
THAT THE TORN AT HE UN PUNTOLA NA TALA UNTUK MENANTHI US 20180060247A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0060247 A1

Bennett et al . (43) Pub . Date : Mar . 1 , 2018

(54) SYNCHRONIZING A TRANSLATION
LOOKASIDE BUFFER WITH AN EXTENDED
PAGING TABLE

Jan . 11 , 2012 , now Pat . No . 8 , 296 , 546 , which is a
continuation of application No . 12 / 495 , 555 , filed on
Jun . 30 , 2009 , now Pat . No . 8 , 099 , 581 , which is a
continuation of application No . 11 / 504 , 964 , filed on
Aug . 15 , 2006 , now Pat . No . 7 , 555 , 628 . (71) Applicant : Intel Corporation , Santa Clara , CA

(US)

(72) Inventors : Steven M . Bennett , Hillsboro , OR
(US) ; Andrew V . Anderson , Hillsboro ,
OR (US) ; Gilbert Neiger , Portland , OR
(US) ; Richard Uhlig , Hillsboro , OR
(US) ; Scott Dion Rodgers , Hillsboro ,
OR (US) ; Rajesh M . Sankaran ,
Portland , OR (US) ; Camron Rust ,
Hillsboro , OR (US) ; Sebastian
Schoenberg , Hillsboro , OR (US)

Publication Classification
(51) Int . CI .

G06F 12 / 02 (2006 . 01)
G06F 9 / 455 (2006 . 01)

(52) U . S . CI .
CPC GO6F 12 / 1027 (2013 . 01) ; G06F 2212 / 683

(2013 . 01) ; G06F 12 / 0875 (2013 . 01) ; G06F
12 / 1009 (2013 . 01) ; G06F 12 / 1036 (2013 . 01) ;

G06F 12 / 1054 (2013 . 01) ; G06F 9 / 45558
(2013 . 01) ; G06F 2212 / 2022 (2013 . 01) ; G06F

2212 / 152 (2013 . 01) ; G06F 2009 / 45583
(2013 . 01) ; G06F 2212 / 452 (2013 . 01) ; G06F
2212 / 50 (2013 . 01) ; G06F 2212 / 65 (2013 . 01) ;

G06F 2212 / 657 (2013 . 01) ; G06F 2212 / 68
(2013 . 01) ; G06F 2212 / 7201 (2013 . 01) ; G06F

12 / 0246 (2013 . 01)

(21) Appl . No . : 15 / 620 , 663

(22) Filed : Jun . 12 , 2017
Related U . S . Application Data

(63) Continuation of application No . 14 / 867 , 025 , filed on
Sep . 28 , 2015 , now Pat . No . 9 , 678 , 890 , which is a
continuation of application No . 14 / 675 , 325 , filed on
Mar . 31 , 2015 , now Pat . No . 9 , 251 , 094 , which is a
continuation of application No . 14 / 517 , 849 , filed on
Oct . 18 , 2014 , now Pat . No . 9 , 122 , 624 , which is a
continuation of application No . 14 / 070 , 561 , filed on
Nov . 3 , 2013 , now Pat . No . 8 , 949 , 571 , which is a
continuation of application No . 13 / 658 , 752 , filed on
Oct . 23 , 2012 , now Pat . No . 8 , 601 , 233 , which is a
continuation of application No . 13 / 348 , 608 , filed on

(57) ABSTRACT
A processor including logic to execute an instruction to
synchronize a mapping from a physical address of a guest of
a virtualization based system (guest physical address) to a
physical address of the host of the virtualization based
system (host physical address) , and stored in a translation
lookaside buffer (TLB) , with a corresponding mapping
stored in an extended paging table (EPT) of the virtualiza
tion based system .

105
25

Process Executing

130

Access
Memory

O MB
Executes

MB
Offset

1 140 If f 10 MB

110 Memory 1
mariagement fun .

1
145

11 MB Process Linear
Memory Space www www

120 16

Lee

Processor Machine Physical
Memory

256 MB
*

- Bus . . . *
- * * * * - -

Physical Machine
w

Patent Application Publication Mar . 1 , 2018 Sheet 1 of 6 US 2018 / 0060247 A1

105

125
Process Executing

130
- *

w * vo svorite this threaten
*

Access
Memory

O MB
Executes

0 MB 135 *

Offset
I 140

toiminden - 10 MB
w

. 110mm lineer dari Vemory
????????éfènt { ~ ~

115 4231AELA : A www

Yer
-

Men 11 MB - + Process Linear
Memory Space * * Werra - arrocorrow

-

1 MB Home
- - * * w

VINNUR

the met
- 2

*

- - - - -

- - - - Processor
to

Machine Physical
Memory

256 MBL . YRITY

move and

per * *
on the outcome most out to

*
* * *

* * * * *

are the most Physical Machine
* * * * * *

que * * * * * *
* * h o

w

st

Figure 1

US 2018 / 0060247 A1

-

-

A

-

-

A

Wy

Atyytyty
w

sytyty '

M

W

-

128 MB

384 MB

512 MB

* -

*

* * * * *

A ZAH

Host
Machine

-

O " : " " "

IRI
T

.

: : ' ' + ' ? 9 - • • • •

• • • • • • • • • • • • • •

L . . .

- " ! ! : . - - . - . - ! ! - INITIILOR . PPTILIN !

- -

PI : . .

.

.

!

!

- - -

tepped
Guest Physical
Menoty . A

Host Physical
Lowen

-

Host Processor

.

.

. . .

.

- -

1

SIIN "

VI . ii

- -

"

It ! .

-

1 .

. . .

< - 1 . .

. NO FS . PIPIYIP E Prili

. . iii i .

- - - - . - " - ' . r .

. . -

r

.

. . . .

.

. , " 1

.

.

.

.

. . I

. - -

-

- .

.

.

-

-

-

-

OMRE

-

1024
, 186 MB

. - * *

Le my money on www w

ww maule

-

-

-

-

wobe pode com ww www ww ww www com forum

28 270
woet mens

287 .

no

Mar . 1 , 2018 Sheet 2 of 6

tineret

SZZ

G92

242 247 242

om

en

m

or hoe

At male o

2

*

i

.

