Office de la Propriete Canadian CA 2422417 A1 2004/06/18

Intellectuelle Intellectual Property
du Canada Office (21) 2 422 41 7
v organisime An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depdot/Filing Date: 2003/03/17 (51) CLInt.//Int.CI." GOBF 13/14, GO6F 3/00, HO4L 29/10

(41) Mise a la disp. pub./Open to Public Insp.: 2004/06/18 (71) Demandeur/Applicant:

(30) Priorité/Priority: 2002/12/18 (10/323,504) US MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
OSTERTAG, PETER FRANCIS, US;
FINOCCHIO, MARK JAMES, US:
WINSER, MICHAEL EDWARD DULAC, US;
CARTER, BENJAMIN FRANKLIN WANG JEN-SHONG,
UsS;
KRAMER, NICHOLAS, US;
BENT, SAMUEL WATKINS, US;
GUPTA, NAMITA, US

(74) Agent: SMART & BIGGAR

(54) Titre : REPRESENTATION D'ELEMENTS DINTERFACE UTILISATEUR AVEC VUE SIMPLIFIEE
(54) Title: USER INTERFACE ELEMENT REPRESENTATION WITH SIMPLIFIED VIEW

100

110

PRINCIPAL NODE

(57) Abrége/Abstract:

A composite user interface element can be assembled from plural sub-elements. A simplified view of the representation of the
user interface element can be provided wherein the composited user interface element appears to be a single element. VWhen
defined, various nodes for representing the user interface can be designated as selectively exposable. Such selectively
exposable nodes can be ignored when performing operations via the simplified view. Accordingly, programmers can write code
that need not take the complexity of the composite user interface element into account. Property determination can be done In
light of the selectively exposable nodes. A simplified view can support nested user interface elements having respective
selectively exposable nodes.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

10

15

CA 02422417 2003-03-17

USER INTERFACE ELEMENT REPRESENTATION
WITH SIMPLIFIED VIEW

ABSTRACT

A composite user interface element can be assembled from plural sub-
elements. A simplified view of the representation of the user interface element can
be provided wherein the composited user interface element appears to be a single
element. When defined, various nodes for representing the user interface can be
designated as selectively exposable. Such selectively exposable nodes can be
ignored when performing operations via the simplified view. Accordingly,
programmers can write code that need not take the complexity of the composite user
interface element into account. Property determination can be done in light of the
selectively exposable nodes. A simplified view can support nested user interface

elements having respective selectively exposable nodes.

10

15

20

25

30

CA 02422417 2003-03-17

USER INTERFACE ELEMENT REPRESENTATION
WITH SIMPLIFIED VIEW

TECHNICAL FIELD
The technical field relates to internal representation of user interface

elements.

BACKGROUND OF THE INVENTION

With the proliferation of computers has come 1innovation in the area of
software user interfaces. For example, there are many tools now available by which
user interfaces can be created and manipulated by programmers. Further, user
interface elements can now be placed in documents, such as web pages or word
processing documents.

User interface elements can take many forms: edit boxes, list boxes, scroll
bars, pick lists, pushbuttons, and the like. Although the user interface element may
appear to the user as a single composite item, it may actually be represented in the
computer as a number of separate items or sub-elements that have been combined
together. Furthermore, each of these sub-elements themselves can be composited
from other sub-elements. In this manner, user interface elements can serve as
building blocks for building other, more complex, user interface elements. Such an
approach is useful because the software managing the user interface (e.g., the user
interface framework) can re-use the definitions of certain common elements when
assembling them into composite elements.

However, the complexity introduced by representing user interface elements
as composite user interface elements can be problematic. For example, new or
casual programmers may not wish to acquaint themselves with how a composite user
interface 1s assembled, or even that the composite user interface 1s composite in the
first place. Such programmers might rather avoid such complexity when dealing
with the composite user interface elements. Indeed, even an experienced
programmer may wish to avoid dealing with such complexity. Thus, there is a need

to somehow simplify representations of composite user interface elements.

10

15

20

25

30

CA 02422417 2003-03-17

-9 -

SUMMARY OF THE INVENTION

As described herein, a simplified view of a representation of one or more
user interface elements can be provided. For example, some nodes representing user
interface elements in a hierarchical representation can be selectively exposable.
Such nodes can be exposed under certain circumstances and unexposed under other
circumstances. In this exemplary way, a simplified representational view (e.g., not
exposing the selectively exposable nodes) can be provided.

In one implementation, when providing user interface services, various
operations can be performed on a simplified view of a representation of the user
interface. For example, when performing operations, selectively exposable nodes
can be unexposed. Such an approach can be useful for a programmer who does not
wish to become acquainted with the details of the representation.

For instance, plural user interface elements can be composited into a single
composite unit upon which operations can be performed. The fact that the
composite unit 1s composed of plural user interface elements can be transparent in a
simplified view of the user interface elements' representation. A program can thus
investigate and manipulate the representation without regard to the unexposed nodes.
As a result, a programmer can write simpler code or markup. And, the programmer
need not be completely familiar with the underlying structure, which may contain
more than one node for the composite unit.

A user interface service providing a simplified view can thus provide a
powerful tool by which software re-use i1s encouraged, and unsophisticated users can
interact with the user interface elements on a basic level.

Additional features and advantages will be made apparent from the following
detailed description of illustrated embodiments, which proceeds with reference to the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 1s a depiction of an exemplary representation of a user interface

element having a simplhified view.

10

15

20

25

30

CA 02422417 2003-03-17

_ 3.

FIG. 2 1s a depiction of an exemplary simplified view of the user interface
element representation of FIG. 1.

FIG. 3 1s a depiction of representation of another exemplary user interface
element having a simplified view.

FIG. 4 1s a depiction of an exemplary simplified view of the user interface
element representation of FIG. 3.

FIG. 5 1s a flowchart of an exemplary method for implementing a simplified
view of representation of a user interface element.

FIG. 6 1s a flowchart of an exemplary method for processing a definition of a
user interface element having a representation with a simplified view.

FIG. 7 i1s a flowchart of an exemplary method for invoking a definition of a
user interface element having a simplified view, such as that processed in FIG. 6.

FIG. 8 1s a flowchart of an exemplary method for performing an operation on
a hierarchical representation of a user interface element, such as that created in FIG.
7.

FIG. 9 is a screen shot of an exemplary user interface element referred to as a
combo box.

FIG. 10A is a depiction of an exemplary hierarchical representation of a
combo box, such as that shown 1n FIG. 9.

FIG. 10B 1s a depiction of an exemplary hierarchical representation of a
combo box similar to that of FIG. 10 and includes exemplary encapsulation
boundaries.

FIG. 11 is a depiction of an exemplary simplified view of a hierarchical
representation of a combo box, such as that shown n FIG. 10.

FIG. 12 1s a flowchart of an exemplary method for creating the hierarchical
representation of a user interface element having selectively exposable nodes.

FIG. 13 1s an exemplary markup definition for a combo box including
indication of at least one element as selectively exposable.

FIG. 14A 1s an exemplary programmatic definition for a combo box
including indication of at least one element as selectively exposable.

FIG 14B 1s the continuation of the exemplary markup definition of FIG. 14A.

10

15

20

25

30

CA 02422417 2003-03-17

-4 -

FIG. 15 is an exemplary markup invocation of a combo box, such as that
defined in FIG. 13 or 14A and B.

FIG. 16 is an exemplary programmatic invocation of a combo box, such as
that defined in FIG. 13 or 14A and B.

FIG. 17 is a flowchart of an exemplary method for performing an operation
using the simplified view of a user interface element representation.

FIG. 18 is a depiction of an exemplary full view of a hierarchical
representation of a combo box, such as that of FIG. 9, with approprate nodes
designated as unexposed in the simplified view, after having performed an operation
via the simplified view.

FIG. 19 is a depiction of an exemplary simplified view corresponding to the
representation of FIG. 18.

FIG. 20A 1s a depiction of an alternative representation of selectively
exposable user nodes for a user interface element.

FIG. 20B is a depiction of a simplified view corresponding to the
representation shown 1n FIG. 20A.

FIG. 21 is a screen shot of a list box user interface element that makes use of
a repeater feature.

FIG. 22 is a depiction of an exemplary hierarchical representation of a user
interface element including a repeater.

FIG. 23 is a depiction of an exemplary simplified view corresponding to FIG.
22.

FIG. 24 is a flowchart of an exemplary method for creating a hierarchical
representation of a user interface element including a repeater, such as that of FIG.
22.

FIG. 25 is an exemplary markup invocation of a repeater designated as
selectively exposable.

FIG. 26 is an exemplary programmatic invocation of a repeater designated as
selectively exposable.
FIG. 27 is another exemplary markup invocation of a repeater designated as

selectively exposable.

10

15

20

25

30

CA 02422417 2003-03-17

_ 5.

FIG. 28 1s an exemplary markup definition of a list box, such as that of

FIG. 21 without using the repeater feature.

DETAILED DESCRIPTION OF THE INVENTION

Overview

The various technologies described herein are useful for creating, presenting,
and manipulating user interface elements. User interface elements can take many
forms, such as graphical pushbuttons, edit boxes, scroll bars, picklists, drop down
menus, ACTIVEX controls, images and the like. User interface elements can appear
as part of a program (e.g., to control functionality of the program) or within a
document. A simplified view of the internal representation of such user interface
elements can make programming for user interface elements simpler. For example,
a casual or unsophisticated programmer can write a program interacting with the
simplified view without having to become familiar with certain complexities. Also,
a more sophisticated programmer may wish to be shielded from such complexities to
avoild possible programming mistakes.

