US 20190057064A1

a2y Patent Application Publication (o) Pub. No.: US 2019/0057064 A1

a9y United States

Bonk et al.

(54) METHOD AND COMPUTING DEVICE FOR
FACILITATING DATA SAMPLE TESTING

(71) Applicant: WORKIVA INC., Ames, 1A (US)

(72) Inventors: John Bonk, Ann Arbor, MI (US); Ryan
Gilsdorf, Des Moines, 1A (US); James
Michael Morse, Adel, IA (US); Jason
Aguilon, Louisville, CO (US); David
Andrew Haila, Ames, [A (US);
Matthew Sanders, Highlands Ranch,
CO (US); Patrick Corwin Kujawa,
Missoula, MT (US); Robert Reed
Becker, Missoula, MT (US); Sean
Martin Kelly Burke, Missoula, MT
(US); Stephen Bush, Missoula, MT
us)

(21) Appl. No.: 15/681,960

(22) Filed: Aug. 21, 2017

108a

43) Pub. Date: Feb. 21, 2019
Publication Classification
(51) Inmt. Cl
GO6F 17/18 (2006.01)
GO6F 17/16 (2006.01)
GO6F 17/30 (2006.01)
GO6F 3/0486 (2006.01)
(52) US. CL
CPC GO6F 17/18 (2013.01); GOGF 3/0486

(2013.01); GOGF 17/30958 (2013.01); GO6F
17/16 (2013.01)

(57) ABSTRACT

A method for facilitating the testing of a data sample
involves a computing device carrying out the following
actions: displaying a data sample on a user interface; receiv-
ing, via the user interface, a selection of a test to be
performed on the data sample; receiving, via the user
interface, an input of a result of the test; generating, in a
graph database, a vertex representing a visual indicator
corresponding to the input result; and creating, in the graph
database, an association between the vertex representing the
visual indicator and a vertex representing a file containing
the displayed data sample.

Client

114
Saa$ Platform 12 a PgOdf?vStiVity
oftware
Software Queue ;
108 /\ 108
ST ==
] S
e ok
e
W
/ Queue
~116

Network

Program

106b %

Patent Application Publication Feb. 21,2019 Sheet 1 of 23 US 2019/0057064 A1

100a
112

w

o

=]
> :

Q

=

D =

0
7y
\

I
i

X0
L1 Queue Q§Q%§§§Q//zf/
~116
104a
(Client l
ngmm /104
Network
104b 102

106a
(Client]
Pm?mm ~106

Patent Application Publication Feb. 21,2019 Sheet 2 of 23 US 2019/0057064 A1

202\ Processor

[x External

Memory ™\.206A

204~ Primary |1 > Secondary
Memory RN Memory \-206

Graphical
User Interface |™-219

208~ Userinput |1 > -
Devices ™\ Display 210
e
213 "~ 100, 104

106, 108
\/

21 2\ Network
interface

FIG. 2

=

2

i € Old

g

(=)

2

wn

=

m SlieH p3 ¥ g4 €0dVv'0 isenbey uoneindod [g]

M 90(suep ¥ g4 20dV 9 1senbay uonejndod [0]

m aumo.g uesng e ur 10dV"0 Isanbay uoneindod [q] paje|dwon
o JIANOISSY dlvaana ATLIL MSVYL

&

S oLe 80€ 90€ ¥0€ 208

=

: oo/ o/ e/ o/ | o/
g 1s3101 31dAVS OL M3INTY OL d31S3nd3y aN3S Ol uopejndog
.m 0olL2313S BOI99
5 ONILS3LT0MINGD NOLLDII ; $183NDIY 98d TV 7 s1s9nbay |1y
[~™

= 1s8nboy MaN
g Nrm\+

S

lw a 0ZXOS 7 Jeap ﬁ ybnoJyIeM - L aseyd S1S3NOD3AY
<«

=

g X~ o0¢

Patent Application Publication Feb. 21,2019 Sheet 4 of 23 US 2019/0057064 A1
Atiribute
424~ Attrbute_Matrix | festsfor | Atribute
- name / - label
430 - order
432 - Name
™ - description 426
- fest
[Comnle - data Type
L_Samole N 4o ad
Attribute
431 7 for step
¥ ¥
Test_Phase Test_Step
- name - label
- testerNotes - order 447
- dueDate - description
- reviewerNotes
- staﬁ?ate P Test sfiep for g
- conclusion test of contro
- completionDate By o, s 402~
Dy | Test_of_Control Control
-id Validates | -id
- dueDate /’ 1 - description
- completionDate 406 - name
- name
- conclusion
-fotaiSampleSize [™~404

- allowbleExceptions

FIG. 4A

Patent Application Publication Feb. 21,2019 Sheet 5 of 23 US 2019/0057064 A1

o iie;;ﬁfar
412 437\jaﬁribme 458~
Markup 433~| Attribute_Data | Explained by | Footnote
- result - result N ™ - @display
- dala 480 ~orde;r: ,
- pagelndex 435~_| Data - description
- i for sample
enca_ding OF 422~ 4 p
- version p—
P . N Atibute 424~
rom population e i g o
atta%hiﬁem - description matix sam\fie » Attribute Matrix
- location Vil !
P (450 | paich N
434 Sample_request D;Oé@ 427 Pooula
- name /(4281 Sample S;}ri;lae ion
@ - description 454 \] request
E - location e ¥ 414~
2 - batch ' tii‘?& 2@8 = Population
- - id 416 | mname
452 . % - - description
request | fﬁ“egdt? Population P
wi - Instructions request
456 - dateRequested
S Fllefor | ~notes
sample - 1RSpONSe
v + request
) Request
File 4 ?{?23\ tasked by
- fileName \ Y
- annotationKey 418 Task_Proxy Next
~ mime - faskid Task
- fileStorageObjectid . ,
- fileStorageResourceld le 420~ _ Supplemental file

FiG. 4B

US 2019/0057064 A1

Feb. 21,2019 Sheet 6 of 23

Patent Application Publication

G 'Old

yse] 0] 05

SHSEL ||V M3IA

9102 ‘2 Aepy ang
Buussqg yeuueH Aq paubissy

‘Bununosoe Aq paubisod ‘sjeaosdde pue suondooxa
BuipJebal sowow pue s198ys Buiyoel) JUBAS|SI SpNRUY|
‘9102 Mdy - Alenuer Jo syjuow

ay} Buunp 000'01$ JOA0 USJLIM SHIBYD [|E JO }SI| B apIAoid
ases|d - L0'dy D |041u09 Joj 1sanbai uonejndod e s siy |

L0'dV'9 - ¥senbay uonje|ndod
syse) Buimo)|o) ayy paubisse usaq aAey NOA

:s)}sanbay uonendod X0OS

3SOdINOD

jfrew3

=

s

S

2 9 'Ol 009

X

3

wn

=

8

S

~

(=

2

~ 09

2

= aumolg uesng SOUOT 149qoy | 1deg 10dVY'D - 1sanbay uonendod o

s auMolg uesng SOUOI QoY | 1deg y0dvy'D - 1sanbay uonendod o PajeaI0 A
5 sysel AW
= auMolIg uesng SOUOT 18q0Y | 1deg L0dVY'D - 188nbay uonendod o