W

* *

Virtual
Machine

Bora

Virtual
Machine ' s

W

245 245

* * *

w

was

en

V

244

*

$ 92

Virtual Processor A

1

Virtual Processor B

met

tezett

.

rii7777777 : * * 111 * 11 * 7 . * * * . 77 17

47

Yiri

- - - . ' niFIIIIIINitri !

1 :

1

IIHIMPITIE II : + N 1 : 1 . H . I . III ! !

II - IIIII

EFI . II . IF HAHII . .

. . !

!

!

the man

. .

tu

*

!

!

I

P + P - : ; . ! ! . .

I II . .

II + I

II

17 . ur . Ir . '

.

.

. rl
Y

.

.

D

II . IPUIII I I

. .

.

OLI IT : I . T . IIII . . . ! " J : urli . .

!

. ' I

Y

* *

1

.

T .

.

-

-

1

-

-

-

-

-

.

-

-

7

.

-

-

.

-

-

-

-

-

-

-

1

'

.

1757

I

T

: it

PIO .

TE

LIST . NL , " it - L PPETITIERE
jest Physical
Memory A

w

II . .
. . FLI . . .

.

.

.

.

.
.

.
.

. . .

IP

. .

. .

. .
. . .

. .

.
. .

.

.

. .

.

I

.

. .

. . .
. . .

vedi .

. .

.

*

.

.

.

.

I

.

. . IIIIIIII

Frid '

e ' '

.

. . .

. . . II FOTO

LISOILS . 1 . .

. PI ' id ' :

A

. . PIEVI

"

-

L

. . . ' ' - - '

- ' . Pri

Irrei Siiiii
i -

SW 997

* *

" I ' FBI
NI . . TELI

1 . I

III . n

PII . I

? } }

II .

*

256 MB

Patent Application Publication

BWO
Mi I

IRI ! . I . III Erro

r i

.

.

I I .

I . II .

. . ! !

I ' - . . ' . " " ' . ' . ' i .

AYNA / 1 - Verde M AS - IV

!

. .

. .

. ii

! . . . ! ! .

! !

.
- 14 25

JI

*

III
,

.

.

*

* *

they

* *

* * *

* *

w

1

we * *

-

Figure 2

hannon

Patent Application Publication Mar . 1 , 2018 Sheet 3 of 6 US 2018 / 0060247 A1

~ 313 - 303
Guest Software # 1

r 308
Guest Software # 2

pre 310 1910 horas . 1 .

4pp . 1 App . 2 App . 1 App . 2

- 304 p 306

OS # 1 OS # 2
VULLE

302
Virtual Machine
Abstraction 1

Virtual Machine
Abstraction 2

annemanom 312 312
Virtual - Machine Monitor (VMM)

Physical Memory
Management Module 326

Bus 336

Processor 318
EPT Access
Logic 322

VMCS
324

???
Tables
328

TLB 323

Memory 320

Bare Platform Hardware 316

Figure 3

Patent Application Publication Mar . 1 , 2018 Sheet 4 of 6 US 2018 / 0060247 A1

? ??? ?? ??? . ? ? ? ?? ! - - - - - - -

- - www www mm Other Functional Logic w wwwwwww Figure 3a
??? ?? ?? ??? ??? ??? ?? ???? ? ? ???? ???? ??? ??? ? ?? www

322

??? Access Logic 11rrrrrrrrr * * *

*

334

Execute Logic ZEE

On - Board Cache 323 Decode Logic TLB
verter

Fetch Logic ???????????????????

* * * * * *

330

Control and Status Registers Registers
355 350 337 360

410

420

Patent Application Publication

4711111 * *

* *

M

Y

YTYTYTYY101271111111111 *

CR3 Control Register

22 21

12 1 }

32 - bit Virtual Address

CR3 Cartol Register
????????????????

12 bits

452

10 bits

10 bits

< < 2

414

ma

412

Mar . 1 , 2018 Sheet 5 of 6

EPT 455

EPT 465

EPT 475

402

tert

PD Table 460

Page Table 470

442

404

422

432

Figure 4

Host Physical Address 424

US 2018 / 0060247 A1

500

535

555

Sws INVL EPT

* . is SYNC CMD " global
synchronization "

Y

Synchronize all physical mappings for all
EPT contexts

Patent Application Publication

.

905

555

540

Execution environment valid for EPT based operations ?

570 570

15 SYNC CMD ' context
synchronization "

- - Y -

SEPTP _ CTX valid ?

510

horor

Y

575

- - -

A

rt .

L - -

-

erro

SYNC - CMD = imn8 operand

545

Synchronize all physical mappings for EPT context referenced by EPTP CTX

575

Vald SYNG _ CMO ?

Is GP _ ADDR valid

Mar . 1 , 2018 Sheet 6 of 6

520

550

580

555

555

INVLEPT DESC 4 : 128 operand

Synchronize st least physical mappings associated with GP ADDR in EPTP CTX

done mm

rrrrrrrrrrrrrrrrr EPTP _ CTX = INVLEPT DESC { 63 : 0)

555

Undefined State or ??????al gecki Faust

560

YU

Y

U

+ + +

GP _ ADDR - INVLEPT _ DESC [127 : 64 }

Figure 5

US 2018 / 0060247 A1

530

US 2018 / 0060247 A1 Mar . 1 , 2018

SYNCHRONIZING A TRANSLATION
LOOKASIDE BUFFER WITH AN EXTENDED

PAGING TABLE

RELATED APPLICATIONS
[0001] This is a Continuation of U . S . patent application
Ser . No . 14 / 867 , 025 , filed Sep . 28 , 2015 , now pending ;
which is a Continuation of U . S . patent application Ser . No .
14 / 675 , 325 , filed Mar . 31 , 2015 , now U . S . Pat . No . 9 , 251 ,
094 ; which is a Continuation of U . S . patent application Ser .
No . 14 / 517 , 849 , filed Oct . 18 , 2014 , now U . S . Pat . No .
9 , 122 , 624 ; which is a Continuation of U . S . patent applica
tion Ser . No . 14 / 070 , 561 , filed Nov . 3 , 2013 , now U . S . Pat .
No . 8 , 949 , 571 ; which is a Continuation of U . S . patent
application Ser . No . 13 / 658 , 752 , filed Oct . 23 , 2012 , now
U . S . Pat . No . 8 , 601 , 233 ; which is a Continuation of U . S .
patent application Ser . No . 13 / 348 , 608 , filed Jan . 11 , 2012 ,
now U . S . Pat . No . 8 , 296 , 546 ; which is a Continuation of
U . S . patent application Ser . No . 12 / 495 , 555 , filed Jun . 30 ,
2009 , now U . S . Pat . No . 8 , 099 , 581 ; which is a Continuation
of U . S . patent application Ser . No . 11 / 504 , 964 , filed Aug . 15 ,
2006 , now U . S . Pat . No . 7 , 555 , 628 ; which is related to U . S .
patent application Ser . No . 11 / 036 , 736 , now U . S . Pat . No .
7 , 886 , 126 .