If desired, the technologies described herein (e.g., the simplified view) can be
provided as part of a user interface service. Programs interacting with the service
can thus take advantage of the features as desired.

In certain embodiments, a user interface element can be defined as having a
hierarchical representation with a simplified view. Such a definition can be invoked
to create the hierarchical representation with the simplified view. Subsequently, an
operation can be performed on the hierarchical representation. Such an operation
can be performed on either a full or a simplified view of the hierarchical
representation.

If a user interface element i1s a composite user interface element comprising
plural user interface elements, a principal (e.g., parent) node can be exposed, and the
other nodes for the composite user interface element can be defined as selectively
exposable. When unexposed, the view of the representation shows the principal
node, but not the other, selectively exposable nodes. Thus, one node can be exposed

for the composite user interface element rather than a plurahity of nodes.

10

15

20

25

30

CA 02422417 2003-03-17

-6 -

The full view of a representation of a composite user interface element may
be relatively complex 1n that there may be a plurality of nodes in the hierarchical
representation representing the user interface element. A programmer wishing to
manipulate the full view is faced with becoming acquainted with the various nodes
and their hierarchical relationships. As descnbed herein, a program can instead
perform operations using the simplified view.

In the simplified view, unexposed nodes can be 1gnored when performing
operations on a node (e.g., a parent or child node 1n a hierarchy). For example, when
adding children to a node, unexposed intermediate nodes can be ignored or skipped.
Thus, a request to add children to a node 1n the simplified view of the hierarchical
representation of the user interface can actually result in an addition of the children
to an approprate child node (e.g., representing an element of the composite user
interface element) of the node. Such an approach 1s useful because adding children
in the simplified view does not require knowledge of the complexities of the plural
nodes forming the user interface element and their interrelationships.

For example, a list box may be represented as a plurality of nodes in a
hierarchical relationship, and one of the nodes may be designated as the particular
node to receive displayed choices for the list box as children nodes. However, a
programmer might not wish to become familiar with such complexities.

Using the simplified view, such an operation can easily be performed by
adding the additional user choices as children of the principal node of the user
interface element (e.g., via the simplified view). In the simplified view, the request
to add children to the principal node i1s implemented as a request to add children to
the appropriate node (e.g., a descendant of the principal node). In this way, the
program can use the simplified representation of the user interface element to
perform operations on the user interface element. As a result, the programmer need
not become acquainted with the complexities of the full view, and simpler code or
markup can be used.

One way of implementing a simplified view 1s to define various nodes in the
representation as encapsulating parents or encapsulating containers. In this way, a

particular node can be designated as a principal node (e.g., the encapsulating parent),

10

15

20

25

30

CA 02422417 2003-03-17

-7 -

and another (e.g., child) node can be designated as the particular node to receive
children (e.g., if the parent node has or will have children in the simplified view).

Another way of implementing the simplified view is to define a selectively
exposable node 1n such a way that 1ts children are considered siblings of the siblings
of the selectively exposable node 1n the simplified view.

As described herein, a number of operations other than adding children can
be performed to learn about or manipulate a user interface element representation.
In addition, operations can be performed on any node in the representation and stili
take advantage of the simphfied view.

Still further, property values can be determined (e.g., for added nodes) in
light of the selectively exposable nodes. In some cases, it may be desirable to use
property values associated with a principal node (e.g., 1gnoring the selectively
exposable nodes), the immediate (e.g., unexposed) parent, or a combination thereof.

Because some detail concerning the user interface element representation is
hidden, the principal node and the selectively exposable nodes for a composite user
interface element are sometimes said to form an "encapsulated" user interface
element.

A program or markup language interacting with the simplified view can be
shielded from some of the complexity of the underlying representation. Thus, a
composite user interface element can be assembled of a plurality of user interface
element without introducing additional complexity for the program using the
composite user interface. Such an approach can be useful in that it can encourage
user interface element developers to re-use existing user interface elements when
creating new ones without introducing unnecessary complexity when dealing with
the user interface element. Further, nesting of definition specifying selectively

exposable nodes can be supported.

Exemplary Hierarchical Representation of a
User Interface Element
One way to represent a user interface element in software 1s to store it in the
form of a hierarchical tree having various nodes. FIG. 1 shows an exemplary

hierarchical representation 100 of a user interface element. The nodes 110 and 120

10

15

20

25

30

CA 02422417 2003-03-17

-

are shown as having a parent-child relationship. For example, the node 110 1s a
parent element of the child element 120. Because the representation 100 includes
more than one node, 1t 1s sometimes said to represent a "composite" user interface
element. In the case of a composite user interface element, the node 110 may
correspond to one visual presentation, and the node 120 may correspond to another
visual presentation. However, at least one of the nodes 110 or 120 may have no
visual depiction.

One or more nodes 1n the representation 100 may be designated as selectively
exposable. In the example, the node 120 1s so designated. When presenting a
simplified view of the representation 100, the selectively exposable node 120 1s
unexposed. As a result, only the root node 110 of the nodes representing the user
interface element hierarchical representation 100 1s exposed. Thus, the exposed
node 110 is sometimes called the "principal” node.

Much more complex user interfaces comprising multiple elements can be
represented in the manner shown in FIG. 1. Each of the elements can themselves
comprise other user interface elements adding additional layers of complexity (e.g.,
more nodes, including selectively exposable nodes) not depicted in FIG. 1.
Furthermore, various child nodes may be principal nodes for representations of other
user interface elements.

FIG. 1 shows a full view of the hierarchical representation of the user
interface element, including selectively exposable child nodes (e.g., the node 120).
However, the full view of the hierarchical representation 100 may not be desirable
when performing various operations for the representation of the user interface
element. For example, direct interaction with the node 120 may be unnecessary in
certain circumstances. If so, an exemplary simplified view 200 of the representation
as shown in FIG. 2 can be presented.

The exemplary simphified view 200 shows only one node 210. The node 210
can be either a combined representation of the nodes 110 and 120 of the full view

(e.g., where the node 120 1s encapsulated within the node 110) or simply a

representation of the node 110 of the full view.

10

15

20

235

30

CA 02422417 2003-03-17

_ 9.

Another Exemplary Hierarchical Representation of a
User Interface Element

Another exemplary hierarchical representation 300 is shown in FIG. 3. In the
example, the nodes 310, 320, and 3235 are a set of nodes 330 representing a
composite user interface element. Out of the set of nodes 330, the node 310 1s the
principal node, and the remaining nodes 320 and 325 are defined as selectively
exposable. Another node 340 is not selectively exposable and 1s shown as a child of
one of the selectively exposable nodes 320. The representation 300 includes the
selectively exposable nodes and 1s provided if a full view is requested.

A corresponding simplified view is shown in FIG. 4. The selectively
exposable nodes 320 and 325 are not exposed when a simplified view is requested.
Instead, the simplified view 400 shows the node 410 (e.g., the node 310 or a
combination of the nodes 310, 320, and 325) and the node 340.

Referring now to FIG. 3, one of the nodes 320 can be designated as the node
under which simplified view children (e.g., the node 340) are stored. Such a node is
sometimes called a "container” node (e.g., for the encapsulated nodes).

A relatively complex representation of a user interface can thus be presented
in simplified form 1s desired. A full view 300 of a hierarchical representation of
such a complex user interface may not need to be provided for a program written by
a user who has no interest in the selectively exposable nodes in the hierarchical
representation. For example, a programmer may not be interested in the existence of
or defining the functionality or appearance of the user interface elements relating to
the selectively exposable nodes 320 and 325. However, the program may need to
interact with the node 340. Thus it is sometimes desirable to provide the simplified
view 400 of the hierarchical representation of the user interface depicting only the
nodes of interest.

The technologies described herein can be applied to a variety of other

representations having additional or fewer nodes.

10

15

20

25

30

CA 02422417 2003-03-17

_10-

Overview of an Exemplary Simplified View Implementation

FIG. 5 shows an exemplary method 500 for implementing a simplified view
of a representation of a user interface element (e.g., in a user interface service). At
510, a user interface element having a hierarchical representation 1s defined. For
example, the definition can include a plurality of nodes, some of which are
selectively exposable.

After the definition is created, it can be invoked at 520 to create the user
interface. For example, a hierarchical representation of the defined user nterface
element can be created via the definition and stored.

One or more operations can be performed on the representation at 530. Such
operations can be performed via the simplified view of the hierarchical
representation without exposing the selectively exposable nodes 1n the
representation.

If desired, invocation of the definition and performing operations on the
representation can be done without reference to the full view of the representation.
Thus, programmers can write code or markup with out having to acquaint
themselves with the details of the full view. In practice, any one of the pictured
actions can be independently useful and need not be performed all at once or by the

same program.

Exemplary Method for Defining a User Interface Element
Having a Simplified View

FIG. 6 shows an exemplary method for receiving a defimition of a user
interface element having a hierarchical representation with a ssmphfied view. The
definition may be created using various languages such as markup language (e.g.
XML or HTML) or programming languages (e.g. Java or C++). Thus, the definition
can be received from a program or specified in a markup document.

At 610, an indication of the one or more nodes that will be stored for the
representation of the user interface element is received. For example, user interface

elements (e.g., sub-elements) can be specified. The definition can indicate the

10

15

20

25

30

CA 02422417 2003-03-17

-11-

hierarchical relationships between elements. Such a definition may include node
definitions for various elements forming a composite user interface element.

At 620, an indication of at least one selectively exposable node is received.
If desired, the selectively exposable nodes could be chosen automatically instead of
specified in the definition. When a simplified view of a representation of the
defined user interface element is provided, the selectively exposable nodes are

unexposed. The definition can then be stored at 630 for later invocation.

