US 20200057713A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0057713 A1l

Tammariello et al. 43) Pub. Date: Feb. 20, 2020
(54) CONTROLLING EXECUTIONS OF Publication Classification
SYNCHRONOUS AND/OR (51) Int. Cl
NON-SYNCHRONOUS OPERATIONS WITH G0-6 F 1 1/36 (2006.01)
ASYNCHRONOUS MESSAGES ’
(52) US. CL
(71) Applicant: salesforce.com, inc., San Francisco, CA CPC ... GOG6F 11/3688 (2013.01); GOGF 11/3684
(US) (2013.01)
57 ABSTRACT
(72) Inventors: Christopher Tammariello, San Mateo, 57))
CA (US); Ashish Patel, Fremont, CA Based on a test step execution order for a test case such as
(US); Tuhin Kanti Sharma, San one against a database system, a specific test step to be
Mateo, CA (US); Michael Bartoli, San executed next is identified. In response to identifying the
Francisco, CA (US) specific test step, a test step message is published to indicate

that the specific test step is to be executed next, which causes
a subscriber of the test step message to execute the specific
test step. In response to determining that the specific test step
has ended, a dependent test step message is published
(22) Filed: Oct. 25, 2019 accordingly to cause a subscriber of the dependent test step
message to perform: determining whether a next test step
Related U.S. Application Data should be e?(ecuted f.ol.lowing the specific test step in the test
step execution order; in response to determining that a next

(63) Continuation of application No. 15/686,005, filed on test step should be executed, the foregoing may be repeated
Aug. 24, 2017. by using the next test step in place of the specific test step.

(21) Appl. No.: 16/664,733

Test Data

Cent
Store 120 enter

/’ 110-1

| |
l |
| |
l |
l |
l |
|
A ! Test Agent i
y : 118-1 : 1
Test Master i Serwce:{s) 116- :
112 | - !
| Data }
PR, ! Center :
T RV a2 |
/,,J/ ! | S :
|
|
I
I
I
I
I
I
I
I
I
|
|
|
|

Test User i
Network(s g
Device \ 104 (s) - | | TestAgent

106 T I : 118-2 . Service(s) 116-
M~ N\ ! 2
— | . Data
| Center
= 110-N
Test Agent \

]
|
]
: 118-N
|
]
|

-

Service(s) 116-

4

US 2020/0057713 Al

Feb. 20,2020 Sheet 1 of 9

Patent Application Publication

911

SERILVEIS

IS

[4

-9TT (S)221n43S

N-OTT -~
131u3)
ele(

N-8TT
U938y 159

e

// .

911

T
ERINVEIS

¢-0TT -
JEMIE))
eleq

¢-8TT
U298y 159

=

IS

T-0TT _
191U3)
eleqg

T-811
U938y 159

voT
(s)y40omisN

VI ‘Ol4

90T
921A2Q
19sn 159

Tt
191Se|A 159

'

0CT 940315
eleq 1sol

US 2020/0057713 Al

Feb. 20,2020 Sheet 2 of 9

Patent Application Publication

gl DI

8CT SIdV 9¢1 siulodpua
uollndoaxi i1so| 1S3y
vt
suidul g Bl 7T <
uoI1N23x3 IEVEINGEY Y
1591
TT Ju93y 1s9]

0€T
IN 3591

:

vOoT
(s)y40omisN

T
1915e|N

159

:

0CT 24018
eleq 1sol

Patent Application Publication Feb. 20,2020 Sheet 3 of 9 US 2020/0057713 A1

Test Case
206-N

Test
200

FIG. 2A

Test Case
206-2

Test Case
0

Patent Application Publication Feb. 20,2020 Sheet 4 of 9 US 2020/0057713 A1

Q_._

=

23

O -

|_N

[]

[]

[]
3 Q
L
33 ™
) -
n
lq_JN O

(@3 ~

o N LL

— 1

53

B

U N

l_

(@3

o —

|

53

=

U N

l_

Patent Application Publication Feb. 20,2020 Sheet 5 of 9 US 2020/0057713 A1

Test Step
210-j-1

Test Step
210-j-

2
Test Case
206-i

Test Step
210-j-Mj

FIG. 2C

Patent Application Publication Feb. 20,2020 Sheet 6 of 9 US 2020/0057713 A1

FIG. 3A

330

N

332
334
336
338

Patent Application Publication

FIG. 3B

Test Case 206

Test Case

Subscriber 304

Test Step 210

Test Step
Subscriber 306

Feb. 20, 2020 Sheet 7 of 9

332

US 2020/0057713 Al

Test Case

Scheduler 302

o~

Other Test
Cases 206-R

Other Test
Steps 210-R

/

Dependent Test Step

Subscriber 308

_

ydi

336

Next (Dependent)
Test Step 210-D

Other Next (Dependent)
Test Steps 210-D-R

338

Test Case Completion
Subscriber 310

W
o

Patent Application Publication Feb. 20,2020 Sheet 8 of 9 US 2020/0057713 A1

FIG. 4

402 identify a specific test step to be executed
next
404 publish a test step message to indicate
that the specific test step is to be executed
406 when the specific test step has ended,

publish a dependent test step message to
indicate that the specific test step has ended

'

408 determine whether a next test step is to
be executed following the specific test step

'

410 if so, repeat blocks 404 through 410 with
the next test step in place of the specific test
step

US 2020/0057713 Al

Feb. 20, 2020 Sheet 9 of 9

Patent Application Publication

9¢s

<]
o
LN

1SCH

0¢s

A; AN

S Ol

o
o
LN

T

LN

AYOMLAN

8¢S

L1INY3LNI

€

S

l<ERAYEN)

JOV4HILNI
NOILVIINNWINOD

¥0S
40S5S3004d

19
TOHLINOD

4OSHND

o
LN

AL

T

LN

3

I01A3d
SVHO1S

00
LN

WOH

¥1s
301A3A LNdNI

90§

AdOW3IN

NIVIN

19
AV1dSIA

US 2020/0057713 Al

CONTROLLING EXECUTIONS OF
SYNCHRONOUS AND/OR
NON-SYNCHRONOUS OPERATIONS WITH
ASYNCHRONOUS MESSAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a Continuation of U.S. patent
application Ser. No. 15/686,005 filed on Aug. 24, 2017, the
contents of which are incorporated herein by reference in
their entireties. The applicant(s) hereby rescind any dis-
claimer of claim scope in the parent application(s) or the
prosecution history thereof and advise the USPTO that the
claims in this application may be broader than any claim in
the parent application(s).

