
Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

1 
20

2 
16

4
A

2
TEPZZ_ Z _64A T
(11) EP 1 202 164 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.05.2002 Bulletin 2002/18

(21) Application number: 01124696.4

(22) Date of filing: 16.10.2001

(51) Int Cl.7: G06F 7/22, G06F 17/30

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 16.10.2000 US 240071 P
30.04.2001 US 287013 P
26.06.2001 US 888433

(71) Applicant: Raviant Networks
Leawood, KS 66211 (US)

(72) Inventor: Salge, Jason M.
Olathe, Kansas 66062 (US)

(74) Representative: Tönhardt, Marion, Dr.
Forrester & Boehmert,
Pettenkoferstrasse 20-22
80336 München (DE)

(54) Systems and methods for representing variable-length digit strings and for providing
high-performance search operations

(57) Systems and methods providing high perform-
ance data manipulation and searching using a novel da-
ta structure for storing data values. The data structure
includes a length value in combination with a digit-string
data value. The combined length and data value can be
stored in a data structure that may be sorted according
to standard sorting techniques. When a set of data struc-
tures is sorted, the resulting order of the data values can
be employed to increase performance of the data en-
gine. In one embodiment, the length value is stored in
the end portion of the data structure and in another em-
bodiment, the length portion is stored in the beginning
portion of the data structure. Range-based searches
and ambiguity checking operations are also presented
herein.



EP 1 202 164 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] This application claims the benefit of U.S. Pro-
visional Application Number 60/240,071 filed October
16, 2000, U.S. Provisional Application Number
60/287,013 filed April 30, 2001, and U.S. Patent Appli-
cation Number 09/888,433 filed June 26, 2001, all of
which are herein incorporated by reference in their en-
tirety.

BACKGROUND

Field of the Invention

[0002] The present invention relates generally to con-
struction and execution of computing engines for
processing and storing variable-length digit string data
and matching presented values against ranges of val-
ues.

Background of the Invention

[0003] In conventional data processing systems, a
number of different schemes have been used for index-
ing tables of digit strings. The simplest of these schemes
uses a single fixed-length prefix. In a fixed-length prefix
system, the first n digits of a presented digit string are
used to search the table where n is a property of the
table. For example, a table that matches numbers
against North-American Numbering Plan Areas (NPAs
or area codes) might be indexed using a 3-digit, fixed-
size, key. At run-time, the first three digits of the present-
ed digit string would be used to search the table for a
matching row.
[0004] However, such fixed-length tables are not
practical in many cases for routing based on variable
length digit strings, such as telephone numbers. In some
cases, there is a need to differentiate specific numbers
(e.g., subscriber numbers associated with the switch
performing the lookup) while in others one has to match
blocks of consecutive numbers (e.g. numbers associat-
ed with other switches). One conventional attempt to
solve this problem has been to employ multiple fixed-
length prefix tables. As the name implies, use of multiple
fixed-length prefix tables means the data is stored in
more than one table. Each table has a different fixed-
length key to allow application of different search crite-
ria. For example, North American telephone numbers
might be appropriately matched against tables of length
ten digits, six digits, and three digits. The first ten digits
of the presented number (the "subscriber number") may
be used to search the 10-digit table. If a match is found
in this table, the result may be returned. If no match is
found, the first six digits of the presented number (the
"exchange") may be used to search the 6-digit table.
Again, if a match is found, the result may be returned.
Finally, if no match was found in the other tables, the
first three digits of the presented number (the "NPA")

would be used to search the 3-digit table.
[0005] Although the above scheme may be extended
to use more tables to provide additional string matching
criteria, such an approach would not be practical. Such
a scheme would require multiple searches, starting with
the table having the largest prefix and ending with table
having the shortest prefix, until a match is found.
[0006] Common search strategies, not only in the te-
lephony industry but also in database applications in
general, involve exact-matching between the value pre-
sented for lookup (the "presented key") and values pro-
visioned in the table being searched. Alternatively, some
search strategies involve matching only a sub-string of
the presented value against the values provisioned in
the table. Again, the sub-string may be matched exactly.
When the sub-string is taken from the leading digits or
characters of the presented value, this scheme may be
referred to as prefix matching because matching is de-
fined by the provisioned key value being a prefix of the
presented value. An example of a prefix match is that
"913" is a prefix of "913484". For contrast, neither is
"913484" a prefix of "913" nor is "913" a prefix of any of
"91", "92", or "912484".
[0007] Although prefix matching can be useful, it can
also result in extra provisioning. For example, to specify
that a particular action should occur for any telephone
number staring with "913641", "913642", "913643", or
"913644" (but not other numbers starting with "91364"),
one must provision four different rows, one for each of
the prefixes to be matched. It would be simpler if one
could instead specify that a row covered a range, such
as "913641" through "913644".
[0008] In fact, some prefix-based systems include a
user interface that allows the user to specify a range of
numbers and have the appropriate multiple rows be au-
tomatically provisioned. Nevertheless, this is a conven-
ience for the user and does not affect the run-time rep-
resentation: it still requires multiple similar rows.
[0009] Some systems that deal with varying-length
data have used a varying length representation, such
as character strings. A problem with such systems is
that performing operations on such representations,
such as comparing or copying, may involve run-time ex-
ecution loops that process one character at a time. Far
more efficient would be a representation that allows par-
allel processing of the digits in a single operation (or, at
least, a small fixed number of operations).
[0010] If digit strings are converted to corresponding
integer representations or are padded with some pad-
ding digit to a maximal length, then such parallel
processing becomes possible. Unless special digit val-
ues are reserved for padding, however, such represen-
tations can lose track of what is padding and what is not.
A common side-effect is not being able to distinguish
either leading or trailing "0" digits. For example, "123"
and "0123" might both be represented identically as the
integer 123. Alternatively, both "123" and "1230" might
both be represented identically as "1230000".

1 2



EP 1 202 164 A2

3

5

10

15

20

25

30

35

40

45

50

55

[0011] Another representation is designed specifical-
ly for searching: M-ary trees where each node has up
to M possible successor nodes where M is the number
of distinct digit values allowed (or sometimes that
number + 1). Also known as tries, digit trees are
searched by traversing one node for each digit of the
digit string presented; at each level the successor node
is selected according to the corresponding digit of the
digit string. In a given table, digit strings that share a
common prefix will also share initial digit-tree nodes;
they will diverge when the first distinct digit is reached.
Because the search-indexing method and the represen-
tation are so closely bound with each other, digit trees
do not work particularly well for range-based matching.
They can be time-efficient, however, for implementing
prefix matching: the search time is proportional to the
length of the digit string presented and is independent
of the size of the table. Unless a table is densely popu-
lated, however, digit trees tend to be space-inefficient.
The implementation can also be confusing and difficult
for the end-user to provision.

SUMMARY OF THE INVENTION

[0012] Embodiments of the present invention com-
prise systems and methods for implementing a high per-
formance data engine and data representation methods
for optimizing data table operations. The data engine
comprises a computer system including a central
processing unit, a memory and programming logic and
a data table comprising a plurality of data structures for
storing data values. The data structures are made up of
a first portion and a second portion, where the first por-
tion stores a data value and the second portion stores
a length value associated with the data value.
[0013] In one embodiment of the present invention,
the first portion (i.e., the data value) is located in the be-
ginning of the data structure and the second portion (i.
e., the length) is located in the end of the data structure.
When the data table in this embodiment is sorted, if a
first data value comprising N digits and a second data
value comprising at least N+1 digits comprise an iden-
tical string of digits for the first N digits, then the first data
value precedes the second data value in the sorted data
table. In this first embodiment, if a third data value hav-
ing M digits and a fourth data value having at least M
digits, comprise an identical string of digits only for the
first Q digits where Q < M, then the ordering of the third
and fourth data values is determined by the ordering of
the (Q+1)st digit from the third data value and the (Q+1)st