Exemplary Method for Invoking a Defined User Interface Element
Having a Simplified View

An 1nstance of the user interface element can be created by invoking the
definition (e.g., such as that defined via the method shown in FIG. 6). FIG. 7 shows
an exemplary method for invoking a definition of a user interface element having a
simplified view. At 710, a request to create a user interface element is received.
Such a request can be received programmatically (e.g., from a software program) or
from a markup document. The request need not be received from the same entity
that defined the user interface element.

At 720, the defimtion of the hierarchical representation of a user interface
element 1s used to create the appropriate nodes in the hierarchical representation of
the user interface (e.g., corresponding to the user interface elements forming a
composite user interface element). The created nodes are provided if a full view of
the representation is requested.

At 730, the appropriate nodes (e.g., as specified by the definition) are
designated as selectively exposable. Such selectively exposable nodes are not
exposed (e.g., are not encountered) when a simplified view (e.g., of the
representation in which the user interface element is represented) is requested.

Whether a node 1s exposed 1n a view of the representation of a user interface
element 1s independent of whether or not the corresponding user interface element is

displayed (e.g., 1s hidden) on a display device when the user interface element is

rendered.

10

15

20

25

30

CA 02422417 2003-03-17

-12-

Exemplary Method for Performing an Operation on a User Interface Element
Having a Simplified View

Once the definition of the user interface is invoked to create the hierarchical
representation of the user interface element (e.g., as shown in FIG. 7), operations can
be performed for the representation. Such operation may be performed for either the
full or the simplified view of the representation. The operations performed on the
simplified view include, for example, enumerating children of a node, adding
children to a node, removing children of a node, and navigating within the
hierarchical representation.

An exemplary method for performing an operation on a simplified view of a
representation of a user interface element 1s shown 1n FIG. 8. At 810, a request to
perform an operation on the user interface element (e.g., the principal node of a
composite user interface element) is received. At 820, the requested operation 1s
performed using the simplified view of the hierarchical representation of the user
interface element. The operation may result in a modification of the hierarchical
representation (e.g., when adding or removing nodes), or the representation may not
be changed (e.g., when enumerating or navigating within nodes).

For example, a request to enumerate children of a node using the simphfied
view can result in enumeration of the children stored in a child node (or a grandchild
node) of the node, if the child node is designated as selectively exposable.

A request to add a child to a parent node having selectively exposable
children in the simplified view can result in the child being added to 1its appropriate
place in the hierarchy of the full view of the representation of the user element which
may or may not be the parent node visible in the simplified view.

Thus, in the simplified view 1t will seem as though a child was added directly
beneath the parent node. For operations involving children, the definition of the
hierarchical representation of the user interface element can be used to find the
appropriate place to add or find children within the full view of hierarchical
representation. In this way, a program can be written to interact with the simplified

view, and the programmer is shielded from the trouble of having to know the details

10

15

20

25

30

CA 02422417 2003-03-17

_13-

of the full view including the hidden nodes and their arrangement within the

hierarchy.

Exemplary Implementations Relating to a Combo Box
Some of the following examples describe various processing related to an
exemplary user interface element known as a combo box. The techniques described
can be applied to any number of user interface elements now 1n existence or

hereafter developed.

Exemplary Combo Box User Interface Element

FIG. 9 shows an exemplary user interface element 905 commonly known as a
combo box. In the example, the combo box 905 1s a composite user interface
element comprising several user interface elements, which in turn comprise further
user interface elements. The combo box 905 comprises an input box 910, a drop
down button 930, and a pop up window 920. Generally, when a user clicks on the
drop down button 930 the pop window 920 1s displayed. In this example, the pop up
window 920 contains a list box 925 (e.g., visually indistinguishable from the pop up
window 920). However, the pop up window 920 may contain alternative or
additional user interface elements (e.g., a drop down menu). The list box 925 1s also
a composite user interface element with its own elements, such as the scroll viewer
926 (e.g., also visually indistinguishable from the pop up window 920) containing
the grid panel 935 and the scrollbar 945 for scrolling through the list items 940,
which are contained within the gnd panel 935.

In the exemplary illustration of the combo box 905, the list box element 925
is depicted as visually indistinguishable from the scroll viewer element 926 and the
pop up element 920. Thus, the 1llustration shows that the pop up window 920
contains the list box element 925 which 1s formed by adding a grid panel 935 to an
empty place holder contained within the scroll viewer 926. Other arrangements are
possible. For example, it is possible for a pop window 920 to contain user elements

other than a list box 925. Furthermore, 1t 1s also possible for the scroll viewer 926 to

10

15

20

25

30

CA 02422417 2003-03-17

- 14-

have elements (e.g. a menu) other than a grid panel 935 contained within its empty
place holder.

The scrollbar 945 can also be represented as a composite user interface
element containing elements such as the scroll buttons 950, 951, 955, and 956 and a
scroll thumb 960. Any number of vanations can be used instead of the pictured
combo box 905. For example, elements can be removed, additional elements can be
added, or alternative elements can be defined. For example, a horizontal scroll bar
(not shown) may also be added to aid the user in scrolling through list items that are

hornizontally long.

Exemplary Representation of a Combo Box User Interface Element
(Full View)

FIG. 10A depicts an exemplary hierarchical representation 1000 of a combo
box (e.g., that shown in FIG. 9) to be provided (e.g., by a user interface service)
when a full view is requested. As shown, the nodes are arranged 1n a tree structure
in hierarchical fashion.

The principal node for the combo box 1s represented at 1005 as the top most
node of the hierarchy. The other elements of the combo box (e.g., such as those
shown in FIG. 9) are also represented as nodes within the hierarchical representation
as the pop up 1020, the input box 1010, and the drop down button 1030. The pop up
1020 is shown as comprising the list box 1025. The list box 1025 1s a parent node of
the hierarchical representation which further compnses a scroll viewer 1026.

The scroll viewer 1026 1s itself a parent node within the merarchical
representation. The scroll viewer node 1026 1s a parent node to a place holder
element 1035, the vertical scroll bar 1030 and the honizontal scroll bar 1040. As
noted above in relation to FIG. 9, there is no visual difference between the parent list
box node 1025 and its child element the scroll viewer 1026. This 1s so because the
list box 1025 is formed by adding the grid panel element 1045 as a child node of the
place holder element node 1035. However, other child nodes can be added under the

place holder elements for using the scroll viewer 1026 in combination with other

10

15

20

25

CA 02422417 2003-03-17

- 15-

user elements to form other more complex user interface elements. Finally, the list
items 1050A, 1050B, and 1050C are children of the grid panel 1045.

The example illustrates how a composite user interface element can be
constructed from other user interface elements and thus be represented by many
nodes. For example, a list box composite user interface element can be defined as
the list box node 1025 and its descendant nodes. To construct a combo box
composite user interface element, the input node 1010, the popup node 1020, and the
button node 1030 can be combined under the combo box node 1005. Finally, the list
box composite user interface element (e.g., the list box node 1020 and its
descendants) can be nserted (e.g., via mark up or programmatically) underneath the
popup node 1020. A simple reference to the list box composite user interface
element can result in creation of the list box node 1025 and its descendants. In
practice, the nodes related to list items (e.g., the nodes 1050A, 1050B, and 1050C)
might not be included 1n the definition of the list box user interface element.

The multiple nesting of nodes shown in the example can add to the
complexity of defining and manipulating a user interface element. Although the
combo box representation 1s relatively complex, even more complex examples can
be implemented. However, the technologies can also be applied to more simple
examples.

In the example, the set of nodes 1060 comprising nodes 1010, 1020, 1025,
1026, 1030, 1031A, 1031B, 1033, 1034A, 1034, 1035, 1040, 1041A, 1041B, 1043,
1044A, 1044B, and 1045 have been defined as selectively exposable. When a
simplified view of the representation is presented, the selectively exposable nodes
are not exposed.

A simplhified view of the hierarchical representation of the user interface
element may be desired. For example, it may be desirable to add additional list

items without having to deal with the relative complexities of the hierarchical

representation (e.g., where to add the list items as children).

10

15

20

25

30

CA 02422417 2003-03-17

-16-

Exemplary Representation of a Combo Box User Interface Element
(Simplified View)

Although a composite user interface element can include a complex plurality
of nodes, it may be desirable to provide a simplified view of the hierarchical
representation of the user interface element. FIG. 11 shows an exemplary
hierarchical representation 1100 (e.g., corresponding to the representation 1000 of
FIG. 10A) provided when a simplified view of a combo box (e.g., such as that of
FIG. 9) is requested. In the example, the nodes 1050A, 1050B, and 1050C for the
list items are shown as the direct children of the principal node 1105 of the combo
box. The other nodes not shown are sometimes said to be "encapsulated by" the
combo box node 1105. Using the simplified view, a program concerned with
manipulating the list items can regard the list items as children of the principal node
1110 and need not contain logic concerning the other elements 1n the composite user
interface element. The definition of the combo box user interface element can
contain sufficient information by which operations for the simplified view can be
translated into appropriate operations for the full view of the hierarchical

representation.

Exemplary Nesting of User Interface Elements Having a Simplified View
The arrangements described herein can also support nesting. In nesting, there

may be user interface elements having selectively exposable nodes within other user
interface elements, which themselves have selectively exposable nodes. Such
nesting can be resolved in a variety of ways. For example, although some of the
nodes in a composite user interface element may be designated as exposed (e.g.,
viewable in a simplified view), if the user interface element 1s made part of (e.g.,
encapsulated within) another composite user interface element, such nodes may be
considered selectively exposable (e.g., not visible in a simplified view) by virtue of
the fact that they are within a region of the hierarchy representing the encapsulating
composite user interface element that is designated as selectively exposable (e.g., by

the encapsulating composite user interface element).

