(19)

US 20190058734A1

a2y Patent Application Publication (o) Pub. No.: US 2019/0058734 A1l

United States

(54)

(71)
(72)

@
(22)

(1)

Xu et al. 43) Pub. Date: Feb. 21, 2019
METHODS, APPARATUS AND SYSTEMS TO (52) US. CL
USE ARTIFICIAL INTELLIGENCE TO CPC HO4L 63/20 (2013.01); HO4L 63/062
DEFINE ENCRYPTION AND SECURITY (2013.01); HO4L 63/14 (2013.01); HO4L
POLICIES IN A SOFTWARE DEFINED DATA 63/0428 (2013.01)
CENTER
57 ABSTRACT
Applicant: Nicira, Inc., Palo Alto, CA (US) Methods, apparatus and articles of manufacture to use
)) artificial intelligence to define encryption and security poli-
Inventors:)((}a ngth,HPaICé AhJO K CAC(XSI)J,S Ly, cies in a software defined data center are disclosed. Example
“:ng ug l}’ anCXS%S] S(h g’ b ong apparatus include a language parser to parse a natural
Shallllg,F an Oie’c " I(JS '),Sh a :;1 language statement into a policy statement that defines a
Bha t’ Srertnogl, C(A),S) 2;;3 hik distributed network encryption policy or a distributed net-
N at, aréa aral, C AEU)S’ ashika work security policy. Example apparatus also include a
arang, sunnyvase, US) comparator to compare the policy statement to a set of
. reference policy templates and a template configurer to
Appl- No.: 15/678,939 select a first policy template from the set of reference policy
Filed: Aug. 16. 2017 templates in response to the comparator determining the first
’ g policy template corresponds to the policy statement. A
o . . policy distributor distributes a policy rule defined by the first
Publication Classification policy template for enforcement at network nodes of a
Int. CL software defined data center. The policy rule is a distributed
HO4L 29/06 (2006.01) network encryption policy rule or a security policy rule.
100
atoc ¥
1048 - 04C
""""" T ey | Pt —
1 ; GV || GV ; 5768 | [Gm GVM | |
1148 YNIC | RWNIC |1 714G
~ oA el ENCRYPTOR |U| | - S
ENCRYPTOR ||| | \[/ | N b e | Awnie] |
S I e] A
PP N arreveveeye 1188 116C4-_| ENCRYPTION
™ EN%?\[;LQC?N } s I/-ﬁze ™ AGENT 118C _h2e
- SFE
7B 7O FIREWALL AGENT
FIREWALL AGENT HOST B HOST C
N —108 /
N\w ‘_______/
NETWORK 120
- ST I 7z
) . I L
7 KEY MANAGER
________ [iy
L4107 \
114AL }; Guv | [oM If R | 102
ENCRYPTOR WNiC]| t-vNIC E 7
i_‘_ __\{__ __| 106\\D
T16A | ENCRYPTION 1184 1104
AGENT SFE E - MANAGEMENT NODE
! 17A‘.\\ FIREWALL AGENT HOST A

US 2019/0058734 Al

Feb. 21,2019 Sheet 1 of 9

Patent Application Publication

P 'Oid
ANV TIVMIIA
¥ 1SOH o ML/
JAON LNIWIDYNYA A N9V
VZLH vell NOILAAMONT Ny
N~ s0i Fiveres 72 iveeretl
, . || OINATTJOINA L A doLdavong ||
e e S, C 1 WAD WAD niddl
z04 | i
;;;;;;;; H
HIOVNYIN AN
i §
V4 ;
ozt~ MHHOMLIN
801
9 LSOH & LSOH
INTOV TTYMIIA
INZOY TN N AP
348
348 LNIOV
ONS\\\ G1L LINIOV gz " NOILAAMINT N
NOLLIAMONE | ™~0011 - HIbL
| Wumz\/\\fmum% | maiia\a\\ﬂ/iiiw
(DINATF .| [DINA / HOLJAMONS
W M HOL1dAHONS ,/,.oﬁ_,mii.w 4| OINATT T OINA gL
a0l -1
L WAD WAD 3 f el m NAD INAD m _ i
EEEEEEE ad i [HhapsupuN G
vam\.\\.\ i a0 v\\\

US 2019/0058734 Al

Feb. 21,2019 Sheet 2 of 9

Patent Application Publication

¢ Old

N8 0 LSOH ‘g LSOH 'V .LSOH 0L

2

HAGON LNIWIOYNY

WNFLSAS DNILYYENID 37N
NOILJAYONIT ONY ALRKENOES

wami\\ H0108dLisia

HOLVHINGD

4 =End
80¢ ANY ADITOd

HASHYd JIN
o< —

AOVAHZLNI
#4580

901

US 2019/0058734 Al

Feb. 21,2019 Sheet 3 of 9

Patent Application Publication

€ Old

HOLNAILISIG OL

4

HOLVHINID
A1 OGNV ADI0d

A8
dNOHO INVNIL

AT 3N

HOLVHENID
ERIE =R

0zt — ﬂ

e

wEX\\ 4

va\\\

HALHAANOD
ALY T4NEL

]

HOLYOUddV
dNOHD INYNIL

i

¥

HOLYIHD 3LV IdNIL

!

HOLY O

4

LXOSo bW
&

HOL03ES

o}

| OIEANOD |

dINOD|

> e

AHYHET D1V TdINDL

\

e COE

Goe %

e

HASHYd TN WOHL

N9 WOHA/OL

Patent Application Publication Feb. 21,2019 Sheet 4 of 9 US 2019/0058734 A1

Security Policy

NAME
402
. -z
Service
404
Action r
406
Source /
408
Destination (
- 409
NOTES

{/ SAVE) (CANCEL >

FIG. 4A

Patent Application Publication Feb. 21,2019 Sheet 5 of 9 US 2019/0058734 A1

Key Policy
NAME
o 408
Action
410
Source /
412
Destination /
414
Encryption (
Algorithm
416
Key Strength r
418
Rotate Key -
Every
- 420
NOTES d

