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( 57 ) ABSTRACT 
A processor including logic to execute an instruction to 
synchronize a mapping from a physical address of a guest of 
a virtualization based system ( guest physical address ) to a 
physical address of the host of the virtualization based 
system ( host physical address ) , and stored in a translation 
lookaside buffer ( TLB ) , with a corresponding mapping 
stored in an extended paging table ( EPT ) of the virtualiza 
tion based system . 
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executing . Similarly , certain interrupts and exceptions gen 
erated in the host machine may need to be intercepted and 
managed by the VMM or adapted for the guest software by 
the VMM before being passed on to the guest software for 
servicing . The VMM then transitions control to the guest 
software and the virtual machine resumes operation . The 
transition from the VMM to the guest software is referred to 
herein as a virtual machine entry . 
[ 0004 ] As is known in the art , a page table is often used to 
provide a mapping from linear memory to physical memory 
in a typical processor based system . Page tables are gener 
ally memory - resident structures and therefore accessing a 
page table to determine a physical address corresponding to 
a linear address causes a memory access , which may delay 
processing time . In order to alleviate this concern , many 
processor implementations include a high speed memory or 
bank of registers within the processor termed a translation 
lookaside buffer ( TLB ) in which some subset of the current 
linear to physical memory mappings that are in use is 
cached , based on the values in the page table . This allows a 
processor to more rapidly access a translation of a linear 
address to the corresponding physical address than would be 
possible in general if the processor had to access the page 
table . Processor implementations generally provide instruc 
tions to manage the TLB , including an instruction to invali 
date or update all the entries in the TLB based on current 
translations as stored in the page tab . BACKGROUND OF THE INVENTION 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0005 ] The present invention is illustrated by way of 
example and not limitation in the figures of the accompa 
nying drawings . 
[ 0006 ] FIG . 1 depicts the relationship between process and 
physical memory . 
10007 ] FIG . 2 depicts abstractly the relationship between 
virtual machines and a host machine in one embodiment . 
[ 0008 ] FIG . 3 depicts a high level structure of a virtual 
machine environment in one embodiment . 
[ 0009 ] FIG . 3a represents a processor in one embodiment 
at a functional level . 
[ 0010 ] FIG . 4 depicts address computation using extended 
paging tables in one embodiment . 
[ 0011 ] FIG . 5 depicts the flow of instruction execution in 
one embodiment . 

[ 0002 ] Virtualization enables a single host machine with 
hardware and software support for virtualization to present 
an abstraction of the host , such that the underlying hardware 
of the host machine appears as one or more independently 
operating virtual machines . Each virtual machine may there 
fore function as a self - contained platform . Often , virtualiza 
tion technology is used to allow multiple guest operating 
systems and / or other guest software to coexist and execute 
apparently simultaneously and apparently independently on 
multiple virtual machines while actually physically execut 
ing on the same hardware platform . A virtual machine may 
mimic the hardware of the host machine or alternatively 
present a different hardware abstraction altogether . 
[ 0003 ] Virtualization systems may include a virtual 
machine monitor ( VMM ) which controls the host machine . 
The VMM provides guest software operating in a virtual 
machine with a set of resources ( e . g . , processors , memory , 
IO devices ) . The VMM may map some or all of the 
components of a physical host machine into the virtual 
machine , and may create fully virtual components , emulated 
in software in the VMM , which are included in the virtual 
machine ( e . g . , virtual 10 devices ) . The VMM may thus be 
said to provide a “ virtual bare machine ” interface to guest 
software . The VMM uses facilities in a hardware virtual 
ization architecture to provide services to a virtual machine 
and to provide protection from and between multiple virtual 
machines executing on the host machine . As guest software 
executes in a virtual machine , certain instructions executed 
by the guest software ( e . g . , instructions accessing peripheral 
devices ) would normally directly access hardware , were the 
guest software executing directly on a hardware platform . In 
a virtualization system supported by a VMM , these instruc 
tions may cause a transition to the VMM , referred to herein 
as a virtual machine exit . The VMM handles these instruc 
tions in software in a manner suitable for the host machine 
hardware and host machine peripheral devices consistent 
with the virtual machines on which the guest software is 