10

15

20

25

30

CA 02422417 2003-03-17

-17-

Further, such nesting can support relativity. For exmnp!e, nodes may or may
not be considered selectively exposable depending upon the node on which a request
to perform an operation is made. In other words, a request to perform an operation
on a node encapsulated within another user interface element may result in a view
that shows nodes not seen when performing an operation on the encapsulating user
interface element.

FIG. 10B shows an exemplary hierarchical representation of a combo box,
such as that represented in FIG. 10A. For the sake of brevity, some of the nodes
related to scroll bars are omitted.

In the example, a scroll viewer node 1026 1s the principal node of a
composite user interface element comprising the scroll viewer node 1026, the
container element node 1035, and the various scrollbar nodes (e.g., the node 1030).
For operations performed on the scroll viewer node 1026 in a simplified view, the
other nodes of the composite user interface element are considered to be selectively
exposable (e.g., are skipped) and encapsulated by the scroll viewer node 1026. For
example, a request to add a child node to the scroll viewer node 1026 1n a ssmphfied
view would result in a child node being added to the container element node 1035.
In this way, an encapsulation boundary 1090 1s defined.

Similarly, the list box node 1025 is the principal node of a composite user
interface element comprising the scroll viewer node 1026 (e.g., and the nodes
encapsulated thereby) and the grid panel 1045. For operations performed on the st
box node 1025, the other nodes of the composite user interface element are
considered to be selectively exposable (e.g., are skipped) and encapsulated by the list
box node 1025. In this way, an encapsulation boundary 1080 is defined.

Further, the combo box node 1005 is the principal node of a composite user
interface comprising an input node 1010, a pop up node, 1020, a button node 1030,
and the list box node 1025 (e.g., and the nodes encapsulated thereby). For operations
performed on the combo box node 1005, the other nodes of the composite user
interface element are considered to be selectively exposable (e.g., are skipped) and
encapsulated by the combo box node 1005. In this way, an encapsulation boundary

1070 is defined. Because the list box node 1025 is itself part of an encapsulation

10

15

20

25

30

CA 02422417 2003-03-17

- 18-

boundary, the eftective encapsulation boundary 1095 takes effect. In other words,
for operations performed on the combo box node 1005, the nodes shown except the
combo box node 1005 and the hist item nodes 1050A-C are considered to be
selectively exposable (e.g., are skipped) and encapsulated by the combo box 1005.
For example, a request to add a child node to the combo box node 1005 in a

simplified view would result in a child node being added to the grid panel node

1045.

Exemplary Method for Representing a User Interface Element Having a
Simplified View

A varnety of methods can be used to provide a simplified view. One such
method 1s to store within the representation of the user interface element various
properties for the nodes. The following example describes using properties (e.g.,
"Encapsulating Parent" and "Encapsulating Container") to designate which nodes in
a representation are selectively exposable.

By setting a node's appropriate property (e.g., "Encapsulating Parent") to
TRUE, nodes below the node 1n the hierarchy are designated as selectively
exposable (e.g., not exposed in the simplified view).

As described herein, such a node 1s sometimes called the "principal” node.
Further, 1f a particular node below the principal node in the hierarchy has an
appropnate property (e.g., "Encapsulating Container") set to TRUE, children of the
particular node are designated as not selectively exposable (e.g., are exposed in the
simplified view). In such a case, children of the particular node are considered to be
the children of the principal node for purposes of the simplified view. So, if children
are added to the principal node via the simplified view, they are actually added as
children of the particular node having the property (e.g., "Encapsulating Container")
set to TRUE. '

Nesting can be supported as described with respect to FIG. 10B. In the
example, a node at the top of an encapsulation boundary (e.g., a principal node) can
have an appropriate property (e.g., the "Encapsulating Parent" property) set, and a

node at the bottom of the encapsulation boundary can have an appropriate property

10

15

20

25

30

CA 02422417 2003-03-17

-19-

(e.g., the "Encapsulating Container” property) set. In this way, encapsulation
boundaries can be defined via property setting.

FIG. 12 shows an exemplary method 1200 for representing a user interface
element with a simplified view via denoting values of various properties of nodes
within a hierarchical representation of the user interface element. The nodes of the
hierarchical representation can have properties related to selectively exposing the
node itself, its children, or its parents. By setting such properties, a user interface
element having a simplified view can be represented, and operations can be
pertormed on the representation via the simplified view.

At 1210 at least one node of the hierarchical representation of the user
interface 1s chosen to serve as a principal node (e.g., that encapsulates the selectively
unexposed nodes). At 1220 the IsEncapsulatingParent property on the chosen node
1s set to “TRUE’. At 1230, a descendant of the principal node is chosen to serve as a
container for any children (e.g., now present or subsequently added) of the principal
node in the simplified view. Then at 1240, the IsEncapsulatingContainer property of
the descendant node 1s set to ‘TRUE.’

By setting the properties as explained in the example, the container and any
intermediate descendants (e.g., children) between the principal node and the
container are thereby defined as selectively exposable (e.g., skipped the simplified
view or "encapsulated" within the parent). Child nodes underneath the container
will be exposed (e.g., visible) in the simplified view.

In some arrangements, there may not yet be any child elements. In such a

case, the appropriate property of a leaf node can be set. Subsequently, when children

are added via the simplified view, they are placed underneath the leaf node.

Exemplary Markup Definition of a Combo Box
A user interface element having a simplified view of its representation can be
defined 1n a varniety of ways. One such way 1s via a markup language (e.g. HTML or
XML), which can be processed and stored for later invocation. FIG. 13 shows an

exemplary defimition of a combo box with a simplified view (e.g., such as that

shown 1n FIG. 11) wrnitten in XML.

10

15

20

25

30

CA 02422417 2003-03-17

- 2()-

When an instance of the defined combo box 1s created, appropriate properties

can be set for the various nodes of the hierarchical representation to achieve the
desired simplified view. The scheme of defining the properties of the various nodes
of the hierarchical representation can be adaptable to be used in other types of
languages besides markup languages.

In the example, nesting 1s achieved. The definition of FIG. 13 can result in

the arrangement shown 1n FIG. 10B.

Exemplary Programmatic Definition of a Combo Box

A user interface element having a simplified view can also be defined
programmatically (e.g., 1n a programming language such as C++ or Java). For
example, FIGs. 14A and 14B show a programmatic definition of the hierarchical
representation of a combo box with a simphified view.

Both the mark up definition of FIG. 13 and the programmatic definition of
FIGS. 14A and 14B show a combo box defined as having a pop up element
containing a list box element for holding the children of the combo box exposed in
the simplified view (1.e. the list items). The list box element (which i1s a composite
control itself) 1s further defined as having a scroll viewer element containing a grid
panel for holding the children of the list box that are exposed 1n the simplified view
(1.e. the list items).

Again, 1n the programmatic definition example, nesting 1s achieved. The -
definition of FIGS. 14A and 14B can result in the arrangement shown 1n FIG. 10B.
A composite user interface element (e.g., a combo box) 1s thus defined via assembly
of various user interface elements, each of which can have provisions for selectively
exposable nodes. When assembled 1n to a composite user interface element, nesting
can be handled in such a way that the details of how selectively exposable nodes are
defined within the encapsulated user interface elements remains transparent when

operating on an outer level (e.g., encapsulating) user interface element.

10

15

20

25

CA 02422417 2003-03-17

_21-

Exemplary Markup Invocation of a Combo Box Definition

The definition of a user interface element (e.g., such as those shown 1n
FIGS. 13 and 14) can be invoked to create a representation of the user interface
element, including any selectively exposable nodes that remain unexposed in the
simplified view. Such invocation can be achieved in a variety of ways (e.g., via
markup language or programmatically).

An exemplary invocation 1500 of a definition (e.g., such as those shown in
FIGS. 13 and 14) is shown in FIG. 15 as written in XML. By including the tag
“<COMBO BOX>” at 1510, the invocation makes use of the previously created
definition of the combo box which facilitates a simplified view of the hierarchical
representation of the combo box. As shown in the example, the only other effort on
the part of invocation is to specify the list items 1520 without having any
knowledge of the full hierarchical representation of the combo box. The structure
of the invocation in FIG. 15 can thus correspond to the simplified view of the
hierarchical representation of the combo box, even though the combo box 1s
actually composed of plural other user interface elements. In this way, the re-use of
user interface elements to create composite controls is encouraged. In the example,

a simplified view can be used by the system by virtue of the fact that the invocation

is performed in XML.

Exemplary Programmatic Invocation of a Combo Box Definition
Similarly, the scheme of invoking the combo box carries over to the
programmatic invocation 1600 of the definition as shown in FIG. 16. The example

can be implemented in a variety of programming languages (e.g., Java and C++).
The line of code “COMBOBOX = NEW COMBOBOX ()” at 1610 invokes the
previously created definition. The advantages described above for the markup
version also apply to the programmatic invocation. To access the full view instead

of the simplified view, other language can be used (e.g.,
"COMBOBOX.FULLVIEW . .ELEMENTS" or the like).

10

15

20

235

30

CA 02422417 2003-03-17

-2

Exemplary Method for Performing an Operation on Simplified View

Once software or markup has invoked a defined user interface element, a
hierarchical representation of the user interface element having a simplified view is
created and available for operations. Operations include adding children, removing
children, enumerating children, inquiring what is the parent node of a node in the
simplified view, and various operations for navigating the hierarchical representation
of the user interface element. The results of these operations may differ according to
whether they are performed using the simplified view of the hierarchical
representation or the full view.