executing . Similarly , certain interrupts and exceptions gen
erated in the host machine may need to be intercepted and
managed by the VMM or adapted for the guest software by
the VMM before being passed on to the guest software for
servicing . The VMM then transitions control to the guest
software and the virtual machine resumes operation . The
transition from the VMM to the guest software is referred to
herein as a virtual machine entry .
[0004] As is known in the art , a page table is often used to
provide a mapping from linear memory to physical memory
in a typical processor based system . Page tables are gener
ally memory - resident structures and therefore accessing a
page table to determine a physical address corresponding to
a linear address causes a memory access , which may delay
processing time . In order to alleviate this concern , many
processor implementations include a high speed memory or
bank of registers within the processor termed a translation
lookaside buffer (TLB) in which some subset of the current
linear to physical memory mappings that are in use is
cached , based on the values in the page table . This allows a
processor to more rapidly access a translation of a linear
address to the corresponding physical address than would be
possible in general if the processor had to access the page
table . Processor implementations generally provide instruc
tions to manage the TLB , including an instruction to invali
date or update all the entries in the TLB based on current
translations as stored in the page tab . BACKGROUND OF THE INVENTION

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] The present invention is illustrated by way of
example and not limitation in the figures of the accompa
nying drawings .
[0006] FIG . 1 depicts the relationship between process and
physical memory .
10007] FIG . 2 depicts abstractly the relationship between
virtual machines and a host machine in one embodiment .
[0008] FIG . 3 depicts a high level structure of a virtual
machine environment in one embodiment .
[0009] FIG . 3a represents a processor in one embodiment
at a functional level .
[0010] FIG . 4 depicts address computation using extended
paging tables in one embodiment .
[0011] FIG . 5 depicts the flow of instruction execution in
one embodiment .

[0002] Virtualization enables a single host machine with
hardware and software support for virtualization to present
an abstraction of the host , such that the underlying hardware
of the host machine appears as one or more independently
operating virtual machines . Each virtual machine may there
fore function as a self - contained platform . Often , virtualiza
tion technology is used to allow multiple guest operating
systems and / or other guest software to coexist and execute
apparently simultaneously and apparently independently on
multiple virtual machines while actually physically execut
ing on the same hardware platform . A virtual machine may
mimic the hardware of the host machine or alternatively
present a different hardware abstraction altogether .
[0003] Virtualization systems may include a virtual
machine monitor (VMM) which controls the host machine .
The VMM provides guest software operating in a virtual
machine with a set of resources (e . g . , processors , memory ,
IO devices) . The VMM may map some or all of the
components of a physical host machine into the virtual
machine , and may create fully virtual components , emulated
in software in the VMM , which are included in the virtual
machine (e . g . , virtual 10 devices) . The VMM may thus be
said to provide a “ virtual bare machine ” interface to guest
software . The VMM uses facilities in a hardware virtual
ization architecture to provide services to a virtual machine
and to provide protection from and between multiple virtual
machines executing on the host machine . As guest software
executes in a virtual machine , certain instructions executed
by the guest software (e . g . , instructions accessing peripheral
devices) would normally directly access hardware , were the
guest software executing directly on a hardware platform . In
a virtualization system supported by a VMM , these instruc
tions may cause a transition to the VMM , referred to herein
as a virtual machine exit . The VMM handles these instruc
tions in software in a manner suitable for the host machine
hardware and host machine peripheral devices consistent
with the virtual machines on which the guest software is

DETAILED DESCRIPTION
[0012] FIG . 1 shows a process executing on a processor
based system which incorporates a processor and a memory
communicatively coupled to the processor by a bus . With
reference to FIG . 1 , when a process 105 references a
memory location 110 in its linear address space 115 (linear
memory space) , a reference to an actual address 140 in the
physical memory 145 of the machine 125 (machine physical
memory) is generated by memory management 130 , which
may be implemented in hardware (sometimes incorporated
into the processor 120) and software (generally in the
operating system of the machine) . Memory management
130 , among other functions maps a location in the linear
address space to a location in physical memory of the
machine . As shown in FIG . 1 , a process may have a different
view of memory from the actual memory available in the
physical machine . In the example depicted in FIG . 1 , the
process operates in a linear address space from 0 to 1 MB