(SAVE \w CANCEL t)
-~ -

FIG. 4B

Patent Application Publication Feb. 21,2019 Sheet 6 of 9 US 2019/0058734 A1

500
(START) v

4
ACCEPT USER-ENTERED

502
NATURAL LANGUAGE =
STATEMENT

\ 4
PARSE NATURAL ,— 504
LANGUAGE STATEMENT

\ 4
GENERATE RULE 506

4
DISTRIBUTE RULE TO /508
NETWORK NODES

END

FIG. 5

Patent Application Publication Feb. 21,2019 Sheet 7 of 9 US 2019/0058734 A1

(START) /600

COMPARE KEYWORDS TO REFERENCE 602
TEMPLATE FIELDS TO ATTEMPT TO IDENTIFY A
CORRESPONDING TEMPLATE

\ 4

618\ CREATE AND NO CORRESPONDING 604
STORE NEW TEMPLATE
TEMPLATE IDENTIFIED?
| YES
\ 4

POPULATE FIELDS OF CORRESPONDING |, —606
TEMPLATE & PROMPT FOR ADDITIONAL FIELDS

l

IDENTIFY AND DISPLAY TENANT GROUPS /608

\ 4
IDENTIFY AND DISPLAY
614~ NETWORK NODES Mg 610
BETWEEN SOURCE AND SELECTED?
DESTINATION

YES

Y Y
=) a2

FIG. 6A

Patent Application Publication Feb. 21,2019 Sheet 8 of 9 US 2019/0058734 A1

) a0

612
v 816 v -
SAVE USER-SELECTED NODES CONVERT TEMPLATE
WITH TENANT GROUP NAME IN TO RULES AND
TENANT GROUP LIBRARY DISPLAY RULES
|
' /620

CONVERT USER-SELECTED RULES TO FILES AND USE AS
PAYLOAD OF REST API

v 822

TRANSMIT REST API'S TO DISTRIBUTOR FOR DISTRIBUTION
TO NODES INCLUDED IN THE TENANT GROUP

END

FIG. 6B |

Patent Application Publication Feb. 21,2019 Sheet 9 of 9 US 2019/0058734 A1
r-—--"--"-"-"-""""-"-"—-——— I
| 714 /128 700
/~ l/—
MASS
| VOLATILE ™| STORAGE
| MEMORY nig :
| O 722
| rez INPUT ||
| 16 DEVICE(S) |
—~
NON-VOLATILE VL 720 |
l -~ MEMORY nig
I 73, <€ INTERFACE 4——1»
| 712 o W 724 |
T~ y4a l
OUTPUT
: PROCESSOR MLEOMCSR%Y PEVICE®) |
I - 13 I
| - 732 |
| |
FIELD I
| NLP ZQESER SEL§(§)2TOR POPULATOR |
| = = 304
I
|| [TENANT GROUP TEMPLATE RULE FILE
| APPLICATOR CONVERTER GENERATOR |
| 314 316 320 |
| PROMPTER |
312 l
|
| |
| I

FIG. 7

US 2019/0058734 Al

METHODS, APPARATUS AND SYSTEMS TO
USE ARTIFICIAL INTELLIGENCE TO
DEFINE ENCRYPTION AND SECURITY
POLICIES IN A SOFTWARE DEFINED DATA
CENTER

FIELD OF THE DISCLOSURE

[0001] The present disclosure relates generally to software
defined data centers and, more particularly, to using artificial
intelligence to define encryption and security policies in a
software defined data center.

BACKGROUND

[0002] Enterprises (e.g., financial service providers,
healthcare providers, critical infrastructure providers) store
valuable data, and transfer it over networks. Information
spreads across datacenters often through dedicated telco-
provided networks. Overlay networks can also provide simi-
lar service via a public cloud services provider’s network,
but such communications are susceptible to threats such as
snooping, man in the middle attack (MITM), and forging if
the provider’s network is compromised in some way. As
enterprises widely adopt provider cloud-based multi-tenant
infrastructure services instead of dedicated datacenters, new
challenges are introduced, and protecting the data flowing
into, within, and out of the multi-tenant cloud becomes a
necessity. In addition, the privacy and security traditionally
associated with conventional private enterprise datacenters
can no longer be assumed. Thus, cryptography and firewalls
may be used, not just at the edge, but also within public as
well as private clouds to protect data and communication
channels from malicious parties, provide confidentiality to
enterprise dataflow in the cloud, and provide the enterprise
with better control over its own data. To permit enterprise
control over security and encryption rules, an enterprise
system administrator, who has knowledge of the specialized
format required to define such rules, crafts rules suited to the
enterprise at a network management tool for subsequent
delivery to and enforcement at a set of compute nodes of the
data center.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1 depicts an example cloud-based software
defined data center having an example management node
constructed in accordance with the teachings of this disclo-
sure.

[0004] FIG. 2 illustrates an example security and encryp-
tion policy and rule generating system implemented using
the example management node of FIG. 1.

[0005] FIG. 3 illustrates an example policy/rule generator
included in the security and encryption policy and rule
generating system of FIG. 2.

[0006] FIGS. 4A and 4B illustrate example distributed
network encryption and security policy templates created
using the example security and encryption policy and rule
generating system of FIG. 2 and/or the example policy/rule
generating system of FIG. 3.

[0007] FIG. 5 is a flowchart representative of example
computer readable instructions that may be executed to
implement the example security and encryption policy and
rule generating system of FIG. 2.

[0008] FIG. 6A and FIG. 6B collectively illustrate a flow-
chart representative of example computer readable instruc-

Feb. 21, 2019

tions that may be executed to implement the example
policy/rule generator of FIG. 3.

[0009] FIG. 7 is a block diagram of an example processing
platform structured to execute the example computer read-
able instructions of FIGS. 5, 6A and 6B to implement the
example security and encryption policy and rule generating
system of FIG. 3.

[0010] The figures are not to scale. Wherever possible, the
same reference numbers will be used throughout the draw-
ing(s) and accompanying written description to refer to the
same or like parts, elements, etc.

DETAILED DESCRIPTION

[0011] As cloud-based Software-Defined Data Centers
(SDDCs), instead of dedicated data centers, become more
widely used, enterprises are developing greater measures to
protect the data flowing into, within, and out of the cloud.
Distributed network encryption and distributed network
firewalls are two such measures. To permit enterprise control
over security (firewall) and encryption rules used to imple-
ment distributed network encryption and distributed net-
work firewalls, an enterprise system administrator, who has
knowledge of the specialized format required to define such
rules, uses that knowledge to craft rules suited to the
enterprise. The rules are then provided by a network man-
agement tool to a set of compute nodes of the SDDC for
enforcement. However, the expertise, training and skill
required of the system administrator to define encryption
and security rules that adequately protect enterprise data can
be significant.