DETAILED DESCRIPTION 
[ 0012 ] FIG . 1 shows a process executing on a processor 
based system which incorporates a processor and a memory 
communicatively coupled to the processor by a bus . With 
reference to FIG . 1 , when a process 105 references a 
memory location 110 in its linear address space 115 ( linear 
memory space ) , a reference to an actual address 140 in the 
physical memory 145 of the machine 125 ( machine physical 
memory ) is generated by memory management 130 , which 
may be implemented in hardware ( sometimes incorporated 
into the processor 120 ) and software ( generally in the 
operating system of the machine ) . Memory management 
130 , among other functions maps a location in the linear 
address space to a location in physical memory of the 
machine . As shown in FIG . 1 , a process may have a different 
view of memory from the actual memory available in the 
physical machine . In the example depicted in FIG . 1 , the 
process operates in a linear address space from 0 to 1 MB 
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which is actually mapped by the memory management 
hardware and software into a portion of the physical 
memory which itself has an address space from 10 to 11 MB ; 
to compute a physical address from a process space address , 
an offset 135 may be added to the linear address . More 
complex mappings from linear address space to physical 
memory are possible , for example , the physical memory 
corresponding to linear memory may be divided into parts 
such as pages and be interleaved with pages from other 
processes in physical memory . 
[ 0013 ] Memory is customarily divided into pages , each 
page containing a known amount of data , varying across 
implementations , e . g . a page may contain 4096 bytes of 
memory , 1 MB of memory , or any other amount of memory 
as may be desired for a particular application . As memory 
locations are referenced by the executing process , they are 
translated into page references . In a typical machine , 
memory management maps a reference to a page in linear 
memory to a page in machine physical memory . In general , 
memory management may use a page table to specify the 
physical page location corresponding to a process space 
page location . 
[ 0014 ] One aspect of managing guest software in a virtual 
machine environment is the management of memory . Han 
dling memory management actions taken by the guest 
software executing in a virtual machine creates complexity 
for a controlling system such as a virtual machine monitor . 
Consider for example a system in which two virtual 
machines execute via virtualization on a host machine 
implemented on an x86 platform which may include page 
tables implemented as part of the x86 processor . Further , 
assume that each virtual machine itself presents an abstrac 
tion of an x86 machine to the guest software executing 
thereon . Guest software executing on each virtual machine 
may make references to a guest linear memory address , 
which in turn is translated by the guest machine ' s memory 
management system to a guest - physical memory address . 
However , guest - physical memory itself may be imple 
mented by a further mapping in host - physical memory 
through a VMM and the virtualization subsystem in hard 
ware on the host processor . Thus , references to guest 
memory by guest processes or the guest operating system , 
including for example references to guest x86 page table 
control registers , must then be intercepted by the VMM 
because they cannot be directly passed on to the host 
machine ' s page table without further reprocessing , as the 
guest - physical memory does not , in fact , correspond directly 
to host - physical memory but is rather further remapped 
through the virtualization system of the host machine . 
[ 0015 ] FIG . 2 : FIG . 2 depicts the relationship between one 
or more virtual machines executing on a host machine with 
specific regard to the mapping of guest memory in one 
embodiment . FIG . 2 illustrates how guest - physical memory 
is remapped through the virtualization system of the host 
machine . Each virtual machine such as virtual machine A , 
242 , and virtual machine B , 257 , presents a virtual processor 
245 and 255 respectively to guest software running on the 
virtual machines . Each machine provides an abstraction of 
physical memory to the guest operating system or other 
guest software , guest - physical memories 240 and 250 , 
respectively . As guest software executes on the virtual 
machines 242 and 257 , it is actually executed by the host 
machine 267 on host processor 265 utilizing host - physical 
memory 260 . 