digit from the fourth data value.
[0014] In another embodiment of the present inven-
tion, the first portion (i.e., the data value) is located in
the end of the data structure and the second portion (i.
e., the length) is located in the beginning of the data
structure. When the data table in this embodiment is
sorted, if a first data value comprises N digits and if a
second data value comprising at least N+1 digits then

the first data value precedes the second data value in
the sorted data table. In this embodiment, if a third data
value and a fourth data values both comprise M digits,
and if the third data value and the fourth data value com-
prise an identical string of digits only for the first Q digits
where Q < M, then the ordering of the third and fourth
data values is determined by the ordering of the (Q+1)st

digit from the third data value and the (Q+1)st digit from
the fourth data value.
[0015] Embodiments of the present invention include
systems and methods for high performance data en-
gines using range-based searching techniques made
possible by the data structures presented herein. Other
embodiments of the present invention include new
methods for ambiguity checking in a presented data
string thereby ensuring data processing operations are
efficient and fast.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Figure 1 is a schematic diagram showing a
seven digit maximum digit string represented according
to a first embodiment of the present invention.
[0017] Figure 2 is a schematic diagram showing a
three digit maximum digit string represented according
to a first embodiment of the present invention.
[0018] Figure 3 is a schematic diagram showing a
twenty-eight digit maximum digit string represented ac-
cording to a first embodiment of the present invention.
[0019] Figure 4 is a schematic diagram showing a
twenty-eight digit maximum digit string represented ac-
cording to another implementation of a first embodiment
of the present invention.
[0020] Figure 5 is a schematic diagram showing a
seven digit maximum digit string represented according
to a second embodiment of the present invention.
[0021] Figure 6A is a table showing an ordered se-
quence resulting from sorting a set of digit strings rep-
resented according to a first embodiment of the present
invention.
[0022] Figure 6B is a table showing an ordered se-
quence resulting from sorting a set of digit strings rep-
resented according to a second embodiment of the
present invention.
[0023] Figure 7 is a table showing the external repre-
sentation of the Range Start and Range End values of
four rows used as an example, below.
[0024] Figure 8 is a schematic diagram showing how
rows in a table implemented according to an embodi-
ment of the present invention may be split into multiple
rows.
[0025] Figures 9A through 9B comprise a table show-
ing a sorted enumeration of the valid values according
to a first embodiment of the present invention that allows
between zero and two digits, each digit in the range "0"
through "F". For each digit string value, the digit string's
length and its representation as an integer (in hexadec-
imal notation) are also listed.

3 4



EP 1 202 164 A2

4

5

10

15

20

25

30

35

40

45

50

55

[0026] Figures 10A through 10B comprise a table
showing a sorted enumeration of the valid values ac-
cording to a second embodiment of the present inven-
tion that allows between zero and two digits, each digit
in the range "0" through "F". For each digit string value,
the digit string's length and its representation as an in-
teger (in hexadecimal notation) are also listed.
[0027] Figures 11A through 11H comprise a table
showing a sorted enumeration of the valid values ac-
cording to a first embodiment of the present invention
that allows between zero and three digits, each digit in
the range "0" through "9". For each digit string value, the
digit string's length and its representation as an integer
(in hexadecimal notation) are also listed.
[0028] Figures 12A through 12H comprise a table
showing a sorted enumeration of the valid values ac-
cording to a second embodiment of the present inven-
tion that allows between zero and three digits, each digit
in the range "0" through "9". For each digit string value,
the digit string's length and its representation as an in-
teger (in hexadecimal notation) are also listed.

DETAILED DESCRIPTION OF THE INVENTION

[0029] Embodiments of the present invention provide
systems and methods for construction and execution of
computing engines for processing and storing variable-
length digit string data and matching presented values
against designated ranges of values, while providing:
(1) efficient storage of digit strings, (2) rapid editing of
digit strings, and (3) rapid searching of tables indexed
by such digit strings. Embodiments of the present inven-
tion provide systems and methods for efficient represen-
tation of digit strings, such as for example, telephone
numbers. Efficient representation can both reduce
memory usage and speed processing for associated
computing engines. Using the example of telephone
numbers, embodiments of the present invention may
satisfy one or more of the following requirements:

1. Digit strings, consisting of strings of standard dig-
its ("0", "1", "2", "3", "4", "5", "6", "7", "8", and "9")
and also "overdecadic" (i.e., hexadecimal) digits
("A", "B", "C", "D", "E", and "F"), should be compact-
ly represented.
2. The length of a digit string is significant. All digits,
including any leading or trailing zeroes ("0"), are sig-
nificant and should be neither discarded nor added.
3. Empty (zero-length) digit strings must be repre-
sentable.
4. Depending on context, such as telephony, typical
maximum lengths for digit strings may be, for exam-
ple, four digits (e.g., carrier codes), fifteen digits (e.
g., international telephone numbers), and twenty-
eight digits (e.g., international telephone numbers
with both routing number and dialed number com-
bined in a single field). A family of representations
should handle each of these, and other variations,

efficiently.
5. Comparison of digit strings should, in the math-
ematical sense, define a total ordering. That is, for
all digit strings, X, Y, and Z:

a. exactly one of the relations X = Y, X < Y, or
Y < X holds;
b. if X = Y, then X and Y are identical digit
strings; and
c. if X < Y and Y < Z, then X < Z.

6. The ordering of digit strings should be "useful" for
the applications in which they are used.
7. To make searches efficient, particular attention
should be paid to making comparison of digit strings
fast.
8. Other operations, such as digit manipulation (in-
serting and/or deleting digits, concatenating digit
strings, and the like) should also be efficient.
9. Conversion to and from ASCII (e.g., for data-en-
try and printing or for use with protocols such as in-
tegrated services digital network (ISDN) signaling
protocols) and binary coded decimal (BCD) (e.g.,
for use with Common Channel Signaling System
Number 7 (SS7) ISDN User Part (ISUP) protocols),
or other representations, should also be efficient.

[0030] Of the last three requirements, efficiency of
comparisons is typically the most important requirement
for telephony applications, and may be as important for
other data processing systems. For example, searching
a table containing one million rows, indexed by tele-
phone number, typically requires at least twenty (20)
comparisons per lookup and so the total execution time
of comparisons can become significant. Accordingly, in
some embodiments of the present invention, the other
operations need not be quite as optimized as compari-
son operations. In other embodiments, one or more of
the above requirements may take precedence over one
or more of these or other requirements.
[0031] In addition to efficient representation of digit
strings, such as for example, telephone numbers, the
present invention also provides efficient range-based
searching capabilities as described in more detail in
subsequent sections below.

I. First Exemplary Embodiment

[0032] In a first exemplary embodiment, the present
invention provides systems and methods for represent-
ing digit strings in a format having an underlying repre-
sentation of fixed-width, unsigned, binary integers
wherein a length parameter is included in the least sig-
nificant portion of the data string. Digit strings represent-
ed according to this embodiment may be of arbitrary
size. That is, for example, an embodiment may be used
to represent a set of digit strings, up to seven digits in
length, using a 32-bit integer string. In another example,

5 6



EP 1 202 164 A2

5

5

10

15

20

25

30

35

40

45

50

55

an embodiment may be used for representing 0-3 digit
strings in 16-bit integers, 0-15 digit strings in 64-bit in-
tegers, 0-18 digit strings in 80-bit integers, 0-22 digit
strings in 96-bit integers, 0-30 digit strings in 128-bit in-
tegers, and so on, for any other size that may fit a par-
ticular application. On computers that do not provide na-
tive operations for operating on integers of size greater
than w, where w is the word size, the standard tech-
niques for implementing multi-word integers may be ap-
plied for digit strings larger than w bits.
[0033] The above examples describe digit strings rep-
resented according to an embodiment of the present in-
vention using four bits per digit, thereby allowing only
the digits "0" through "F" to be included in the represen-
tation. While such 4-bit coding is sufficient for current
telephony applications, the present invention encom-
passes digit string representations having alternative
bit-length coding. That is, for example, a particular ap-
plication may only require digit strings comprising only
the digits "0" through "7". In that case, three bits per digit
would be sufficient. The present invention may also be
used to represent more than sixteen possible values for
each digit, in which case more than four bits per digit
would be required for the representation.
[0034] The present invention may be generalized to
digit strings other than telephone numbers. For exam-
ple, within the area of telephony signaling, a carrier iden-
tification code (CIC) or a jurisdiction information param-
eter (JIP) may be represented as described herein. An
example outside the area of telephony signaling is U.S.
Postal ZIP codes, which can be five or nine digits in
length and which have hierarchical significance for the
leading digits. Another example might be a manufactur-
er's part numbers.
[0035] Figure 1 shows an example of a 7-digit (maxi-
mum) string represented according to this embodiment.
In this example, the digit string may be represented as
a 32-bit, unsigned, integer, where the digits of the string
are represented as 4-bit fields (digit fields 1-7 plus length
field 8 in Figure 1). The number is "left-justified" accord-
ing to the following rules:

1. Length field 8 contains the length of the digit
string, which in this example may be a value be-
tween zero and seven.
2. Digit fields 1 through l, where l is the value stored
in length field 8, contains one of the values "0"
through "0xF" (i.e., hexadecimal "F").
3. Digit field l+1 through digit field 7, contains the
value "0".
4. Pad field 9, which, in this example, is part of
length field 8, serves to fill out a complete four bits
in length field 8 and contains the value "0".

[0036] The presence and position of pad fields in digit
strings represented according to this embodiment are
arbitrary. That is, they are illustrated here for the pur-
pose of bringing data into alignment with typical compu-

ter word sizes. Although Figure 1 shows pad field 9 hav-
ing only one bit, comprising the first bit of length field 8,
that extra bit could also be placed at any of several other
positions within the representation without material
change to the invention. Pad field 9 may even be omitted
if the digit strings in this example were stored in thirty-
one (31) bits instead of thirty-two (32) bits.
[0037] The position and size of pad fields (if present)
may be chosen for convenience of implementation. For
example, if the digit fields are each four bits wide, then
placing exactly two pad bits immediately following the
length field might reduce the number of shift operations
needed in implementing some operations.
[0038] Other examples of digit strings represented ac-
cording to this embodiment are shown in Figures 2 and
3. Figure 2 shows a 3-digit (maximum) string stored in
a 16-bit word (with pad field 22 comprising two pad bits,
placed at the end of length field 20). Figure 3 shows a
28-digit (maximum) string stored in four 32-bit words
comprising a 128-bit string. In Figure 3, length field 30
comprises sixteen bits. But, since only five bits are need-
ed to define any possible length for a digit string stored
in this example, the remaining eleven bits are used to
fill a complete 32-bit word for the string. In this example,
the eleven pad bits are stored in different two pad fields:
pad field 32 at the beginning of length field 30 and pad
field 34 at the end of length field 30.
[0039] As noted above, some embodiments may in-
clude no pad bits. For example, the digit string in Figure
3 could be stored in a structure such as that shown in
Figure 4 without loosing any of the advantages afforded
by the present invention. As shown in Figure 4, length
field 40 is five bits in length, and the complete digit string
comprises a 117-bit string.
[0040] Figure 3 also illustrates that digit strings repre-
sented according to this embodiment may cross word
boundaries (if, for example, the implementation is based
upon an underlying 32-bit word-size). On a computer
supporting 64-bit words, only two words would be need-
ed; on a computer supporting 128-bit words, only one
word would be required. Moreover, for representations
that require multiple computer words, the ordering of
those words in memory is not critical and may be chosen
to be suitable for efficiency or convenience of implemen-
tation.
[0041] Figures 9A through 9B enumerate, in ascend-
ing order, all possible values of a 2-digit (maximum)
string stored in a 16-bit word with the length field right-
justified in the last four bits. Each digit may be in the
range "0" through "F". (No "special values" are shown
in the list.)
[0042] Figures 11A through 11H enumerate, in as-
cending order, all possible values of a 3-digit (maximum)
digit string stored in a 16-bit word with the length field
right-justified in the last four bits. Each digit may be in
the range "0" through "9". (Again, no "special values"
are shown in the list.)

7 8



EP 1 202 164 A2

6

5

10

15

20

25

30

35

40

45

50

55

a. Handling of Special Values

[0043] In many database and other applications, in
addition to the storing actual data values there may be
a need to store one or more special values to indicate
special circumstances. For example, to represent the
fact that a telephone number is not present or such, the
application may need to represent a null value which is
different from any legitimate telephone number or data
value for the application. For telephony applications,
comparison between telephone numbers and null val-
ues in order to determine equality or inequality may also
be supported, whereas comparison in order to deter-
mine ordering (i.e., the < comparison) need not be sup-
ported. This embodiment may accommodate such spe-
cial values. For example, in a representation having a
length field containing zero, a non-zero value in any of
the digit fields (which would otherwise be invalid) may
be used to indicate to an application that this is a special
value that may require non-standard handling. The spe-
cific values placed in those fields may be used to distin-
guish distinct special values.

b. Operations on Digit Strings

[0044] Copying the value of a digit string represented
according to this embodiment to a variable represented
as digit string of the same representation size is imple-
mented as direct copying of the underlying integers.
That is, assignment (in the programming language
sense of that word) is implemented by direct copying of
the underlying representation.
[0045] Figure 5 shows an example of a 7-digit (maxi-
mum) string represented according to this second em-
bodiment. In this example, the digit string may be rep-
resented as a 32-bit, unsigned, integer, where the digits
of the string are represented as 4-bit fields in a manner
similar to the first embodiment, as depicted in Figure 1.
In the second embodiment, however, pad field 50 pre-
cedes (at the most-significant end of the integer) the dig-
it fields 51 through 57 instead of following (at the least-
significant end of the integer) those digit fields.
[0046] Conversion of digit strings according to this
embodiment between differing representation sizes
may be implemented by masking off the length field,
shifting the digits as a group to the appropriate position
in the new representation, and then adding back the
length. In cases where a larger digit string representa-
tion is to be converted to a smaller digit string represen-
tation, a designer may choose how to implement the
conversion in a manner appropriate for the particular ap-
plication. This may be occur, for example, if new repre-
sentation is too small to accommodate the actual length
of the value being converted. One possible implemen-
tation, for example, may comprise a rule such that, when
converting from a 15-digit (maximum) string represen-
tation according to this embodiment, to a 7-digit (maxi-
mum) string representation, values with lengths of zero

through seven may be converted precisely whereas val-
ues with lengths of eight through fifteen may be truncat-
ed to include only the seven left-most digits. Another
possible implementation would be to raise an error con-
dition whenever the source (i.e., the digit string value to
be converted) has a length greater than the maximum
length allowed for the destination (i.e., the digit string
representation to which conversion is being attempted).
[0047] Comparison of digit strings according to this
embodiment of the present invention may be imple-
mented as simple (unsigned) integer comparison when
the same representation format is used. This is possible
because digit string represented according to the
present invention, comprising a length field positioned
in the least-significant bits of the string yields an appro-
priate lexicographic ordering of the strings.
[0048] Deleting trailing digits from a digit string ac-
cording to this embodiment may be implemented by
masking off and clearing the digits to be deleted and also
decreasing the value stored in the length field appropri-
ately.
[0049] Deleting leading digits from a digit string ac-
cording to this embodiment may be implemented by
masking off the length field, shifting the digits left, and
then reinserting a length field containing the new length
value.
[0050] Concatenating two in a digit strings according
to this embodiment may be implemented by masking off
the length field of the right operand (i.e., the second
string), shifting the digits right to the appropriate posi-
tion, and merging with the left operand (i.e., the first
string). The value stored in the length field of the result
would then have to be increased by the length value of
the right operand. Again, a given implementation may
define appropriate behavior to accommodate the situa-
tion in which the sum of the two operands' lengths ex-
ceeds the maximum value allowed for the length field.
[0051] Deleting digits from the middle of a digit string
according to this embodiment or inserting one string into
the middle of another requires slightly more complex
shifting and masking, but the implementation of each
case would be apparent to a skilled programmer.
[0052] Computing the successor of a digit string ac-
cording to this embodiment (i.e., the next legitimate digit
string in a sequence of digit strings implemented accord-
ing to this embodiment) may be implemented in the fol-
lowing manner. First compare the value stored in the
length field with the maximum length value allowed by
the particular representation. If the value is less than the
maximum (e.g., seven in a 7-digit (maximum) string)
then the successor may be obtained by adding a "0" digit
at the right end, thereby increasing the length value by
one. Because unused digits should already contain "0",
this can be accomplished by just incrementing the
length field. Otherwise, if the length field is already at
the maximum, then the successor may be obtained by
incrementing the last digit in the string (e.g., the seventh
digit in a 7-digit (maximum) string). If that digit carries