In the various embodiments, a program can specify whether the simplhfied
view 1s desired. Or, in some scenarios, it may be assumed from the context that a
simplified view 1s desired.

With some operations, such as adding children or removing children in the
simplified view, the definition of the hierarchical representation of the user interface
element may be used to determine how the operations should be performed on the
full view.

FIG. 17 shows an exemplary method 1700 for performing an operation on a
simplified view, namely adding a child to a user interface element (e.g., a node
representing such an element). At 1710, an indication to add children to a node on
the simplified view of the hierarchical representation of a user interface element 1s
received. At 1720, based on how the hierarchical representation of the user
interface has been defined, selectively exposable nodes are skipped, and the new
child node is added to the appropriate node according to definition (e.g., to the node
having the "Encapsulating Container” property set to "TRUE') at 1730.

The process 1llustrated in FIG. 17 may be used as shown 1n FIG. 18 to add a
new child 1850 to the simplified view of the hierarchical representation of a combo
box. Once the definition of the combo box 1s invoked, new children such as new
child 1850D may be added to the simplified view of the hierarchical representation
of the combo box, as shown in FIG. 19. Using the definition of the hierarchical

representation, the addition of the new child 1850D 1n the simplified view of FIG. 19

10

15

20

25

CA 02422417 2003-03-17

-23.

will be translated as an addition to the appropriate place in the full view of the

hierarchical representation as shown 1n FIG. 18.

Exemplary Details for Carrying Out the Operation

An exemplary hierarchical representation 1800 of a combo box user interface
element is shown in FIG. 18. When the request to add a child to the combo box
(e.g., the node 1005) 1s received, the "Encapsulating Parent” property is detected on
the node 1005, and traversal proceeds to an associated descendant node having the
"Encapsulating Container” property. In the example, traversal can be achieved via a
pointer 1855. Because the "Encapsulating Parent” property is detected on the node
1025, traversal continues to proceed to an associated descendant node having the
"Encapsulating Container" property. In the example, traversal can be achieved via a
pointer 1860 to the node 1045. The new child 1s then added as a child node 1850D
to the node 1043.

If desired, a direct pointer 1880 can be implemented to more directly
navigate to the appropnate node where children are to be added. Additionally, a
pointer 1885 back to the principal node can be included.

When a new child is added in the simplified view as shown in FIG. 19, it will
seem to the invoking program as though the new child 1850D 1is being added as a
child of the combo box principal node 1905. However, the operation is actually
implemented (e.g., by the user interface service) as the addition of the new child
1850D in the full view of FIG. 18 (e.g., under the grid panel node 1045).

Nesting can be handled 1n a variety of ways. For example, pointers can be
used as shown to skip over intermediate levels of encapsulation. Or, a level of
nesting can be tracked while traversing the hierarchical representation. Based on the
level, 1t can be determined which nodes are to be skipped. Traversal can also
proceed from the bottom of the hierarchy to the top (e.g., in a request by a child node

to enumerate its parent).

10

15

20

25

30

CA 02422417 2003-03-17

_724-

”

Alternative Representation of Selectively Exposable Nodes

An alternative representation 2000 of selectively exposable nodes is shown
in FIG. 20A. In the example, a particular node 2020 1s specially designated as
selectively exposable 1n a full view of the representation.

The corresponding simplified view 2050 1s shown in FIG. 20B. As shown,
children 2030B and 2030C of the particular node 2020 are considered to be siblings
of the children (e.g., the node 2030A) of the parent node 2010. In other words, the
children 2030B and 2030C of the particular node 2020 are considered to be siblings
of the siblings of the particular node 2020 (e.g., the sibling 2030A in the full view).

Such an implementation can be achieved in a variety of ways. In one
example, a special property (€.g., "Hidden Container") is set to true for the particular

node 2020, which 1s not exposed when a simplified view is requested.

Exemplary Implementation of Alternative Representation

In some user interface element scenarios, 1t may desirable to generate nodes
from a specified location (e.g., from a database). For example, FIG. 21 illustrates an
exemplary hist box 2100. It may be desirable to generate one or more of the list
items 2110 from a database or other data source.

One such method of generating content from a database 1s to include a
special element within the hierarchical representation of a user interface element.
The special element can remain unexposed for the simplified view but still operate
to generate the content and be present 1n the full view. If desired, the special
element can be bound to a data source to automatically insert the content into user
interface elements, such as the list items 2110.

One such special element 1s called a "repeater."” FIG. 22 illustrates a
hierarchical representation 2200 of a list box (e.g., such as that shown in FIG. 21)
comprising a repeater node 2220 1nserted into the hierarchical representation for
automatically generating some of the list items such as list items 2230 and 2240.

Using repeaters also allows user interface developers to automatically
generate content by binding the repeater to a collection of records (e.g. from a

database). Furthermore, template containers 2221 and 2222 can be associated with a

10

15

20

25

30

CA 02422417 2003-03-17

225

repeater 2220 to contain information related to the specific record in a database that
1s generating content for a specific child of the repeater. In this example, the list
items 2230 and 2240 are bound to records of a data source to generate text content
2235 and 2245 (e.g., name, location, or another field of a record). Although FIG. 22
shows only a single child element (list items 2235 and 2240) associated with each of
the template containers 2221 and 2222, it is possible to have multiple children
elements (e.g. a phone number, name, and image of a person).

In the full view of the hierarchical representation 2200 of the list box, it
appears as though the repeater 2220 is one of the child nodes of the list box node
2205 and the flow panel node 2210. The template containers 2221 and 2222 appear
as children of the repeater 2220.

However, programs invoking the definition of the list box may not expect to
see a repeater as a child of the flow panel node 2210. Also, the definition of a list
box may have rules set so that it not accept anything other than a list item as a child
of the flow panel 2210. Therefore, the repeater 2220 and the template containers
2221 and 2222 are not desired to be exposed (e.g., should be hidden) within the
hierarchical representation of a list box when a simplified view is used.

By not exposing the repeater 2220 and the template containers 2221 and
2220 1n a simplified view of the hierarchical representation of a list box, the list
items 2230 and 2240 are effectively promoted as siblings of the siblings of their
parent, the repeater 2220 (e.g., siblings of the list item node 2250). Such a
simplified view 2300 1s shown in FIG. 23 where the repeater 2220 of FIG. 22 is not
exposed, and the list items 2230, 2240 and 2250 appear as siblings in FIG. 23.

Creating an Exemplary Alternative Representation
An exemplary method 2400 for creating an alternative representation of a
selectively exposable node (e.g., a repeater) is shown in FIG. 24. At 2410, a user
interface element having a hierarchical representation is chosen. At 2430, at least
one node of the hierarchical representation is designated to be selectively exposable

(e.g., not exposed 1n a simplified view of the hierarchical representation).

10

15

20

25

30

CA 02422417 2003-03-17

-26-

For example, such a designation can be achieved by setting the "Hidden
Container" property of the designated node to "TRUE." The repeater’s class
constructor can set such a property, so that the property 1s set whenever a repeater is
instantiated.

The repeater can be activated as desired (e.g., automatically upon invocation
of a user interface element defined as having the repeater). However, the invoking
program need not account for the unexposed repeater, which automatically populates
the list items. As far as the invoking program is concerned it is only invoking the
definition of a user interface element and it has no knowledge that the user interface
element is defined as having a repeater.

Or, even if the invoking program is aware of the repeater, software or
markup processing the list items associated with the repeater need not be famihar
with the complexities involved with the repeater. In the simplified view, the user

interface element simply appears to have list items without a repeater.

Exemplary Markup Invocation of a Repeater in a User Interface Element
User interface elements can invoke repeaters 1n a variety of ways. One such
way is via markup language (e.g., XML or HTML). FIG. 25 1llustrates an exemplary
2500 a list box coniaining a repeater node using XML. This invocation of the
repeater relies on the earlier definition of the repeater class (e.g., including an
appropriate constructor) and thus, it is not necessary to designate the repeater’s

"Hidden Container" property as “TRUE.’

Exemplary Programmatic Invocation of a Repeater in a
User Interface Element
A repeater can also be invoked programmatically (e.g., 1n a programming
language such as C++ or JAVA) for use in user interface elements. FIG. 26
illustrates code 2600 having an exemplary programmatic invocation of a repeater for

a list box.

10

15

20

25

30

CA 02422417 2003-03-17

.27

Exemplary Alternative Invocation of a Repeater in a User Interface Element

FIG. 27 1llustrates markup language including an alternative markup
invocation 2710 of a repeater in a user interface element. The example shown would
result in plural (e.g., two) child nodes for a template container (e.g., the template
containers 2221 and 2222): one for the picture and one for the customer name.

In any of the examples, by invoking the repeater, the invoking user or process
need define only one list item (e.g., indicating a source) at 2710 to complete the list
box, the resulting list items are generated by the repeater automatically upon the
invocation (e.g., via reference to the source).

FIG. 28 shows an exemplary definition of a list box with multiple list items
without using the repeater feature. Accordingly, the list items 2810 are explicitly
listed in the markup and will not be updated when the corresponding database is
updated. The availability of a repeater (e.g., including the ability to bind to a data
source) within user interface elements can thus result in more efficient code or
markup when providing user interface elements having many or dynamaically-

updated choices.

Performing Operations Via the Alternative Representation

When operations are performed on the described representation via the
simplified view, the approprnately designated node (e.g., the repeater node)
designated as a "Hidden Container" 1s not exposed. Referring back to FIG. 22, the
list items 2230 and 2240 can behave as any other list item and may be selected by
the user of the rendered list box.