[0012] Example methods, apparatus and systems dis-
closed herein facilitate the development of encryption and/or
security policies and rules through the use of artificial
intelligence in the form of a natural language processing
(NLP) parser. Example methods, apparatus and systems
include a user interface at which a user enters a natural
language statement identifying the desired policy/rule to be
implemented in an SDDC. An example NLP parser parses
the natural language statement to identify key words
included in the natural language statement. An example
comparator uses the key words to identify a corresponding
policy template from among a set of reference policy
templates. An example tenant group applicator identifies
(e.g., based on user input) a set of compute nodes at which
the rule is to be enforced and an example template converter
then converts the template into an encryption or security rule
in a format that is understandable by encryption and security
enforcement tools residing at the compute network nodes of
the SDDC. The rule is subsequently transmitted to the
compute nodes of the SDDC for enforcement/application
thereat.

[0013] FIG. 1 depicts an example cloud-based software
defined data center software (SDDC) 100 having an example
management node 102 and a set of example host nodes
including a Host A 104A, a Host B 104B, and a Host C
104C. The example management node 102 includes an
example security and encryption policy and rule generating
system 106, as well as any other tools needed to provision,
implement and manage nodes of the SDDC 100. The man-
agement node 102, Host A 104A, Host B 104B, and Host C
104C communicate via a network 108, which may comprise
one or more networks each of which may comprise one or

US 2019/0058734 Al

more local area networks (LANs), wide area networks
(WANSs), and/or a network of networks (e.g., the Internet),
etc.

[0014] In some examples, Host A 104A, Host B 104B,
and/or Host C 104C, etc. are implemented using processors
on which example guest virtual machines 110A, 110B, 110C
have been instantiated. A software forwarding element
(SFE) 112A, 112B, 112C installed on each respective Host
operates to transmit data received at the respective Host to
a virtual machine installed on the Host. In some examples,
SFEs 112A, 112B, 112C access corresponding encryptors/
decryptors 114A, 114B, 114C when data received from
network 108 (or to be delivered to network 108) is to be
encrypted or decrypted. In some examples, SFE 112A,
112B, and 112C are configured to implement one or more
logical networks within the SDDC 100 by controlling the
manner in which packets/data received at the respective
Host are to be forwarded. SFE 112A, 112B, 112C may
operate as a security rule enforcement tool that enforces
security rules, such as firewalls. In alternate embodiments,
security rules may be enforced at other points along the
datapath, such as at a virtual NIC 118A, 118B, 118C
associated with each virtual machine or container, or virtual
(software-implemented) ports, including uplink ports, asso-
ciated with the software forwarding element.

[0015] In the illustrated example of FIG. 1, encryption
agents 116 A, 116B, 116C also installed on respective Hosts
receive, via network 108, encryption rules/policies gener-
ated by the security and encryption policy and rule gener-
ating system 106 at management node 102. In certain
embodiments, traffic between key managers 120, manage-
ment nodes 102, and encryption agents 116 is communicated
over a separate physical network (not separately shown)
than the physical network of network 108 that handles
production data communication, such as data communicated
by virtual machines 110. In some examples, encryption keys
are stored and managed by key manager node 120 coupled
to network 108. The encryption keys are transmitted to
encryption agents for usage by encryptors. In some
examples, key manager 120 also periodically provides new
encryption keys to the encryption agents for one or more of
the encryption rules, for example, to make it harder for third
parties to break the encryption scheme. Encryption agents
116A, 116B, 116C and encryptors/decryptors 114A, 114B,
114C operate collectively as encryption rule enforcement
tools that enforce encryption rules at each respective Host.
In some examples, firewall agents 117A, 117B, 117C also
installed on respective Hosts, receive, via network 108,
policies and rules generated by security and encryption
policy and rule generating system 106 at management node
102. Virtual NICs 118A, 118B and 118C access a table(s)
implemented at the firewall respective firewall agents 117A,
117B, 117C to obtain firewall policies/rules to be applied at
corresponding ones of the guest virtual machines 110A,
110B. In further examples, one or more software defined
firewalls are implemented at a hypervisor at each Host
104A, 104B, 104C having a guest virtual machine or des-
tination endpoint affected by the firewall rules.

[0016] Although FIG. 1 depicts Host A 104A, Host B
104B, and Host C 104C as implementing guest virtual
machines 110A, 110B, 110C, respectively, in some
examples, a lighter-weight virtualization is employed by
using containers in place of guest virtual machines 110A,
110B, 110C. Containers are software constructs such as

Feb. 21, 2019

namespaces for applications that run on top of a host
operating system without the need for a hypervisor or a
separate guest operating system. Unlike virtual machines,
containers do not instantiate their own operating systems.
Like virtual machines, the containers are logically isolated
from one another and can have their own Layer 2 and Layer
3 (of the OSI model) network addresses. Numerous con-
tainers can run on a single computer, processor system
and/or in the same development environment. Also like
virtual machines, the containers can execute instances of
applications or programs (e.g., an example application)
logically isolated from application/program instances
executed inside other containers.

[0017] FIG. 2 illustrates an example implementation of the
security and encryption policy and rule generating system
104 implemented at example management node 102 of FIG.
1. In some examples, the example security and encryption
policy and rule generating system 104 includes a user
interface 202, a natural language processing (NLP) parser
204, a policy and rule generator 206, and a distributor 208.
In some examples, user interface 202 is configured to
present a display at which a user, such as a system admin-
istrator, enters a natural language statement identifying a
desired policy to be implemented at the nodes (e.g., Host A
104 A, Host B 104B, Host 104C) of the SDDC 100 of FIG.
1. In some examples, the user enters the natural language
statement using a microphone and a software tool converts
the spoken language to written text. In some examples, the
user enters the natural language statement via a keyboard. A
natural language statement, as used herein, refers to a
statement that conforms to a natural language spoken by
humans during everyday conversations. In contrast, a con-
structed language is a language that was developed to
program computers/machines. Thus, the user can use natural
language to formulate a natural language statement to iden-
tify a desired policy or rule and need not be specially trained
in any particular constructed/computer language to use the
security and encryption policy and rule generating system
106 of FIG. 1 and/or FIG. 2. An example natural language
statement such as “block web servers to db servers,” may be
entered by a user intending to create a policy that will result
in a firewall between a set of web servers and a set of
database servers. The natural language statement entered via
the user interface 202 is provided to the NLP parser 204
which uses artificial intelligence to parse the natural lan-
guage statement into a set of key words. In some examples,
NLP parser 204 is implemented using any available natural
language processing parser hardware/software including a
parser based on the nltk python language. For example, key
words corresponding to the example natural language state-
ment “block web servers to db servers” can include “block,”
“web” and “db.”