TECHNICAL FIELD

[0002] The present invention relates generally to operation
execution, and in particular, to controlling executions of
synchronous and/or non-synchronous operations with asyn-
chronous messages.

BACKGROUND

[0003] A computing system that processes massive vol-
umes of transactions and interactions may comprise numer-
ous software and hardware components distributed across a
large number of computing nodes and networks. To verify
that the system performs correctly and responsively, exten-
sive and sophisticated testing need to be performed against
some or all the components in the system regularly, on
demand, or in development.

[0004] Typically, specific test code is written in various
programming languages such as JAVA, C #, C++, etc., to
support specific test cases against a system under test. If the
system is developed by many developers and used by many
users, the test code need to be designed, written and itself
tested over and over again through tightly coupled coopera-
tive and handholding efforts involving numerous people,
organizations, and development teams. As the system
evolves over time with new features, new components and
new bug fixes, test code development efforts, preparing test
data, coordinating different stakeholders in testing, and so
forth, can consume significant personnel and non-personnel
resources.

[0005] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section. Similarly, issues identified with respect to one or
more approaches should not assume to have been recognized
in any prior art on the basis of this section, unless otherwise
indicated.

BRIEF DESCRIPTION OF DRAWINGS

[0006] The present invention is illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer-
als refer to similar elements and in which:

[0007] FIG. 1A illustrates an example stateless test execu-
tion framework comprising a test master and test agents;

Feb. 20, 2020

FIG. 1B illustrates an example test agent that interacts with
test master for executing tests;

[0008] FIG. 2A through FIG. 2C illustrate example test
and test cases with dependent test steps and independent
steps;

[0009] FIG. 3A and FIG. 3B illustrate an example mes-

saging bus and an example test execution model with which
synchronized or dependent test steps and parallel or inde-
pendent test steps can be executed;

[0010] FIG. 4 illustrates an example process flow; and
[0011] FIG. 5 illustrates an example hardware platform on
which a computer or a computing device as described herein
may be implemented.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0012] In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of the present inven-
tion. It will be apparent, however, that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are not
described in exhaustive detail, in order to avoid unneces-
sarily occluding, obscuring, or obfuscating the present
invention.
[0013] Example embodiments
according to the following outline:
[0014] 1.0. General Overview
[0015] 2.0. Functional Overview
[0016] 2.1. Test Tools and Proxy Agents
[0017] 2.2. Stateless Text Execution Framework
[0018] 2.3. RESTful Endpoints
[0019] 2.4. Test Cases
[0020] 2.5. Test Execution Model
[0021] 3.0. Example Embodiments
[0022] 4.0 Implementation Mechanism—Hardware
Overview
[0023] 5.0. Extensions and Alternatives

are described herein

1.0 General Overview

[0024] This overview presents a basic description of some
aspects of an embodiment of the present invention. It should
be noted that this overview is not an extensive or exhaustive
summary of aspects of the embodiment. Moreover, it should
be noted that this overview is not intended to be understood
as identifying any particularly significant aspects or ele-
ments of the embodiment, nor as delineating any scope of
the embodiment in particular, nor the invention in general.
This overview merely presents some concepts that relate to
the example embodiment in a condensed and simplified
format, and should be understood as merely a conceptual
prelude to a more detailed description of example embodi-
ments that follows below.

[0025] Under techniques as described herein, a highly
efficient data-driven message-driven test execution model
can be used to execute test cases against a system under test.
Even if the system represents a complicated computing
system such as a cloud-based computing system that sup-
ports massive volumes of concurrent and sequential trans-
actions and interactions, the test execution model as
described herein can be used to avoid writing customized
test code that consumes significant resources to develop and
maintain. In addition, the model can be used to test systems
in development as well as in production.

US 2020/0057713 Al

[0026] In some embodiments, the test execution model as
described herein is implemented by a test agent that can be
deployed with any computing node in a public cloud, in a
private cloud, in a combination of one or more public clouds
and one or more private clouds, and so forth. Test definition
data and test data for a test comprising a set of test cases such
as those against a database system may be sent or submitted
by a test master, for example over an HTTP-based or
non-HTTP-based communication mechanism, and for-
warded to the test agent that implements the test execution
model. While executing the test or the test cases therein, the
test agent has its own state for the test and executes the
requested test without sharing the test execution state with
the test master. Example test masters and test agents can be
found in U.S. patent application Ser. No. (Attorney
Docket Number: 80011-0017), with an application title of
“STATELESS SELF-SUFFICIENT TEST AGENTS” by
Ashish Patel, Chris Tammariello, Michael Bartoli, Tuhin
Kanti Sharma, and Vaishali Nandal, filed on , 2017,
the entire contents of which are hereby incorporated by
reference as if fully set forth herein.

[0027] In the test execution model as described herein,
publishers and subscribers asynchronously publish onto or
receive from a messaging bus (execution-control) messages
for test cases and for test steps in a test case. While these
messages can be published or received with asynchronicity,
dependent or synchronous test steps in the test case can be
assured to be executed in a correct test step execution order
as needed in the test case such as a sequential test execution
order and other orders.

[0028] The test execution model as described herein is
well suited for multi-threaded execution. For instance, dif-
ferent threads/processes (e.g., as implemented by same or
different objects/classes, etc.) can be used to handle (execu-
tion-control) message publications and receptions on a test
case topic of a messaging bus for scheduling/executing
different test cases. Additionally, optionally or alternatively,
different threads/processes (e.g., as implemented by same or
different objects/classes, etc.) can be used to handle message
publications, receptions, test step executions, and so forth,
related to a test step topic of the messaging bus for sched-
uling/executing test steps in different test cases. These
different threads/processes can be started in a thread pool
and/or can be spawned/created on demand or in response to
messages to gracefully handle multiple test cases and mul-
tiple dependent and independent test steps therein as con-
currently and as efficiently as feasible.

[0029] Under techniques as described herein, highly effi-
cient parallel workflows can be supported for scheduling/
executing independent test steps in a test case that have no
sequential execution order, and allow the test steps to be
executed at their own respective cadence or paces. Depend-
ing on availability of threads to the execution and execution
time characteristics of software and/or hardware compo-
nents under test, executions of these test steps in the parallel
workflows can take their respective execution times. In
operational scenarios in which the number of threads avail-
able is fewer than the number of the test steps in the parallel
workflows, these test steps can be executed in any order that
can be supported by the threads. For example, these test
steps may be executed in the order in which messages for the
test steps on the test step topic of the messaging bus are
received. Additionally, optionally, or alternatively, these test
steps may be executed in a different order (e.g., random

Feb. 20, 2020

order, non-random order, etc.) other than the order of
message receptions on the test step topic of the messaging
bus.