US 2018 / 0060247 A1 Mar . 1 , 2018

which is actually mapped by the memory management
hardware and software into a portion of the physical
memory which itself has an address space from 10 to 11 MB ;
to compute a physical address from a process space address ,
an offset 135 may be added to the linear address . More
complex mappings from linear address space to physical
memory are possible , for example , the physical memory
corresponding to linear memory may be divided into parts
such as pages and be interleaved with pages from other
processes in physical memory .
[0013] Memory is customarily divided into pages , each
page containing a known amount of data , varying across
implementations , e . g . a page may contain 4096 bytes of
memory , 1 MB of memory , or any other amount of memory
as may be desired for a particular application . As memory
locations are referenced by the executing process , they are
translated into page references . In a typical machine ,
memory management maps a reference to a page in linear
memory to a page in machine physical memory . In general ,
memory management may use a page table to specify the
physical page location corresponding to a process space
page location .
[0014] One aspect of managing guest software in a virtual
machine environment is the management of memory . Han
dling memory management actions taken by the guest
software executing in a virtual machine creates complexity
for a controlling system such as a virtual machine monitor .
Consider for example a system in which two virtual
machines execute via virtualization on a host machine
implemented on an x86 platform which may include page
tables implemented as part of the x86 processor . Further ,
assume that each virtual machine itself presents an abstrac
tion of an x86 machine to the guest software executing
thereon . Guest software executing on each virtual machine
may make references to a guest linear memory address ,
which in turn is translated by the guest machine ' s memory
management system to a guest - physical memory address .
However , guest - physical memory itself may be imple
mented by a further mapping in host - physical memory
through a VMM and the virtualization subsystem in hard
ware on the host processor . Thus , references to guest
memory by guest processes or the guest operating system ,
including for example references to guest x86 page table
control registers , must then be intercepted by the VMM
because they cannot be directly passed on to the host
machine ' s page table without further reprocessing , as the
guest - physical memory does not , in fact , correspond directly
to host - physical memory but is rather further remapped
through the virtualization system of the host machine .
[0015] FIG . 2 : FIG . 2 depicts the relationship between one
or more virtual machines executing on a host machine with
specific regard to the mapping of guest memory in one
embodiment . FIG . 2 illustrates how guest - physical memory
is remapped through the virtualization system of the host
machine . Each virtual machine such as virtual machine A ,
242 , and virtual machine B , 257 , presents a virtual processor
245 and 255 respectively to guest software running on the
virtual machines . Each machine provides an abstraction of
physical memory to the guest operating system or other
guest software , guest - physical memories 240 and 250 ,
respectively . As guest software executes on the virtual
machines 242 and 257 , it is actually executed by the host
machine 267 on host processor 265 utilizing host - physical
memory 260 .

[0016] As shown in FIG . 2 , in this embodiment , guest
physical memory 240 which is presented as a physical
memory space starting at address 0 in virtual machine A ,
242 , is mapped to some contiguous region 270 in host
physical memory 260 . Similarly , guest - physical memory
250 in virtual machine B , 257 , is mapped to a different
portion 275 of host - physical memory 260 . As shown in FIG .
2 , the host machine might have 1024 MB of host - physical
memory . If each virtual machine 242 and 257 is assigned
256 MB of memory , one possible mapping might be that
virtual machine A , 242 , is assigned the range 128 - 384 MB
and virtual machine B , 257 , is assigned the range 512 - 768
MB . Both virtual machines 242 and 257 reference a guest
physical address space of 0 - 256 MB . Only the VMM is
aware that each virtual machine ' s address space maps to
different portions of the host - physical address space .
[0017] The virtual machines and memory mapping shown
in FIG . 2 are only one representation of one embodiment , in
other embodiments , the actual number of virtual machines
executing on a host machine may vary from one to many ; the
actual memory sizes of the host machine and the virtual
machines may vary and be variable from virtual machine to
virtual machine . The example depicts a simple , contiguous
allocation of memory to virtual machines . In a more general
case , the physical - memory pages allocated to a virtual
machine may not be contiguous and might be distributed in
the host - physical memory interleaved with each other and
with pages belonging to the VMM and to other host pro
cesses .
[0018] A processor - based system that is presented as a
virtual machine in a system such as that depicted in FIG . 2
may implement a virtual machine in all its complexity . Thus
for example , a virtual machine may present a full view of
guest - physical memory to the guest OS , and perform
memory management for guest software executing on the
virtual machine , using memory management provided by
the guest OS and the virtual processor or other virtual
hardware of the virtual machine . In one exemplary embodi
ment , the virtual machine may present an x86 platform
including x86 hardware support such as page tables for
memory management to the guest OS , and in turn be
actually executing on a host platform which is also an x86
platform including x86 hardware for memory management .
Without additional mechanisms , a virtualization system in
this embodiment must implement a physical - memory virtu
alization algorithm in the VMM using , as one possible
solution , x86 page table shadowing to remap , partition and
protect physical memory . Thus , for example , when guest
software attempts to access the x86 page tables of the virtual
machine , the VMM must overlay functionality required for
virtualization (e . g . , remapping physical addresses) onto the
functionality required by the guest OS .
[0019] To this end , the VMM must trap a variety of events
surrounding the use of the paging mechanism by the guest
software . This includes writes to control registers such as
control registers of the x86 memory management system
(e . g . , CRO , CR3 and C4) , accesses to model - specific regis
ters (MSRs) associated with paging and memory access
(e . g . , memory - type range registers (MTRRs)) , handling cer
tain exceptions (e . g . , page faults) , as described in the x86
documentation . This use of the x86 page tables to virtualize
physical memory is complex and exacts a significant per
formance overhead .

US 2018 / 0060247 A1 Mar . 1 , 2018

[0020] FIG . 3 : FIG . 3 illustrates one embodiment of a
virtual - machine environment 300 . In this embodiment , a
processor - based platform 316 may execute a VMM 312 . The
VMM , though typically implemented in software , may
emulate and export a virtual bare machine interface to higher
level software . Such higher level software may comprise a
standard OS , a real time OS , or may be a stripped - down
environment with limited operating system functionality and
may not include OS facilities typically available in a stan -
dard OS in some embodiments . Alternatively , for example ,
the VMM 312 may be run within , or using the services of ,
another VMM . VMMs may be implemented , for example , in
hardware , software , firmware or by a combination of various
techniques in some embodiments . In at least one embodi
ment , one or more components of the VMM may execute in
one or more virtual machines and one or more components
of the VMM may execute on the bare platform hardware as
depicted in FIG . 3 . The components of the VMM executing
directly on the bare platform hardware are referred to herein
as host components of the VMM .
[0021] The platform hardware 316 may be a personal
computer (PC) , server , mainframe , handheld device such as
a personal digital assistant (PDA) or “ smart ” mobile phone ,
portable computer , set top box , or another processor - based
system . The platform hardware 316 includes at least a
processor 318 and memory 320 . Processor 318 may be any
type of processor capable of executing programs , such as a
microprocessor , digital signal processor , microcontroller , or
the like . The processor may include microcode , program
mable logic or hard coded logic for execution in embodi
ments . Although FIG . 3 shows only one such processor 318 ,
there may be one or more processors in the system in an
embodiment . Additionally , processor 318 may include mul
tiple cores , support for multiple threads , or the like . Memory
320 can comprise a hard disk , a floppy disk , random access
memory (RAM) , read only memory (ROM) , flash memory ,
any combination of the above devices , or any other type of
machine medium readable by processor 318 in various
embodiments . Memory 320 may store instructions and / or
data for performing program execution and other method
embodiments . In some embodiments , some elements of the
invention may be implemented in other system components ,
e . g . , in the platform chipset or in the system ' s one or more
memory controllers .
[0022] The VMM 312 presents to guest software an
abstraction of one or more virtual machines , which may
provide the same or different abstractions to the various
guests . FIG . 3 shows two virtual machines , 302 and 314 .
Guest software such as guest software 303 and 313 running
on each virtual machine may include a guest OS such as a
guest OS 304 or 306 and various guest software applications
308 and 310 . Guest software 303 and 313 may access
physical resources (e . g . , processor registers , memory and
I / O devices) within the virtual machines on which the guest
software 303 and 313 is running and to perform other
functions . For example , the guest software 303 and 313
expects to have access to all registers , caches , structures , I / O
devices , memory and the like , according to the architecture
of the processor and platform presented in the virtual
machine 302 and 314 .
[0023] In one embodiment , the processor 318 controls the
operation of the virtual machines 302 and 314 in accordance
with data stored in a virtual machine control structure
(VMCS) 324 . The VMCS 324 is a structure that may contain