[ 0016 ] As shown in FIG . 2 , in this embodiment , guest 
physical memory 240 which is presented as a physical 
memory space starting at address 0 in virtual machine A , 
242 , is mapped to some contiguous region 270 in host 
physical memory 260 . Similarly , guest - physical memory 
250 in virtual machine B , 257 , is mapped to a different 
portion 275 of host - physical memory 260 . As shown in FIG . 
2 , the host machine might have 1024 MB of host - physical 
memory . If each virtual machine 242 and 257 is assigned 
256 MB of memory , one possible mapping might be that 
virtual machine A , 242 , is assigned the range 128 - 384 MB 
and virtual machine B , 257 , is assigned the range 512 - 768 
MB . Both virtual machines 242 and 257 reference a guest 
physical address space of 0 - 256 MB . Only the VMM is 
aware that each virtual machine ' s address space maps to 
different portions of the host - physical address space . 
[ 0017 ] The virtual machines and memory mapping shown 
in FIG . 2 are only one representation of one embodiment , in 
other embodiments , the actual number of virtual machines 
executing on a host machine may vary from one to many ; the 
actual memory sizes of the host machine and the virtual 
machines may vary and be variable from virtual machine to 
virtual machine . The example depicts a simple , contiguous 
allocation of memory to virtual machines . In a more general 
case , the physical - memory pages allocated to a virtual 
machine may not be contiguous and might be distributed in 
the host - physical memory interleaved with each other and 
with pages belonging to the VMM and to other host pro 
cesses . 
[ 0018 ] A processor - based system that is presented as a 
virtual machine in a system such as that depicted in FIG . 2 
may implement a virtual machine in all its complexity . Thus 
for example , a virtual machine may present a full view of 
guest - physical memory to the guest OS , and perform 
memory management for guest software executing on the 
virtual machine , using memory management provided by 
the guest OS and the virtual processor or other virtual 
hardware of the virtual machine . In one exemplary embodi 
ment , the virtual machine may present an x86 platform 
including x86 hardware support such as page tables for 
memory management to the guest OS , and in turn be 
actually executing on a host platform which is also an x86 
platform including x86 hardware for memory management . 
Without additional mechanisms , a virtualization system in 
this embodiment must implement a physical - memory virtu 
alization algorithm in the VMM using , as one possible 
solution , x86 page table shadowing to remap , partition and 
protect physical memory . Thus , for example , when guest 
software attempts to access the x86 page tables of the virtual 
machine , the VMM must overlay functionality required for 
virtualization ( e . g . , remapping physical addresses ) onto the 
functionality required by the guest OS . 
[ 0019 ] To this end , the VMM must trap a variety of events 
surrounding the use of the paging mechanism by the guest 
software . This includes writes to control registers such as 
control registers of the x86 memory management system 
( e . g . , CRO , CR3 and C4 ) , accesses to model - specific regis 
ters ( MSRs ) associated with paging and memory access 
( e . g . , memory - type range registers ( MTRRs ) ) , handling cer 
tain exceptions ( e . g . , page faults ) , as described in the x86 
documentation . This use of the x86 page tables to virtualize 
physical memory is complex and exacts a significant per 
formance overhead . 
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[ 0020 ] FIG . 3 : FIG . 3 illustrates one embodiment of a 
virtual - machine environment 300 . In this embodiment , a 
processor - based platform 316 may execute a VMM 312 . The 
VMM , though typically implemented in software , may 
emulate and export a virtual bare machine interface to higher 
level software . Such higher level software may comprise a 
standard OS , a real time OS , or may be a stripped - down 
environment with limited operating system functionality and 
may not include OS facilities typically available in a stan - 
dard OS in some embodiments . Alternatively , for example , 
the VMM 312 may be run within , or using the services of , 
another VMM . VMMs may be implemented , for example , in 
hardware , software , firmware or by a combination of various 
techniques in some embodiments . In at least one embodi 
ment , one or more components of the VMM may execute in 
one or more virtual machines and one or more components 
of the VMM may execute on the bare platform hardware as 
depicted in FIG . 3 . The components of the VMM executing 
directly on the bare platform hardware are referred to herein 
as host components of the VMM . 
[ 0021 ] The platform hardware 316 may be a personal 
computer ( PC ) , server , mainframe , handheld device such as 
a personal digital assistant ( PDA ) or “ smart ” mobile phone , 
portable computer , set top box , or another processor - based 
system . The platform hardware 316 includes at least a 
processor 318 and memory 320 . Processor 318 may be any 
type of processor capable of executing programs , such as a 
microprocessor , digital signal processor , microcontroller , or 
the like . The processor may include microcode , program 
mable logic or hard coded logic for execution in embodi 
ments . Although FIG . 3 shows only one such processor 318 , 
there may be one or more processors in the system in an 
embodiment . Additionally , processor 318 may include mul 
tiple cores , support for multiple threads , or the like . Memory 
320 can comprise a hard disk , a floppy disk , random access 
memory ( RAM ) , read only memory ( ROM ) , flash memory , 
any combination of the above devices , or any other type of 
machine medium readable by processor 318 in various 
embodiments . Memory 320 may store instructions and / or 
data for performing program execution and other method 
embodiments . In some embodiments , some elements of the 
invention may be implemented in other system components , 
e . g . , in the platform chipset or in the system ' s one or more 
memory controllers . 
[ 0022 ] The VMM 312 presents to guest software an 
abstraction of one or more virtual machines , which may 
provide the same or different abstractions to the various 
guests . FIG . 3 shows two virtual machines , 302 and 314 . 
Guest software such as guest software 303 and 313 running 
on each virtual machine may include a guest OS such as a 
guest OS 304 or 306 and various guest software applications 
308 and 310 . Guest software 303 and 313 may access 
physical resources ( e . g . , processor registers , memory and 
I / O devices ) within the virtual machines on which the guest 
software 303 and 313 is running and to perform other 
functions . For example , the guest software 303 and 313 
expects to have access to all registers , caches , structures , I / O 
devices , memory and the like , according to the architecture 
of the processor and platform presented in the virtual 
machine 302 and 314 . 
[ 0023 ] In one embodiment , the processor 318 controls the 
operation of the virtual machines 302 and 314 in accordance 
with data stored in a virtual machine control structure 
( VMCS ) 324 . The VMCS 324 is a structure that may contain 