= J

A sysel ||V
g dINMO d3dvd3add »3lvd 3ana \ 311IL

.m a 0Q0] :moys \ syse]

=

< [

£ ¢09

=

[~™

US 2019/0057064 A1

Feb. 21,2019 Sheet 8 of 23

Patent Application Publication

L 'Old

-
8

»

80/ 90/
ﬁ [eosddy Joj Jugng g H yse| ajebajog g

s9|l4 [IV Moys 9|l } &7
0.
_ so|14 peojdn eg _ \
20/ $308Y9 JO 18I SIY} dA0idde pue malnal ases|d
10dV HY asuodsay Inoj
s|lejaq |oJ3u0) 10dV'O - 1s9nbay uoijeindod
olld | E]

s9|14 ajdwexs / 9oua19)9y

LS Ue uo yuog uyor Aq pajsanbay

10dV"D ¥senbay uone|ndod

US 2019/0057064 A1

Feb. 21,2019 Sheet 9 of 23

Patent Application Publication

8 'Old
yuog auep ¥ 994 £0dV'D 1sanbay uonendod MaIASY o
c08~_ .
auUMOIg uesng L¢ uep L0dY'D 1sanbay uoneindod MoIASY o paje|dwon
J3ANOISSY a1va ana AL MSVL
o|dwes
uonendod
®! Q O] 7 O ©0 |eJauss)
I1dAVS OL M3IAFH OL d31s3n03d aN3S OL s1s0nbay [V
NOILO3T3S FTdINVS $1S3n0D3Y NOILYINdOd M 1senbay moN
T0CX0S | Jesp [4 yBnoaypiem - 1 7 aseyd S1S3N03N

US 2019/0057064 A1

Feb. 21,2019 Sheet 10 of 23

Patent Application Publication

1B

-]

»

006 ~ 6 'Old
$%08Y0 JO 18I] SIY} arcidde pue maiaal asea|d
T>o‘_&< : wnjey g
\v06 906 juog uyor
34 | &1_~206

}sonbay jeuibp moysg
LS uep uo yuog uyor Aq paiedaid

sa|id peoldn

‘sl uone|ndod papiwgns syuog uyor aroidde pue mainal ases|d

10dV’ D }sonbay uojendod mainay

Patent Application Publication Feb. 21,2019 Sheet 11 of 23 US 2019/0057064 A1

CheckID Descriptor Date Issued Signer Amount
ck-001 food 5/1/2016 John Hancock 10,000.00
1000 ck-002 and 5/1/2016 Curly-Fine 10,000.00
e ck-003 stuff 5/1/2016 Moe-Fine 10,000.00
ck-004 food 51112016 Larry-Fine 10,000.00
ck-005 and 5/1/2016 Curly-Fine 10,000.00
ck-006 stuff 5/1/2016 Moe-Fine 10,000.00
ck-007 food 51/2016 Larry-Fine 10,000.00
ck-008 and 5/1/2016 Curly-Fine 10,000.00
ck-009 stuff 5/1/2016 Moe-Fine 10,000.00
ck-010 food 5/1/2016 Larry-Fine 10,000.00
ck-011 and 5/1/2016 Curly-Fine 10,000.00
ck-012 stuff 5112016 Moe-Fine 10,000.00
ck-001 food 5/1/2016 Larry-Fine 10,000.00
ck-002 and 5/1/2016 Curly-Fine 10,000.00
ck-003 stuff 5/1/2016 Moe-Fine 10,000.00
ck-004 food 5/1/2016 Larry-Fine 10,000.00
ck-005 and 5/1/2016 Curly-Fine 10,000.00
ck-006 stuff 5/1/2016 Moe-Fine 10,000.00
ck-007 food 51112016 Larry-Fine 10,000.00
ck-008 and 5/1/2016 Curly-Fine 10,000.00
ck-009 stuff 5/1/2016 Moe-Fine 10,000.00
ck-010 food 5/1/2016 Larry-Fine 10,000.00
ck-011 and 5/1/2016 Curly-Fine 10,000.00
ck-012 stuff 5/1/2016 Moe-Fine 10,000.00

FIG. 10

US 2019/0057064 A1

Feb. 21, 2019 Sheet 12 of 23

Patent Application Publication

Ll "Old
oom://
yuog suerf ACE uoRos|eg sjdwes £0dv'0 (&)
yuog uyor 8¢ uer uopos|eg ajdwes L0dvD [g] pajeldwo)
80¢ JIANOISSY 3lva3and 1L MSVYL
\ o|dwes
90¢ 140 c0¢
uonejndod
/@N / OF / ©c /@o ITENED
J1dIAVS OL M3IATYE OL CEIRERNE)] UN3S OL sis8nbay [
NOILOFTAS A1dINVS S1S3NDAY NOLLYINdOd ﬁ 1senbay maN

S1S3N03d

Patent Application Publication Feb. 21,2019 Sheet 13 of 23 US 2019/0057064 A1

1202 1204
// //

Select From | list_of _checks.csv v“ 10 :Jof24 Rows 1Randomizej[lmport Selection

Check ID Description Date Issued Signer Amount

ck-001 food 2016-05-01 John Hancock 10,000.00
ck-002 and 2016-05-01 Curly-Fine 10,000.00
ck-003 stuff 2016-05-01 Moe-Fine 10,000.00
ck-004 food 2016-05-01 Larry-Fine 10,000.00
ck-005 and 2016-05-01 Curly-Fine 10,000.00
ck-006 stuff 2016-05-01 Moe-Fine 10,000.00
ck-007 food 2016-05-01 Larry-Fine 10,000.00
ck-008 and 2016-05-01 Curly-Fine 10,000.00
ck-009 stuff 2016-05-01 Moe-Fine 10,000.00
ck-010 food 2016-05-01 Larry-Fine 10,000.00
ck-011 and 2016-05-01 Curly-Fine 10,000.00
ck-012 stuff 2016-05-01 Moe-Fine 10,000.00
ck-001 food 2016-05-01 Larry-Fine 10,000.00
ck-002 and 2016-05-01 Curly-Fine 10,000.00
ck-003 stuff 2016-05-01 Moe-Fine 10,000.00
ck-004 food 2016-05-01 Larry-Fine 10,000.00
ck-005 and 2016-05-01 Curly-Fine 10,000.00
ck-006 stuff 2016-05-01 Moe-Fine 10,000.00
ck-007 food 2016-05-01 Larry-Fine 10,000.00
ck-008 and 2016-05-01 Curly-Fine 10,000.00
ck-009 stuff 2016-05-01 Moe-Fine 10,000.00
ck-010 food 2016-05-01 Larry-Fine 10,000.00
ck-011 and 2016-05-01 Curly-Fine 10,000.00
ck-012 stuff 2016-05-01 Moe-Fine 10,000.00

1200—" FIG. 12A

US 2019/0057064 A1

Feb. 21, 2019 Sheet 14 of 23

Patent Application Publication

aci 'old
\.oomr
00°000°01 oul4-Aue 10-G0-910¢ poo) L0040 Al
00°000°01 aul4-Ae 10-60-910¢ Pooy 10010 Al
00°000°01 aul4-Aung 10-G0-9102 pue b0 (Al
00°000°0} Sui4-30)\ 10-G0-910¢ inis 600310 Al
00°000°01 %00dueH uyor 10-G0-9102 Hnis €00-%0 (Al
Junowy Jaubig panss| ajeq uonduosaq ai%99ys A
uonos|ag uodu) 7 Tmmmm 7 SMOY $Z10 G ASO'SH0BUDJO1SI | wolq 199]88