[0030] Highly efficient sequential workflows can also be
supported for dependent test steps in a test case that have a
specific test step execution order such as a sequential
execution order, and handle execution of the dependent test
steps based on asynchronously emitted messages (or events)
in a semantically correct and highly efficient manner that
respects and preserves execution order and/or dependency
relationships among the dependent test steps as defined/
specified in the test definition data received for the test case.

[0031] For sequential executions, test steps (or corre-
sponding messages on the test step topic of the messaging
bus) are published in the sequential execution order as their
predecessor test steps are completed. This can be done
because a (e.g., to be executed, currently being executed,
etc.) test step (or a corresponding test step subscriber and/or
dependent test subscriber) knows of the execution state of
the test step, as well as knows of other test steps before and
after itself in the sequential execution order based on the test
definition data for the test case.

[0032] Insome embodiments, the test step execution order
such as the sequential execution order can be effectuated or
realized through message-driven (or event-driven) opera-
tions performed by, and correlated between, a test step topic
subscriber and a dependent test step topic subscriber.

[0033] For example, once the initial (e.g., very first, etc.)
test step in the test case has been published to the test step
topic and completed successfully, the initial test step—or the
test step topic subscriber that receives a corresponding
message on the test step topic of the messaging bus for the
initial test step and executes the initial test step—can then
publish a dependent test step (if any) immediately following
the initial test step in the test step execution order in a
message of the dependent test step topic onto the messaging
bus.

[0034] Ifthe last test step in the test case has completed or
if any test step has failed, the dependent test step topic
subscriber may cause a message of a test case completion
topic to be published onto the messaging bus.

[0035] A test case completion subscriber, which listens for
the message of the test case completion topic and any update
thereof, determines a final test execution state of the test
case. If it is determined that all test steps in the test case have
completed successfully without failure, the test case comple-
tion subscriber determines that the test case has completed
successfully. On the other hand, if it is determined that at
least one test step in the test case has failed, the test case
completion subscriber determines that the test case has
failed. The final test execution state of the test case and test
results for the test case may be generated accordingly and
made available to a requester that causes the test case to be
executed.

[0036] Various modifications to the preferred embodi-
ments and the generic principles and features described
herein will be readily apparent to those skilled in the art.
Thus, the disclosure is not intended to be limited to the
embodiments shown, but is to be accorded the widest scope
consistent with the principles and features described herein.

US 2020/0057713 Al

2.0 Functional Overview

[0037] 2.1 Stateless Text Execution Framework

[0038] FIG. 1A illustrates an example stateless test execu-
tion framework comprising a test master 112 and one or
more test agents (e.g., 118-1, 118-2, 118-3, etc.). This
framework can be used to run a wide variety of focused
and/or extensive tests against software and/or hardware
components in system 100. Example systems may include,
but are not necessarily limited to: any of: multitenant data
service systems, web-based systems, systems that support
massive volumes of concurrent and/or sequential transac-
tions and interactions, database systems, and so forth.
[0039] In some embodiments, system 100 may comprise
one or more data centers 110-1, 110-2, . . . 110-N, where N
is a positive integer. Each of data centers may comprise
respective software and/or hardware components to be
tested by the test cases. Data center 110-1 deploys first
services 116-1; data center 110-2 deploys second services
116-2; data center 110-N deploys N-th services 116-N. Other
software and/or hardware components, assets, and so forth,
of system 100 may be hosted in or outside these data centers,
and may serve as test target under techniques as described
herein. As used herein, a service may refer to a service with
an HTTP interface, or a service with a non-HTTP interface.
Additionally, optionally or alternatively, services that serve
as test targets under techniques as described herein may be
deployed anywhere, not necessarily inside data centers.
[0040] As used herein, the term “software components”
may refer to one or more of: services with HTTP interfaces,
services with non-HTTP interfaces, mobile applications,
web-based applications, browser-based applications, user
interfaces, plug-ins, APIs, operating systems, software
libraries, computer executable codes, related non-executable
data, application software, system software, embedded soft-
ware, device drivers, microcode, computer clustering soft-
ware, server processes, web servers, backend servers, data-
base servers, databases, and so forth. The term “hardware
components” may refer to one or more of: CPUs, control-
lers, microprocessors, FPGAs, ASICs, ICs, network proces-
sors, firmware, chipsets, interconnects, buses, RF integrated
chips, graphic processors, computer memory, fixed and
removable storage media, peripherals, and so forth.

[0041] Under techniques as described herein, test master
112 and test agents (e.g., 118-1, 118-2 . . ., 118-N, etc.)
operate within a stateless framework that is agnostic to
specific network setups. The one or more computer networks
104 through which test master 112 and test agents (e.g.,
118-1,118-2 .. ., 118-N, etc.) communicate may refer to any
combination of one or more of: the Internet; intranets,
extranets, virtual private networks (VPNs), local area net-
works (LLANs), wide area networks (WANs), wireless net-
works, wireline networks, client-server, mobile networks,
public networks, carrier-class networks, access networks,
enterprise networks, proprietary networks, or the like.
[0042] Test master 112 can be deployed at a test user
device 106, which represents a computer device that may or
may not co-located with any of the test agents (e.g., 118-1,
118-2 . . ., 118-N, etc.). Example test user devices may
include, but are not necessarily limited to only, any of: a
computer server, a handheld computing device, a mobile
device, a wearable device, a laptop computer, a work station,
a desktop personal computer, a PDA, a cell phone, a tablet,
a PC, or any device or any computing device capable of
interfacing directly or indirectly to test agents as described

Feb. 20, 2020

herein for the purpose of running test cases against software
and/or hardware components under test in system 100. In
some embodiments, test master 112 may be deployed on any
device which supports a JAVA virtual machine (JVM).
Additionally, optionally or alternatively, test master 112 may
be hosted on one or more server devices that host or provide
one or more data repositories such as relational or non-
relational databases for storing test related data. In some
embodiments, test master 112 can be hosted on a web server
and can be accessed through HTTP or REST endpoints.
[0043] The test agents (e.g., 118-1, 118-2 . . ., 118-N, etc.)
can receive test execution requests from test master 112, and
then execute tests as requested by the test execution requests
in complete independence of test master 112. Final test
statuses and related test results of the requested tests may be
made available or sent to test master 112, for example, as
responses to the test execution requests.