Furthermore, a request for the parent of the list item 2230 via the simplified
view will be answered by indicating that the parent node of 2230 1s the flow panel
node 2210 (not the repeater 2220 or the template 2221). Thus, the nodes 2220 and
2221 (e.g., designated as a "Hidden Container") are skipped (e.g., not exposed).
Alternatively, if the flow panel and scroll viewer are designated as selectively
exposable, the parent of the list item 2230 would be the list box 2205 1n the

simplified view.

10

15

20

25

30

CA 02422417 2003-03-17

_28-

Certain functionahty can be inhibited i1f desired. For example, it may be

prohibited to add to or delete the list items 2230 and 2240 that were populated by the
repeater 2220.

Exemplary Implementation of Another Alternative Representation

Another exemplary representation of a user interface element with selectively
exposable nodes may be achieved by designating a node such that only the
designated node 1s exposed in the simplified view. For example, the descendants
(e.g., all descendants) of the node are considered selectively exposable and not
shown in the simplified view. Such a representation would have only one node
exposed for the user interface element 1n the simplified view.

For example, in the representation of a user interface element as shown in
FIG. 20A, if the node 2010 were so designated, the descendants (e.g., the nodes
2020, 2030A, 2030B, and 2030C) are designated to be selectively exposable. The
resulting representation would have only the node 2010 (e.g., the principal node)
exposed in its simplified view.

If desired, an operation to add a child to such a simplified view may result in
an error because the node 2010 is defined as not supporting simplified view child
nodes. Performing an enumerate children operation using such a simplified view
may be erroneous for the same reason, or an empty set can be provided.

Such representations can be useful to shield details of the full of view of
those user interfaces that are of hittle interest to certain users. The described
representation can be achieved in a number of ways. For example, a single property
indicating that the descendants are selectively exposable can be set. The
"Encapsulating Parent” container property can be set to TRUE to result in such an

arrangement (e.g., if there 1s no corresponding node with "Encapsulating Container"

set to TRUE).

Exemplary Representation of an Image
Another exemplary implementation of the technologies i1s to implement an

internal representation of an image as having a selectively exposable child with text

10

15

20

25

30

CA 02422417 2003-03-17

-20.

indicating text to be presented if the image 1s unavailable. The principal node can
contain the image, and the selectively exposable child can represent the
corresponding text. In this way, the simplified view can be manipulated without

knowledge of the selectively exposable child.

Exemplary Methods of Determining Properties of Nodes

When determining which property values a node is to take on (e.g., inherit),
the selectively exposable nodes can be taken into account. If desired, such nodes can
be ignored (e.g., and properties taken from the principal node), such nodes can
determine property values to be taken on, or the selectively exposable nodes can
work in combination with the principal node to determine which property values are
to be taken on. Such determination can be relevant, for example, when adding nodes
to the representation.

A node 1n the hierarchy can indicate desired properties for other nodes via
property rules (e.g., set via a style sheet). For example, a node may specify that the
font property of children 1s to be "bold."

For example, 1n FIG. 10A, if the property rules say that the font property of
children of the principal node 1005 1s to be ‘bold,’ but the property rules associated
with the list box node 1025 call for its children to have a font property of ‘italic,” it
1s ambiguous as to what the property of a list item such as 1050A should be.

In one implementation, the inheritable property of a child node that is not
selectively exposable 1s inherited from the nearest parent in the simplified view. In
the example above, if the simplified view is as shown in FIG. 11, the nearest parent
in the simplified view for the list items 1050A, 1050B, and 1050C is the principal
node 1105. Therefore, in this embodiment the font property of the combo box will
be taken on by the list items.

In another implementation, the nearest parent in the simplified view may
include rules for inquiring whether any of the property rules of any of its selectively
exposable child nodes should be applied to the children nodes that are not selectively
exposable. For example, a process applying property rules may inquire whether the

property rules associated with the list box need to be applied to the list items instead

10

15

20

25

30

CA 02422417 2003-03-17

-30-

of the property rules associated with the combo box.

In another implementation, the properties of the children nodes of a hidden
container as described above may be determined from property rules set by the
hidden container itself and not the immediate parent node in the simplified view of
the hierarchical representation.

If desired, a combination of the implementations can be provided by which

flexible property determination can be supported.

Facilitating Composite User Interface Elements

The various technologies described herein can be used to facilitate defining,
creating, and interacting with composite user interface elements. For example, an
invocation can be a simple indication of a particular user interface element that
happens to be a composite user interface. The invocation can result in the creation
of plural nodes to represent the user interface element.

However, the programmer defining the composite user interface element can
take steps to indicate that various of the nodes are selectively exposable. Thus, a
programmer 1nvoking the definition may choose to program to the simplified view
(or by detault be provided such a view) in which such nodes are not exposed. In
such a case, the programmer invoking the definition need not be aware that the
composite control 1s indeed composed of plural nodes.

Further, those defining additional controls can nest composite controls within
their control defimtions. The indication of which nodes are to be selectively
exposable can be preserved so that nesting can be easily accomplished. In this way,
a first composite control can be defined as containing a second composite control,
and the simplified view will be presented correctly (e.g., nodes designated as
selectively exposable for the second composite control will be selectively exposable
for the second composite control). If desired, the principal node of the second
composite control can also be indicated to be selectively exposable.

An example helpful for 1llustrating nesting includes the programmatic
definition of a combo box shown in FIGS. 14A and 14B. In the example, the combo

box 1s composed of a list box. The list box definition includes setting properties to

10

15

20

25

30

CA 02422417 2003-03-17

-31-

achieve selectively exposed nodes within the list box. Further, the list box itself
invokes the definition of a scroll viewer, which itself sets properties to achieve
selectively exposed nodes within the scroll view. However, to software or mark up
accessing the combo box, nesting can be implemented so that the internal details of
the hist box (e.g., including the selectively exposable nodes therein) do not appear
(e.g., when accessing the simplified view of the combo box).

On the other hand, operations performed on the list box can still take
advantage of the fact that nodes therein are selectively exposable (e.g., when
performing an operation on the list box in a simplified view). Thus, selective

exposability can be both nestable and relative.

Alternatives

Having described and illustrated the principles of our invention with
reference to the illustrated embodiments, it will be recognized that the illustrated
embodiments can be modified in arrangement and detail without departing from
such principles.

For example, various user interface elements can be combined together and
nested to provide more complex representations. The user interface element can be
provided as part of an interface to a program or embedded within a document (e.g., a
web page or a word processing document). The technologies described herein may
also be applied to any other document or file that can be represented in a hierarchical
form.

Although particular property names are used above, other property schemes
can be used to selectively expose nodes in a hierarchical representation.

It should be understood that the programs, processes, or methods described
herein are not related or limited to any particular type of computer apparatus.
Various types of general purpose or specialized computer apparatus may be used
with or perform operations in accordance with the teachings described herein.
Actions described herein can be achieved by computer-readable media comprising
computer-executable instructions for performing such actions. Elements of the

1llustrated embodiment shown 1n software may be implemented in hardware and vice

CA 02422417 2003-03-17

_30.-

versa. In view of the many possible embodiments to which the principles of our
invention may be applied, it should be recognized that the detailed embodiments are
illustrative only and should not be taken as limiting the scope of our invention.
Rather, we claim as our invention all such embodiments as may come within the

scope and spirit of the following claims and equivalents thereto.

10

15

20

25

30

CA 02422417 2003-03-17

-33-
CLAIMS
We Claim:
1. A method of processing a request to perform an operation on a

hierarchical representation of a user interface element, the method comprising:
receiving the request to perform the operation;
performing the operation for a simplified view of the erarchical

representation.

2. A computer-readable medium comprising computer-executable

instructions for performing the method of claim 1.

3. The method of claim 1 wherein:

the hierarchical representation comprises a plurality of nodes forming a
composite user interface element; and

a proper subset of the nodes forms a user interface element within the

composite user interface element.

4, The method of claim 1 wherein:
at least one node in the hierarchical representation is designated as
selectively exposable; and

the designated node is not exposed in the simplified view.

5. The method of claim 1, wherein the operation 1s performed by
skipping nodes in the hierarchy designated as selectively exposable 1n the simplified

VIEW.

6. The method of claim 5 wherein nodes are designated as selectively

exposable in the hierarchy by setting properties on nodes in the hierarchy.

10

15

20

235

CA 02422417 2003-03-17

- 34-

7. The method of claim 1 wherein:

the operation is a request to enumerate child nodes of a node in the
representation; and

the operation 1s performed on the simplified view, whereby at least one

immediate child of the node 1s not exposed in the simplified view.

8. The method of claim 1 wherein:

the operation is a request to provide a parent node of a node in the
representation; and

the operation 1s performed on the simplified view, whereby an immediate

parent of the node is not exposed in the simplified view.

9. The method of claim 1 wherein:

the operation 1s a request to add one or more child nodes to a node in the
representation; and

the operation is performed on the simplified view, whereby the child nodes

are added to a descendant of the node.

10. The method of claim 1 wherein:
the operation is a request to provide properties for a node; and
properties of at least one selectively exposed ancestor node of the node are

ignored.

11. The method of claim 1 wherein:
the operation is a request to provide properties for a node; and
properties of at least one selectively exposed ancestor node of the node are

selectively 1ignored or considered based on the property.

10

15

20

25

CA 02422417 2003-03-17

.35-

12. The method of claim 1 wherein:
the operation is a request to provide properties for a node; and

property rules of at least one selectively exposed ancestor node of the node

are 1gnored.

13. The method of claim 1 wherein:
the operation 1s a request to provide properties for a node; and

rules of at least one selectively exposed ancestor node of the node are

selectively ignored or considered based on the property.