9 10



EP 1 202 164 A2

7

5

10

15

20

25

30

35

40

45

50

55

over, for example, from "F" to "0", then the successor
may be obtained by decreasing the length value by one
and incrementing the preceding digit, repeating similarly
for preceding digit positions if there are any further car-
ry-overs. If this results in decrementing the length to ze-
ro and carrying out of the first digit field, then the original
digit string must have been the maximum value allowed
by the representation (e.g., all "F"s), for which the suc-
cessor is not well defined. In this case an implementa-
tion-specific error-behavior may be implemented.
[0053] Similarly, computing the predecessor of a digit
string according to this embodiment (i.e., the next legit-
imate digit string in a sequence of digit strings immedi-
ately preceding the given string) may be implemented
by testing the lth digit of the string, where l is the length
value of the given string. If the lth digit has a value of
"0", the predecessor may be obtained by decrementing
the value in the length field. Otherwise, if the lth digit is
non-zero the predecessor may be obtained by decre-
menting the value in the lth digit, and, if l is not already
the maximum length, change all following digits (i.e.,
l+1, l+2, and so on) to the maximum digit value (e.g.,
"F"), and change the value in the length field to the max-
imum length value (e.g., to seven for a 7-digit (maxi-
mum) string). If the original length, l, is zero, then there
are no digits to be examined and the original digit string
must have been the zero-length string, for which the
predecessor is not well defined. In this case an imple-
mentation-specific error-behavior may be selected.
[0054] As would be apparent to one skilled in the art,
there are many equivalent algorithms for computing the
various useful operations on digit strings according to
this embodiment. Some of these algorithms may be
more efficient than others. For example, the increment-
ing of digits described above for computing the succes-
sor operation might in some cases be performed using
a single addition operation. A loop is only needed to lo-
cate the last non-zero digit so that the length can be set
appropriately. Furthermore, for certain target computer
architectures and floating-point representations, this
loop might be replaced with an appropriate non-looping
sequence of negation, masking, and convert-integer-to-
floating-point operations.
[0055] Although the above examples use a digit range
comprising the digits "0" through "F", other digit ranges
may be accommodated. For example, if a particular ap-
plication uses only digits "1" through "9" references to
digit values of "0" or "F" in the above examples would
apply to the values "1" and "9", respectively.

II. Second Exemplary Embodiment

[0056] A second exemplary embodiment of the
present invention comprises a digit string representation
format having the length field at the most-significant end
of the underlying integer. Digit strings according to this
embodiment still employ an underlying representation
of fixed-width, unsigned, binary integers. By shifting the

length field to the most-significant end of the string, the
sort order for a sequence of digit strings is changed. As
will be described in more detail below, the sort order
yielded by digit strings according to either the first or sec-
ond embodiments of the present invention may be ad-
vantageously used to simplify many digit string prob-
lems.
[0057] Figures 10A through 10B enumerate, in as-
cending order, all possible values of a 2-digit (maximum)
string stored in a 16-bit word with the length field right-
justified in the first four bits. Each digit may be in the
range "0" through "F". (No "special values" are shown
in the list.)
[0058] Figures 12A through 12H enumerate, in as-
cending order, all possible values of a 3-digit (maximum)
string stored in a 16-bit word with the length field right-
justified in the first four bits. Each digit may be in the
range "0" through "9". (Again, no "special values" are
shown in the list.)
[0059] All of the operations listed above that may be
performed on embodiments including a length field at
the end of the digit string may implemented in a similar
manner for embodiments including a length field at the
beginning of the digit string.
[0060] Special values, as described above, may be
similarly implemented in embodiments including a
length field at the beginning of the digit string.

III. Ordering of Digit Strings

[0061] The digit string representation according to the
first embodiment provides an ordering that is roughly
equivalent to the standard rules for lexicographic (alpha-
betical) ordering:

1. If one digit string value is a prefix of the other,
longer, digit string value (i.e., the digit strings are
identical for the first n digits of each, where n is the
minimum of their lengths), then the shorter string
precedes the longer one. For example, "1234" pre-
cedes (is less than) both "12340" and "12345".
2. If neither digit string value is a prefix of the other
(i.e., the digit strings differ anywhere in the first n
digits of each, where n is the minimum of their
lengths), then the ordering of the two strings is de-
termined by the ordering of the leftmost (most sig-
nificant) non-matching, correspondingly positioned,
digits. For example, "12345678" precedes
"123480" because "5" precedes "8".
3. As a result of these rules, the full range of digit
strings according to the first embodiment may be
ordered as shown in Figure 6A (with omissions de-
noted by "..."). The example shown in Figure 6A pro-
vides ordering for strings comprising digits "0"
through "F" and is not bounded by a maximum string
length.
4. The very last value in the ordered sequence of
digit strings would consist of a string comprising on-

11 12



EP 1 202 164 A2

8

5

10

15

20

25

30

35

40

45

50

55

ly the maximum digit allowed in a particular imple-
mentation repeated up to the maximal length of the
string. For example, if the maximal length is seven
and the maximal digit in the string is "F", then the
last legitimate value in the sorted sequence would
be "FFFFFFF".

[0062] In contrast to the above sorting rules, the digit
string representation according to the second embodi-
ment provides an ordering that is roughly equivalent to
the standard rules for numerical ordering except that
leading zeros are significant:

1. If the digit strings are of different length, then the
shorter one precedes the longer one.
2. If the digit strings have the same length but not
the same value, then the ordering of the two digit
strings is determined by the ordering of the leftmost
non-matching, correspondingly-positioned, digits.
For example, "1234" precedes (is less than) "1280"
because "3" precedes "8".
3. As a result of these rules, the full range of digit
strings according to the second embodiment may
be ordered as shown in Figure 6B (with omissions
denoted by "..."). As with the first embodiment, the
very last value would consist of all maximum digit
values (e.g., all "F"s) to whatever the maximal
length is for a particular implementation.

IV. Range-Based Searches

[0063] Unlike some conventional searching tech-
niques, the present invention allows range-based
matching at run-time. That is, instead of matching only
a single presented key value, rows in a range-based ta-
ble implemented according to the present invention may
match ranges of presented key values. Each row is pro-
visioned with both a Range Start value and a Range End
value (with the former less than or equal to the latter).
No two rows are allowed to have overlapping ranges.
When searching with a particular presented key value,
the row selected is the one that indicates a range that
contains that key value. That is, when searching for the
value X, the row matched will be the one where Range
Start ≤ X ≤ Range End. If there is no row provisioned
with a range that includes the presented key value, then
the search fails.
[0064] Because the ranges of rows are not allowed to
overlap, the rows may be uniquely ordered. Either the
Range Start or the Range End value may be used for
this sort operation; the ordering will be the same in either
case. Searches of range-based tables can use normal
sort-based indexing techniques, such as binary search
or various forms of trees. For example, the table may
be searched for the row containing the largest Row Start
value that is less than or equal to the presented value.
If such a candidate row is found, then it can be validated
as a match by comparing the Range End value of the

candidate row with presented value. If the Range End
value is greater than or equal to the presented value,
then the row would be considered a match. On the other
hand, if the Range End value is less than the presented
value, then no matching row exists. (Alternatively and
equivalently, a search may locate the row with the small-
est Range End value that is greater than or equal to the
presented value and then verify that the Range Start val-
ue of that row for is less than or equal to the presented
value.)