[0044] For example, to execute a specific test against
specific software and/or hardware components under test in
system 100, test master 112 retrieves test definition data and
test data for the test from a test data store 120. Test master
112 can further identify a set of one or more candidate test
agents that are configured to execute the test, for example
based on agent configuration and status data retrieved from
an accessible data store such as test data store 120. Example
agent configuration and status data may include, but is not
necessarily limited to only, any of: test capabilities of test
agents in relation to the specific test, locations of test agents
in relation to the specific test in relation to locations of the
software and/or hardware components under test, etc.
[0045] Test master 112 can select any test agent in the set
of candidate test agents to execute the test, and send a
request for executing the test to the selected agent over one
or more computer networks 104. The request for executing
the test includes, but is not necessarily limited to only, any
initial test data needed by the recipient test agent for
scheduling and executing the test.

[0046] In response to receiving the request for executing
the test, the test agent (e.g., 118-1, 118-2 . . ., 118-N, etc.)
performs a series of operations to carry out the requested
test. In some embodiments, the series of operation is per-
formed by the test agent (e.g., 118-1, 118-2 . . ., 118-N; etc.)
without further interactions between the test agent (e.g.,
118-1, 118-2 . . ., 118-N, etc.) and test master 112 after the
request for executing the test was received.

[0047] The series of operations performed by the test
agent (e.g., 118-1, 118-2 . . ., 118-N, etc.) independently
may include, but are not necessarily limited to only, one or
more of: determining a set of test cases to be run in the test,
determining a time schedule for executing each test case in
the test, determining a complete set of test steps for each test
case in the test, determining a complete set of test data used
to initiate or execute the complete set of test steps for each
such test case, executing the complete set of test steps for
each such test case with the complete set of test data,
generating a final test execution status for each such test
case, causing the final test execution status and related test
results for each such test case to be made available or
returned to test master 112, and so forth.

[0048] Under the stateless test execution framework as
described herein, once the request for the test is received by
the test agent (e.g., 118-1, 118-2 . . . , 118-N, etc.), no
coupling or interaction between the test agent (e.g., 118-1,
118-2 ..., 118-N, etc.) and test master 112 is needed for the

US 2020/0057713 Al

test agent (e.g., 118-1, 118-2 . . ., 118-N, etc.) to carry out
executing the test. Even if test master 112 fails or otherwise
becomes incommunicado with the test agent (e.g., 118-1,
118-2 . . ., 118-N, etc.), the test agent (e.g., 118-1, 118-2 .
.., 118-N, etc.) requested to perform the test can continue
to schedule and execute all the test cases in the test, and
carry out executing these test cases to their respective
completions. When a new instance of test master 112 starts
up or an existing instance of test master 112 recovers, test
master 112 can send a new request to retrieve the final test
execution status and the related test results for each test case
in the test previously requested by a prior reincarnation of
test master 112.

[0049] For the purpose of illustration only, FIG. 1A
depicts a test agent for each data center. It should be noted,
however, that in general, test agents may be deployed in
same or different locations other than those implying a
one-to-one relationship with data centers. In various
embodiments, zero, one, or more test agents may be
deployed at a data center. For example, a test agent pool
comprising multiple test agents of similar capabilities may
be deployed at a data center. Additionally, optionally or
alternatively, another data center may be devoid of any
locally deployed test agent. In some embodiments, a test
agent at a data center may be used to test software and/or
hardware components in system 100. In some embodiments,
a test agent remote to a data center may be used to test
software and/or hardware components in system 100. In
some embodiments, test agents may be deployed at likely
locations where potential users of system 100 are located so
that functionality (or logic) and/or responsiveness can be
tested with respect to certain software and/or hardware
components in system 100.

[0050] 2.2 RESTful Endpoints

[0051] FIG. 1B illustrates an example test agent 118 that
interacts with test master 112 for executing tests. As illus-
trated, test agent 118 comprises or implements a web server
122 and a test execution engine 124. Test execution engine
124 implements test execution functionality such as sched-
uling tests, executing tests, updating tests and test cases
therein, reporting test execution statuses and results, and so
forth. The test execution functionality implemented by the
test execution engine 124 of test agent 118 may be exposed
to web server 122 as one or more test execution Application
Programming Interfaces (APIs) 128.

[0052] Test execution API calls 128 (e.g., implemented as
HTTP-based RESTful APIs, etc.) exposed to web server 122
by test execution engine 124 may be indirectly exposed by
web server 122 as HTTP-based endpoints/resources such as
REST(ul endpoints 126. These RESTful endpoints 126 are
addressable by a web application or a web browser on any
device directly or indirectly capable of establishing a web-
based data connection with web server 122, including but
not limited to: test master 112, another instance of test
master 112 on a different device, and so forth.

[0053] Each of RESTful endpoints 126 may be address-
able with an HTTP-based REST request including but not
necessarily limited to only the following data items: a
corresponding base Universal Resource Locator (URL) such
as “https://txapi.force.com/resources/” that identifies a
REST resources location for test execution; an internet
media type that defines REST state transition data elements
for test execution such as JSON, a XML file, a flat file

Feb. 20, 2020

database, and so forth; a standard HTTP method such as
OPTIONS, GET, PUT, POST, and DELETE; etc.

[0054] In some embodiments, some or all of the RESTful
endpoints may be publicly accessible. In some embodi-
ments, some or all of the RESTful endpoints may be
accessible by test master 112 through one or more private,
proprietary, and/or specifically provisioned, data connec-
tions. In some embodiments, some or all of the RESTful
endpoints may require authentication and/or authorization.
One or more authentication and/or authorization mecha-
nisms that can operate with HTTP or HTTP-based REST
operations can be used before an API call can be success-
fully invoked indirectly by an HTTP request from test
master 112 to web server 122. In some embodiments, some
or all of the endpoints invoke API calls that execute tests
accessing one or more of: test and/or production data owned
by a service provider, test and/or production data owned by
a user system of a service provider, data maintained at a
specific data center or data store, data maintained at multiple
data centers or data stores, and so forth.

