used to help the reader to get a general feel for which
disclosures herein are believed to potentially be new, this
understanding, as indicated by use of the term “present
invention,” is tentative and provisional and subject to
change over the course of patent prosecution as relevant
information is developed and as the claims are potentially
amended.

[0068] Embodiment: see definition of “present invention”
above—similar cautions apply to the term “embodiment.”
[0069] and/or: inclusive or; for example, A, B “and/or” C
means that at least one of A or B or C is true and applicable.



US 2020/0052957 Al

[0070] Including/include/includes: unless  otherwise
explicitly noted, means “including but not necessarily lim-
ited to.”
[0071] Module/Sub-Module: any set of hardware, firm-
ware and/or software that operatively works to do some kind
of function, without regard to whether the module is: (i) in
a single local proximity; (ii) distributed over a wide area;
(iii) in a single proximity within a larger piece of software
code; (iv) located within a single piece of software code; (v)
located in a single storage device, memory or medium; (vi)
mechanically connected; (vii) electrically connected; and/or
(viii) connected in data communication.
[0072] Computer: any device with significant data pro-
cessing and/or machine readable instruction reading capa-
bilities including, but not limited to: desktop computers,
mainframe computers, laptop computers, field-program-
mable gate array (FPGA) based devices, smart phones,
personal digital assistants (PDAs), body-mounted or
inserted computers, embedded device style computers,
application-specific integrated circuit (ASIC) based devices.
What is claimed is:
1. A computer-implemented method (CIM) comprising:
receiving a service oriented architecture (SOA) services
interdependency data set that includes information
indicative of: (i) identity of a plurality of interrelated
SOA services, (ii) dependencies among and between
the SOA services of the plurality of interrelated SOA
services; (iii) identification of top level SOA services of
the plurality of interrelated SOA services that may be
directly called by clients, and (iv) capacity information
for each SOA service of the plurality of interrelated
SOA services;

for each given top level SOA service of the plurality of
SOA services and only for top level SOA services of the
plurality of SOA services, determining a set of rate
limit value(s) for the given top level SOA service based
upon: (i) capacity information for the given top level
SOA service, (ii) capacity information for any SOA
services of the plurality of interrelated services upon
which the given top level service directly depends, and
(iii) capacity information for any SOA services of the
plurality of interrelated services upon which the given
top level service indirectly depends; and

operating the plurality of interrelated services by servic-

ing user requests to the top level SOA services in a
manner that: (i) is governed by the set of rate limit
value(s) for the top level SOA services, and (ii) does
not apply rate limiting at the SOA services of the
plurality of SOA services that are not top level SOA
services.

2. The CIM of claim 1 wherein the determination of the
set of rate limit value(s) is performed by a cloud manage-
ment platform.

3. The CIM of claim 1 further comprising:

using a cloud monitoring system to provide insight into

multi-service processing flow to coordinate.

4. The CIM of claim 1 further comprising:

providing a balanced service to service processing flow.

5. The CIM of claim 1 further comprising:

reducing a number of rate limiting rules to increase rate

limiting runtime speeds.

6. The CIM of claim 1 further comprising:

using a cloud service monitoring tool to monitor rate limit

settings of services and triggers to dynamically load

Feb. 13, 2020

balance a frontend and service to service call flow to
increase overall performance and reduce failover
thrashing.
7. A computer-implemented method (CIM) for use with a
computer system including a centralized rate limiting
machine and a plurality of host machines that respectively
host a plurality of interrelated SOA services, the method
comprising:
receiving, by the centralized rate limiting machine, over a
computer network and from the plurality of host
machines, a service oriented architecture (SOA) ser-
vices interdependency data set that includes informa-
tion indicative of: (i) identity of the plurality of inter-
related SOA services, (ii) dependencies among and
between the SOA services of the plurality of interre-
lated SOA services; and (iii) capacity information for
each SOA service of the plurality of interrelated SOA
services;
determining, by the centralized rate limiting machine, a
set of rate limit value(s) respectively for at least some
of the SOA services of the plurality of interrelated SOA
services based upon the service oriented architecture
(SOA) services interdependency data set;

sending, by the centralized rate limiting machine, over the
computer network and to at least some of the plurality
of host machines, the set of rate limiting value(s)
corresponding to the SOA service hosted on the host
machine; and

operating the plurality of interrelated services by servic-

ing user requests to top level SOA services in a manner
that is governed by the set of rate limit value(s).

8. The CIM of claim 7 wherein the determination of the
set of rate limit value(s) is performed by a cloud manage-
ment platform.

9. The CIM of claim 7 further comprising:

using a cloud monitoring system to provide insight into

multi-service processing flow to coordinate.

10. The CIM of claim 7 further comprising:

providing a balanced service to service processing flow.

11. The CIM of claim 7 further comprising:

reducing a number of rate limiting rules to increase rate

limiting runtime speeds.

12. The CIM of claim 7 further comprising:

using a cloud service monitoring tool to monitor rate limit
settings of services and triggers to dynamically load
balance a frontend and service to service call flow to
increase overall performance and reduce failover
thrashing.
13. A computer-implemented method (CIM) for use with
a computer system including a centralized rate limiting
machine and a plurality of host machines that respectively
host a plurality of interrelated SOA services, the method
comprising:
receiving, by the centralized rate limiting machine, over a
computer network and from the plurality of host
machines, a service oriented architecture (SOA) ser-
vices interdependency data set that includes informa-
tion indicative of: (i) identity of a plurality of interre-
lated SOA services, (ii) dependencies among and
between the SOA services of the plurality of interre-
lated SOA services; (iii) identification of top level SOA
services of the plurality of interrelated SOA services



US 2020/0052957 Al

that may be directly called by clients, and (iv) capacity
information for each SOA service of the plurality of
interrelated SOA services;

for each given top level SOA service of the plurality of
SOA services and only for top level SOA services of the
plurality of SOA services, determining, by the central-
ized rate limiting machine, a set of rate limit value(s)
for the given top level SOA service based upon: (i)
capacity information for the given top level SOA
service, (ii) capacity information for any SOA services
of the plurality of interrelated services upon which the
given top level service directly depends, and (iii) capac-
ity information for any SOA services of the plurality of
interrelated services upon which the given top level
service indirectly depends;

sending, by the centralized rate limiting machine, over the
computer network and each given host machine that
hosts a given top level SOA service, the set of rate
limiting value(s) corresponding to the given top level
SOA service; and

operating the plurality of interrelated services by servic-
ing user requests to the top level SOA services in a
manner that: (i) is governed by the set of rate limit

Feb. 13, 2020

value(s) for the top level SOA services, and (ii) does
not apply rate limiting at the SOA services of the
plurality of SOA services that are not top level SOA
services.

14. The CIM of claim 13 further comprising:

using a cloud monitoring system to provide insight into
multi-service processing flow to coordinate.

15. The CIM of claim 13 further comprising:

providing a balanced service to service processing flow.

16. The CIM of claim 13 further comprising:

reducing a number of rate limiting rules to increase rate
limiting runtime speeds.

17. The CIM of claim 13 further comprising:

using a cloud service monitoring tool to monitor rate limit
settings of services and triggers to dynamically load
balance a frontend and service to service call flow to
increase overall performance and reduce failover
thrashing.

18. The CIM of claim 13 wherein the determination of the

set of rate limit value(s) is performed by a cloud manage-
ment platform.