a. Using Digit Strings in Conjunction with Range-
Based Searches

[0065] In embodiments of the present invention, digit
strings may be used as the keys with range-based ta-
bles. For example, such tables can be used to control
processing and routing of telephone calls according to
blocks of contiguous numbers.
[0066] There is little difference between the first and
second embodiments, described above, other than the
ordering of values. That is, either representation can be
implemented with about the same efficiency with re-
spect to storage requirements and also with respect to
computation. Because the values for the two represen-
tations sort quite differently, however, each representa-
tion may be useful for particular applications.
[0067] An embodiment including a length field at the
end of the digit string is particularly useful for range-
based searches where digit strings that have the same
leading digits should be grouped together. For example,
routing of telephone calls according to the called
number typically involves using some number of leading
digits and ignoring trailing digits that follow. In this case,
only the leading digits are significant, regardless of the
length of the number. Digit strings expressed according
to this embodiment may also be useful for range-based
searches of ZIP codes, which, like telephone numbers,
are hierarchical in nature.
[0068] An embodiment including a length field at the
beginning of the digit string is particularly useful for
range-based searches where digit strings that have a
particular length should be grouped together. For exam-
ple, in an abbreviated dialing application, it may be pref-
erable to distinguish 4-digit abbreviations from 7-digit
and 10-digit numbers. 4-digit numbers might be inter-
preted as extension numbers within a company where-
as 7-digit and 10-digit numbers would be interpreted as
external numbers. In this case, the fact that a 4-digit and
a 10-digit number happen to have the same leading dig-
its should not be considered relevant.
[0069] Many applications using an embodiment in-
cluding a length field at the beginning of the digit string
may be similar to prefix matching with respect to match-
ing a range of values based upon leading digits and ig-
noring the remaining digits. For example, to match any
value starting with "913" or "914", a row may be created
with a Range Start value of "913" and a Range End val-

13 14



EP 1 202 164 A2

9

5

10

15

20

25

30

35

40

45

50

55

ue of "913FFFFFF..." with as many "F"s appended as
will fit in the particular representation being used. The
data provisioner (i.e., data-entry person or application)
for such a row should not, however, have to know what
the underlying representation is and so should not have
to know how many "F"s to append. In fact, the provision-
er may not even know what the maximum digit value is.
For example, in some applications it might be "F" while
in other it might be "9" or even "Z" or some other value.
[0070] To this end, it may be useful to adopt a notation
for Range End values that allows for automatic filling
with trailing maximum digit values (such as "F"s). In
many applications, only some, not all, Range End val-
ues should be so padded with the maximum digit value.
For example, to route operator-assisted calls with the
North American Numbering Plan, it may be preferable
to distinguish four categories of numbers used to call
operators: "0", "00", "0"+number (e.g., "02024561414"),
and "00"+number. Although there are many syntactic
mechanisms that may be used to indicate whether to
pad or not, one such mechanism is the following:

• Range End values to be padded with the maximum
digit may be represented externally by following the
significant digits with a "+" character.

• Range End values not to be padded may be repre-
sented externally by following the significant digits
with a "-" character.

[0071] Figure 7 shows how the four rows indicated
above may be represented according to this method.
[0072] Alternative external representations of Range
End values are possible, perhaps involving prefices
and/or suffices. Other representations might omit the
suffix from one of the two meanings. Two examples of
such other syntaxes include:

• "+" (or "*") suffix for padding, no suffix for no padding
• no suffix for padding, "." (or "!") suffix for no padding

[0073] Note that explicitly requiring a suffix to appear
on every Range End value may have value because it
may help remind the data-entry person to explicitly de-
cide which behavior is appropriate

b. Row Splitting

[0074] Although overlapping and nested ranges are
prohibited, the provisioning system may make special
allowance for provisioning ranges within ranges by au-
tomatically splitting the original containing range as
needed. For example if a range-matching table uses an
integer for its key, row 80 (in Figure 8) covering the range
"2" through "8" may initially be added to a table. An op-
erator may later wish to change the behavior (i.e.,
change the other data values) associated with some val-
ues that form a sub-range of this original range. In this
case, an editing command can be used to create a new

row covering the range "4" through "7". Figure 8 shows
an example of a typical editing command in arrow 82.
As a result of this command, the table grows to three
rows. Row 84 covers the range "2-3". Row 86 covers
the range "4-7". Row 88 covers the range "8-8". The
Range Start value of row 84 is the original Range Start
(i.e., for row 80) while the Range End value of row 88 is
the original Range End value. The Range Start and
Range End values for row 86 reflect the updated sub-
range.
[0075] Depending upon the Range Start and Range
End values specified, an edit of a range-based row may
result in one, two, or three replacement rows, represent-
ing the unchanged sub-range above the update (if any),
the updated sub-range, and the unchanged sub-range
below the update (if any).
[0076] Similarly, deletions from a range-based table
may result in a row being replaced by zero, one, or two
new rows, representing the unchanged sub-range
above the deletion (if any) and the unchanged sub-
range below the deletion (if any).
[0077] Due to row-splitting, the following four provi-
sioning operations, executed in the order shown, will re-
sult in the same rows as shown in Figure 7:

• create a row for the range "0" through "0+"
• edit the sub-range "0" through "0-"
• edit the sub-range "00" through "00+"
• edit the sub-range "00" through "00-"

c. Row Merging

[0078] To reduce the number of rows stored in a table,
an implementation may also choose to merge rows that
cover adjacent ranges and are identical except for the
range bounds. That is, if the end of one row's range is
immediately followed by the beginning of another row's
range and the two rows are identical other than their
ranges, then they can be merged. The Range Start val-
ue for the new row would be copied from the Range Start
value of the first row and the Range End value would be
copied from the Range End value of the second row. All
other values in the merged row would be the same as
the (identical) values in the both of the original rows.
[0079] Row-merging may, for example, be performed
following any update or create operation. In this case,
the modified (or newly created) rows may each be
checked against both the preceding and following rows
for possible merging with one, the other, or both.

d. Fully vs. Partially Populated Tables

[0080] Embodiments of the present invention include
at least two distinct models for range-based tables, fully
populated and partially populated. An implementation of
range-based searches may use either of these models
as described below.
[0081] In a fully populated table, the provisioning rules

15 16



EP 1 202 164 A2

10

5

10

15

20

25

30

35

40

45

50

55

may guarantee that the following constraints are met at
all times:

1. There is at least one row in the table.
2. The first row's range will start at the first possible
digit string (e.g., the null string, "").
3. The last row's range will end at the last possible
digit string (e.g., a string comprising all maximum
digit values, such as all "F"s).
4. Each intermediate row's range will start immedi-
ately following the end of the range for the preced-
ing row.
5. Each intermediate row's range will end immedi-
ately before the start of the range for the following
row.

[0082] The net effect of implementing these rules in
an embodiment is that every possible presented value
will match exactly one row.
[0083] One advantage of fully populated tables is that
the Range End value need not be explicitly stored with
each row. For all but the last row, it can be derived from
the Range Start value of the following row. The Range
End value of the last row in the table would be the last
possible string (e.g., "F"s). (Alternatively, the Range
Start value could be omitted and computed from the
Range End value of the preceding row).
[0084] In a partially populated table, the provisioning
rules may include a less stringent guarantee:

1. No two rows are allowed to have overlapping
ranges. The net effect of this rule is that every pos-
sible presented value will match either one row or
no rows.