[0055] At runtime, test master 112 may determine/select a
RESTful (test execution) endpoint for scheduling a specific
test to be executed by test agent 118. For instance, test
master 112 may determine a set of data items to be included
with an HTTP request such as the base URL of RESTful
endpoints 126, a path (e.g., to be concatenated to the base
URL, etc.) for the RESTful endpoint among the RESTful
endpoints 126, REST state transition data elements (e.g., test
definition data, test data, in JSON, in XML, in a flat file
database format, etc.), a standard HTTP method of POST,
and so forth.

[0056] Test master 112 generates an HTTP-based REST
request based on a URL constructed from the base URL and
the path, the REST state transition data elements (e.g., in
JSON, in XML, in a flat file database format, etc.), the HTTP
method, and so forth, and sends the HTTP-based REST
request to web server 122 to cause web server 122 to invoke
a call to a corresponding test execution API among test
execution API 128 exposed to web server 122 by test
execution engine 124.

[0057] In some embodiments, the HTTP-based REST
request comprises test definition data that identifies the set of
test cases, test steps in each test case in the set of test cases,
test data to be used in each, some, or all of the test cases
and/or the test steps in the test, and so forth. Some or all of
the test definition data and the test data received as a part of
the HTTP-based REST request from test master 112 may be
passed to test execution engine 124.

[0058] The test may comprise a set of one or more test
cases. For instance, a first test case in the test may be to
execute one or more first test transactions and/or interactions
with data center 110-1 of FIG. 1A; a second test case in the
test may be to execute one or more second test transactions
and/or interactions with data center 110-2 of FIG. 1A; a third
test case in the test may be to execute one or more third test
transactions and/or interactions with data center 110-1 of
FIG. 1A.

[0059] In response to invoking the specific API call by
web server 122, test agent 118-1, or test execution engine
124 therein, performs a series of operations to schedule
and/or carry out the requested test, as previously discussed.
In some embodiments, the series of operation is performed
by the test agent (e.g., 118-1, 118-2 . . ., 118-N, etc.) without

US 2020/0057713 Al

further interactions between the test agent (e.g., 118-1, 118-2
..., 118-N, etc.) and test master 112.

[0060] In some embodiments, a final test execution status
and some or all of test results from executing the set of test
cases of the test may be provided by test execution engine
124 as return code or return data in the call to the corre-
sponding test execution API to web server 122. Web server
122 may cache/store the final test execution status and some
or all of the test results as REST resources that can be
accessed or retrieved through HTTP-based REST GET
operations from the REST resources location of web server
122. Some or all of the REST resources cached/stored by
web server 122, including but not necessarily limited to only
the final test execution status and the test results, may be
returned in an HTTP-based REST response (or simply
HTTP response) to test master 112 in response to the
HTTP-based REST request for the test.

[0061] If test master 112 fails or otherwise becomes
incommunicado with test agent 118, the HTTP-based REST
response sent by test agent 118, or web server 122 operating
in conjunction with test agent 118, may fail to reach test
master 112. In some embodiments, a new instance or a
recovered instance of test master 112 or another test master
(e.g., from the same test user device, from a different test
user device, etc.) may retrieve information from HTTP-
based REST responses by querying the REST resources
cached/stored by web server 122 with HTTP-based REST
request with GET methods/operations.

[0062] For example, the test master 112, after being
restored or restarted, can issue a new HTTP-based REST
request to receive a new HTTP-based REST response that
comprises information in the failed HTTP-based REST
response. For instance, the new HTTP-based REST request
may be generated based on the base URL of RESTful
endpoints 126, the same path (e.g., to be concatenated to the
base URL, etc.) for the specific RESTful endpoint among
the RESTHful endpoints 126 that was used to request execut-
ing the test, a standard HTTP method of GET, and so forth.
[0063] 2.3 Test Definition Data and Test Data

[0064] In some embodiments, test execution engine 124
may be implemented with computer code that performs test
transactions and test interactions based on the test definition
data and the test data forwarded by web server 122 in the
API call invoked by web server 122. Example test transac-
tions and test interactions may include, but are not neces-
sarily limited to only, any of: transactions and interactions
using production data (e.g., actual data generated by users,
etc.), transactions and interactions using test data (e.g.,
synthesized data to cover special or general data values or
special or general application logic, etc.), transactions and
interactions using software and hardware components in a
production environment, transactions and interactions using
software and hardware components in a development envi-
ronment, transactions and interactions involving user input,
transactions and interactions between backend servers, any
combination of the foregoing, and so forth.

[0065] Test definition data and test data can be used to
enable a test agent to execute a test independent of a test
master while the test is being executed. For example, test
execution engine 124 may be used to execute one or more
test cases that comprise test transactions and test interactions
that simulate transactions and interactions supported by user
applications that run on user systems and that are used by
users to access the subscribed services. Data representing

Feb. 20, 2020

user input in the test may be provided as a part of the test
data originally in REST data elements (e.g., in JSON, in
XML, in a flat file database format, etc.) and forwarded in
the API call to test execution engine 124. The REST data
elements as described herein can be used to include com-
plete replications of view forms, which might be otherwise
entered by a test user by hand under other approaches. Thus,
based on the complete replications of the view forms (e.g.,
with synthesized data designed to test specific value range or
specific logic of system 100, etc.), the test execution engine
124 can store the complete replication of the view forms in
memory after the HTTP request causes a corresponding test
execution API to be invoked (or called), and execute test
steps without going back to test master 112 for additional
user input for the view forms.

[0066] To simulate the transactions and interactions com-
prising dependency relationships, the test definition data
may identify a set of dependent and/or independent test steps
for each test case to be run in the test. The test definition data
may identify specific relationships between and/or among
the test steps in terms of timing, data, and other dependen-
cies.

[0067] Inexecuting a test case, based on the test definition
data and the test data, test execution engine 124 guides the
test case through relatively controlled test execution paths
that purposefully exercise specific logic under test that is
supported or implemented by one or more software and/or
hardware components in system 100.

[0068] For example, test execution engine 124 may per-
form a first test step of a test case to interact with a set of
specific software and/or hardware components under test in
system 100 to execute a specific API call implemented or
performed by the specific software and/or hardware com-
ponent(s) under test with specific test data portions received
in the test data or generated in prior dependent test steps
(prior to the first step). The specific software and/or hard-
ware components under test may return a status code and
other related information in the specific API call. Test
execution engine 124 may analyze the status code and return
information, and perform a second test step of the test case
to interact with a new set of specific software and/or
hardware components under test in system 100 to execute a
new specific application programming interface (API) call
with new specific test data portions received in the test data
or generated in prior dependent test steps (prior to the second
step). Thus, while executing the test case, for the purpose of
guiding the test case through the predesignated test execu-
tion paths, test execution engine 124 can maintain test
execution state information in relation to the test case
independent of test master 112.