state of guest software 303 and 313 , state of the VMM 312 , 
execution control information indicating how the VMM 312 
wishes to control operation of guest software 303 and 313 , 
information controlling transitions between the VMM 312 
and a virtual machine , etc . The processor 318 reads infor 
mation from the VMCS 324 to determine the execution 
environment of the virtual machine and to constrain its 
behavior . In one embodiment , the VMCS 324 is stored in 
memory 320 . In some embodiments , multiple VMCS struc 
tures are used to support CPUs within one or more virtual 
multiple virtual machines . 
[ 0024 ] The VMM 312 may need to manage the physical 
memory accessible by guest software running in the virtual 
machines 302 and 314 . To support physical memory man 
agement in one embodiment , the processor 318 provides an 
extended page table ( EPT ) mechanism . In the embodiment , 
the VMM 312 may include a physical memory management 
module 326 that provides values for fields associated with 
physical memory virtualization that may need to be provided 
before transition of control to the virtual machine 302 or 
314 . These fields are collectively referred to as EPT controls . 
EPT controls may include , for example , an EPT enable 
indicator specifying whether the EPT mechanism should be 
enabled and one or more EPT table configuration controls 
indicating the form and semantics of the physical memory 
virtualization mechanism . These will be discussed in detail 
below . Additionally , in one embodiment , EPT tables 328 
indicate the physical address translation and protection 
semantics which the VMM 312 may place on guest software 
303 and 313 . 
[ 0025 ] In one embodiment , the EPT controls are stored in 
the VMCS 324 . Alternatively , the EPT controls may reside 
in a processor 318 , a combination of the memory 320 and the 
processor 318 , or in any other storage location or locations . 
In one embodiment , separate EPT controls are maintained 
for each of the virtual machines 302 and 314 . Alternatively , 
the same EPT controls are maintained for both virtual 
machines and are updated by the VMM 312 before each 
virtual machine entry . 
[ 0026 ] In one embodiment , the EPT tables 328 are stored 
in memory 320 . Alternatively , the EPT tables 328 may reside 
in the processor 318 , a combination of the memory 320 and 
the processor 318 , or in any other storage location or 
locations . In one embodiment , separate EPT tables 328 are 
maintained for each of the virtual machines 302 and 314 . 
Alternatively , the same EPT tables 328 are maintained for 
both virtual machines 302 and 314 and are updated by the 
VMM 312 before each virtual machine entry . 
100271 In one embodiment , the processor 318 includes 
EPT access logic 322 that is responsible for determining 
whether the EPT mechanism is enabled based on the EPT 
enable indicator . If the EPT mechanism is enabled , the 
processor translates guest - physical addresses to host - physi 
cal addresses - based on the EPT controls and EPT tables 328 . 
[ 0028 ] . In the embodiment depicted , the processor may 
further include a translation lookaside buffer ( TLB ) 323 to 
cache linear to guest - physical , guest - physical to host - physi 
cal address and linear to host - physical translations . Linear to 
guest - physical and linear to host - physical translations are 
referred to herein as “ linear translations ' . Guest - physical to 
host - physical and linear to host - physical translations are 
referred to herein as “ physical translations ” . 
[ 0029 ] In one embodiment , in which the system 300 
includes multiple processors or multi - threaded processors , 
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each of the logical processors is associated with a separate 
EPT access logic 322 , and the VMM 312 configures the EPT 
tables 328 and EPT controls for each of the logical proces 
sors . 
[ 0030 ] Resources that can be accessed by guest software 
( e . g . , 303 , including guest OS 304 and application 308 ) may 
either be classified as " privileged ” or “ non - privileged . ” For 
privileged resources , the VMM 312 facilitates functionality 
desired by guest software while retaining ultimate control 
over these privileged resources . Further , each guest software 
303 and 313 expects to handle various platform events such 
as exceptions ( e . g . , page faults , general protection faults , 
etc . ) , interrupts ( e . g . , hardware interrupts , software inter 
rupts ) , and platform events ( e . g . , initialization ( INIT ) and 
system management interrupts ( SMIS ) ) . Some of these plat - 
form events are " privileged ” because they must be handled 
by the VMM 312 to ensure proper operation of virtual 
machines 302 and 314 and for protection from and among 
guest software . Both guest operating system and guest 
applications may attempt to access privileged resources and 
both may cause or experience privileged events . Privileged 
platform events and access attempts to privileged resources 
are collectively referred to as " privileged events ” or “ virtu 
alization events ” herein . 
[ 0031 ] FIG . 3a : FIG . 3a depicts at a high level some block 
level features of processor 318 in the embodiment of FIG . 3 . 
In general , a processor such as the one depicted in FIG . 3 at 
318 may include a processor bus or buses such as the one 
indicated at 337 in FIG . 3a . Furthermore , as depicted in FIG . 
3a , a processor may include registers 350 in one or multiple 
banks , and each register may have the capacity to store 32 , 
64 , 128 or another number of bits of data as is known . Each 
register bank may further have several registers , such as e . g . 
8 , 32 , 64 registers . Some registers may be dedicated to 
control and status use for example to store the CR bits as in 
an x86 embodiment . In other embodiments , other control 
registers and flags may be stored in the processor to allow 
different modes of operation and status checking as is known 
in the art . In general a processor such as the one depicted in 
the embodiment of FIG . 3 would include logic or logic 
circuitry 330 to fetch instructions and data from memory , 
cache or other storage ; logic or logic circuitry to decode 
instructions and execution units such as 334 to perform the 
instructions . Many variations on these functional units are 
possible , e . g . execution in the execution unit may be pipe 
lined ; or include speculation , and branch prediction ; or have 
other features as related to a particular processor or appli 
cation . Other functional logic 365 may be present in the 
processor such as logic for arithmetic , graphics processing , 
and many other specific functions of the processor as is 
known . An on - board cache 360 may be present in some 
embodiments . This cache may have various sizes such as 
128 MB , 1 GB , etc . as is known As previously indicated with 
reference to FIG . 3 , the processor 318 includes EPT access 
logic 322 and TLB 323 . The EPT access logic may include 
in one embodiment logic to populate , control and mange the 
EPT ; and the TLB is generally a buffer including mappings 
from page tables that are cached for efficiency and other 
purposes within the processor . 
[ 0032 ] FIG . 4 : FIG . 4 shows one example of processing 
using the extended page tables introduced above to ulti 
mately compute a host - physical address when guest soft 
ware in a virtual machine references a guest virtual address . 
The example depicted shows guest software running in an 