[0085] There may be some consequences associated
with each of the two models presented above. First, for
partially populated tables, appropriate actions may need
to be defined for the case where no row is matched dur-
ing a search. Second, for fully populated tables, create
and delete operations do not really exist; instead such
operations may be defined as special cases of update
operations that may split (or join) rows. In the case of
deletions, appropriate default values may have to be
provided for non-key values in the row. Such values
might come, for example, from adjacent rows or from
table-wide defaults or from some other source.

e. Compound Keys, Partially Range-Based

[0086] Range-based keys may be used as part of
compound keys. Typically, only one range-based key
makes sense in such compound keys; the other com-
ponents should be exact match. For example, under
SS7 and related standards, traditional telephone num-
bers are qualified by a Nature of Address (NOA) and
Numbering Plan Indicator (NPI). To handle this, there
would be four key values specified for each row of this

table: NOA, NPI, Digits Start, and Digits End. The row
selected, if any, would be the one for which the present-
ed NOA and NPI values exactly match the correspond-
ing provisioned keys in the row and for which the pre-
sented digits were within the range Digits Start through
Digits End, as provisioned in that row.
[0087] Depending upon the context, it might be appro-
priate to merge the exact-match fields and the range-
based digit strings into a single representation for the
purposes of searching. For example, in the case of SS7
telephone numbers, one might instead have Range
Start and Range End values that each incorporate the
NOA and NPI as leading digits, prepended to the digit
string representation. At the expense of representing
the NOA and NPI values twice (once each in the Range
Start and once each in the Range End), so doing would
allow all three of the NOA, NPI, and the variable number
of digits to be compared in a single comparison opera-
tion, thereby speeding searches.

f. Ambiguity Checking

[0088] In some situations, all digits of a number may
not be available at once. For example, many European
telephony signaling systems deliver digits in batches.
Under such an "overlapped dialing" scheme, it is some-
times impossible to know whether a presented number
is complete or incomplete without knowing the details of
the numbering plan at the ultimate destination (which
might even be a private branch exchange programmed
by a customer). Instead, each switch in the path of a call
is expected to wait only until it has received enough dig-
its to uniquely determine the path for the call. Any digits
beyond this minimum may be ignored (but should, of
course, be passed on).
[0089] The combination of range-based searching
with the ordering of values defined by the first embodi-
ment of the present invention, described above, is par-
ticularly appropriate for solving the problems associated
with overlapped dialing, and other such situations re-
quiring ambiguity checking. As a result of representing
the digit strings according to the first embodiment, the
sorting order provides that each value immediately pre-
cedes all other values of which that value is a prefix.
That is, if P is a digit string and PZ is another digit string
such that P is a prefix of PZ, then either

1. PZ will appear immediately after P in the sorting
order, or
2. PZ will appear after P and will be separated from
P only by other digit strings, PY1, PY2, ..., PYn,
where P is also a prefix of each of those other digit
strings.

[0090] Because of this property, if row merging is per-
formed whenever possible, then it is easy to determine
whether the arrival of more digits might affect the result
of a search: one need look only at the row matched by

17 18



EP 1 202 164 A2

11

5

10

15

20

25

30

35

40

45

50

55

the digits received thus far or the immediately following
row. For the fully populated model, this algorithm is sim-
ple; for the partially populated model it is only slightly
more complex; each of them are considered in turn.
[0091] In each case below, assume that V is the pre-
sented key value and that FF(x) is an idempotent func-
tion that returns a value computed from its parameter,
x, by padding it on the right with as many maximum digits
(e.g., all "F"s) as are allowed by the particular represen-
tation. Note that all strings of which V is a prefix, and
only such strings, will be contained in the range V
through FF(V).
[0092] For fully populated tables, the following rules
may be applied:

1. Find the row matching (containing) V.
2. If the range of that row also contains FF(V), then
the addition of more digits cannot affect the result.
3. If the range of that row does not contain FF(V),
then the addition of more digits might affect the re-
sult because a following row might be selected.
That is, the current result is ambiguous. (Remem-
ber the assumption that adjacent, similar, rows will
have been merged.)

[0093] For partially populated tables, the following
rules may be applied:

1. Find the row matching (containing) V (if there is
one).
2. If such a row exists, then if the range of that row
also contains FF(V), then the addition of more digits
cannot affect the result.
3. Again if such a row exists, then if the range of
that row does not contain FF(V), then the addition
of more digits might affect the result because either
because a following row might be selected or be-
cause no row might be matched. That is, the current
result is ambiguous.
4. If no row is found that matches (contains) V, then
instead find the first row that has a Range Start that
is greater than V (if there is one). That is, look for
the row that has the smallest Range Start that ex-
ceeds V. (An optimization note: This row will be the
one immediately following the position of a row that
would have matched V and so can probably be
found during the same search operation as the un-
successful search for a matching row.)
5. If no such row is found, then the value V must
follow the ranges of all rows in the table (or the table
might have no rows at all). In this case, then the
addition of more digits cannot affect the result.
6. If such a following row is found, then compare FF
(V) with the Range Start value of that row.
7. If FF(V) is less than the Range Start value of the
following row, then the addition of more digits can-
not affect the result: no row can be matched no mat-
ter what digits are appended to V.

8. If FF(V) is greater than or equal to the Range Start
value of the following row, then the addition of more
digits might affect the result: V has no matching row
but adding digits might result in a match. That is,
the current result is ambiguous.

[0094] Because the actual search operations per-
formed are similar, whether more digits might arrive or
not, the above rules can be implemented toward the end
of a table search operation: if all digits are known to be
present, then do not perform any special ambiguity
checking. On the other hand, if more digits might arrive,
then also perform the above-specified ambiguity check-
ing and if result is ambiguous, then choose an appropri-
ate action (such as gathering more digits and then
searching again).

V. Generality of the Present Invention

[0095] Although this description of the invention may
use examples related to the field of telephony, it is also
suitable for other environments.
[0096] The foregoing disclosure of the preferred em-
bodiments of the present invention has been presented
for purposes of illustration and description. It is not in-
tended to be exhaustive or to limit the invention to the
precise forms disclosed. Many variations and modifica-
tions of the embodiments described herein will be ap-
parent to one of ordinary skill in the art in light of the
above disclosure. The scope of the invention is to be
defined only by the claims appended hereto, and by their
equivalents.
[0097] Further, in describing representative embodi-
ments of the present invention, the specification may
have presented the method and/or process of the
present invention as a particular sequence of steps.
However, to the extent that the method or process does
not rely on the particular order of steps set forth herein,
the method or process should not be limited to the par-
ticular sequence of steps described. As one of ordinary
skill in the art would appreciate, other sequences of
steps may be possible. Therefore, the particular order
of the steps set forth in the specification should not be
construed as limitations on the claims. In addition, the
claims directed to the method and/or process of the
present invention should not be limited to the perform-
ance of their steps in the order written, and one skilled
in the art can readily appreciate that the sequences may
be varied and still remain within the spirit and scope of
the present invention.

Claims

1. A high performance data engine comprising:

(a) a computer system including a central
processing unit, a memory and programming

19 20



EP 1 202 164 A2

12

5

10

15

20

25

30

35

40

45

50

55

logic; and
(b) a data table comprising a plurality of data
structures, wherein each of said data structures
includes at least a first portion and a second
portion, said first portion storing a data value,
said second portion storing a length value as-
sociated with the data value,

wherein, when the plurality of data structures
are sorted in the data table, if a first data value com-
prising N digits and a second data value comprising
at least N+1 digits comprise an identical string of
digits for the first N digits, then the first data value
precedes the second data value in the sorted data
table,

wherein if a third data value comprising M dig-
its and a fourth data value comprising at least M dig-
its comprise an identical string of digits only for the
first Q digits where Q < M, then the ordering of the
third and fourth data values is determined by the
ordering of the (Q+1)st digit from the third data value
and the (Q+1)st digit from the second data value.

2. The high performance data engine of claim 1,
wherein the first portion precedes the second por-
tion in the data structure.

3. The high performance data engine of claim 1,
wherein the data table further comprises a plurality
of rows, each of said rows comprising a set of data
structures.

4. The high performance data engine of claim 3,
wherein each of said rows further comprises a start
range value, wherein said start range value identi-
fies a first member of the set of data structures com-
prising each of said rows.

5. The high performance data engine of claim 3,
wherein each of said rows further comprises an end
range value, wherein said end range value identi-
fies a last member of the set of data structures com-
prising each of said rows.