[0069] 2.4 Test Cases

[0070] Under techniques as described herein, test cases
involving diverse types of tests and diverse types of test
subjects can be developed/created in a data file, without any
need to write test tool code for these test cases in a
programming language such as JAVA, C #, C++, etc. The
data file may be, without limitation, a human readable file,
a binary data file, etc. In some embodiments, test definition
data and test data for a test or test cases therein can be
defined/specified with a data description language or a data
interchange format including but not limited to JavaScript
Object Notation (JSON), a XML file, a flat file database, etc.
A test user can interact with a test user interface (e.g., 130
of FIG. 1B, etc.) of a test master to generate, update and/or

US 2020/0057713 Al

delete the test cases (as specified/defined in the test defini-
tion data) and the test data, instead of or in addition to
directly operating the data file that is used to specify/define
the test cases and the test data.

[0071] A test case as described herein is (e.g., fully,
completely, etc.) specified and defined in portions of the test
definition data and the test data that are related to the test
case. Test steps in the test case can use the test data to
generate intermediate test data as needed. The test data as
related to the test case may comprise test data portions to be
used by some or all of test steps in the test case. The test data
as related to the test case may comprise test data portions to
be used by some or all of a sub-step in a single test step in
the test case. This allows a test execution engine as described
herein to execute autonomously, including but not limited to,
execute each test step of the test case and generate any
intermediate data needed to carry out each test step of the
test case, without further interacting with a test master that
made the original request for executing the test case while
the test case is being executed by the test execution engine.
More specifically, the test definition data and the test data as
related to the test case represent metadata used in a data-
driven message-driven test execution model as described
herein to (e.g., fully, completely, etc.) control workflows of
test execution at runtime for the test case and the test steps
therein.

[0072] Example test cases may include, but are not nec-
essarily limited to only, synthetic web transactions against
endpoints of web-based applications or services in order to
measure and assess health and performance of the applica-
tions or services. In some embodiments, some or all of the
synthetic web transactions executed in the test execution
model as described herein can be developed and curated by
test users who own the applications or services and would
like to have a particular level of monitoring for their
applications or services.

[0073] FIG. 2A illustrates an example test 200 that com-
prises a set of one or more test cases 206-1, 206-2, . . .
206-N, where N is a positive integer no less than one (1). A
test case, such as a synthetic web transaction and so forth,
may comprise a set of one or more individual test steps.
Some or all of the individual test steps in the test case may
be executed in any order. Some or all of the individual test
steps in the test case may need to be executed in a sequential
execution order (or in a sequential execution chain). Test
steps that need to be sequentially executed may convey their
respective test step execution states including some or all of
data in the test steps (e.g., received responses to requests
made in a synthetic web transaction, etc.) to other test steps
down in the sequential order. Test steps collectively may be
used to assess an overall test execution state (e.g., via a final
test case execution status, etc.) of services or applications
under test.

[0074] In some embodiments, the test execution model as
described herein can be designed and implemented in a way
that is agnostic to types of test cases and dependency
relationships between or among test steps in the test cases.
Such test case may comprise any combination of: test steps
that are completely independent from one another, test steps
that are sequentially ordered, test steps that are partially
sequentially ordered and partially independent.

[0075] In some embodiments, some or all of the test cases
as described herein may be accompanied with individual
timing information (or individual time constraints) in test

Feb. 20, 2020

definition data and/or test data for the test. The test definition
data and/or the test data may be derived/generated from
payloads (e.g., REST data elements, JSON key-value pairs,
a flat file database, etc.) of an original request for executing
the test by way of input data/parameters in a corresponding
test execution API call.

[0076] Example individual timing information may
include individual allocated time durations (e.g., one (1)
minute for the first test case in the test, five (5) minutes for
the second test case, to be executed at the one-minute mark,
to be executed at the five-minute mark, etc.) for respective
test cases to complete, specific individual start times for
respective test cases to start, specific individual end times for
respective test cases to end, and so forth. The individual
timing information may be used to schedule the test cases
and determined whether any of these test cases has failed by
timeout (or exceeding the allocated time durations; or end-
ing after the specified ending times) or by any other reason.
[0077] Test definition data and/or test data as described
herein, including but not necessarily limited to only, any
combination of: key-value pairs such as in JSON, markup
tags such as in XML, data values in flat file database
formats, and so forth. In some embodiments, the test execu-
tion engine may, but is not limited to, run in JAVA virtual
machine (JVM). Some or all portions of test definition data
and test data as related to a test case may be cached in
memory while the test case is being executed by the test
execution engine. In some embodiments, classes/objects,
threads, processes, etc., that are implemented (e.g., as pub-
lishers and/or subscribers of a messaging bus as described
herein, etc.) in the test execution engine can access data
items in the test definition data and test data as cached in the
memory, for example with pointers, references, and so forth.

[0078] Similarly, in some embodiments, some or all of test
steps in a test case may be accompanied with individual
timing information in test definition data and/or test data for
the test case. Example individual timing information may
include individual allocated time durations (e.g., ten (10)
second for the first test step in the first test case, fifteen (15)
seconds for the second test step in the third test case, etc.) for
respective test steps to complete, specific individual start
times for respective test steps to start, specific individual end
times for respective test steps to end, and so forth. The
individual timing information may be used to schedule the
test steps and determined whether any of these test steps has
failed by timeout or by any other reason (or exceeding the
allocated time durations; or ending after the specified ending
times).

[0079] FIG. 2B illustrates an example test case 206-i that
comprises one or more test steps 210-i-1, 210-i-2, . . .
210-i-Mi, where Mi is a positive integer no less than one (1).
In some embodiments, the test steps 210-i-1, 210-i-2, . . .
210-i-Mi are independent from one another and do not need
to share test states between and among themselves and can
be executed in any order. In the test execution model as
described herein, these (e.g., independent, non-synchro-
nized, etc.) test steps in test case 206-/ can be executed in
parallel, in series, or partly in parallel and partly in series, for
example depending on the availability of computing
resources available to a test execution engine as described
herein, response times (e.g., transmission times, processing
times, etc.) of software and/or hardware components under
test, and other factors. For example, test case 206-i may be
used to test different web services of one or more service

US 2020/0057713 Al

providers, and may comprise independent (non-synchro-
nized) test steps such as accessing web-based news provided
by the service providers, web-based financial information
provided by the service providers, web-based ports infor-
mation provided by the service providers, and so forth.