US 2019/0057064 A1

Feb. 21,2019 Sheet 15 of 23

Patent Application Publication

A saunjeubls anndexs 7 wauod | sinjeubis suiex3 q
sJojaweled joquod
pajoadxs yojew sjielep
” SJEp JUBWISSINGSID WLLCD 8je(] sulexd V| SYd e Jeyi uLyuo) | sjieleq ¥osy wiyuoy |
¢Isal uonduasa(sInquURY aweN Aynqupy anquly uonduasa(dejg Isal dajg isal 19piQ
SALNdIFLLY / Sd31S 1531
LI0Z XOS —-10dV'D sdseyd isal

anss| 109[0S
L10Z X0S

anbiuyoa] Bunssl 199198
SSOUBAIJSYT 189 109[9S
palinbay uone|ndod 10998
Jaguinu Japug

Jjaquinu Jsjug

1X8) Jajug

alep 10919S

anssi sasodx3g
weiboud ul 3s9]
anbiuyoa) bunse)
SSOUIAIJIAYD 1S9
uoljejndod e saainbay
suondaosx3 ajgemo|y
ozig 9|dwes [ejo)
uoIsn|ouo?

ajeq uoyajdworn

plemiog oy - € yBnoaupiem - | MIIAYIAO

US 2019/0057064 A1

Feb. 21,2019 Sheet 16 of 23

a¢l 'old v\oomr

SNOISNTONOD
[sowoogppy |
S3LONL0OOA
Nvmr Tmmsamm aidwes ;ng Tsm_z 0} sejdwies u_oi
(0) &1 | 0070000} aul4-Aue 10-60-9102 pooj 100 | §
(0) & | 0070000} aul4-Ale 10-60-910Z pooj 100 | ¥
(0) &1 | 0070000} aul4-AUnQ 10-60-9102 pue oo | ¢
(0) &1 | 0070000} aUI4-30 10-60-9102 #ms 600 | ¢
(0) B2 | 00°000°0L | >oooue uyor 10-60-9102 4mis 2000 | 1

S374d INNOWV HANOIS aanssi3Lvd NOILAIMOSAA QIMO3HD
ONILS3L 3LNGIYLLY
uondiosap ﬁ 1sanbay Hgd MeN

}sanbay uonejndod

(1)E1 Muog uyor owspesisiyl pejeidwo) /10Z-70-Z0 uoneindod ¢4y yv - jsenbai uoyeindod

s9|14 Japinoig uonduosaq sniels ang adAL
papeojdn 1s89nbay 1889nbay 189nbay 1senbay 1sanbay Ql 1senbay
S1s3noad
piemiod |loYy - ¢ ybBnosypjiem - | MIIAIBAQ

SJUSWIWOY 8Selyd1s9] ppy Modx3

(s) By W7

Patent Application Publication

US 2019/0057064 A1

Feb. 21,2019 Sheet 17 of 23

Patent Application Publication

Nomr 2¢1 "OlId v\oom_\
Tm%cmm a|dweg maN _ TEm_\,_ 0] sojdweg ppy _
(0)E1| 0000004 | ®uI4-0N | 10-60-910C 4nis 00§
(0)E3 | 000000} | BuI+-AUND | 10-G0-9L0Z pue oo | ¥
(OJET | 00°0000) | dud-ALET| 10-60-910Z poo} lo¥ | €
@® @ ()E 0000001 | 8u4-AUnd | 10-G0-9L02 pue 60030 | ¢
2® | @ | (& 00000004 | 8u4-AunD | 10-60-9102 pue oo | 1
¢ X-v-¢ g7 V-l seid junowy Jsublg panssiejeq uonduoseg Q] %93y9
ONILS3L 3LNgIdLLY
ﬁ 1s9nbay Dgd MeN
(Q)E1| yuoguyor | 8douBpIAS %08YD apiaoid asesld | paledwod | /10Z-9Z-10 a|dweg L0dY'D - 1s8nbay ajdwies
00001 $ 4910 UspUM
(1)EQ | suog uyor | $498yo |[e Jo sl e apinoid esesld | pejedwiod | £10Z-0€-10 | uoleindod | £0dy"D - isenbay uojeindod
000°01§ J9A0 ushLM
(1)1 Muog uyor | syo8yo [le Jo }si| e apiaoid ases|d | pejedwo) | /10z-82-10 | uoieindod | 10dVD - 1senbay uojeindod
pPlemiod ||oYy - ¢ wreul - g ybBnoaypjiem - | MIIAIBAO
sjuswwo) Jodx3

Bunse] yeig

8 ¥

US 2019/0057064 A1

Feb. 21,2019 Sheet 18 of 23

Patent Application Publication

00v1L

vl 'Old
Tmm:com deal) : jpouen g
\oLvl
woil so|l4 peojdn o | solid 93uasRsey
[« [uewylo 3iepy | ,AQ papiroid
T_ - 10998 - _ Ag poysonbay
9071~
80UPIAS %080 olpads apinoid eses|d LSuononisuj }senbay
AN LL0Z/vIZ | +9nQ 1sanbay
Noil 15anbay sjdwes | ,apiL Isenbay
N
00°000°0} aul4-Aung 10-60-910¢2 pue 1000 | G [A]
00°000°0} aul4-Aue 10-60-9102 pooj 0% | v [A]
00°000°01 aul-Aue 10-60-910¢ poOo) oo | ¢ [z
00°000°01 8uI{-80\ 10-60-910¢ Hns 600 | ¢ [Al
00°000°01 aul4-Alng 10-G0-910¢ pue €00 | 1 [A]
unowy Jaubig penssj ajeq uonduasaq aiyo9yn [] .sedweg jsanbay

US 2019/0057064 A1

Feb. 21,2019 Sheet 19 of 23

Patent Application Publication

00S1
Sl 'Ol4 s
\wom_\ \vomv
_ [eaoiddy Joy M_E%mw _ yse| ajebajeq
Nomr/
/ 9|4 L B | 00°000°0} aul4-Aung 10-G0-9102 pue L0010
/ o4 L &1 | 00°000°04 aul{-Aue 10-G0-910¢ pooj L0010
/ oli4 L &1 | 00°000°0} oul4-Ale 10-60-910¢ pooj HO-M0
/ S9ll4 ¢E] | 00°000°0) SUI{-90\ 10-G0-910¢2 gns 60010
S oli4 L &1 | 00°000°04 aul4 And 10-G0-910¢ pue £00-40
S37id d3avoldn LNNOWY H3ANOIS a3anssialva NOILdI¥OS3a aio3Hd

oju| jeuolippy ppy
10dV'O
s|iejaQ j04u0)

o4 | B]
sajl4 ajdwex3 / aoudiajey

L Uer uo yuog uyor Aq patedald

"MOJ Yoes 0} sayij Beup Jo peojdn 03 30110
"s9|l Bunsoddns Buipeojdn Ag a1eidwion
asuodsay Inoj