[0018] In some examples, NLP parser 204 transmits the
identified key words to policy/rule generator 206, which
uses the key words to generate a corresponding policy/rule
in a manner described further hereinbelow. Policy/rule gen-
erator 206 then causes distributor 208 to distribute the
policy/rule to one or more encryption agents 116A, 116B,
116C residing at one or more of Host A 104A, Host B 104B
and/or Host C 104C, respectively, for application/enforce-
ment thereat.

[0019] FIG. 3 illustrates an example implementation of
policy/rule generator 206 of FIG. 2. In some examples,
policy/rule generator 206 includes a template selector 302,

US 2019/0058734 Al

a field populator 304, a template creator 306, a template
library 308, a rule library 310, a prompter 312, a tenant
group applicator 314, a template converter 316, a tenant
group library 318 and a rule file generator 320. In some
examples, template selector 302 receives the set of key
words identified by the NLP parser 204 (see FIG. 2) and uses
the key words to identify a policy/rule template stored in
template library 308 that corresponds to the key words. In
some examples, the templates stored in template library 308
include a set of reference templates, each having a set of
fields. In some examples, at least some of the fields of the
templates are populated. In some such examples, template
selector 302 identifies a policy/rule template corresponding
to the key words by comparing the key words to information
stored in one or more of the populated fields of the tem-
plates.

[0020] Referring also to FIG. 4A and FIG. 4B, in some
examples, at least some of the set of reference templates
represent distributed network security policies (see FIG. 4A)
and/or at least some of the reference templates represent
distributed network encryption policies (see FIG. 4B). In
some such examples, network security reference templates
400A (see FIG. 4A) include a set of fields related to network
security including, for example, a service field 402, an action
field 404, a source field 406, an destination field 408, and a
notes field 409 into which notes may be entered. Service
field 402 identifies a service to which the policy/rule is to be
applied. In some examples, the service can be represented as
a network protocol and a port number (e.g., telnet 23). In
some such examples, data traffic formatted according to the
network protocol received at the identified port number will
be subjected to the policy/rule. Action field 404 identifies an
action (e.g., allow, deny, reject) to be applied to data traffic
identified by the service in service field 402. Source field
406 identifies a source of data traffic and can be formatted
as a network address of the source or a logical name of the
source. Likewise, destination field 408 identifies a destina-
tion of data traffic and can be formatted as a network address
of the destination and/or a logical name of the destination.
In some examples, source/destination 406, 408 fields can be
configured to accept a tag that identifies a role of a node
within SDDC 100. For example, the tag can identify a node
as being a Web application, a Database application, a User
application, etc. In some examples, network encryption
reference templates 400B (see FIG. 4B) can include a set of
fields related to network encryption including, for example,
an action field 410, a source field 412, a destination field
414, and an encryption cypher field 416. Action field 410
identifies an action (e.g., encrypt, do not encrypt) to be
applied to data traffic transmitted between a source node
identified in source field 412 and a destination node identi-
fied in destination field 414. Encryption cypher field 416
identifies an encryption cypher to be used when encrypting
the data. In some examples, the template also includes a key
strength field 418 that indicates a strength of the encryption
key, a key rotation field 420 that indicates a frequency at
which the key is to be rotated and a notes field 422 into
which notes may be entered.

[0021] Referring still to FIG. 3, in some examples, when
comparing the key words supplied by NLP parser 204,
selector 302 includes a comparator 303 that compares the
key words to information entered into one or more of the
individual fields of the set of reference templates. For
example, comparator 303 can be configured to compare the

Feb. 21, 2019

key words to the contents of the service field 402 and the
action field 404 of the reference templates. For example, the
comparator 303, when comparing the keywords “telnet23”
and “allow” to the contents of the template fields, will
attempt to identify a template having an action field 404
populated with “allow” and having a service field 402
populated with “telnet23.” If a reference template meeting
this description is identified, based on comparing the key-
words to the contents of at least some of the reference
template fields 402, 404, 406, 408, a configurer 305 of
selector 302 selects the identified reference template as a
match for the key words. In some examples, the key words
must match a threshold number of fields of a reference
template before the template will be considered a matching
template. In some examples, the key words must match the
contents of specific fields (e.g., service, action) of a refer-
ence template before the template will be considered a
match. The selected (e.g., matching) template and keywords
are provided to field populator 304 which uses the remaining
keywords supplied by NLP parser 204, if any, to populate
corresponding fields of the selected template. For example,
the keywords related to source field 406 and destination field
408, if any, are placed by field populator 304 into the fields
of the selected template. In some examples, field populator
304 identifies fields that remain unpopulated, if any, to
prompter 312, which generates a prompt to the user to enter
data into the unpopulated fields. Such a prompt can identify
the fields that remain unpopulated and include a request to
the user to enter information into the unpopulated fields. In
some examples, the prompt includes suggested values to be
entered into the unpopulated fields of the selected template.
The request (or prompt) is displayed to the user via graphical
user interface 202 (FIG. 2).

[0022] After the fields of the selected template have been
populated, populator 304 supplies the populated template to
tenant group applicator 314. Tenant group applicator 314
identifies sets of tenant groups by name and supplies the
tenant group names to graphical user interface 202 (see FIG.
2) for display to the user. The tenant group represents a set
of network nodes at which the rule will be applied and are
typically disposed in the network between the source node
and the destination node. Tenant groups are stored in tenant
group library 318. The user replies by selecting one or more
of the displayed tenant groups and/or opts to create a new
tenant group. If the user selects one or more of the tenant
user groups displayed on graphical user interface 202, tenant
group applicator 314 responds to the selection by supplying
information identifying nodes in the selected tenant groups
and the selected, populated template to the template con-
verter 316. Template converter 316 then uses the selected,
populated template and the set of nodes included in the
selected tenant group to generate a set of rules correspond-
ing to the template and causes the rules to be displayed at
graphical user interface 202. For example, the template may
indicate that a firewall is to be created between a network
entity associated with the tag “Web” and a network entity
associated with the tag “db.” In some such examples, the tag
“Web” refers to a web server and the tag “db” refers to a
database server. In some such examples, the tenant group
includes nodes that carry data traffic between the web server
and the database server and represent nodes at which the
policies/rules will be enforced.