[0080] FIG. 2C illustrates an example test case 206-; that
comprises one or more test steps 210-/-1, 210-/-2, 210-/-Mj,
where Mj is a positive integer no less than one (1). In some
embodiments, the test steps 210-j-1, 210-/-2, 210-j-Mj are
dependent from one another and need to share test states
between and among themselves and need to be executed in
a specific test step execution order such as a sequential
execution order and so forth. For example, test case 206-7
may be a synthetic (or artificial) online shopping transaction
comprising dependent (or synchronized) test steps such as
loading a landing page of a web-based server system,
completing a login into the web site, viewing menus for
performing various functions, selecting a reporting function
to view a report, logging out, and so forth.

[0081] 2.5 Test Execution Model

[0082] FIG. 3A illustrates an example messaging bus (or
event bus) 330 that can be used to publish and receive
messages of different topics. In some possible embodiments,
these topics comprise a test case topic 332, a test step topic
334, a dependent test step topic 336, a test case completion
topic 338, and so forth. In some embodiments, messaging
bus 330 can be implemented (e.g., using event-driven pro-
gramming, message-driven programming, a Reactor-based
design, AJAX, Java Event Bus, etc.) in a test execution
engine of a test agent as described herein to support non-
blocking real time or near real time operations in publishing
and receiving/retrieving published images by objects/
classes, threads, processes, and so forth, in the test execution
engine.

[0083] FIG. 3B illustrates an example test execution
model 300 that can be implemented by the test execution
engine of the test age to schedule and execute test cases and
test steps therein.

[0084] As illustrated, in test execution model 300, a test
case scheduler 302 publishes (e.g., according to specified
start times, immediately after a test case in the same test has
completed or failed, etc.) test case 206 and other test cases
206-R (if any) for execution as (test-case-execution-control)
messages on test case topic 332 to messaging bus 330. Each
of'the messages published on the test case topic may include
test definition data and test data for a test case (e.g., 206,
etc.). The test definition data and the test data for the test
case may be sent by a test master to a web server operating
with a test agent, and passed in a test execution API call to
the test execution engine of the test agent that implements
test execution model 300.

[0085] Test cases 206 and 206-R (or the corresponding
published messages of test case topic 332) are subsequently
(e.g., immediately, in real time, in near real time, in advance,
on demand, etc.) received by test case subscribers (or test
case receivers). For instance, a test case subscriber 304
receives the message (of test case topic 332) that corre-
sponds to test case 206. In response to receiving test case
206 (or the corresponding message of test case topic 332),
test case subscriber 304 can inspect test steps of test case 206
based on test definition data and test data (which is a portion
of the test definition data and test data passed in the test
execution API call) for test case 206, and determine whether

Feb. 20, 2020

the test steps in test case 206 need to be executed in any
order or in a specific test step execution order such as a
sequential execution order.

[0086] In some embodiments, if it is determined that the
test steps in test case 206 need to be executed in the
sequential execution order, the initial (or very first) test step
in the sequential order is published (e.g., according to a
specified start time, immediately after a test case is received
in the message of test case topic 332, etc.) by test case
subscriber 304 as a (test-step-execution-control) message of
test step execution topic 334 onto messaging bus 330. Else
if it is determined that the test steps in test case 206 can be
executed in any order, some or all of the test steps in test case
206 may be published by test case subscriber 304 as (test-
step-execution-control) messages of test step execution
topic 334 onto messaging bus 330.

[0087] In some embodiments, test case scheduler 304
creates and publishes a message of test case completion
topic 308 onto messaging bus 300, indicating that test case
206 has started being executed. A test case completion
subscriber 310 can determine a final test execution state of
test case 206 by listening to the message of test case
completion topic 338 for test case 206 (and any update of
that message) until the message of test case completion topic
338 for test case 206 indicates that test case 206 has
completed successfully or failed.

[0088] One or more test step subscribers listen for mes-
sages of test step topic 334 on messaging bus 330. For
example, a test step subscriber 306 among all the test step
subscribers receives a test step 210 (or a message of test step
topic 334 that corresponds to the test step) in test case 206.
Test step 210 may be the initial test step of test case 206 or
a subsequent test step (after all prior test steps have been
executed) if test steps in test case 206 are determined to be
executed in the sequential execution order, or any of the test
steps in test case 206 (regardless of whether any other test
steps have been executed) if the test steps in test case 206 are
determined to be executed in any order.

[0089] In responding to receiving test step 210, test step
subscriber 306 proceeds to execute test step 210, which
exercises/tests some or all of the software and/or hardware
components under test. If test step 210 has not finished and
has not timed out, the message (of test step topic 334)
indicating test step 210 being executed remains on messag-
ing bus 330. On the other hand, if test step 210 has finished
or has timed out, test step subscriber 306 publishes test step
210 in a (dependent-test-step-execution-control) message of
dependent test step topic 336 onto messaging bus 330.
[0090] One or more dependent test step subscribers listen
for messages of dependent test step topic 336 on messaging
bus 330. For example, a dependent test step subscriber 308
among all the dependent test step subscribers receives test
step 210 (or the message of dependent test step topic 336
that corresponds to test step 210) in test case 206.

[0091] In response to receiving the message of dependent
test case topic 336 for test step 210, dependent test step
subscriber 308 proceeds to assess the state of execution for
test step 210 indicated in the message of dependent test case
topic 336, and determine a dependent test step if any (or a
non-existent or null test step if none is found) in the
sequential execution order if test step 210 is completed
successfully, as follows.

[0092] First, dependent test step subscriber 308 deter-
mines whether test step 210 (e.g., the initial test step, a

US 2020/0057713 Al

subsequent test step, the last test step, etc.) is the last test step
(note that each test step in the parallel execution order or in
any order may be considered the last test step; additionally,
optionally or alternatively, any remaining to-be-executed
test step in the parallel execution order or in any order may
be selected as the next test step since test steps in the parallel
execution order can be executed in any order).