9OUBPIAS 03D J1j19ads apiroid ases|d
¥ "qad anp — L0dV'D }senbay ajdweg

= .
m 91 "9Old 00¢ /A
i
S
(=)
3
[99]
=)
Q
S
&
2 ¢091
= /
n. yuog uyor ¥ 094 1 0dVY 0 1sanbay s|dwes, MOINSY paje|dwion
=
= 80¢ JaANOISSY 31va 3and 31111 MSVL
\ 9|dweg
g / 90¢ 14015 c0¢ uonendoy
£ ®0 / Q) / @0 /@o [eJaus9)
w 1S31 01 M3IATH OL d31S3Nn03 aN3S Ol sisenbey [Iv
[~™
.m ONILSTL TOYLINOD S1S3N03Y ITdINVS _ 1senbay mapN
]
2
Z A 02 XOS _ Jea) ﬁ a Ubnoiypiepm - 1 | 9seyd S1S3aNd3N
=
5
[~™

US 2019/0057064 A1

Feb. 21, 2019 Sheet 21 of 23

Patent Application Publication

001
Ll 'Old ¥
— anoiddy g ﬁ pabbe|q uinjoy y
) 841 | 000000} aul4-AunD 10-60-9102 pue LLO-Y0
© 841 | 000000} aul4-ALie 10-60-91.02 pooy 0100
S 841 | 000000} sui4-AueT 10-50-9102 pooj L0010
@ \ sald g | 0000001 8Ul4-80\ 10-60-910Z ynis 900-%0
® \ o4} | 000000°0L| MoooueH uyor 10-60-910Z pue 200-%0
M3IATY « S37I4 a3avoldn INNOWY ¥ANSIS @anssialva NOILdIMOS3AA I YO3HD
v0LL 20/1 N
Q0.1
$9]14 0 &3] juog uyor
s9|i4 papeojdn
] jsenbay [euIbLIg Moys "$9|ly uonendod papILigns $YUOG UYOr MBIASI 8ses|d
[B ¢ uer uoyuog uyor Aq pasedaid P "qo4 anp — LodVv’' 9 }sonbay sjdwesg
»

US 2019/0057064 A1

Feb. 21, 2019 Sheet 22 of 23

Patent Application Publication

V8l "Old

\.oow_\

o (2)E| 87 79701 | MoooueH uyor| 9102-82-80| "dioo Dgy 01 Juswihed| 190666

sinsey [IM|r I [HIOd]3|aloa[v|ea] o | wunowy | Ag peubis dje(uopduoseQ [RRETR)
g /4 |
z £ do1S 5oL 208
N Z 091S 1831
O 10ddns Sayojew JUNoWy 3 \% 8292-7Z9# 90I0AU| OWBN
[] Pauoddns Auadoud st juswhed g STEfoq 001/00 PUE puesnoy} us|
M MNMWNMM_MMM%%MM MM:\NM_MMM 00°000°01$ 9|qBAIB03. S)UNOJDY - Uoneiodion Hgy m%%mw
O] a)ep JusliasIngsip AjueA v 91/32/3
- | do)g ¥sal €00-%0
Bunsel aingLRY /

/#om_‘

=
2
2
S .
2 XAl ()= 8'99%'0) | MO00UBH UYOT | 91,02-82-80) "diod 0@V 0} JuswAed| 190666
synsay [1iMir] 1 [HIo[4|3]alolg|v|| o | wnowy | Agpsubis ajeq uondiosa(aro8uo
e g /4 |
S
8
2 8081 Z181
m a ¢ deig1s9] \ \ 208l
M, N z da1g 1891 [— [
~ O 10ddns Sayojewl JUnowy J %\% El 829279z 800N 12y
=
2 [Pauoddns Alusdo.d sijuswAed q SE 001/00 Pue puesnouj usy
X Papiroud 1gjap oulaw ajenbapy 5 Y 9|gBAIB98 SJUNOJJY - Uoneiodio JO 15P°0
A 9iNeubis wea} sARNoaxs AjLop g 00000018 laen y Voo O 08V oy o1 feg
A a)ep Juswasingsip Ajusp Y 917828 ki
v | daIgisal | S0P N
Bunsal singUpy /

/ 2081

v081

Patent Application Publication

US 2019/0057064 Al

METHOD AND COMPUTING DEVICE FOR
FACILITATING DATA SAMPLE TESTING

TECHNICAL FIELD

[0001] The disclosure relates generally to data testing and,
more particularly, to a method and computing device for
facilitating data sample testing.

BACKGROUND

[0002] Data testing techniques are used in many different
applications, including scientific research, software devel-
opment, and in business. For example, there are laws and
regulations (such as Sarbanes-Oxley (“SOX”)) that require
companies to test their financial controls periodically. One of
the challenges in data testing is gathering and managing the
data to be tested, particularly when the data is spread
throughout an organization.

DRAWINGS

[0003] While the appended claims set forth the features of
the present techniques with particularity, these techniques
may be best understood from the following detailed descrip-
tion taken in conjunction with the accompanying drawings
of which:

[0004] FIG. 1 is a block diagram illustrating an example
networking environment in which various embodiments of
the disclosure may be employed.

[0005] FIG. 2 is a block diagram of a computing device,
according to an embodiment.

[0006] FIG. 3 illustrates a user interface, according to an
embodiment.
[0007] FIG. 4A and FIG. 4B are block diagrams illustrat-

ing data structures within a graph database, according to an
embodiment.

[0008] FIGS. 5-9 illustrate user interfaces according to
various embodiments.

[0009] FIG. 10 illustrates a spreadsheet that may be used
as an input to control testing process, according to an
embodiment.

[0010] FIG. 11, FIG. 12A, FIG. 12B, FIG. 13A, FIG. 13B,
FIG. 13C, FIG. 14, FIG. 15, FIG. 16, FIG. 17, FIG. 18A and
FIG. 18B illustrate user interfaces according to various
embodiments.

DESCRIPTION

[0011] The disclosure is generally directed to a method for
facilitating data sample testing. In an embodiment, the
method involves a computing device carrying out the fol-
lowing actions: displaying a data sample on a user interface;
receiving, via the user interface, a selection of a test to be
performed on the data sample; receiving, via the user
interface, an input of a result of the test; generating, in a
graph database, a vertex representing a visual indicator
corresponding to the input result; and creating, in the graph
database, an association between the vertex representing the
visual indicator and a vertex representing a file containing
the displayed data sample.

[0012] According an embodiment, a method for facilitat-
ing data sample testing involves a computing device carry-
ing out the following actions: receiving an input of a
plurality of data samples, each of the plurality of samples
having a plurality of attributes that are to be tested; gener-
ating a matrix of the plurality of samples and the plurality of

Feb. 21, 2019

attributes; displaying a visual representation of the matrix on
a user interface; visually rendering a data sample of the
plurality of samples on the user interface; detecting a user
interaction with a data sample as rendered on the user
interface, wherein the user interaction indicates a result of a
test on the data sample; and, updating the graph database
with a vertex representing the result, wherein the vertex
representing the result is associated in the graph database
with a vertex representing the data sample.