state of guest software 303 and 313 , state of the VMM 312 ,
execution control information indicating how the VMM 312
wishes to control operation of guest software 303 and 313 ,
information controlling transitions between the VMM 312
and a virtual machine , etc . The processor 318 reads infor
mation from the VMCS 324 to determine the execution
environment of the virtual machine and to constrain its
behavior . In one embodiment , the VMCS 324 is stored in
memory 320 . In some embodiments , multiple VMCS struc
tures are used to support CPUs within one or more virtual
multiple virtual machines .
[0024] The VMM 312 may need to manage the physical
memory accessible by guest software running in the virtual
machines 302 and 314 . To support physical memory man
agement in one embodiment , the processor 318 provides an
extended page table (EPT) mechanism . In the embodiment ,
the VMM 312 may include a physical memory management
module 326 that provides values for fields associated with
physical memory virtualization that may need to be provided
before transition of control to the virtual machine 302 or
314 . These fields are collectively referred to as EPT controls .
EPT controls may include , for example , an EPT enable
indicator specifying whether the EPT mechanism should be
enabled and one or more EPT table configuration controls
indicating the form and semantics of the physical memory
virtualization mechanism . These will be discussed in detail
below . Additionally , in one embodiment , EPT tables 328
indicate the physical address translation and protection
semantics which the VMM 312 may place on guest software
303 and 313 .
[0025] In one embodiment , the EPT controls are stored in
the VMCS 324 . Alternatively , the EPT controls may reside
in a processor 318 , a combination of the memory 320 and the
processor 318 , or in any other storage location or locations .
In one embodiment , separate EPT controls are maintained
for each of the virtual machines 302 and 314 . Alternatively ,
the same EPT controls are maintained for both virtual
machines and are updated by the VMM 312 before each
virtual machine entry .
[0026] In one embodiment , the EPT tables 328 are stored
in memory 320 . Alternatively , the EPT tables 328 may reside
in the processor 318 , a combination of the memory 320 and
the processor 318 , or in any other storage location or
locations . In one embodiment , separate EPT tables 328 are
maintained for each of the virtual machines 302 and 314 .
Alternatively , the same EPT tables 328 are maintained for
both virtual machines 302 and 314 and are updated by the
VMM 312 before each virtual machine entry .
100271 In one embodiment , the processor 318 includes
EPT access logic 322 that is responsible for determining
whether the EPT mechanism is enabled based on the EPT
enable indicator . If the EPT mechanism is enabled , the
processor translates guest - physical addresses to host - physi
cal addresses - based on the EPT controls and EPT tables 328 .
[0028] . In the embodiment depicted , the processor may
further include a translation lookaside buffer (TLB) 323 to
cache linear to guest - physical , guest - physical to host - physi
cal address and linear to host - physical translations . Linear to
guest - physical and linear to host - physical translations are
referred to herein as “ linear translations ' . Guest - physical to
host - physical and linear to host - physical translations are
referred to herein as “ physical translations ” .
[0029] In one embodiment , in which the system 300
includes multiple processors or multi - threaded processors ,

US 2018 / 0060247 A1 Mar . 1 , 2018

each of the logical processors is associated with a separate
EPT access logic 322 , and the VMM 312 configures the EPT
tables 328 and EPT controls for each of the logical proces
sors .
[0030] Resources that can be accessed by guest software
(e . g . , 303 , including guest OS 304 and application 308) may
either be classified as " privileged ” or “ non - privileged . ” For
privileged resources , the VMM 312 facilitates functionality
desired by guest software while retaining ultimate control
over these privileged resources . Further , each guest software
303 and 313 expects to handle various platform events such
as exceptions (e . g . , page faults , general protection faults ,
etc .) , interrupts (e . g . , hardware interrupts , software inter
rupts) , and platform events (e . g . , initialization (INIT) and
system management interrupts (SMIS)) . Some of these plat -
form events are " privileged ” because they must be handled
by the VMM 312 to ensure proper operation of virtual
machines 302 and 314 and for protection from and among
guest software . Both guest operating system and guest
applications may attempt to access privileged resources and
both may cause or experience privileged events . Privileged
platform events and access attempts to privileged resources
are collectively referred to as " privileged events ” or “ virtu
alization events ” herein .
[0031] FIG . 3a : FIG . 3a depicts at a high level some block
level features of processor 318 in the embodiment of FIG . 3 .
In general , a processor such as the one depicted in FIG . 3 at
318 may include a processor bus or buses such as the one
indicated at 337 in FIG . 3a . Furthermore , as depicted in FIG .
3a , a processor may include registers 350 in one or multiple
banks , and each register may have the capacity to store 32 ,
64 , 128 or another number of bits of data as is known . Each
register bank may further have several registers , such as e . g .
8 , 32 , 64 registers . Some registers may be dedicated to
control and status use for example to store the CR bits as in
an x86 embodiment . In other embodiments , other control
registers and flags may be stored in the processor to allow
different modes of operation and status checking as is known
in the art . In general a processor such as the one depicted in
the embodiment of FIG . 3 would include logic or logic
circuitry 330 to fetch instructions and data from memory ,
cache or other storage ; logic or logic circuitry to decode
instructions and execution units such as 334 to perform the
instructions . Many variations on these functional units are
possible , e . g . execution in the execution unit may be pipe
lined ; or include speculation , and branch prediction ; or have
other features as related to a particular processor or appli
cation . Other functional logic 365 may be present in the
processor such as logic for arithmetic , graphics processing ,
and many other specific functions of the processor as is
known . An on - board cache 360 may be present in some
embodiments . This cache may have various sizes such as
128 MB , 1 GB , etc . as is known As previously indicated with
reference to FIG . 3 , the processor 318 includes EPT access
logic 322 and TLB 323 . The EPT access logic may include
in one embodiment logic to populate , control and mange the
EPT ; and the TLB is generally a buffer including mappings
from page tables that are cached for efficiency and other
purposes within the processor .
[0032] FIG . 4 : FIG . 4 shows one example of processing
using the extended page tables introduced above to ulti
mately compute a host - physical address when guest soft
ware in a virtual machine references a guest virtual address .
The example depicted shows guest software running in an