x86 platform using simple 32 - bit virtual addressing and 
simple page table formats . One skilled in the art will easily 
be able to extend this example to understand , for example , 
other paging modes ( e . g . , 64 - bit addressing in the guest 
software ) , other instruction set architectures ( e . g . , The Intel 
Itanium® Architecture , 64 - bit and other variations of the 
x86 architecture , the PowerPC® Architecture , among many 
others , and to other configurations . 
[ 0033 ] In FIG . 4 a reference to a guest virtual address 410 
is executed by guest software executing in a virtual machine . 
The memory management mechanism active in the guest 
( i . e . , configured by the guest operating system ) is used to 
translate the virtual address to a guest - physical address . 
Each guest - physical address used in the translation , and the 
resulting guest - physical address , are translated to host 
physical addresses through EPT before accessing the host 
physical memory . This process is detailed in the following 
discussion . 
[ 0034 ] . In this example , the appropriate bits 402 in the CR3 
register 420 point to the base of the guest ' s page directory 
table 460 in guest - physical memory . This value 402 is 
combined with the upper bits from the guest virtual address 
410 ( appropriately adjusted , according to x86 semantics by 
multiplying by 4 because , in this example , the entries in the 
tables are 4 bytes each ) to form the guest - physical address 
412 of the page directory entry ( PDE ) in the guest ' s PD table 
460 . This value 412 is translated through the EPT tables 455 
to form the host - physical address 404 of the page directory 
entry . The processor accesses the page directory entry using 
this host - physical address 404 . 
[ 0035 ] Information from the PDE includes the base 
address 422 of the guest ' s page table 470 . This guest 
physical address 422 is combined with bits 21 : 12 of the 
guest virtual address 410 appropriately adjusted to form the 
guest - physical address 432 of the page table entry in the 
guest ' s page table 470 . This guest - physical address 432 is 
translated through the EPT tables 465 to form the host 
physical address 414 of the guest ' s page table entry ( PTE ) . 
The processor accesses the PTE using this host - physical 
address 414 . 
[ 0036 ] Information from the PTE includes the base 
address 442 of the page in guest - physical memory being 
accessed . This value is combined with the low - order bits 
( 11 : 0 ) of the guest virtual address 410 to form the guest 
physical address 452 of the memory being accessed . This 
value 452 is translated through the EPT tables 475 to form 
the host - physical address 424 of the memory being 
accessed . 
[ 0037 ] Each time the EPT tables are used to translate a 
guest - physical address to a host - physical address , the pro 
cessor also validates that the access is permitted according 
to controls in the EPT tables , as will be described below . 
Additionally , it must be understood that the EPT tables 455 , 
465 , and 475 , though indicated as distinct in FIG . 4 may , in 
one embodiment , be the same set of EPT tables ( i . e . , a single 
set of EPT tables is used for all address translations from 
guest - physical to host - physical ) . 
[ 0038 ] In a typical implementation of linear memory sup 
port in a processor - based system , mappings from linear 
addresses to physical addresses that are stored in a page table 
structure may be cached for efficiency reasons in a transla 
tion look - aside buffer ( TLB ) . Instructions may be included 
in a processor instruction set to manage the TLB and to 
allow a program executing in the processor based system to 
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ensure that a particular entry in the TLB is synchronized 
with a page table entry . Thus for example , in the x86 
architecture , the MOV CR instruction may cause a global 
invalidation of all TLB entries , and thus a resynchronization 
of the entries as addresses are accessed . Alternatively , in the 
x86 example , a INVLPG instruction may be used to invali 
date a mapping stored in the TLB for a specific linear 
address , causing the entry in the TLB to be updated and 
synchronized with the mapping in the page table . 
[ 0039 ] In one embodiment , including a virtualized system 
that incorporates an extended paging table ( EPT ) as dis 
cussed above , a TLB may cache guest linear to host physical 
address translations for processes executing in guest 
machine memory ; and host linear to host physical mappings 
for processes such as the VMM executing directly on the 
host machine , as discussed previously with reference to FIG . 
3 at 323 . In the former case , the guest linear to host physical 
mappings may be derived both from page tables in the guest 
as well as from the EPT ; in the latter case , the mappings may 
be derived from the host page tables . An additional type of 
mapping may also be stored in the TLB : a mapping directly 
derived from guest physical to host physical memory based 
on the mappings stored in the EPT . 
[ 0040 ] In one embodiment , a new command is added to 
the processor instruction set . In this embodiment , the new 
command INVL _ EPT provides programs executing directly 
on the host machine of a virtualized system , such as the 
VMM , with a way to manage TLB entries derived from 
guest - physical to host - physical mappings . Specifically , in 
this embodiment , the INVL _ EPT instruction ensures that 
guest - physical to host - physical and linear to host physical 
mappings in the TLB are synchronized with EPT tables that 
reside in host memory , and to specify the extent of synchro 
nization , the EPT context , and where relevant , the guest 
physical memory address for which mappings are to be 
synchronized . A context generally speaking defines a portion 
of the address space of a system . For guest - physical to 
host - physical mappings , the EPT context is defined by the 
currently active EPT table , which in turn is referenced by a 
register in this embodiment , termed the EPT Pointer , or the 
EPTP 
[ 0041 ] In this embodiment , the INVL _ EPT instruction has 
three operands , first a value , for an instruction mode or 
variant specification ; a second operand , a value specifying 
the EPT pointer , which is equivalent to the EPT context in 
which the INVL _ EPT instruction is to execute ; and a third 
operand , a value specifying the guest physical address 
associated with the TLB entries to be invalidated . In this 
embodiment , the first operand is provided as an 8 bit 
immediate value , and the second and third operand are 
provided as a block in memory , each occupying 64 bits . 
Other embodiments are possible . For example , the operands 
may be provided in registers or other memory locations 
either explicitly or implicitly . 
10042 ] . The first operand in this embodiment is a switch or 
flag with at least three defined values , and thus specifying 
that the INVL _ EPT instruction is to execute in one of three 
possible modes : 
[ 0043 ] 1 . Individual Address mode : in this mode , physical 
translations in the TLB associated with a single guest 
physical address are synchronized to the EPT , based on the 
mappings for that address in the EPT referenced by the 
context provided in the second operand as described above . 