[0013] In an embodiment, a method for facilitating the
testing of the content of a document involves a computing
device carrying out the following actions: visually rendering
a document; receiving, at a location on the visual rendition
of the document, a user input indicating a result of a test;
displaying a markup on the visual rendition at the location,
wherein the markup visually indicates a result of the test;
generating, in a graph database, a vertex representing the
markup; associating the vertex representing the markup with
a vertex representing the document; and associating the
vertex representing the markup with a vertex representing
the result of the test.

[0014] Various embodiments of the disclosure are imple-
mented in a computer networking environment. Turning to
FIG. 1, an example of such an environment is shown. A first
computing device 100 (e.g., a hardware server or a cluster of
hardware servers) is communicatively linked to a network
102. Possible implementations of the network 102 include a
local-area network, a wide-area network, a private network,
a public network (e.g., the Internet), or any combination of
these. The network 102 may include both wired and wireless
components. Also communicatively linked to the network
102 are a second computing device 104 (e.g., a client
device), a third computing device 106 (e.g., a client device),
and a fourth computing device 108 (e.g., a hardware server
or a cluster of hardware servers).

[0015] It is to be understood that various embodiments
may be carried out on the first computing device 100, the
second computing device 104, the third computing device
106, or other computing devices not depicted, with one or
both the second computing device 104 and the third com-
puting device 106 accessing the first computing device 100
via client programs (labeled 104a and 1064, respectively),
such as thin, web-based clients. In an embodiment, the first
computing device 100 executes productivity software 100a
(e.g., a document editing application, a spreadsheet appli-
cation, etc.) and the third computing device 108 executes
software-as-a-service (“SaaS”) platform software 108a. The
first computing device 100 and the third computing device
108 are communicatively linked to a media storage device
110 (e.g., a memory or a redundant array of independent
disks). Although FIG. 1 depicts the media storage device 110
as a single device, in fact, the media storage device 110 may
be implemented as a single computing device or as multiple
computing devices working together, and may represent a
cloud storage service including multiple storage devices.
[0016] In another embodiment, the productivity software
100a and the SaaS platform software 108a execute on the
same computing device (e.g., the first computing device 100
or the third computing device 108). For example, the pro-
ductivity software 100a could reside on one partition of the
first computing device 100 while the SaaS platform software
108a could reside on another partition of the first computing
device 100. In other embodiments, portions of the produc-
tivity software 100a execute on both the first computing

US 2019/0057064 Al

device 100 and the third computing device 106, and/or
portions of the SaaS platform software 108a¢ may be
executed on both the first computing device 100 and the
third computing device 108. With such network configura-
tions, the second computing device 104 and the third com-
puting device 106 are configured to access the computing
device or devices on which the productivity software 100a
resides.

[0017] Although there may be many types of data stored
on the media storage device 110, the present disclosure will
focus on a graph database 112, which is maintained by the
SaaS platform software 108a, but whose operations are
controlled by the productivity software 100a, which issues
instructions to read from, write to, and modify the contents
of the graph database 112 via the SaaS platform software
108a. Also discussed in this disclosure are a first task queue
114 and a second task queue 116, whose functions will be
described below in more detail.

[0018] In one implementation, one or more of the com-
puting devices of FIG. 1 (including the media storage device
108) have the general architecture shown in FIG. 2. The
computing device of FIG. 2 includes processor hardware
202 (e.g., a microprocessor, controller, or application-spe-
cific integrated circuit) (hereinafter “processor 202”), a
primary memory 204 (e.g., volatile memory, random-access
memory), a secondary memory 206 (e.g., non-volatile
memory), user input devices 208 (e.g., a keyboard, mouse,
or touchscreen), a display device 210 (e.g., an organic,
light-emitting diode display), and a network interface 212
(which may be wired or wireless). Each of the elements of
FIG. 2 is communicatively linked to one or more other
elements via one or more data pathways 213. Possible
implementations of the data pathways 213 include wires,
conductive pathways on a microchip, and wireless connec-
tions. In an embodiment, the processor 202 is one of
multiple processors in the computing device, each of which
is capable of executing a separate thread. In an embodiment,
the processor 202 communicates with other processors
external to the computing device in order to initiate the
execution of different threads on those other processors.
[0019] The memories 204 and 206 store instructions
executable by the processor 202 and data. The term “local
memory” as used herein refers to one or both the memories
204 and 206 (i.e., memory accessible by the processor 202
within the computing device). In some embodiments, the
secondary memory 206 is implemented as, or supplemented
by an external memory 206A. The media storage device 108
is a possible implementation of the external memory 206A.
The processor 202 executes the instructions and uses the
data to carry out various procedures including, in some
embodiments, the methods described herein, including dis-
playing a graphical user interface 219. The graphical user
interface 219 is, according to one embodiment, software that
the processor 202 executes to display a report on the display
device 210, and which permits a user to make inputs into the
report via the user input devices 208.

[0020] This disclosure will sometimes refer to one or more
of'the client program 104a, the client program 1064, and the
productivity software 100a as taking one or more actions. It
is to be understood that such actions may involve only one
of these software entities or may involve two or more.
Possible ways that one or more of these programs could take
an action include: (a) the client program transmitting hyper-
text transport protocol commands such as “Get” and “Post”

Feb. 21, 2019

in order to transmit to or receive information from the
productivity software 100a (e.g., via a web server), (b) the
client program running a script (e.g., JavaScript) to send
information to and retrieve information from the productiv-
ity software 100q, and (c) the client program (e.g., a web
browser) receiving an entry of a uniform resource locator
(e.g., as result of a user selection of a link in a received
email), being directed to a web-based portal, providing input
to the productivity software 1004 via the portal, and receiv-
ing output from the productivity software 100a via the
portal. The productivity software 100a may ultimately
obtain information (e.g., web pages or data to feed into
plugins used by the client programs) from the graph data-
base 112 or the SaaS platform software 108a).

[0021] According to an embodiment, the productivity soft-
ware 100a is able to manage tasks for various users through
the use of the queues 114 and 118. Users are able to view and
manage tasks in their respective queues through user inter-
faces. In one use case, the productivity software 100a
provides a platform that allows an organization to carry out
a test of controls for the purpose of complying with SOX
rules. The examples that follow will incorporate this use
case, and it will be assumed for the sake of illustration that:
the user 1045 is acting in the role of a requester (and will
also be referred to as the requester 1045), the user 1065 is
acting in the role of a provider (and will also be referred to
as the provider 1065), that the first queue 114 holds tasks for
the requester 1045, and the second queue 116 holds tasks for
the provider 1065. Furthermore, when the disclosure refers
to the requester 1045 or provider 1065 as carrying out an
action, the actions are, in fact, carried out by the productivity
software 100a based on input from one or both of the client
programs 104a¢ and 106« (which may have received input
from the requester 1045 and provider 1065, respectively). In
the SOX testing use case, the requester 1045 would typically
be the tester and the provider 1065 would typically be the
control owner. It should also be understood, that the various
techniques described herein are applicable to many other use
cases besides SOX testing.