x86 platform using simple 32 - bit virtual addressing and
simple page table formats . One skilled in the art will easily
be able to extend this example to understand , for example ,
other paging modes (e . g . , 64 - bit addressing in the guest
software) , other instruction set architectures (e . g . , The Intel
Itanium® Architecture , 64 - bit and other variations of the
x86 architecture , the PowerPC® Architecture , among many
others , and to other configurations .
[0033] In FIG . 4 a reference to a guest virtual address 410
is executed by guest software executing in a virtual machine .
The memory management mechanism active in the guest
(i . e . , configured by the guest operating system) is used to
translate the virtual address to a guest - physical address .
Each guest - physical address used in the translation , and the
resulting guest - physical address , are translated to host
physical addresses through EPT before accessing the host
physical memory . This process is detailed in the following
discussion .
[0034] . In this example , the appropriate bits 402 in the CR3
register 420 point to the base of the guest ' s page directory
table 460 in guest - physical memory . This value 402 is
combined with the upper bits from the guest virtual address
410 (appropriately adjusted , according to x86 semantics by
multiplying by 4 because , in this example , the entries in the
tables are 4 bytes each) to form the guest - physical address
412 of the page directory entry (PDE) in the guest ' s PD table
460 . This value 412 is translated through the EPT tables 455
to form the host - physical address 404 of the page directory
entry . The processor accesses the page directory entry using
this host - physical address 404 .
[0035] Information from the PDE includes the base
address 422 of the guest ' s page table 470 . This guest
physical address 422 is combined with bits 21 : 12 of the
guest virtual address 410 appropriately adjusted to form the
guest - physical address 432 of the page table entry in the
guest ' s page table 470 . This guest - physical address 432 is
translated through the EPT tables 465 to form the host
physical address 414 of the guest ' s page table entry (PTE) .
The processor accesses the PTE using this host - physical
address 414 .
[0036] Information from the PTE includes the base
address 442 of the page in guest - physical memory being
accessed . This value is combined with the low - order bits
(11 : 0) of the guest virtual address 410 to form the guest
physical address 452 of the memory being accessed . This
value 452 is translated through the EPT tables 475 to form
the host - physical address 424 of the memory being
accessed .
[0037] Each time the EPT tables are used to translate a
guest - physical address to a host - physical address , the pro
cessor also validates that the access is permitted according
to controls in the EPT tables , as will be described below .
Additionally , it must be understood that the EPT tables 455 ,
465 , and 475 , though indicated as distinct in FIG . 4 may , in
one embodiment , be the same set of EPT tables (i . e . , a single
set of EPT tables is used for all address translations from
guest - physical to host - physical) .
[0038] In a typical implementation of linear memory sup
port in a processor - based system , mappings from linear
addresses to physical addresses that are stored in a page table
structure may be cached for efficiency reasons in a transla
tion look - aside buffer (TLB) . Instructions may be included
in a processor instruction set to manage the TLB and to
allow a program executing in the processor based system to

US 2018 / 0060247 A1 Mar . 1 , 2018

ensure that a particular entry in the TLB is synchronized
with a page table entry . Thus for example , in the x86
architecture , the MOV CR instruction may cause a global
invalidation of all TLB entries , and thus a resynchronization
of the entries as addresses are accessed . Alternatively , in the
x86 example , a INVLPG instruction may be used to invali
date a mapping stored in the TLB for a specific linear
address , causing the entry in the TLB to be updated and
synchronized with the mapping in the page table .
[0039] In one embodiment , including a virtualized system
that incorporates an extended paging table (EPT) as dis
cussed above , a TLB may cache guest linear to host physical
address translations for processes executing in guest
machine memory ; and host linear to host physical mappings
for processes such as the VMM executing directly on the
host machine , as discussed previously with reference to FIG .
3 at 323 . In the former case , the guest linear to host physical
mappings may be derived both from page tables in the guest
as well as from the EPT ; in the latter case , the mappings may
be derived from the host page tables . An additional type of
mapping may also be stored in the TLB : a mapping directly
derived from guest physical to host physical memory based
on the mappings stored in the EPT .
[0040] In one embodiment , a new command is added to
the processor instruction set . In this embodiment , the new
command INVL _ EPT provides programs executing directly
on the host machine of a virtualized system , such as the
VMM , with a way to manage TLB entries derived from
guest - physical to host - physical mappings . Specifically , in
this embodiment , the INVL _ EPT instruction ensures that
guest - physical to host - physical and linear to host physical
mappings in the TLB are synchronized with EPT tables that
reside in host memory , and to specify the extent of synchro
nization , the EPT context , and where relevant , the guest
physical memory address for which mappings are to be
synchronized . A context generally speaking defines a portion
of the address space of a system . For guest - physical to
host - physical mappings , the EPT context is defined by the
currently active EPT table , which in turn is referenced by a
register in this embodiment , termed the EPT Pointer , or the
EPTP
[0041] In this embodiment , the INVL _ EPT instruction has
three operands , first a value , for an instruction mode or
variant specification ; a second operand , a value specifying
the EPT pointer , which is equivalent to the EPT context in
which the INVL _ EPT instruction is to execute ; and a third
operand , a value specifying the guest physical address
associated with the TLB entries to be invalidated . In this
embodiment , the first operand is provided as an 8 bit
immediate value , and the second and third operand are
provided as a block in memory , each occupying 64 bits .
Other embodiments are possible . For example , the operands
may be provided in registers or other memory locations
either explicitly or implicitly .
10042] . The first operand in this embodiment is a switch or
flag with at least three defined values , and thus specifying
that the INVL _ EPT instruction is to execute in one of three
possible modes :
[0043] 1 . Individual Address mode : in this mode , physical
translations in the TLB associated with a single guest
physical address are synchronized to the EPT , based on the
mappings for that address in the EPT referenced by the
context provided in the second operand as described above .