6. The high performance data engine of claim 3,
wherein each of said rows further comprises a start
range value and an end range value, wherein said
start range value identifies a first member of the set
of data structures comprising each of said rows
and , wherein said end range value identifies a last
member of the set of data structures comprising
each of said rows.

7. A high performance data engine comprising:

(a) a computer system including a central
processing unit, a memory and programming
logic; and

(b) a data table comprising a plurality of data
structures, wherein each of said data structures
includes at least a first portion and a second
portion, said first portion storing a data value,
said second portion storing a length value as-
sociated with the data value,

wherein, when the plurality of data structures
are sorted in the data table, if a first data value com-
prises N digits and a second data value comprises
at least N+1 digits, then the first data value pre-
cedes the second data value in the sorted data ta-
ble,

wherein, if a third data value and a fourth data
value both comprise M digits, and if the third data
value and the fourth data value comprise an identi-
cal string of digits only for the first Q digits where Q
< M, then the ordering of the first and second data
values is determined by the ordering of the (Q+1)st

digit from the first data value and the (Q+1)st digit
from the second data value.

8. The high performance data engine of claim 7,
wherein the second portion precedes the first por-
tion in the data structure.

9. The high-performance data engine of claim 1 for
use in data processing operations in the field of te-
lephony.

10. The high-performance data engine of claim 1
wherein the data strings comprise telephone num-
bers.

11. The high-performance data engine of claim 1
wherein the data strings comprise postal routing
codes.

12. A high performance data engine comprising:

(a) a computer system including a central
processing unit, a memory and programming
logic; and
(b) a plurality of data structures, wherein each
of said data structures includes at least a first
portion and a second portion, said first portion
storing a data string, said second portion stor-
ing a length value associated with the data
string;

wherein, each data structure has a predeter-
mined fixed width, and

wherein the data string in each data structure
represents a digit string of length zero or more, up
to a predetermined maximum length, wherein said
maximum length corresponds to a number of sub-
fields provided in the first portion of the data struc-
ture.

21 22



EP 1 202 164 A2

13

5

10

15

20

25

30

35

40

45

50

55

13. The high performance data engine of claim 12,
wherein each of said data structures comprises an
unsigned integer used in manipulation and compar-
ison operations in a computing process.

14. The high-performance data engine of claim 12 for
use in data processing operations in the field of te-
lephony.

15. The high-performance data engine of claim 12
wherein the data strings comprise telephone num-
bers.

16. The high-performance data engine of claim 12
wherein the data strings comprise postal routing
codes.

17. The high performance data engine of claim 12,
wherein each of said data structures comprises a
multi-word unsigned integer used in manipulation
and comparison operations in a computing process.

18. The high performance data engine of claim 12,
wherein the length value follows the digit string the
data structure so that it is considered less significant
in a comparison operation, yielding a sorting order
for a first digit string having a first length value and
a second digit sting having a second length value
wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,
then the digit string having shorter length value
precedes the data string having the longer
length value; otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-
ond data strings.

19. The high performance data engine of claim 12,
wherein the length value precedes the data value
so that it is considered more significant in a com-
parison operation, yielding a sorting order for a first
digit string having a first length value and a second
digit sting having a second length value wherein:

(a) if the first length value is not equal to the
second length value, then the digit string having
shorter length string precedes the digit string
having the longer length, otherwise
(b) if the first length value is equal to the second
length value and if the first digit string is not

equal to the second digit string, then the order-
ing of the first and second digit strings is deter-
mined by an ordering of a leftmost non-match-
ing, correspondingly positioned, digit in the first
and second digit strings

20. The high performance data engine of claim 12,
wherein the plurality of data structures are organ-
ized into a plurality of rows in a data table, wherein
each row comprises a set of data structures and a
start range value identifying a first member of the
set of data structures comprising each of said rows.

21. The high-performance data engine of claim 20,
wherein each start range value is stored in a data
structure in a row.

22. The high-performance data engine of claim 21
wherein the length value follows the digit string the
data structure so that it is considered less significant
in a comparison operation, yielding a sorting order
for a first digit string having a first length value and
a second digit sting having a second length value
wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,
then the digit string having shorter length value
precedes the data string having the longer
length value; otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-
ond data strings.

23. The high-performance data engine of claim 20,
wherein an ambiguous digit string is detected using
a special comparison operation with a candidate
matching row or a row following the candidate
matching row.

24. The high-performance data engine of claim 20, fur-
ther comprising an end range value identifying a last
member of the set of data structures comprising
each of said rows.

25. The high-performance data engine of claim 24,
wherein each end range value stored in a data
structure in a row.

26. The high-performance data engine of claim 25
wherein the length value follows the digit string the
data structure so that it is considered less significant

23 24



EP 1 202 164 A2

14

5

10

15

20

25

30

35

40

45

50

55

in a comparison operation, yielding a sorting order
for a first digit string having a first length value and
a second digit sting having a second length value
wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,
then the digit string having shorter length value
precedes the data string having the longer
length value; otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-
ond data strings.

27. The high-performance data engine of claim 24,
wherein an ambiguous digit string is detected using
a special comparison operation with a candidate
matching row or a row following the candidate
matching row.

28. The high performance data engine of claim 12,
wherein the plurality of data structures are organ-
ized into a plurality of rows in a data table, wherein
each row comprises a set of data structures and an
end range value identifying a last member of the set
of data structures comprising each of said rows.

29. The high-performance data engine of claim 28,
wherein each end range value is stored in a data
structure in a row.

30. The high-performance data engine of claim 29,
wherein the length value follows the digit string the
data structure so that it is considered less significant
in a comparison operation, yielding a sorting order
for a first digit string having a first length value and
a second digit sting having a second length value
wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,
then the digit string having shorter length value
precedes the data string having the longer
length value; otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-

ond data strings.

31. The high-performance data engine of claim 28,
wherein an ambiguous digit string is detected using
a special comparison operation with a candidate
matching row or a row following the candidate
matching row.

32. The high performance data engine of claim 12,
wherein the plurality of data structures are organ-
ized into a plurality of rows in a data table, wherein
each row comprises a set of data structures and a
start range value identifying a first member of the
set of data structures comprising each of said rows
and an end range value identifying a last member
of the set of data structures comprising each of said
rows.

33. The high-performance data engine of claim 32,
wherein each start range value and each end range
value is stored in a data structure in a row.

34. The high-performance data engine of claim 33,
wherein the length value follows the digit string the
data structure so that it is considered less significant
in a comparison operation, yielding a sorting order
for a first digit string having a first length value and
a second digit sting having a second length value
wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,
then the digit string having shorter length value
precedes the data string having the longer
length value; otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-
ond data strings.

35. The high-performance data engine of claim 32,
wherein an ambiguous digit string is detected using
a special comparison operation with a candidate
matching row or a row following the candidate
matching row.

36. The high-performance data engine of claim 32 for
use in data processing operations in the field of te-
lephony.

37. The high-performance data engine of claim 32,
wherein the data strings comprise telephone num-
bers.

25 26



EP 1 202 164 A2

15

5

10

15

20

25

30

35

40

45

50

55

38. The high-performance data engine of claim 32,
wherein the data strings comprise postal routing
codes.

39. A method for high performance data processing,
said method comprising:

storing a plurality of data structures in a data
table, wherein each of said data structures in-
cludes at least a first portion and a second por-
tion, said first portion storing a data value, said
second portion storing a length value associat-
ed with the data value; and
sorting the data table wherein, if a first data val-
ue comprising N digits and a second data value
comprising at least N+1 digits comprise an
identical string of digits for the first N digits, then
the first data value precedes the second data
value in the sorted data table,

wherein, if a third data value comprising M
digits and a fourth data value comprising at least M
digits comprise an identical string of digits only for
the first Q digits where Q < M, then the ordering of
the first and second data values is determined by
the ordering of the (Q+1)st digit from the first data
value and the (Q+1)st digit from the second data val-
ue.