14. A method of representing a user interface element, the method
comprising:
creating a hierarchical representation of the user interface element having a

plurality of nodes; and

designating at least one node in the representation as selectively exposable.

15. The method of claim 14 wherein the node 1s designated as selectively

exposable by setting a property on an ancestor of the node.

16. The method of claim 15 wherein the node 1s designated as selectively

exposable by setting a property on a parent of the node.

17. The method of claim 14 wherein at least one of the selectively
exposable nodes is designated as a node to receive simplified view children of an

ancestor node.

18. The method of claim 17 wherein the selectively exposable node 1s so

designated by setting a property on the selectively exposable node.

10

15

20

235

CA 02422417 2003-03-17

- 36 -

19. The method of claim 14 wherein the selectively exposable node is
one of a plurality of nodes comprising a user interface element nested within a

composite user interface element.

20. The method of claim 14 wherein:

the selectively exposable node 1s one of a plurality of nodes representing a
user interface element;

the nodes representing the user interface element comprise at least one node
not defined as selectively exposable within a definition of the user interface element;

the nodes representing the user interface element are nested within a
composite user interface element; and

the composite user interface element includes an indication that the nodes
representing the user interface element are designated as selectively exposable;

treating the node designated as not selectively exposable as not selectively
exposable when referenced via one of the nodes representing the user interface
element; and

otherwise treating the node designated as not selectively exposable as

selectively exposable.

21. The method of claim 14 wherein the node designated as selectively
exposable is operable to provide data for generating a plurality of nodes undemeath
the node in the hierarchical representation.

22. The method of claim 21 wherein the data originates from a database.

23. The method of claim 21 wherein the plurality of nodes undemeath the

node are list items.

10

15

20

25

30

CA 02422417 2003-03-17

-37-

24. A method of defining a composite user interface element, the method
comprising:

referring to a plurality of definitions for user interface elements in a
composite user interface definition; and

in the composite user interface definition, designating at least one node for

the user interface elements as selectively exposable.

25. The method of claim 24 wherein at least one of the definitions for
user interface elements itself designates one of the nodes therein as selectively

exposable.

26. The method of claim 24 wherein the composite user interface element

comprises a combo box.

27. The method of claim 24 wherein nodes are designated as selectively
exposable by appropnately designating properties of one or more of the following:

a node for the user interface elements;

a parent node for the user interface elements; and

an ancestor node for the user interface elements.

28. A method comprising:

invoking the composite user interface definition of claim 24; and

responsive to a request for a simplified view of a representation of the
composite user interface element, not exposing the selectively exposable nodes user

interface elements.

29. A computer-readable medium having encoded thereon a data
structure representing an encapsulated user interface element, the data structure
comprsing:

a principal node; and

10

15

20

25

CA 02422417 2003-03-17

- 38-

one or more selectively exposable nodes hierarchically related to the

principal node.

30. The computer-readable medium of claim 29 wherein the data
structure further comprises:

a designation of which node out of the selectively exposable nodes is to
receive children of the principal node when the selectively exposable nodes are

unexposed.

31. A user interface service comprising:

code for accepting a definition of a user interface element, wherein the
definition comprises a designation of a simplified view;

code for creating a hierarchical representation of the user interface element
based on the definition; and

code, responsive to a request for performing an operation on the hierarchical

representation via the simplified view.

32. The user interface service of claim 31 wherein the simplified view

comprises at least one selectively exposable node.

33. A user interface service comprising:

means for accepting a definition of a user interface element, wherein the
definition comprises a designation of a simplified view;

means for creating a hierarchical representation of the user interface element
based on the defimition; and

means responsive to a request for performing an operation on the

hierarchical representation via the simplified view.

10

15

20

25

CA 02422417 2003-03-17

- 30.

34. A method for performing a user interface element-related operation,
the method comprising:

receiving a definition of a hierarchical representation of the user interface
element having a simplified view;

invoking the definition; and

performing the operation an the simplified view of the hierarchical

representation of the user interface element.

35. The method of claim 34, wherein the defining comprises:
selectively defining nodes within a full view of the hierarchical

representation of the user interface as being unexposed in the simplified view.

36. The method of claim 35, wherein the nodes in the full view are
defined as being unexposed in the simplified view by appropriately setting properties

of the nodes comprising the hierarchical representation.

37. A method for automatically generating sub-elements of a composite
user interface element, the methods comprising:

inserting a user interface element generator into a data structure representing
the user interface element;

associating the user interface element generator with a data source; and

generating user interface elements using the data source;

wherein the user interface element generator 1s selectively exposable in a
simplified view of a hierarchical representation of the composite user interface

element.

Smart & Biggar
Ottawa, Canada
Patent Agents

CA 02422417 2003-03-17

FIG. 1 100

110 ‘/

PRINCIPAL NODE

200

FlG 2 210 G'/

CA 02422417 2003-03-17

400

/\jo /

340

FIG. 4

CA 02422417 2003-03-17

500

RECEIVE DEFINITION OF A Ul 510
ELEMENT HAVING A
HIERARCHICAL
REPRESENTATION WITH A
SIMPLIFIED VIEW

INVOKE THE DEFINITION TO 520
CREATE THE HIERARCHICAL
REPRESENTATION OF THE U!
ELEMENT WITH A SIMPLIFIED

VIEW

530
PERFORM AN OPERATION ON

THE HIERARCHICAL

REPRESENTATION OF THE Ul
ELEMENT

FIG. 5

CA 02422417 2003-03-17

RECEIVE INDICATION OF
NODE(S)

RECEIVE INDICATION OF
AT LEAST ONE NODE OF
THE HIERARCHICAL
REPRESENTATION IN THE
DEFINITION TO BE
UNEXPOSED IN THE
SIMPLIFIED VIEW

STORE THE DEFINITION
OF THE Ul ELEMENT WITH
A SIMPLIFIED VIEW

FIG. 6

610

620

630

600

CA 02422417 2003-03-17

RECEIVE A REQUEST TO
CREATE A Ul ELEMENT

USE THE DEFINITION OF THE
Ul ELEMENT TO CREATE THE
APPROPRIATE NODES OF
THE HIERARCHICAL
REPRESENTATION OF THE UI
ELEMENT WITH A SIMPLIFIED
VIEW

DESIGNATE APPROPRIATE
NODES AS SELECTIVELY
EXPOSABLE IN THE
HIERARCHICAL

REPRESENTATION OF THE Ul
ELEMENT ACCORDING TO
THE DEFINITION

FIG. 7

710

720

730

700

CA 02422417 2003-03-17

RECEIVE A REQUEST TO
PERFORM AN OPERATION ON
THE Ul ELEMENT

PERFORM THE REQUESTED
OPERATION USING THE
SIMPLIFIED VIEW OF THE
HIERARCHICAL
REPRESENTATION OF THE Ul
ELEMENT

FIG. 8

810

820

800

CA 02422417 2003-03-17

905

1 wvn =2 B ety rererapgs =5 variriedl - Ay tasier. Yl vl | ¢ prvee iwv=a sy = Semile L LN}

FIG.
10A

/ /.........\/1010

(INPUT)
N\ /

\’—l#

-+~ _ /1045

\SRIDPANEL/\

o

e o @
M“

CA 02422417 2003-03-17

1005

COMBOBOX 1000

AN

=L 1020 _ -V 1030 \

{ POPUP { BUTTON)

N7 o~ \
/,—'E \\/1025 \ 1060
(

\LISTBOX) y

.,

o

/

”

1 \

N——— 1026 \

S

SCROLLVIEWER
l ~ - / \

”

N

---""'"‘\\/1030 e 1040\

”

(SCROLLBAR) (SCROLLBAR \
/ \ /

1041A\
Jaaa

BU'ITO; \\
\, _ / \

CA 02422417 2003-03-17

-
-
»
&
[
-
L 4
..
-
L 4

10B

FiG. COMBOBOX Y. /1000

171030 \™

Y. 1020 4 -, 1095

”~ “—
(POPUP { BUTTON /\

[

/,lh(mzs 1070

LISTBOX } }

hy ~

AR

1080 i
- ~ /1026 :

“ SCROLLVI EVVER \ 1090
T~ / 1 030

{ SCROLLBAR 2\
\ /

\‘-—"—/

, - /1035
\ / ELEMENT \

/

1045
=L
\GRIDPANEL\ ,,,,,,

-
- .
L » -
g d
Teae .cﬂ"

CA 02422417 2003-03-17

1100

1105
COMBOBOX

1050A 10508 1050C

FIG. 11

CA 02422417 2003-03-17

1200
1210

\ CHOOSE AT LEAST ONE NODE TO
SERVE AS PRINCIPAL NODE

1220
SET ENCAPSULATING PARENT

PROPERTY ON
PRINCIPAL NODE = "TRUE'

1230
CHOOSE DESCENDANT NODE TO

SERVE AS CONTAINER FOR CHILDREN
OF PRINCIPAL NODE IN
SIMPLIFIED VIEW

1240

SET ENCAPSULATING CONTAINER
PROPERTY ON THE LEAF CHILD NODE

= "TRUE'

FIG. 12

CA 02422417 2003-03-17

<COMBOBOX ISENCAPSULATINGPARENT="TRUE">
<INPUT />
<BUTTON />
<POPUP>
<LISTBOX ISENCAPSULATINGPARENT="TRUE"
ISENCAPSULATINGCONTAINER="TRUE">
<SCROLLVIEWER ISENCAPSULATINGPARENT="TRUE">
<SCROLLBAR ISENCAPSULATINGPARENT="TRUE">
<BUTTON />
<BUTTON />
<THUMB />
- <BUTTON />
<BUTTON />
<SCROLLBAR />
<SCROLLBAR ISENCAPSULATINGPARENT="TRUE">
<BUTTON />
<BUTTON />
<THUMB />
<BUTTON />
<BUTTON />
<SCROLLBAR />
<ELEMENT ISENCAPSULATINGCONTAINER="TRUE">
<GRIDPANEL ISENCAPSULATINGCONTAINER="TRUE" >
<LISTITEM>ITEM1</LISTITEM>
<LISTITEM>ITEM2</LISTITEM>
<LISTITEM>ITEM3</LISTITEM>
</GRIDPANEL>
</ELEMENT>
</SCROLLVIEWER>
</LISTBOX>
</POPUP>
</COMBOBOX>