[0044] 2 . Context mode : in this mode , the guest address
parameter (third operand as described above) is ignored , and
those entries in the TLB in the EPT context specified in the
second operand as described above , are synchronized with
the EPT .
[0045] 3 . Global mode : in this mode , both the guest
address parameter and the EPT context parameters are
ignored and TLB entries derived from any EPT context are
synchronized .
[004] FIG . 5 . The flowchart of FIG . 5 depicts the execu
tion of the INVL _ EPT instruction in one embodiment . The
execution begins at 500 . First , the processor may conduct a
number of tests to ensure that the current execution envi
ronment is valid for EPT related operations , at 505 . These
tests may include a test to ensure that the system is in a
virtualized mode of operation ; that paging is enabled ; and
that there are no current error states , among others . If the
execution environment is not valid , the instruction may
either exit to an undefined state , generate a general protec
tion fault , generate an undefined opcode fault or the like via
555 and 560 . If the execution environment is valid , the
instruction execution then reads , in this embodiment , an
immediate 8 bit operand at 510 . This operand termed
SYNC _ CMD is expected to represent a valid mode for the
INVL EPT instruction as detailed above . If the operand is
not valid , at 515 , the instruction exits as before to 555 and
560 . If the operand is valid , execution then proceeds to read
the second and third operands from memory , 520 , and as
discussed previously , the operands are expected to be at a
128 bit block in memory at a reference labeled INVLEPT _
DESC in the figure . The first 64 bits in this embodiment are
the EPT context , or the EPT table pointer and are extracted
as EPTP _ CTX at 525 ; the next 64 bits are the guest - physical
address parameter for the instruction , extracted as
GP _ ADDR at 530 .
[0047] The execution of the instruction then proceeds to
execute the actual synchronization depending on the value
of the SYNC _ CMD operand in the flow of execution
depicted at 535 to 580 . As described previously , SYNC _
CMD may be either be an indication to perform a global
synchronization of the TLB based on all EPT contexts ; or an
indication to perform a synchronization of only the EPT
context specified by an operand of the instruction ; or finally ,
to perform a synchronization of only the guest - physical
address passed as a parameter in the EPT context provided
as a parameter . In this embodiment , as shown in the execu
tion flow in FIG . 5 , a check for the SYNC _ CMD value being
takes place at 535 ; the second at 540 ; and the third at 545 .
At 535 , if the value of SYNC _ CMD indicates global syn
chronization , the instruction executes to synchronize all
physical mappings for all EPT contexts , and execution is
complete , 580 . Otherwise , if SYNC _ CMD indicates context
specific synchronization at 540 , execution then proceeds to
check if the provided EPTP _ CTX value is valid . If it is not ,
because , for instance , a reserved bit is set in the value or the
address in the EPTP is invalid , execution of the instruction
terminates with a General Protection Fault , 555 and 560 . If
the context provided is valid , execution continues , synchro
nizing all physical mappings for the EPT context referenced
by EPTP _ CTX at 575 , and then completes 580 .
[0048] If SYNC _ CMD is neither global nor context wide
synchronization , and is also a valid mode of operation , the
only remaining possibility in this embodiment is for the
command to synchronize a specific guest physical address .

US 2018 / 0060247 A1 Mar . 1 , 2018

Execution then checks if the GP _ ADDR parameter provided
at 545 is valid . If an invalid address is provided , execution
exits at 555 and 560 with a general protection fault . Other
wise , all physical mappings associated with the provided
guest physical address GP _ ADDR are synchronized with the
EPT referenced by the context provided in EPTP _ CTX at
550 , and execution completes , 580 .
10049) It will be clear to one of ordinary skill in the art that
the above described embodiments may be varied widely . In
some embodiments , a command equivalent to INVL _ EPT
may be available , but may have a different syntax , including
a name , the number , format , and size of parameters , among
others . As is known , different instruction set architectures
(ISA) exist , and a similar command may be provided for a
different ISA with format and other characteristics consistent
with that ISA . For one example , an instruction to invalidate
and / or synchronize a TLB with an EPT for a processor based
on the Intel® Itanium Architecture may readily be visualized
and described based on the descriptions of the embodiments
provided above by one of ordinary skill in the art ; as might
instructions for any other ISA .
00501 The discussion relating to EPT context in the
embodiments referenced above should not be seen as lim
iting . In other embodiments , there may be only one instance
of an EPT , in others , several instances may be operational as
discussed in the x86 instance , with a reference mechanism
such as a reference register or pointer akin to the EPTP
discussed above .
[0051] In other embodiments , the number and format of
parameters may vary . For example , in the above described
embodiments , the INVL EPT instruction has one immediate
and two memory based operands . In other embodiments ,
more immediate operands may be used ; in others all oper
ands may be memory based ; in yet other embodiments ,
operands may be read from registers or other stores within
the processor , among many other variations that are known .
[0052] The above described embodiments are described
with reference to three modes of operation for the INVL _
EPT instruction . In other embodiments , some or all of these
modes may be missing ; in others , more modes may be
available . For instance , in some embodiments , there may be
no mode for individual address invalidation , and in such a
mode , all TLB entries would be synchronized . In some
embodiments , there may be only one instance of an EPT
operating in the system , and in such embodiments , the
context mode may be unnecessary . Alternatively , in some
embodiments , only individual address synchronization may
be available ; or in others , only global address synchroniza
tion may be used , making the first operand as described with
reference to INVL _ EPT unnecessary .
[0053] While these variations on the instruction and its
operation are possible , many others may readily be envis
aged by one of ordinary skill in the art , including variations
where the general effect of the INVL EPT instruction is
obtained by a combination of other instructions , among
many others .
[0054] In the preceding description , for purposes of expla
nation , numerous specific details are set forth in order to
provide a thorough understanding of the described embodi
ments , however , one skilled in the art will appreciate that
many other embodiments may be practiced without these
specific details .
[0055] Some portions of the detailed description above are
presented in terms of algorithms and symbolic representa