[ 0044 ] 2 . Context mode : in this mode , the guest address 
parameter ( third operand as described above ) is ignored , and 
those entries in the TLB in the EPT context specified in the 
second operand as described above , are synchronized with 
the EPT . 
[ 0045 ] 3 . Global mode : in this mode , both the guest 
address parameter and the EPT context parameters are 
ignored and TLB entries derived from any EPT context are 
synchronized . 
[ 004 ] FIG . 5 . The flowchart of FIG . 5 depicts the execu 
tion of the INVL _ EPT instruction in one embodiment . The 
execution begins at 500 . First , the processor may conduct a 
number of tests to ensure that the current execution envi 
ronment is valid for EPT related operations , at 505 . These 
tests may include a test to ensure that the system is in a 
virtualized mode of operation ; that paging is enabled ; and 
that there are no current error states , among others . If the 
execution environment is not valid , the instruction may 
either exit to an undefined state , generate a general protec 
tion fault , generate an undefined opcode fault or the like via 
555 and 560 . If the execution environment is valid , the 
instruction execution then reads , in this embodiment , an 
immediate 8 bit operand at 510 . This operand termed 
SYNC _ CMD is expected to represent a valid mode for the 
INVL EPT instruction as detailed above . If the operand is 
not valid , at 515 , the instruction exits as before to 555 and 
560 . If the operand is valid , execution then proceeds to read 
the second and third operands from memory , 520 , and as 
discussed previously , the operands are expected to be at a 
128 bit block in memory at a reference labeled INVLEPT _ 
DESC in the figure . The first 64 bits in this embodiment are 
the EPT context , or the EPT table pointer and are extracted 
as EPTP _ CTX at 525 ; the next 64 bits are the guest - physical 
address parameter for the instruction , extracted as 
GP _ ADDR at 530 . 
[ 0047 ] The execution of the instruction then proceeds to 
execute the actual synchronization depending on the value 
of the SYNC _ CMD operand in the flow of execution 
depicted at 535 to 580 . As described previously , SYNC _ 
CMD may be either be an indication to perform a global 
synchronization of the TLB based on all EPT contexts ; or an 
indication to perform a synchronization of only the EPT 
context specified by an operand of the instruction ; or finally , 
to perform a synchronization of only the guest - physical 
address passed as a parameter in the EPT context provided 
as a parameter . In this embodiment , as shown in the execu 
tion flow in FIG . 5 , a check for the SYNC _ CMD value being 
takes place at 535 ; the second at 540 ; and the third at 545 . 
At 535 , if the value of SYNC _ CMD indicates global syn 
chronization , the instruction executes to synchronize all 
physical mappings for all EPT contexts , and execution is 
complete , 580 . Otherwise , if SYNC _ CMD indicates context 
specific synchronization at 540 , execution then proceeds to 
check if the provided EPTP _ CTX value is valid . If it is not , 
because , for instance , a reserved bit is set in the value or the 
address in the EPTP is invalid , execution of the instruction 
terminates with a General Protection Fault , 555 and 560 . If 
the context provided is valid , execution continues , synchro 
nizing all physical mappings for the EPT context referenced 
by EPTP _ CTX at 575 , and then completes 580 . 
[ 0048 ] If SYNC _ CMD is neither global nor context wide 
synchronization , and is also a valid mode of operation , the 
only remaining possibility in this embodiment is for the 
command to synchronize a specific guest physical address . 
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Execution then checks if the GP _ ADDR parameter provided 
at 545 is valid . If an invalid address is provided , execution 
exits at 555 and 560 with a general protection fault . Other 
wise , all physical mappings associated with the provided 
guest physical address GP _ ADDR are synchronized with the 
EPT referenced by the context provided in EPTP _ CTX at 
550 , and execution completes , 580 . 
10049 ) It will be clear to one of ordinary skill in the art that 
the above described embodiments may be varied widely . In 
some embodiments , a command equivalent to INVL _ EPT 
may be available , but may have a different syntax , including 
a name , the number , format , and size of parameters , among 
others . As is known , different instruction set architectures 
( ISA ) exist , and a similar command may be provided for a 
different ISA with format and other characteristics consistent 
with that ISA . For one example , an instruction to invalidate 
and / or synchronize a TLB with an EPT for a processor based 
on the Intel® Itanium Architecture may readily be visualized 
and described based on the descriptions of the embodiments 
provided above by one of ordinary skill in the art ; as might 
instructions for any other ISA . 
00501 The discussion relating to EPT context in the 
embodiments referenced above should not be seen as lim 
iting . In other embodiments , there may be only one instance 
of an EPT , in others , several instances may be operational as 
discussed in the x86 instance , with a reference mechanism 
such as a reference register or pointer akin to the EPTP 
discussed above . 
[ 0051 ] In other embodiments , the number and format of 
parameters may vary . For example , in the above described 
embodiments , the INVL EPT instruction has one immediate 
and two memory based operands . In other embodiments , 
more immediate operands may be used ; in others all oper 
ands may be memory based ; in yet other embodiments , 
operands may be read from registers or other stores within 
the processor , among many other variations that are known . 
[ 0052 ] The above described embodiments are described 
with reference to three modes of operation for the INVL _ 
EPT instruction . In other embodiments , some or all of these 
modes may be missing ; in others , more modes may be 
available . For instance , in some embodiments , there may be 
no mode for individual address invalidation , and in such a 
mode , all TLB entries would be synchronized . In some 
embodiments , there may be only one instance of an EPT 
operating in the system , and in such embodiments , the 
context mode may be unnecessary . Alternatively , in some 
embodiments , only individual address synchronization may 
be available ; or in others , only global address synchroniza 
tion may be used , making the first operand as described with 
reference to INVL _ EPT unnecessary . 
[ 0053 ] While these variations on the instruction and its 
operation are possible , many others may readily be envis 
aged by one of ordinary skill in the art , including variations 
where the general effect of the INVL EPT instruction is 
obtained by a combination of other instructions , among 
many others . 
[ 0054 ] In the preceding description , for purposes of expla 
nation , numerous specific details are set forth in order to 
provide a thorough understanding of the described embodi 
ments , however , one skilled in the art will appreciate that 
many other embodiments may be practiced without these 
specific details . 
[ 0055 ] Some portions of the detailed description above are 
presented in terms of algorithms and symbolic representa 