FIG. 13

CA 02422417 2003-03-17

CLASS COMBOBOX : CONTROL

{
PUBLIC COMBOBOX()

{
ELEMENTS.ADD(NEW INPUT());
ELEMENTS.ADD(NEW BUTTON());

// CREATE A POPUP CONTROL CONTAINING A LISTBOX
POPUP POPUP = NEW POPUP());

LISTBOX LISTBOX = NEW LISTBOX();
POPUP.ELEMENTS.ADD(LISTBOX):
THIS.ELEMENTS.ADD(POPUP):

// SETUP ENCAPSULATION SO THAT THE COMBOBOX'S PUBLIC
/| CHILDREN COME FROM THE LISTBOX
THIS.ISENCAPSULATINGPARENT = TRUE;
LISTBOX.ISENCAPSULATINGCONTAINER = TRUE;

;
}

CLASS LISTBOX : CONTROL

{
PUBLIC LISTBOX()

{
/| CREATE A SCROLLVIEWER CONTAINING A GRIDPANEL, AND
// ADD THIS THE LISTBOX'S CHILD
GRIDPANEL GRIDPANEL = NEW GRIDPANEL(),
SCROLLVIEWER SCROLLVIEWER = NEW SCROLLVIEWER();
SCROLLVIEWER.ELEMENTS . ADD(GRIDPANEL);
THIS.ELEMENTS.ADD(SCROLLVIEWER);

/| SETUP ENCAPSULATION SO THAT THE LISTBOX'S PUBLIC
// CHILDREN COME FROM THE GRIDPANEL WITHIN THE

// SCROLLVIEWER

THIS.ISENCAPSULATINGPARENT = TRUE;
GRIDPANEL.ISENCAPSULATINGCONTAINER = TRUE;

FIG.
14A

CA 02422417 2003-03-17

CLASS SCROLLVIEWER : CONTROL

{
PUBLIC SCROLLVIEWER()

{
ELEMENTS.ADD(NEW SCROLLBAR()); // HORIZONTAL SCROLLBAR
ELEMENTS.ADD(NEW SCROLLBAR()); // VERTICAL SCROLLBAR

[l CREATE A NEW ELEMENT AND SET THIS UP AS THE

/I ENCAPSULATING CONTAINER TO THIS ENCAPSULATING PARENT
ELEMENT CONTAINER = NEW ELEMENT();

THIS.ELEMENTS.ADD(CONTAINER):
THIS.ISENCAPSULATINGPARENT = TRUE:
CONTAINER.ISENCAPSULATINGCONTAINER = TRUE:

}
;

CLASS SCROLLBAR : CONTROL

{
PUBLIC SCROLLBAR()

{
ELEMENTS. ADD(NEW BUTTON());
ELEMENTS.ADD(NEW BUTTON());
ELEMENTS. ADD(NEW THUMB());
ELEMENTS.ADD(NEW BUTTON());
ELEMENTS.ADD(NEW BUTTONY());
ISENCAPSULATINGPARENT = TRUE;

FIG. 14B

AERIASERAL — £ A AR AL A Bl RSl elll l Bl AL AL A A

CA 02422417 2003-03-17

1500

1510 ‘/

<COMBO BOX>
<LIST ITEM> ONE </LIST ITEM> 1520
<LIST ITEM> TWO </LIST ITEM> ~—"
<LIST ITEM> THREE </LIST ITEM>
<COMBO BOX>

FIG. 15

COMBOBOX = NEW COMBOBOX (): 1610
COMBOBOX.ELEMENTS.ADD (NEW LIST ITEM (ONE)):
COMBOBOX.ELEMENTS.ADD (NEW LIST ITEM (TWO)):
COMBOBOX.ELEMENTS.ADD (NEW LIST ITEM (THREE))

FIG. 16

CA 02422417 2003-03-17

RECEIVE INDICATION TO ADD
CHILDREN TO A NODE OF
THE HIERARCHICAL
REPRESENTATION OF THE UI
ELEMENT HAVING A
SIMPLIFIED VIEW

SKIP OVER THE HIDDEN
CHILDREN NODES OF THE
HIERARCHICAL
REPRESENTATION OF THE UI

ELEMENT ACCORDING TO
THE DEFINITION OF THE
SIMPLIFIED VIEW

ADD CHILDREN TO THE
APPROPRIATE NODES
ACCORDING TO THE
DEFINITION OF THE
HIERARCHICAL
REPRESENTATION OF THE Ul
ELEMENT WITH A SIMPLIFIED
VIEW

FIG. 17

1710

1720

1730

1700

CA 02422417 2003-03-17

1005
COMBOBOX

IR AT “

FIG. 18
/
/ -~ ~
{ INPUT) PR
N - 1855 [1 poPUP)
[N
1885
/ N
LISTBOX /\
~ 1__. -~
e — -
SCROLLVIEWER
™~ -

‘-d—nl-ﬂ'
L™

A

— S

”
(SCROLLBAR \

1050A

-~

10508 | \ o

Comad || L goren
BUTTON)
. S

a8

1050C

|
\
1850D \ S~

RIDP \ |;
\(3 D ANEL BUTTON\
-

BUTTON)

i A,

THUMB \

amai S,

BUTTON)\

~o
\
R \

4

Ny
P T e, .
(SCROLLBAR)
\ /

/

N

—

A aam _a__a_ama__ amma o ama

CA 02422417 2003-03-17

1905

COMBOBOX

1050A 10508 1050C 1850D

FIG. 19

FIG. 20A

FIG.
20B

2030A

2030A

CA 02422417 2003-03-17

20308 2030C

2000

CA 02422417 2003-03-17

FIG. 21

2100

“%*‘—Mﬂm)m—--.. T e s, (RN

CA 02422417 2003-03-17

2200

\’ 220 e FIG. 22

SCROLLVIEWER

221C
SCROLLBAR

2250

anuiie

- T~

l REPEATER

e -..../\ 2222

TEMPLATE [TEMPLATE
\CONTAINER/ \CONTAINER/

2221

vy ane—

2240
- @ @
2245
- e e

LLUN ----~-~--~quqm~mw~m.-. ERATTYT T di]

T e e 0 A s A G WA g et 1 [y A o AR A d Y

CA 02422417 2003-03-17

2300

FIG. 23

CA 02422417 2003-03-17

CHOOSE A Ul ELEMENT HAVING A
HIERARCHICAL REPRESENTATION

DESIGNATE AT LEAST ONE OF THE
CHILDREN NODES OF THE
HIERARCHICAL REPRESENTATION
TO BE HIDDEN IN SIMPLIFIED VIEW
OF THE HEIRARCHICAL
REPRESENTATION

FIG. 24

2410

2420

a n IR 20N Al o el o andbadhnd dhadhdh el ol B o sl B Y Bl B Y

2400

= i dend s A arrda s d o dun £, Wl 04 f=t g omapyvrid .

1 e N A A Gt = N 0 e PR

CA 02422417 2003-03-17

2500

I'g
<LISTBOX>
<REPEATER DATACOLLECTION = "%BINDTO;">
<LISTITEM>
<TEXT BINDING. TEXTCONTENT=
"%BINDTO;CUSTOMERNAME"/>
</LISTITEM>
</REPEATER>
</LISTBOX>
FIG. 25
2600
r'd

LISTBOX ALISTBOX =NEW LISTBOX();
REPEATER AREPEATER = NEW REPEATER();

// CREATE THE TEMPLATE. HERE THE TEMPLATE IS A
[LISTITEM CONTAINING TEXT BOUND

[/ TO THE 'CUSTOMERNAME' FIELD OF THE DATA ENTITY.

TEMPLATE ATEMPLATE = NEW TEMPLATE();
TEXT TEXTELEMENT = NEW TEXT(ATEMPLATE);
BINDING.SETBINDING(TEXTELEMENT,

BINDING. TEXTCONTENTPROPERTY,
"CUSTOMERNAME"):

AREPEATER.DEFAULTTEMPLATE = ATEMPLATE;

// ADD THE REPEATER AS A CHILD OF THE LISTBOX
ALISTBOX.FULLELEMENTS.ADD(AREPEATER);

FIG.26

S -l Sl iy e aliintvinieriin_ i, sl v S-Sl e S ik -4} ¢ W

CA 02422417 2003-03-17

2700

2710

<DOCKPANEL> /
<REPEATER> '
<IMAGE SOURCE ="%BINDTO: PICTURE"/>
<TEXT BINDING.TEXTCONTENT =
"%BINDTO:CUSTOMERNAME"/>
</REPEATER>
</DOCKPANEL>

FIG. 27

CA 02422417 2003-03-17

<LISTBOX>
<LISTITEM> <LISTITEM>

<LISTITEM> <LISTITEM>
<LISTITEM> <LISTITEM> 2810

<LISTITEM> <LISTITEM> /

<LISTITEM> <LISTITEM>
<LISTITEM> <LISTITEM>
<LISTITEM> <LISTITEM>

<LISTBOX>

FIG. 28

100

110

PRINCIPAL NODE

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - abstract drawing