[0023] In some examples, the user elects to create a new
tenant group at which the policy is to be applied by selecting

US 2019/0058734 Al

the appropriate option (e.g., “create new user group”) via the
graphical user interface 202. Referring to the preceding
firewall example, in some such examples in which the user
elects to create a new tenant group, tenant group applicator
314 identifies (and causes the graphical user interface to
display) network nodes that carry traffic between the tagged/
identified web server and the tagged/identified database
server. The network nodes can include virtual machines,
logical ports and logical switches. The user selects the nodes
at which the policy is to be enforced and also provides a
tenant group name for the nodes. Tenant group applicator
314 causes the newly defined tenant group to be stored in the
tenant group library with the user-identified tenant group
name. In addition, tenant group application 314 supplies the
newly defined tenant group and the selected, populated
template to the template converter 316, which converts the
information into a set of rules that will be used to enforce the
policy.

[0024] Insome examples, template converter 316 converts
the supplied template and selected/created tenant group
information to a set of rules by accessing rule library 310. In
some examples, rule library 310 contains a set of rules
corresponding to each template. The rules include place-
holders into which the specific information entered into a
template can be substituted/populated and/or specific tenant
group node information is substituted/populated. The user is
provided an option to select any of the set of rules using, for
example, a radial button or check box via graphical user
interface 202. In an example in which the user desires to
create a firewall between a web server (implemented with a
first virtual machine “VM1” and a logical switch “L.S1””) and
a database server (implemented with a second virtual
machine “VM2”) and the user has selected a first tenant
group (“TG1”), the set of rules generated for display can
include: 1) Deny ANY from VM1 to VM2 direction IN
applied on TG1, 2) Deny ANY from VM1 to VM2 direction
OUT applied on TG1, 3) Deny ANY from VM1 to VM2
direction IN/OUT applied on TG1, 4) Deny ANY from VM1
to LS1 direction IN applied on TG1, 5) Deny ANY from
VM1 to LS1 direction OUT applied on TG1, and 6) Deny
ANY from VM1 to LS1 direction IN/OUT applied on TG1.
Further each rule can have a corresponding selection box to
be checked or unchecked by the user as desired.

[0025] Referring still to FIG. 3, the selected rules are
supplied to file generator 320 which converts the selected
and populated rules to a set of text files in a data exchange
format, such as a Java Script Object Notation (JSON)
format, or a protobuf format, and inserts the text files into the
payload of a rest Application Programming Interface (API).
In some examples, the rest APIs are then supplied to
distributor 208 for distribution to one or more of the Host
nodes (or any other network node) at which the rule will be
enforced as described above with reference to FIG. 1. In
some examples, file generator 320 converts rules into text
files by accessing rule library 310. In some such examples,
rule library 310 stores a text file in association with each rule
and file generator 320 performs the conversion by inserting
the information contained in the selected rules into corre-
sponding placeholders contained in the text file. Thus, in
advance of using the system, a set of rules and correspond-
ing text files are generated and stored in the rule library. As
described, the text files and the rules include placeholders
into which the template fields are inserted.

Feb. 21, 2019

[0026] In some examples, selector 302 determines that
none of the reference templates in template library 308
match the key words supplied by NLP parser 204 (FIG. 2).
In some such examples, template creator 306 generates a
new template. In some such examples, template creator 306
causes prompter 312 to prompt the user (via graphical user
interface 202) to identify whether the network policy/rule is
to be a network security policy/rule or an encryption policy/
rule. In response to user input identifying either network
security (e.g., a firewall) or encryption, template creator 306
creates a new template having fields related to the type of
policy/rule specified by the user. Template creator 306
supplies the newly created template to populator 304, which
responds by populating the empty fields of the newly created
template with the keywords supplied by selector 302. If
populator 304 is unable to determine an appropriate field
into which a key word is to be inserted, populator 304
supplies the key words to the prompter 312, which prompts
the user, via graphical user interface 202, to identify a
correspondence between the key words and the field of the
newly created template. In response to the user input,
populator 304 populates the fields of the newly created
template. In some examples, template generator 306 causes
the completed template to be stored in template library 308
for future usage. In some examples, prompter 312 is con-
figured to prompt the user for any information to be entered
into any number of template fields 402, 404, 406, 408.

[0027] While example manners of implementing the
example system of FIG. 1 have been illustrated in FIG. 2 one
or more of the elements, processes and/or devices illustrated
in FIG. 1 and FIG. 2 can be combined, divided, re-arranged,
omitted, eliminated and/or implemented in any other way.
Further, any of the security and encryption rule generating
system 106, the user interface 202, the NLP parser 204, the
policy and rule generator 206, the distributor 208, the
selector 302, the comparator 303, the populator 304, the
configurer 305, the template creator 306, the template library
308, the rule library 310, the prompter 312, the tenant group
applicator 314, the template converter 316, the tenant group
library 318, the file generator 320, and/or, more generally,
the management node 102 may be implemented by hard-
ware, software, firmware and/or any combination of hard-
ware, software and/or firmware. Thus, for example, any of
the security and encryption rule generating system 106, the
user interface 202, the NLP parser 204, the policy and rule
generator 206, the distributor 208, the selector 302, the
comparator 303, the populator 304, the configurer 305, the
template creator 306, the template library 308, the rule
library 310, the prompter 312, the tenant group applicator
314, the template converter 316, the tenant group library
318, the file generator 320, and/or, more generally, the
management node 102 could be implemented by one or
more circuit(s), programmable processor(s), application spe-
cific integrated circuit(s) (ASIC(s)), programmable logic
device(s) (PLD(s)) and/or field programmable logic device
(s) (FPLD(s)), etc. When any of the appended apparatus or
system claims of this patent are read to cover a purely
software and/or firmware implementation at least one of the
security and encryption rule generating system 106, the user
interface 202, the NLP parser 204, the policy and rule
generator 206, the distributor 208, the selector 302, the
comparator 303, the populator 304, the configurer 305, the
template creator 306, the template library 308, the rule
library 310, the prompter 312, the tenant group applicator

US 2019/0058734 Al

314, the template converter 316, the tenant group library
318, the file generator 320, and the management node 102
are hereby expressly defined to include a tangible computer
readable medium such as a memory, digital versatile disk
(DVD), compact disk (CD), etc., storing such software
and/or firmware. Further still, the example SDDC 100 of
FIG. 1 may include one or more elements, processes and/or
devices in addition to, or instead of, those illustrated in FIG.
1 and FIG. 2, and/or may include more than one of any or
all of the illustrated elements, processes and devices.