[0022] In an embodiment, the primary user interface that
the requester 1044 interacts with (e.g., via the client program
104a) is in the form of a dashboard, an example of which is
shown in FIG. 3. The dashboard, generally labeled 300, acts
as home screen for the requester 1045. The dashboard 300
organizes the tasks of the first queue 114 (the task queue for
the requester 1045) by task type, each of which can be
accessed through tabs. The tabs include: (a) “To Send” tab
302, which lists the requests that have been created but not
sent, (b) “Requested” tab 304, which lists the requests (both
population requests and evidence requests) that have been
sent out but for which no response has been received, (¢) “To
Review” tab 306, which lists the requests (population and
evidence) for which responses have been received and
therefore need to be reviewed by the requester 1045, (d) “To
Sample” tab 308, which lists the populations that the
requester 1045 has reviewed and approved and are therefore
ready to be sampled, and (e) “To Test” tab 310, which lists
evidence sets (received from the provider 1065 or delegatee
of the provider 1065) waiting to be tested.

[0023] According to an embodiment, the productivity soft-
ware 100a creates and updates vertices and edges in the
graph database 112 to represent and organize the various
requests, populations, data samples, tests, and supporting
documents needed for an organization to carry out data tests.

US 2019/0057064 Al

Examples of the data structures (vertices and edges) used in
this capacity (in an embodiment) are depicted in FIG. 4A
and FIG. 4B. Each vertex has at least one property, and the
relationship between two given vertices (if there is a rela-
tionship) is defined in the graph database 112 by at least one
edge. Vertices and edges may be created by the productivity
software 100a (such as during an onboarding process for a
customer) or by a user of the productivity software 100a. For
example, the productivity software 100a might receive a
spreadsheet with a list of SOX controls (e.g., “Control
C.APO1, Control C.AP03,” etc.)

[0024] The vertices include one or more control vertices
402, each of which includes properties that describe a
control (e.g., in the SOX context), and one or more test of
control vertices 404, each of which includes properties that
describe a test that may be performed on a particular control.
A relationship between a test of control vertex 402 and the
control vertex 404 representing the control that the test
validates is defined in the database 112 by an edge 406. The
remaining vertices will be described as being created during
example interactions between the first client program 104a
and the productivity software 100a.

[0025] For example, to create a new request for a popu-
lation, the requester 1045 selects the “New Request” button
312 on the dashboard 300. In response, the productivity
software 100a provides a user interface through which the
requester 1045 can enter basic information about the test for
which the population is requested, such as identifying the
relevant test being performed and the test phase to which the
test applies. Once the requester 1045 has entered that data,
the productivity software 100a creates a request vertex 408
(FIG. 4B) that includes properties regarding the population
request, a task proxy vertex 410 to interface with a tasking
function of the productivity software 100q, and an edge 412
from the request vertex 408 to the task proxy vertex 410.
[0026] According to an embodiment, productivity soft-
ware 1004 notifies the provider of the pending request. The
requester may also provide the productivity software 100a
with a message that is to be sent to the provider along with
the notification. The notification can take the form of, for
example, a text message, an alert from a mobile app, or an
email. For example, referring to FIG. 5, in an embodiment,
the productivity software 100a displays a user interface 500
that allows the requester 1045 to select a provider 1065 to
fulfill the request and to compose an email to the provider
1065.

[0027] In an embodiment, once the requester 1045 has
finalized the text of the email (e.g., indicating this via a
“send” button), the productivity software 100a responds by
sending out the email to the provider 1065 (or providers if
there are multiple) and adding a “population request” task to
the provider’s queue 116. The email contains a link to a
portal capable of interacting with the productivity software
100a, so that when the provider 1065 receives the email,
opens it, and activates the link, the client program 106a is
directed to the portal, a user interface of which is shown in
FIG. 6. The user interface 600 displays the requests (shown
in FIG. 6 as part of a list 602) that are in currently in the
queue 116. When the provider 1065 selects a request (the
request 604, in this example), the productivity software 100a
responds by transmitting a file upload interface 700 to the
computing device 104 (FIG. 7). The file upload interface 700
includes instructions from the requester 1045, a description
of the control being tested (which the productivity software

Feb. 21, 2019

100a pulls from the control vertex 402 (FIG. 4A) of the
graph database 112), on-screen button 702 for initiating file
uploads, and a text entry arca 704 where the provider 1065
can add comments for the requester 1045. Additionally, the
provider 1065 can delegate the task of providing the popu-
lation (e.g., fulfilling the population request) to someone
else via the “Delegate Task” button 706, in which case the
productivity software 100a will generate an email to whom-
ever the provider 1065 identifies and place the appropriate
task in the delegatee’s queue. Once the provider 1065
uploads the population (e.g., in the form of a spreadsheet or
comma-separated value (“csv”) file) and selects the “Submit
for Approval” button 708, the productivity software 100a
adds the task (C.APO1 in this case) to the requester’s queue
116. Additionally, the productivity software 100a creates a
population vertex 414 (FIG. 4B) in the database 112, a file
vertex 418 for each file (e.g., each csv file) that the provider
1065 provides in response to the request, and an edge 420
from the population vertex 414 to the file vertex 418. The file
vertex 418 includes one or more properties (such as a unique
object identifier) sufficient for the productivity software
100a to locate the file in the media storage device 110.

[0028] According to an embodiment, to review a submit-
ted population, the requester 1045 selects the “To Review”
tab 306 on the dashboard 300 (FIG. 8) and selects the
population (entry 802, in this example). In response, the
productivity software 100a provides a user interface 900, as
shown in FIG. 9. The user interface 900 includes an attach-
ment pane containing links to the file or files that the
provider 1065 uploaded in response to the population
request. The requester 1045 can select one or more files as
needed in order to open them and make sure that received
populations are appropriate. For example, if the received
population is in the form of a csv file and the requester 1045
selects the file 902 in the attachment pane, the productivity
software 101a responds by providing a user interface 1000,
which shows the contents of the csv file (FIG. 10). If the
requester 1045 finds the received populations appropriate,
the requester 1045 can accept the population(s) (e.g., via the
“Approve” button 904), or return the population(s) (via the
“Return” button 906) back to the provider 1065 along with
a note explaining the reasons for the return.

[0029] In an embodiment, if the requester 1045 approves
the population(s), then the productivity software 100a adds
the tasks in the “To Sample” tab 308, as shown in FIG. 11.
The requester 1045 then selects the population that the
requester 1046 would like to sample—C.APO1 in this
example—and the productivity software 100a reacts by
displaying the interface 1200 shown in FIG. 12A, which
depicts the contents of the csv file that the provider 1065
provided, along with an entry field 1202 that allows the
requester 1045 to select how many randomly-chosen
samples the requester 1045 wants to take and a button 1204
to initiate the sampling process. In this example, it will be
assumed that the requester 1045 wishes to take 5 random
samples. Upon initiating the sampling process (with the
button 1204), the productivity software 100a randomly
selects the five samples and displays them on the user
interface 1200 as shown in FIG. 12B. The requester 1045 is
then given the option to finalize the selection.