40. The method of claim 39, wherein the first portion
precedes the second portion in the data structure.

41. The method of claim 39, wherein the data table fur-
ther comprises a plurality of rows, each of said rows
comprising a set of data structures.

42. The method of claim 41, wherein each of said rows
further comprises a start range value, wherein said
start range value identifies a first member of the set
of data structures comprising each of said rows.

43. The method of claim 41, wherein each of said rows
further comprises an end range value, wherein said
end range value identifies a last member of the set
of data structures comprising each of said rows.

44. The method of claim 41, wherein each of said rows
further comprises a start range value and an end
range value, wherein said start range value identi-
fies a first member of the set of data structures com-
prising each of said rows and , wherein said end
range value identifies a last member of the set of
data structures comprising each of said rows.

45. A method for high performance data processing,
said method comprising:

creating a data table comprising a plurality of

data structures, wherein each of said data
structures includes at least a first portion and a
second portion, said first portion storing a data
value, said second portion storing a length val-
ue associated with the data value; and
sorting the data table wherein, if a first data val-
ue comprises N digits and a second data value
comprises at least N+1 digits, then the first data
value precedes the second data value in the
sorted data table, and

wherein, if a third data value and a fourth data
value both comprise M digits, and if the third data
value and the fourth data value comprise an identi-
cal string of digits only for the first Q digits where Q
< M, then the ordering of the third and fourth data
values is determined by the ordering of the (Q+1)st

digit from the third data value and the (Q+1)st digit
from the fourth data value.

46. The method of claim 45, wherein the second portion
precedes the first portion in the data structure.

47. The method of claim 45, wherein the data strings
comprise telephone numbers.

48. The method of claim 45, wherein the data strings
comprise postal routing codes.

49. A method for high performance data processing,
said method comprising creating a plurality of data
structures, wherein each of said data structures in-
cludes at least a first portion and a second portion,
said first portion storing a data string, said second
portion storing a length value associated with the
data string wherein, each data structure has a pre-
determined fixed width, and wherein the data string
in each data structure represents a digit string of
length zero or more, up to a predetermined maxi-
mum length, wherein said maximum length corre-
sponds to a number of sub-fields provided in the first
portion of the data structure.

50. The method of claim 49, wherein each of said data
structures comprises an unsigned integer used in
manipulation and comparison operations in a com-
puting process.

51. The method of claim 49, wherein the data strings
comprise telephone numbers.

52. The method of claim 49, wherein the data strings
comprise postal routing codes.

53. The method of claim 49, wherein each of said data
structures comprises a multi-word unsigned integer
used in manipulation and comparison operations in
a computing process.

27 28



EP 1 202 164 A2

16

5

10

15

20

25

30

35

40

45

50

55

54. The method of claim 49, wherein the length value
follows the digit string the data structure so that it is
considered less significant in a comparison opera-
tion, yielding a sorting order for a first digit string
having a first length value and a second digit sting
having a second length value wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,
then the digit string having shorter length value
precedes the data string having the longer
length value, otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-
ond data strings.

55. The method of claim 49, wherein the length value
precedes the data value so that it is considered
more significant in a comparison operation, yielding
a sorting order for a first digit string having a first
length value and a second digit sting having a sec-
ond length value
wherein:

(a) if the first length value is not equal to the
second length value, then the digit string having
shorter length string precedes the digit string
having the longer length, otherwise
(b) if the first length value is equal to the second
length value and if the first digit string is not
equal to the second digit string, then the order-
ing of the first and second digit strings is deter-
mined by an ordering of a leftmost non-match-
ing, correspondingly positioned, digit in the first
and second digit strings.

56. The method of claim 49, wherein the plurality of data
structures are organized into a plurality of rows in a
data table, wherein each row comprises a set of da-
ta structures and a start range value identifying a
first member of the set of data structures comprising
each of said rows.

57. The method of claim 56, wherein each start range
value is stored in a data structure in a row.

58. The method of claim 57, wherein the length value
follows the digit string the data structure so that it is
considered less significant in a comparison opera-
tion, yielding a sorting order for a first digit string
having a first length value and a second digit sting
having a second length value wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,
then the digit string having shorter length value
precedes the data string having the longer
length value; otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-
ond data strings.

59. The method of claim 49, wherein an ambiguous dig-
it string is detected using a special comparison op-
eration with a candidate matching row or a row fol-
lowing the candidate matching row.

60. The method of claim 49, further comprising an end
range value identifying a last member of the set of
data structures comprising each of said rows.

61. The method of claim 60, wherein each end range
value stored in a data structure in a row.

62. The method of claim 61 wherein the length value
follows the digit string the data structure so that it is
considered less significant in a comparison opera-
tion, yielding a sorting order for a first digit string
having a first length value and a second digit sting
having a second length value wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,
then the digit string having shorter length value
precedes the data string having the longer
length value; otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-
ond data strings.

63. The method of claim 60, wherein an ambiguous dig-
it string is detected using a special comparison op-
eration with a candidate matching row or a row fol-
lowing the candidate matching row.

64. The method of claim 49, wherein the plurality of data
structures are organized into a plurality of rows in a
data table, wherein each row comprises a set of da-
ta structures and an end range value identifying a

29 30



EP 1 202 164 A2

17

5

10

15

20

25

30

35

40

45

50

55

last member of the set of data structures comprising
each of said rows.

65. The method of claim 64, wherein each end range
value is stored in a data structure in a row.

66. The method of claim 65, wherein the length value
follows the digit string the data structure so that it is
considered less significant in a comparison opera-
tion, yielding a sorting order for a first digit string
having a first length value and a second digit sting
having a second length value wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,
then the digit string having shorter length value
precedes the data string having the longer
length value, otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-
ond data strings.

67. The high-performance data engine of claim 28,
wherein an ambiguous digit string is detected using
a special comparison operation with a candidate
matching row or a row following the candidate
matching row.

68. The method of claim 49, wherein the plurality of data
structures are organized into a plurality of rows in a
data table, wherein each row comprises a set of da-
ta structures and a start range value identifying a
first member of the set of data structures comprising
each of said rows and an end range value identify-
ing a last member of the set of data structures com-
prising each of said rows.

69. The method of claim 68, wherein each start range
value and each end range value is stored in a data
structure in a row.

70. The method of claim 69, wherein the length value
follows the digit string the data structure so that it is
considered less significant in a comparison opera-
tion, yielding a sorting order for a first digit string
having a first length value and a second digit sting
having a second length value wherein:

(a) if the first digit string is identical to second
digit string, for the first n digits of the first and
the second digit strings, where n is the mini-
mum of the first and the second length values,

then the digit string having shorter length value
precedes the data string having the longer
length value; otherwise
(b) if the first and second digit strings differ an-
ywhere in the first n digits of the first and the
second data strings, then the sorting order of
the first and second strings is determined by an
ordering of a leftmost non-matching corre-
spondingly positioned digit in the first and sec-
ond data strings.

71. The method of claim 68, wherein an ambiguous dig-
it string is detected using a special comparison op-
eration with a candidate matching row or a row fol-
lowing the candidate matching row.

72. The method of claim 68, wherein the data strings
comprise telephone numbers.

73. The method of claim 68, wherein the data strings
comprise postal routing codes.

31 32



EP 1 202 164 A2

18



EP 1 202 164 A2

19



EP 1 202 164 A2

20



EP 1 202 164 A2

21



EP 1 202 164 A2

22



EP 1 202 164 A2

23



EP 1 202 164 A2

24



EP 1 202 164 A2

25



EP 1 202 164 A2

26



EP 1 202 164 A2

27



EP 1 202 164 A2

28



EP 1 202 164 A2

29



EP 1 202 164 A2

30



EP 1 202 164 A2

31



EP 1 202 164 A2

32



EP 1 202 164 A2

33



EP 1 202 164 A2

34



EP 1 202 164 A2

35



EP 1 202 164 A2

36



EP 1 202 164 A2

37



EP 1 202 164 A2

38



EP 1 202 164 A2

39



EP 1 202 164 A2

40


	bibliography
	description
	claims
	drawings