[0028] Flowcharts representative of example machine
readable instructions for implementing security and encryp-
tion rule and generating system 106 of FIGS. 1, 2, and/or 3
are shown in FIGS. 5, 6A and 6B. In this example, the
machine readable instructions comprise a program for
execution by a processor such as the processor 712 shown in
the processor platform 700 discussed below in connection
with FIG. 7. The program may be embodied in software
stored on a tangible computer readable storage medium such
as a CD-ROM, a floppy disk, a hard drive, a digital versatile
disk (DVD), a Blu-ray disk, or a memory associated with the
processor 712, but the entire program and/or parts thereof
could alternatively be executed by a device other than the
processor 712 and/or embodied in firmware or dedicated
hardware. Further, although the program is described with
reference to the flowcharts illustrated in FIGS. 5, 6 A and 6B,
many other methods of implementing management node
102, security and encryption rule generating system 106
and/or policy and rule generator 206 may alternatively be
used. For example, the order of execution of the blocks may
be changed, and/or some of the blocks described may be
changed, eliminated, or combined.

[0029] As mentioned above, the processes of FIGS. 5, 6A
and 6B may be implemented using coded instructions (e.g.,
computer and/or machine readable instructions) stored on a
tangible computer readable storage medium such as a hard
disk drive, a flash memory, a read-only memory (ROM), a
compact disk (CD), a digital versatile disk (DVD), a cache,
a random-access memory (RAM) and/or any other storage
device or storage disk in which information is stored for any
duration (e.g., for extended time periods, permanently, for
brief instances, for temporarily buffering, and/or for caching
of the information). As used herein, the term tangible
computer readable storage medium is expressly defined to
include any type of computer readable storage device and/or
storage disk and to exclude propagating signals and trans-
mission media. As used herein, “tangible computer readable
storage medium” and “tangible machine readable storage
medium” are used interchangeably. Additionally or alterna-
tively, the processes of FIGS. 5, 6A and 6B may be imple-
mented using coded instructions (e.g., computer and/or
machine readable instructions) stored on a non-transitory
computer and/or machine readable medium such as a hard
disk drive, a flash memory, a read-only memory, a compact
disk, a digital versatile disk, a cache, a random-access
memory and/or any other storage device or storage disk in
which information is stored for any duration (e.g., for
extended time periods, permanently, for brief instances, for
temporarily buffering, and/or for caching of the informa-
tion). As used herein, the term non-transitory computer
readable medium is expressly defined to include any type of
computer readable storage device and/or storage disk and to
exclude propagating signals and transmission media. As
used herein, when the phrase “at least” is used as the

Feb. 21, 2019

transition term in a preamble of a claim, it is open-ended in
the same manner as the term “comprising” is open ended.

[0030] Example machine readable instructions 500 that
may be executed to implement security and encryption rule
generating system 106 of FIGS. 1, 2 and/or 3 are illustrated
by the flowchart shown in FIG. 5. Machine readable instruc-
tions 500 may be executed periodically and/or aperiodically
(e.g., at predetermined intervals, based on an occurrence of
a predetermined event, or any combination thereof).
Machine readable instructions 500 begin execution at a
block 502 of FIG. 4 at which graphical user interface 202
(see FIG. 2) receives a natural language statement entered by
a user (e.g., a system administrator). The natural language
statement identifies a desired policy to be implemented at
one or more Host nodes of the SDDC 100 (see FIG. 1). NLP
parser 204 (see FIG. 2) uses artificial intelligence to parse
the natural language statement into a set of key words (block
504). Policy/rule generator 206 (see FIG. 2) uses the key
words to generate a corresponding policy/rule (block 506).
Distributor 208 distributes the corresponding policy/rule to
encryption agents 116A, 116B, 116C residing at one or more
of'the Host nodes for application/enforcement thereat (block
508). After the rule has been provided to the nodes of the
SDDC 100, the program ends.

[0031] Example machine readable instructions 600 that
may be executed to implement policy and rule generator 206
of FIGS. 2 and 3 are illustrated by the flowchart shown in
FIGS. 6A and 6B. Machine readable instructions 600 may be
executed periodically and/or aperiodically (e.g., at predeter-
mined intervals, based on an occurrence of a predetermined
event, or any combination thereof). Machine readable
instructions 600 begin execution at a block 602 of FIG. 6A
at which template selector 302 (see FIG. 3) compares the
key words identified by NLP parser 204 (see FIG. 2) to
information stored in one or more of the populated fields of
the set of reference templates stored in template library 308
(see FIG. 3) to attempt to identify an existing policy/rule
template corresponding to the key words. If an existing
policy/rule template corresponding to the key words is
identified (block 604), the corresponding/matching template
is selected and supplied (with the keywords that are not yet
entered into the template, if any) to field populator 304 (see
FIG. 3), which uses the keywords to populate corresponding
fields of the selected template (block 606). Field populator
304 also identifies fields that remain unpopulated, if any, to
prompter 312 which generates a prompt to the user to enter
data into the unpopulated fields (also at block 606). Next,
field populator 304 supplies the populated template to tenant
group applicator 314 (see FIG. 3), which identifies a set of
tenant groups by name and supplies the tenant group names
to graphical user interface 202 (see FIG. 2) for display to the
user (block 608). If the user selects one or more of the tenant
user groups displayed on graphical user interface 202 (block
610), tenant group applicator 314 responds to the selection
by supplying information identifying nodes in the selected
tenant groups and the selected, populated template to the
template converter 316, which uses the selected, populated
template and the set of nodes included in the selected tenant
group to generate a set of rules corresponding to the template
(block 612 of FIG. 6B). Template converter 316 also causes
the rules to be displayed at graphical user interface 202 (also
block 612). In some examples, the user elects to create a new
tenant group instead of, or in addition to, selecting from a
previously created tenant group (block 610 of FIG. 6A). In

US 2019/0058734 Al

some such examples, tenant group applicator 314 identifies
network nodes that carry traffic between the source and the
destination nodes (e.g., located between the source and
destination nodes identified in the populated template) and
causes the nodes to be displayed at graphical user interface
202 (block 614). In some examples, tenant group applicator
314 identifies the nodes to be displayed to the user (e.g.,
located between the source and destination nodes identified
in the populated template) by accessing a network topology
database managed by management node 102. Tenant appli-
cator 314 causes the nodes selected by the user to be saved
as a new tenant group in tenant group library 318 with a
user-identified tenant group name (block 616). Thereafter,
the program returns to the block 612 and blocks subsequent
thereto.