tions of operations on data bits within a processor - based
system . These algorithmic descriptions and representations
are the means used by those skilled in the art to most
effectively convey the substance of their work to others in
the art . The operations are those requiring physical manipu
lations of physical quantities . These quantities may take the
form of electrical , magnetic , optical or other physical signals
capable of being stored , transferred , combined , compared ,
and otherwise manipulated . It has proven convenient at
times , principally for reasons of common usage , to refer to
these signals as bits , values , elements , symbols , characters ,
terms , numbers , or the like .
[0056] It should be borne in mind , however , that all of
these and similar terms are to be associated with the appro
priate physical quantities and are merely convenient labels
applied to these quantities . Unless specifically stated other
wise as apparent from the description , terms such as
" executing ” or “ processing " or " computing ” or “ calculat
ing ” or “ determining ” or the like , may refer to the action and
processes of a processor - based system , or similar electronic
computing device , that manipulates and transforms data
represented as physical quantities within the processor
based system ' s storage into other data similarly represented
or other such information storage , transmission or display
devices .
[0057] In the description of the embodiments , reference
may be made to accompanying drawings . In the drawings ,
like numerals describe substantially similar components
throughout the several views . Other embodiments may be
utilized and structural , logical , and electrical changes may
be made . Moreover , it is to be understood that the various
embodiments , although different , are not necessarily mutu
ally exclusive . For example , a particular feature , structure ,
or characteristic described in one embodiment may be
included within other embodiments .
10058] . Further , a design of an embodiment that is imple
mented in a processor may go through various stages , from
creation to simulation to fabrication . Data representing a
design may represent the design in a number of manners .
First , as is useful in simulations , the hardware may be
represented using a hardware description language or
another functional description language . Additionally , a cir
cuit level model with logic and / or transistor gates may be
produced at some stages of the design process . Furthermore ,
most designs , at some stage , reach a level of data represent
ing the physical placement of various devices in the hard
ware model . In the case where conventional semiconductor
fabrication techniques are used , data representing a hard
ware model may be the data specifying the presence or
absence of various features on different mask layers for
masks used to produce the integrated circuit . In any repre
sentation of the design , the data may be stored in any form
of a machine - readable medium . An optical or electrical wave
modulated or otherwise generated to transmit such informa
tion , a memory , or a magnetic or optical storage such as a
disc may be the machine readable medium . Any of these
mediums may “ carry ” or “ indicate ” the design or software
information . When an electrical carrier wave indicating or
carrying the code or design is transmitted , to the extent that
copying , buffering , or re - transmission of the electrical signal
is performed , a new copy is made . Thus , a communication
provider or a network provider may make copies of an
article (a carrier wave) that constitute or represent an
embodiment .

US 2018 / 0060247 A1 Mar . 1 , 2018
7

[0059] Embodiments may be provided as a program prod
uct that may include a machine - readable medium having
stored thereon data which when accessed by a machine may
cause the machine to perform a process according to the
claimed subject matter . The machine - readable medium may
include , but is not limited to , floppy diskettes , optical disks ,
DVD - ROM disks , DVD - RAM disks , DVD - RW disks ,
DVD + RW disks , CD - R disks , CD - RW disks , CD - ROM
disks , and magneto - optical disks , ROMs , RAMS , EPROMs ,
EEPROMs , magnet or optical cards , flash memory , or other
type of media / machine - readable medium suitable for storing
electronic instructions . Moreover , embodiments may also be
downloaded as a program product , wherein the program
may be transferred from a remote data source to a requesting
device by way of data signals embodied in a carrier wave or
other propagation medium via a communication link (e . g . , a
modem or network connection) .
[0060] Many of the methods are described in their most
basic form but steps can be added to or deleted from any of
the methods and information can be added or subtracted
from any of the described messages without departing from
the basic scope of the claimed subject matter . It will be
apparent to those skilled in the art that many further modi
fications and adaptations can be made . The particular
embodiments are not provided to limit the claimed subject
matter but to illustrate it . The scope of the claimed subject
matter is not to be determined by the specific examples
provided above but only by the claims below .
What is claimed is :
1 . A multi - core processor comprising :
a first register to reference a set of page tables , the set of

page tables to provide a mapping of guest virtual
addresses to guest physical addresses ;

a second register to reference an active set of extended
page tables , including one of :

a first set of extended page tables to provide a mapping
of guest physical addresses to host physical
addresses for a first virtual machine , the first set of
extended page tables to reference a portion of host
physical address space associated with the first vir
tual machine , and

a second set of extended page tables to provide a
mapping of guest physical addresses to host physical
addresses for a second virtual machine , the second
set of extended page tables to reference a portion of
host physical address space associated with the sec
ond virtual machine ;

address translation logic to access the set of page tables
and the set of extended page tables to translate a guest
virtual address to a guest physical address and to
translate the guest physical address to a host physical
address in response to a memory access request includ
ing the guest virtual address ;

a translation look - aside buffer (TLB) to cache a plurality
TLB entries , including guest physical address to host
physical address translations ;

execution logic , in response to a TLB invalidate instruc
tion , to invalidate only TLB entries associated with the
first virtual machine , independent of corresponding
guest physical addresses ; and

graphics processing logic .
2 . The multi - core processor of claim 1 , further comprising

access logic to enable use of the set of extended page tables .
3 . The multi - core processor of claim 2 , wherein use of the

set of extended page tables is based on an EPT enable
indicator .

4 . The multi - core processor of claim 1 , wherein the TLB
is to cache virtual address to guest physical address trans
lations .

* *