[0030] According to an embodiment, each sample has
multiple attributes associated with it, which, in this embodi-
ment, are described in the column headings of the spread-
sheet. For each given attribute of each given sample, there

US 2019/0057064 Al

is a piece of data referred to as the “result.” The grid that
includes a given set of samples, attributes, and results is
referred to as the “attribute matrix.” Once it receives an
entry of samples and attributes (or, alternatively, when the
requester submits a request for the samples), the productiv-
ity software 100a generates a sample vertex 422 (FIG. 4B)
for each sample (i.e., each row of the sampled subset of the
spreadsheet received from the provider 1065). The sample
vertex 422 includes the following properties: the name of the
sample, a description of the sample, the location of the
sample, and the batch from which the samples was taken.
The productivity software 100qa also generates: an edge 424
from the sample vertex 422 to the population vertex 414, an
edge 426 from the sample vertex 422 to the file vertex 418
(i.e., the vertex corresponding to the separate document
(e.g., spreadsheet) from which the sample was taken), an
attribute matrix vertex 424 (FIG. 4A) (representing the
attribute matrix), and an edge 432 from the sample vertex
422 to the attribute matrix vertex 424.

[0031] For each attribute of a set of samples received from
a provider (or delegatee thereof), the productivity software
100a generates an attribute vertex 426 and an edge 430 from
the attribute vertex 426 to the attribute matrix vertex 424.
For each attribute/sample combination (e.g., each entry in
the matrix, the productivity software 100a generates an
attribute data vertex 433 (which has “result” as one of its
properties), an edge 435 from the attribute data vertex 433
to the sample vertex 422, and an edge 437 from the attribute
data vertex 433 to the attribute vertex 426 (FIG. 4A).

[0032] According to an embodiment, each step of a test to
be performed on an evidence sample (also referred to herein
as a “piece of evidence”) is also represented in the graph
database 112 by both an attribute vertex 426 and a test step
vertex 442, with the attribute vertex being more represen-
tative of the display of the test step within the visual
representation of the test matrix on the user interface and the
test step vertex being more representative of the test step
itself. Note that a “step” of a test will also be referred to
herein generally as a “test,” since each test “step” represents
a test that is applied by to particular “attribute” of a piece of
evidence. For each attribute vertex representing a test step,
the productivity software 100a generates an edge 431 from
the attribute vertex 426 (for that test step) to the test step
vertex 442, but does not generate an edge from the attribute
vertex 426 to the attribute matrix vertex 442 for test step
attributes.

[0033] In an embodiment, the requester 1045 may set up
tests for the received samples by navigating to a test setup
interface 1300, shown in FIG. 13A. The interface 1300
includes a visual representation 1302 of certain properties of
the attribute matrix vertex 424. A test step and attributes
entry interface 1304, shown in FIG. 13B (in a different
portion of the interface 1300) allows the requester 1045 to
create test steps and attributes (i.e., test steps and sub-steps).
In response to the entry of each test step, the productivity
software 100a generates a test step vertex 442 and an edge
443 between the test step vertex 442 and the test of control
vertex 404 that represents the particular test of control being
carried out. In response to the entry of each attribute for a
given test, the productivity software 100a generates an
attribute vertex 426, an edge 430 between the attribute
vertex 426 and the attribute matrix vertex 424, and an edge
430 between the attribute vertex 426 and the test step vertex
442 (corresponding to the test step to which the attribute

Feb. 21, 2019

belongs). The productivity software 100a adds the attribute
tests to the visual representation 1302 of the attribute matrix,
as shown in FIG. 13C.

[0034] In an embodiment, the productivity software 100a
interprets the graph database 112 such that the productivity
software 100a displays only those attributes (e.g., only those
column headers in the incoming csv file) whose vertices
have edges to the attribute matrix vertex 424 as part of the
visual representation 1302. This allows for flexibility in the
format and content of files provided by the provider. For
example, three different providers might upload files having
additional columns (i.e., additional to those columns that are
needed to be displayed as part of the visual representation
1302). By restricting which attributes (e.g., which column
headers) get edges generated to the attribute matrix vertex
424, the productivity software can ensure that only the
relevant ones (e.g., the ones that need to be tested) are
displayed.

[0035] According to an embodiment, the requester 1045
may select (e.g., via a right-click menu on visual represen-
tation 1302) an option to create a request for the provider
10654 to provide evidence (e.g., the samples themselves—the
five checks in this example). The productivity software 100a
responds by presenting a user interface 1400 (shown in FIG.
14), which includes fields 1402, 1404, and 1406 for the entry
of'the request title, due date, and provider (the provider 1065
in this example) respectively. The interface 1400 also
includes a file upload button 1408 that opens a file upload
interface to allow, for example, the requester 1045 to attach
a sample file to give the provider 1065 an idea of what sort
of evidence is needed. Once the requester 1045 is finished
entering the information, the requester 1045 selects the
“Confirm Request” button 1410. The productivity software
100a reacts to this by creating a task proxy vertex 414
representing the request, creating a sample request vertex
450 representing the sample request, generating an edge 452
from the sample request vertex to the request vertex 408,
generating an edge 423 between the request vertex 408 and
the task proxy vertex 410 (FIG. 4A) and adding the task to
the provider’s queue 116. The productivity software 100a
also generates a notification (e.g., as shown in FIG. 14)
regarding the request (including the message entered by the
requester 1045 and a link to a portal such discussed above)
and sends the notification (e.g., sends an email) to the
provider 1065, which the provider 1065 sees (on the third
computing device 106). In response to the provider 1065
selecting the link (once the portal opens) and the task
representing the population request, the productivity soft-
ware 100q displays a user interface 1500 that shows a more
focused view of the task (FIG. 15).

[0036] In an embodiment, the provider 1065 may then
respond by locating files containing the requested evidence,
uploading the files using an upload interface 1502, delegat-
ing this task by selecting the “Delegate Task™ button 1504,
or, once the files have been uploaded, submitting to the
requester 1045 for approval by selecting the “Submit for
Approval” button 1506. There are many possible types of
files that could contain the requested evidence, include word
processing documents, spreadsheets, image files, video files,
email files, and audio files. In this example, the provider
1064 uploads an image of the front of each check listed and
selects “Submit for Approval.” The productivity software
100a responds by creating a file vertex 418 (FIG. 4B) for
each image and generating an edge 454 from the sample

US 2019/0057064 Al

request vertex 450 to the sample vertex 422 (i.e., the sample
vertex corresponding to the entry for that check in the
attribute matrix) and an edge 456 from the sample request
vertex 450 to the file vertex 418. Thus, if the provider 1065
uploads five image files (each with an image of a respective
check), the productivity software 100a creates five file
vertices 418. The productivity software 100a also adds a
task to the queue 114 of the requester 1045 (the task being
to review the uploaded evidence).

[0037] According to an embodiment, when the requester
1045 opens the dashboard 300, the requester 1045 will see
the task on the “To Review Tab” 306, as shown in FIG. 16.
When the requester 1045 selects the task corresponding to
the submission of evidence previously described (task 1602
of FIG. 16), the productivity software 100a responds by
providing an interface 1700 (FIG. 17) that displays a list of
the samples and the pieces of evidence provided in support
thereof. The user interface 1700 includes a list 1702 of
pieces of evidence (images of checks in this case) that have
been received and are ready for testing. The requester 1045
then may review the pieces of evidence (via selecting one of
the icons 1704) and mark them as approved or to be returned
(e.g., in the column 1706) to the provider 1065 if, for
example, the checks do not match what was requested).