[0032] After displaying the rules via graphical user inter-
face 202, template converter 316 supplies the selected rules
to file generator 320 which converts the selected rules to a
set of text files in a data exchange format, such as, a JSON
format, and inserts the JSON files into the payload of a rest
API (block 620 of FIG. 6B). In some examples, the rest APIs
are then supplied to distributor 208 for distribution to the
network nodes at which the rule will be enforced (block
622).

[0033] Returning to FIG. 6A, if at the block 604, selector
302 determines that none of the reference templates in
template library 308 match the key words supplied by NLP
parser 204 (FIG. 2), selector 302 notifies template creator
306, which creates a new template based on input supplied
by the user identifying whether the network policy/rule is to
be a network security policy/rule or an encryption policy/
rule (block 618). The resulting template created by template
creator 306 includes fields related to the type of policy/rule
specified by the user. Template creator 306 supplies the
newly created template to populator 304, which responds by
populating the empty fields of the newly created template
with the keywords supplied by selector 302, as described
above in connection with the block 606 and blocks subse-
quent thereto. In addition, template creator 306 causes the
template to be stored in template library 308 for future usage
(also at the block 618).

[0034] FIG. 7 is a block diagram of a processor platform
700 capable of executing the instructions of FIGS. 5, 6 A and
6B to implement security and encryption rule generating
system 106 of FIGS. 1, 2 and/or 3. Processor platform 700
can be, for example, a server, a personal computer, an
Internet appliance, and/or policy and rule generator 206,
and/or any other type of computing device.

[0035] Processor platform 700 of the illustrated example
includes a processor 712. Processor 712 of the illustrated
example is hardware. For example, processor 712 can be
implemented by one or more integrated circuits, logic cir-
cuits, microprocessors or controllers from any desired fam-
ily or manufacturer. Processor 712 can be used to implement
parser 204, selector 302, comparator 303, populator 304,
configurer 305, prompter 312, tenant group applicator 314,
template converter 316, and rule file generator 320 of FIGS.
1 and 2

[0036] Processor 712 of the illustrated example includes a
local memory 713 (e.g., a cache). Processor 712 of the
illustrated example is in communication with a main
memory including a volatile memory 714 and a non-volatile
memory 716 via a bus 718. Volatile memory 714 may be
implemented by Synchronous Dynamic Random Access

Feb. 21, 2019

Memory (SDRAM), Dynamic Random Access Memory
(DRAM), RAMBUS Dynamic Random Access Memory
(RDRAM) and/or any other type of random access memory
device. Non-volatile memory 716 may be implemented by
flash memory and/or any other desired type of memory
device. Access to main memory 714, 716 is controlled by a
memory controller. Any of random access memory device
714 and mass storage 728 can be used to implement template
library 308, rule library 310, and tenant group library 318 of
FIG. 3.

[0037] Processor platform 700 of the illustrated example
also includes an interface circuit 720. Interface circuit 720
may be implemented by any type of interface standard, such
as an Ethernet interface, a universal serial bus (USB), and/or
a PCI express interface.

[0038] In the illustrated example, one or more input
devices 722 are connected to interface circuit 720. Input
device(s) 722 permit(s) a user to enter data and commands
into processor 712. Input device(s) can be implemented by,
for example, an audio sensor, a microphone, a camera (still
or video), a keyboard, a button, a mouse, a touchscreen, a
track-pad, a trackball, isopoint and/or a voice recognition
system.

[0039] One or more output devices 724 are also connected
to interface circuit 720 of the illustrated example. Output
devices 724 can be implemented, for example, by display
devices (e.g., a light emitting diode (LED), an organic light
emitting diode (OLED), a liquid crystal display, a cathode
ray tube display (CRT), a touchscreen, a tactile output
device, a light emitting diode (LED), a printer and/or
speakers). Interface circuit 720, thus, typically includes a
graphics driver card, a graphics driver chip or a graphics
driver processor.

[0040] Interface circuit 720 of the illustrated example also
includes a communication device such as a transmitter, a
receiver, a transceiver, a modem and/or network interface
card to facilitate exchange of data with external machines
(e.g., computing devices of any kind) via a network 726
(e.g., an Ethernet connection, a digital subscriber line
(DSL), a telephone line, coaxial cable, a cellular telephone
system). Interface circuit 720 can be used to implement
either of graphical user interface 202, and/or distributor 208.
[0041] Processor platform 700 of the illustrated example
also includes one or more mass storage devices 728 for
storing software and/or data. Examples of such mass storage
devices 728 include floppy disk drives, hard drive disks,
compact disk drives, Blu-ray disk drives, RAID systems,
and digital versatile disk (DVD) drives. In some examples,
mass storage 728 can be used to implement template library
308, rule library 310, and tenant group library 318 of FIG.
3.

[0042] Coded instructions 732 of FIGS. 5, 6 A and 6B may
be stored in mass storage device 728, in volatile memory
714, in non-volatile memory 716, and/or on a removable
tangible computer readable storage medium such as a CD or
DVD.