tions of operations on data bits within a processor - based 
system . These algorithmic descriptions and representations 
are the means used by those skilled in the art to most 
effectively convey the substance of their work to others in 
the art . The operations are those requiring physical manipu 
lations of physical quantities . These quantities may take the 
form of electrical , magnetic , optical or other physical signals 
capable of being stored , transferred , combined , compared , 
and otherwise manipulated . It has proven convenient at 
times , principally for reasons of common usage , to refer to 
these signals as bits , values , elements , symbols , characters , 
terms , numbers , or the like . 
[ 0056 ] It should be borne in mind , however , that all of 
these and similar terms are to be associated with the appro 
priate physical quantities and are merely convenient labels 
applied to these quantities . Unless specifically stated other 
wise as apparent from the description , terms such as 
" executing ” or “ processing " or " computing ” or “ calculat 
ing ” or “ determining ” or the like , may refer to the action and 
processes of a processor - based system , or similar electronic 
computing device , that manipulates and transforms data 
represented as physical quantities within the processor 
based system ' s storage into other data similarly represented 
or other such information storage , transmission or display 
devices . 
[ 0057 ] In the description of the embodiments , reference 
may be made to accompanying drawings . In the drawings , 
like numerals describe substantially similar components 
throughout the several views . Other embodiments may be 
utilized and structural , logical , and electrical changes may 
be made . Moreover , it is to be understood that the various 
embodiments , although different , are not necessarily mutu 
ally exclusive . For example , a particular feature , structure , 
or characteristic described in one embodiment may be 
included within other embodiments . 
10058 ] . Further , a design of an embodiment that is imple 
mented in a processor may go through various stages , from 
creation to simulation to fabrication . Data representing a 
design may represent the design in a number of manners . 
First , as is useful in simulations , the hardware may be 
represented using a hardware description language or 
another functional description language . Additionally , a cir 
cuit level model with logic and / or transistor gates may be 
produced at some stages of the design process . Furthermore , 
most designs , at some stage , reach a level of data represent 
ing the physical placement of various devices in the hard 
ware model . In the case where conventional semiconductor 
fabrication techniques are used , data representing a hard 
ware model may be the data specifying the presence or 
absence of various features on different mask layers for 
masks used to produce the integrated circuit . In any repre 
sentation of the design , the data may be stored in any form 
of a machine - readable medium . An optical or electrical wave 
modulated or otherwise generated to transmit such informa 
tion , a memory , or a magnetic or optical storage such as a 
disc may be the machine readable medium . Any of these 
mediums may “ carry ” or “ indicate ” the design or software 
information . When an electrical carrier wave indicating or 
carrying the code or design is transmitted , to the extent that 
copying , buffering , or re - transmission of the electrical signal 
is performed , a new copy is made . Thus , a communication 
provider or a network provider may make copies of an 
article ( a carrier wave ) that constitute or represent an 
embodiment . 
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[ 0059 ] Embodiments may be provided as a program prod 
uct that may include a machine - readable medium having 
stored thereon data which when accessed by a machine may 
cause the machine to perform a process according to the 
claimed subject matter . The machine - readable medium may 
include , but is not limited to , floppy diskettes , optical disks , 
DVD - ROM disks , DVD - RAM disks , DVD - RW disks , 
DVD + RW disks , CD - R disks , CD - RW disks , CD - ROM 
disks , and magneto - optical disks , ROMs , RAMS , EPROMs , 
EEPROMs , magnet or optical cards , flash memory , or other 
type of media / machine - readable medium suitable for storing 
electronic instructions . Moreover , embodiments may also be 
downloaded as a program product , wherein the program 
may be transferred from a remote data source to a requesting 
device by way of data signals embodied in a carrier wave or 
other propagation medium via a communication link ( e . g . , a 
modem or network connection ) . 
[ 0060 ] Many of the methods are described in their most 
basic form but steps can be added to or deleted from any of 
the methods and information can be added or subtracted 
from any of the described messages without departing from 
the basic scope of the claimed subject matter . It will be 
apparent to those skilled in the art that many further modi 
fications and adaptations can be made . The particular 
embodiments are not provided to limit the claimed subject 
matter but to illustrate it . The scope of the claimed subject 
matter is not to be determined by the specific examples 
provided above but only by the claims below . 
What is claimed is : 
1 . A multi - core processor comprising : 
a first register to reference a set of page tables , the set of 