[0038] Inan embodiment, when the requester 1045 selects
one of the icons of column 1704, the productivity software
100a responds providing a user interface 1800 that includes
an image 1802 of file (check, in this example) as shown in
FIG. 18A, along with a list 1804 of test steps and attribute
tests. In this context, the attribute tests are sub-steps of the
overall test step. A given test step may have one or more
attribute tests. Next to each attribute test is a check box, in
which the requester 1045 may indicate whether the test of an
attribute passed, failed, or is not applicable. The attributes in
the list 1804 are the same ones shown on the visual repre-
sentation 1302 of the attribute matrix and stored in the
database 112 in the vertices discussed previously.

[0039] In an embodiment, the requester 1045 can interact
with the user interface 1800 (e.g., drag and drop) to apply a
step of a test to the appropriate part of the image 1802 so as
to create a visual indicator such as a markup at a particular
location on the image 1802 (as displayed on the user
interface 1800) and indicate the result of the test step at that
location via the visual indicator. For example, assume that
the requester 1045 drags test step 1A, “Verify Disbursement
Date” over to the date on the check image 1802 and, through
a pop-up menu (e.g., activated by a “right click” gesture),
indicates that the particular attribute being tested (the dis-
bursement date) has “passed.” The productivity software
100a reacts by displaying a markup 1806, as shown in FIG.
18B (a green rectangle, in this case), at the target area of the
drag and drop gesture (e.g., on a portion of the image 1802).
In some embodiments, the user interface 1800 permits a user
to select the shape (e.g., rectangle, square, teardrop) and/or
color of the markup (e.g., green for pass, red for fail) that is
to be applied to the evidence. In others, there are no choices
for the shape or the color (e.g., the color is dictated by the
representative icon or markup to be used such as pass=green,
fail=red). Furthermore, the productivity software 100«
reacts to this drag-and-drop gesture by creating the markup
vertex 412 (FIG. 4B) and generating an edge 434 from the
markup vertex 412 to the file vertex 418 representing the file
containing the image 1802.

Feb. 21, 2019

[0040] According to an embodiment, the productivity soft-
ware 100a also updates a visual representation 1810 of the
matrix to indicate whether the evidence has passed the
attribute test (e.g, green check mark for “pass™ and red X for
“fail”) as shown, for example, in FIG. 18B. The requester
10454 can repeat this process for other attributes so as to test,
for example, the signature and memo fields resulting in a
green rectangle markup 1808 (indicating that the signature
“passes”) and a red rectangle markup 1812 (indicating that
the memo field “fails). As the results of the tests results are
entered by the requester 1045, the productivity software
100a updates the graph database 112 by generating addi-
tional markup vertices 412 (e.g., one markup vertex per
markup) and generating an edge 434 from it to the file vertex
418 of that image. markup vertex 412 that is connected to the
file vertex 410 representing the file containing the image
1802.

[0041] In an embodiment, the requester 1045 indicates
whether the overall test step passes or fails by annotating the
check box next to the attribute in the list 1804. The produc-
tivity software 100q indicates the pass or fail status even if
not all of the tests of the individual attributes have the same
result. The productivity software 100a represents the overall
pass or fail status in the “result” property of the attribute data
vertex 433. Furthermore, the requester 1045 can enter a
footnote to, for example, explain the result of the test. The
productivity software 100a responds by creating a footnote
vertex 458 in the graph database 112 and generating a vertex
460 from the attribute data vertex 433 to the footnote vertex
458.

[0042] It should be understood that the exemplary embodi-
ments described herein should be considered in a descriptive
sense only and not for purposes of limitation. Descriptions
of features or aspects within each embodiment should typi-
cally be considered as available for other similar features or
aspects in other embodiments. It will be understood by those
of ordinary skill in the art that various changes in form and
details may be made therein without departing from their
spirit and scope as set forth in the following claims. For
example, the actions described herein can be reordered in
ways that will be apparent to those of skill in the art.

[0043] Also, other implementations of the various user
interfaces shown herein may be used without departing from
the scope and spirit of the disclosure. For example, the user
interface 1800 of FIGS. 18A and 18B may, instead of check
boxes, provide a button that visually indicates the current
result but brings up a dropdown menu when a user selects
the button. The dropdown menu can include choices like
“pass,” “fail,” “not reviewed,” or “N/A.” Similarly, the user
interface 1800 may, instead of creating a rectangle when an
attribute is dragged onto the displayed sample (the displayed
evidence), display a different shape, such as a teardrop
shape.

1-11. (canceled)

12: A system for facilitating the review of the content of
a document, the system comprising:

a first computing device operating as a server; and

a second computing device operating as a client of the first
computing device,

wherein the second computing device transmits a file
containing a plurality of attributes,

US 2019/0057064 Al

wherein the first computing device:
receives the file containing a plurality of attributes;
generates, in a graph database, a vertex representing an
attribute matrix;
for each of a first subset of the plurality of attributes,
generates, in the graph database, a vertex represent-
ing the attribute,
generates an edge between the vertex representing
the attribute and the vertex representing the attri-
bute matrix;
for each of a second subset of the plurality of attributes,
generates, in the graph database, a vertex represent-
ing the attribute,
refrains from generating an edge between the vertex
representing the attribute and the vertex represent-
ing the attribute matrix;
provides a user interface to the second computing
device;

wherein the second computing device:

displays a visual representation of the attribute matrix
on the user interface using only those attributes of
the first subset;

visually renders a document on the user interface;

detects a user interaction with the document as ren-
dered on the user interface, wherein the user inter-
action includes an entry of a markup to be applied to
the rendered document and an input of data regard-
ing an attribute of the first subset of attributes;

provides information regarding the entry of the markup
to the first computing device;

wherein the first computing device:

generates, in the graph database, a vertex representing
the markup,

generates, in the graph database, an edge from the
vertex representing the markup to a vertex represent-
ing the document; and

updates, in the graph database, a vertex representing the
attribute of the first subset of attributes with the data
regarding the attribute of the first subset of attributes.

13-17. (canceled)

18: The system of claim 12, wherein the second comput-
ing device detects the user interaction by receiving an input
of'a drag and drop gesture on the visual representation of the
attribute matrix via the user interface.

Feb. 21, 2019

19: The system of claim 12, wherein the entry of the
markup comprises a selection of a geometric shape to be
applied to the visual rendition of the document.

20. (canceled)

21: The system of claim 12, wherein the second comput-
ing device receives a user selection of a color to be applied
to the markup.

22: The system of claim 12, wherein the first computing
device:

generates a vertex representing a file containing the

document;

generates an edge between the vertex representing the

markup and the vertex representing the file containing
the document; and

generates an edge between the vertex representing the file

containing the document and the vertex representing
the document.

23: The system of claim 12,

wherein the second computing device detects the user

interaction with the document as rendered on the user
interface by detecting the user interaction at a first
location on the document,

wherein the entry of the markup comprises an entry of the

markup at the first location,

wherein the second computing device:

detects a second user interaction with the rendered
document at a second location on the document,

wherein the second user interaction includes an entry of
a second markup to be applied to the rendered
document and an input of data regarding a second
attribute of the first subset of attributes;

wherein the first computing device:

generates, in the graph database, a vertex representing
the second markup; and

generates, in the graph database, an edge from the
vertex representing the second markup to the vertex
representing the document.

24: The system of claim 12, wherein the first computing
device:

transmits a message to a second user, wherein the message

includes a link to an upload user interface; and
receives the file containing the document via the upload
user interface.