[0043] From the foregoing, it will be appreciated that the
above disclosed example methods, systems, apparatus and
articles of manufacture provide advantages in the area of
software defined data centers and, more particularly, in the
area of private software defined data centers that are imple-
mented within multi-tenant clouds. For example, the secu-
rity and encryption policy and rule generating system dis-
closed herein provides network administrators with a

US 2019/0058734 Al

simplified, user-friendly tool for use in defining and imple-
menting policies and rules to be applied at the nodes of the
distributed network within the software defined data center.
In some disclosed examples, the security and encryption
policy and rule generating system includes a natural lan-
guage parser that uses artificial intelligence to parse a natural
language statement into a set of keywords. A selector then
uses the keywords to identify a matching policy template
from among a set of reference templates. A prompter
prompts the user to enter information into unpopulated fields
of the matching template and further assists the user in
identifying a set of network nodes (e.g., a tenant group) to
be assigned to enforce the policy. The matching policy
template is then converted into a set of rules displayed to the
administrator for selection. Selected rules are then converted
to a set of rule files and incorporated into the payload of a
rest API for transmission to the network nodes to enforce the
rules. Due to the user-friendly policy defining interface,
example systems disclosed herein permit the definition and
application of policies/rules without requiring special exper-
tise in a computer language. Further, the disclosed example
systems assist the user in identitying network nodes between
a source and destination node at which the rules/policies are
to be enforced.

[0044] Although certain example methods, apparatus and
articles of manufacture have been disclosed herein, the
scope of coverage of this patent is not limited thereto. On the
contrary, this patent covers all methods, apparatus and
articles of manufacture fairly falling within the scope of the
claims of this patent.

We claim:

1. An apparatus, comprising:

a language parser to parse a natural language statement
defining a distributed network encryption policy or a
distributed network security policy into a set of key
words;

a comparator to compare the key words to a set of
reference policy templates;

a template configurer to select a first policy template from
the set of reference policy templates in response to the
comparator determining the first policy template cor-
responds to the set of key words; and

a policy distributor to distribute a policy rule defined by
the first policy template for enforcement at network
nodes of a software defined data center, the policy rule
being a distributed network encryption policy rule or a
security policy rule.

2. The apparatus of claim 1, further including a template
creator to create a new policy template in response to the
comparator determining none of the set of reference policy
templates corresponds to the key words.

3. The apparatus of claim 1, wherein the comparator is to
compare the key words to fields in a first one of the reference
policy templates to determine whether the key words cor-
respond to a threshold number of the fields in the first one
of the reference policy templates.

4. The apparatus of claim 3, wherein the fields include an
action field identifying an action to be taken by a rule
enforcement tool, a service field identifying a service to be
affected by the policy rule, a source field identifying a source
node of the software defined data center and a destination
field identifying a destination node of the software defined
data center.

Feb. 21, 2019

5. The apparatus of claim 3, wherein the key words
include a first key word identifying a service to be affected
by the policy rule and a second key word identifying an
action to be taken by a rule enforcement tool.

6. The apparatus of claim 5, wherein the first policy
template includes a service field corresponding to the first
key word and further includes an action field corresponding
to the second key word.

7. The apparatus of claim 1, wherein the template con-
figurer is further to prompt a user to enter information into
an unpopulated field of the first policy template.

8. A method to define a policy rule in a software defined
data center, the method comprising:

parsing, by executing an instruction with a processor, a

natural language statement into a set of key words, the
natural language statement to define a distributed net-
work encryption policy or a distributed network secu-
rity policy;

determining, by executing an instruction with the proces-

sor, whether the key words correspond to any of a set
of reference policy templates;

selecting a first policy template from the set of reference

policy templates in response to determining at least
some of the key words correspond to the first policy
template; and

distributing the policy rule defined by the first policy

template for enforcement at network nodes of a soft-
ware defined data center, the policy rule being a dis-
tributed network encryption policy rule or a distributed
network security policy rule.

9. The method of claim 8, further including generating a
new template in response to determining the key words do
not correspond to any of the set of reference policy tem-
plates.

10. The method of claim 8, wherein the determining
includes comparing the key words to information contained
in fields of a first one of the reference policy templates to
determine whether the key words correspond to the infor-
mation contained in a threshold number of the fields in the
first one of the reference policy templates.

11. The method of claim 10, wherein the fields include an
action field identifying an action to be taken by a rule
enforcement tool, a service field identifying a service to be
subject to the policy rule, a source field identitying a source
node of the software defined data center and a destination
field identifying a destination node of the software defined
data center.

12. The method of claim 10, wherein the key words
include a first key word identifying a service to be affected
by the policy rule and a second key word identifying an
action to be taken by a rule enforcement tool.

13. The method of claim 12, wherein the first policy
template includes first information stored in a service field,
the first information corresponding to the first key word, and
the first policy template further includes second information
stored in an action field, the second information correspond-
ing to the second key word.

14. The method of claim 8, further including prompting a
user to enter information into an unpopulated field of the first
policy template.

15. A tangible computer readable storage medium includ-
ing computer readable instructions that, when executed,
cause a processor to at least:

US 2019/0058734 Al

parse a free form language statement into a set of key
words, the set of key words to define a distributed
network encryption policy or a distributed network
security policy;

compare the set of key words to a set of reference policy
templates;

select a first policy template from the set of reference
policy templates when comparing the set of key words
to the set of reference policy templates indicates that
the key words correspond to a threshold number of
fields in the first policy template; and

distribute a policy rule defined by the first policy template
for enforcement at network nodes of a software defined
data center, the policy rule being a distributed network
encryption policy rule or a distributed network security
policy rule.

16. The tangible computer readable storage medium of
claim 15, wherein the computer readable instructions further
cause the processor to generate a new template when the
comparing of the set of key words to the set of reference

Feb. 21, 2019

policy templates indicates that the key words do not corre-
spond to the threshold number of the fields in any of the
reference policy templates.

17. The tangible computer readable storage medium of
claim 15, wherein the fields include an action field identi-
fying an action to be taken by a rule enforcement tool, a
service field identifying a service to be subject to the policy
rule, a source field identifying a source node of the software
defined data center, and a destination field identifying a
destination node of the software defined data center.

18. The tangible computer readable storage medium of
claim 15, wherein a first key word identifies a service to be
affected by the policy rule and a second key word identifies
an action to be taken by a rule enforcement tool.

19. The tangible computer readable storage medium of
claim 15, wherein the first policy template includes a service
field populated with the first key word and an action field
populated with the second key word.

20. The tangible computer readable storage medium of
claim 15, wherein the computer readable instructions further
cause the processor to prompt a user to enter information
into an unpopulated field of the first policy template.

#* #* #* #* #*