page tables to provide a mapping of guest virtual 
addresses to guest physical addresses ; 

a second register to reference an active set of extended 
page tables , including one of : 

a first set of extended page tables to provide a mapping 
of guest physical addresses to host physical 
addresses for a first virtual machine , the first set of 
extended page tables to reference a portion of host 
physical address space associated with the first vir 
tual machine , and 

a second set of extended page tables to provide a 
mapping of guest physical addresses to host physical 
addresses for a second virtual machine , the second 
set of extended page tables to reference a portion of 
host physical address space associated with the sec 
ond virtual machine ; 

address translation logic to access the set of page tables 
and the set of extended page tables to translate a guest 
virtual address to a guest physical address and to 
translate the guest physical address to a host physical 
address in response to a memory access request includ 
ing the guest virtual address ; 

a translation look - aside buffer ( TLB ) to cache a plurality 
TLB entries , including guest physical address to host 
physical address translations ; 

execution logic , in response to a TLB invalidate instruc 
tion , to invalidate only TLB entries associated with the 
first virtual machine , independent of corresponding 
guest physical addresses ; and 

graphics processing logic . 
2 . The multi - core processor of claim 1 , further comprising 

access logic to enable use of the set of extended page tables . 
3 . The multi - core processor of claim 2 , wherein use of the 

set of extended page tables is based on an EPT enable 
indicator . 

4 . The multi - core processor of claim 1 , wherein the TLB 
is to cache virtual address to guest physical address trans 
lations . 

* * 