[0093] Dependent test step subscriber 308 further deter-
mines whether test step 210 has completed successfully or
failed. If it is determined that test step 210 is not the last test
step AND that test step 210 has completed successfully,
dependent test step subscriber 308 assumes the role of a test
step topic publisher for test case 206 and updates/publishes
the message of test step topic 334 on messaging bus 330 to
indicate the (e g, immediately) next test step in the sequen-
tial execution order as the new test step to be executed. In
some embodiments, if the test steps in test case 206 is in the
parallel execution order (or in any order), dependent test step
subscriber 308 need not to publish/update the message of
test step topic 334 on messaging bus 330.

[0094] The next test step (or the new test step) may be,
without limitation, determined based on a test step number
in a set of ordered test step numbers assigned to dependent
test steps in the test case. Additionally, optionally or alter-
natively, other data items such as test step index, order
token, and so forth, may be used to identify/determine the
next test step (or the new test step), for example in the
sequential execution order.

[0095] Test step subscriber 306 listens for the message of
test step topic 334 and any update of that message. In
response to receiving the updated message (or a new mes-
sage) of test step topic 334 that previously indicated test step
210 and now indicates the next test step (or the new test step)
in the sequential execution order, test step subscriber 306
execute the new test step. The same processing with respect
to (previous) test step 210 may be repeated with respect to
the next test step (or the new test step) by test step subscriber
306 and dependent test step subscriber 308 until all the test
steps in the sequential (test step) execution order for test case
206 have finished successfully or failed (e.g., timed out, for
any other reasons, etc.).

[0096] Under techniques as described herein, the next test
step (or the new test step) can be determined relatively
efficiently. In some embodiments, rather than iterating
through a list of test steps in O(n) to determine the next test
step to publish a corresponding message, dependent test step
subscriber 308, which is also a publisher for test step topic
334, can access and determine the next test step in O(1) time,
since dependent test step subscriber 308 already knows the
test step number, test step index and/or order token of test
step 210 (or the current test step), which can be simply
incremented to derive the test step number, test step index
and/or order token of the next test step (or the new test step).
Thus, in these embodiments, the next test step (e.g., in the
sequential execution order, etc.) can be efficiently deter-
mined based on the current test step number, the current test
step index, and so forth, of the test step that has just
completed and that precedes the next test step (or the new
test step).

[0097] Second, if it is determined that test step 210 is the
last test step AND that test step 210 has completed success-
fully, dependent test step subscriber 308 does not publish
any more test steps in the test case on test step topic 334 of
messaging bus 330. Instead, dependent test step subscriber

Feb. 20, 2020

308 assumes the role of a test case completion topic pub-
lisher for test case 206 and republishes/updates the message
of test case completion topic 338 on messaging bus 330 to
indicate that test case 206 has successfully completed.
[0098] Third, if it is determined that test step 210 has
failed, dependent test step subscriber 308 does not publish
any more test steps in test case 206 on test step topic 334 of
messaging bus 330. Instead, dependent test step subscriber
308 assumes the role of the test case completion topic
publisher for test case 206 and publishes a message of test
case completion topic 338 on messaging bus 330 to indicate
that test case 206 has failed.

[0099] In response to receiving the updated message (or a
new message) of test case completion topic 338 on messag-
ing bus 330 as published/republished/updated by dependent
test step subscriber 308, test case completion subscriber 310
can proceed to determine the final test execution status of
test case 206. In some embodiments, this determination may
be based on a combination of 1) the message on the test case
completion topic and 2) test results and test step execution
statuses cached/stored with respective application objects/
classes, threads and/or processes implemented as a part of
the test execution engine of the test agent.

[0100] As discussed, the test case completion message (or
event) or any update thereof can be used as a trigger for test
case completion subscriber 310 to check or determine the
overall state of asynchronous executions of all the test steps
of test case 206. The test case completion message is itself
an asynchronously executed or emitted message. Test case
completion subscriber 310 need not to consume much
computational and/or memory resources while it waits for a
test case to end execution (e.g., completed successfully or
failed, etc.). Test case completion subscriber 310 may or
may not utilize a full thread, and may operate at its own
cadence or pace. Test case completion subscriber 310 can
wake up to receive updates to the message of test case
completion topic 338 as soon as the updates of the message
arrives, or wake up when a previously set timer is fired to
check the message and to re-set the timer if it is determined
that test 206 has not failed and that some test steps in test
case 206 remain to be executed.

[0101] In some embodiments, to make the (e.g., message-
driven, event-driven, etc.) test execution model relatively
robust, message refreshing timers (or timeouts) of various
time granularities may be implemented to deal with any
unexpected hanging or delays with respect to executing test
cases and/or test steps.

[0102] For example, for a test step or a test case that takes
a long time to execute, dependent test step subscriber 308
may refresh/republish (e.g., with a different message refresh
time stamp, etc.) the message of test case completion topic
338 on messaging bus 330 initially published by test case
subscriber 304, until an allocated time duration/budget for
any test step or test case 206 has completely elapsed. If the
allocated time duration/budget for the test step or the test
case has completely elapsed, the test step or test case 206
may be determined to have failed or have timed out.
[0103] Additionally, optionally or alternatively, other tim-
ers (or other time outs) may be used for refreshing/repub-
lishing messages on other topics of the messaging bus in
addition or instead of test case completion topic 338.
[0104] Test execution model 300 can readily support
multi-threaded execution of test cases and test steps therein.
For instance, different threads/processes (e.g., as imple-

US 2020/0057713 Al

mented by same or different objects/classes, etc.) can be
used to handle message publications and receptions on test
case topic 332 of messaging bus 330 for scheduling/execut-
ing different test cases such as test cases 206-R concurrently
while test case 206 is being executed. Additionally, option-
ally or alternatively, different threads/processes (e.g., as
implemented by same or different objects/classes, etc.) can
be used to handle message publications, receptions, test step
executions, and so forth, related to test step topic 334 of
messaging bus 330 for scheduling/executing test steps in
different test cases such as test steps 210-R and 210-D-R
concurrently while test step or its subsequent/dependent test
steps (e.g., 210, 210-D, etc.) are being executed. These
different threads/processes can be started in a thread pool
and/or can be spawned/created on demand to gracefully
handle multiple test cases (e.g., 206, 206-R, etc.) and
multiple dependent and independent test steps (e.g., 210,
210-R, etc.) therein as concurrently and as efficiently as
feasible.

[0105] Under techniques as described herein, each of test
case schedulers (e.g., 302, etc.), test case subscribers (e.g.,
304, etc.), test step subscribers (e.g., 306, etc.), dependent
test step subscribers (e.g., 308, etc.), test case completion
subscribers (e.g., 310, etc.), and so forth, can be imple-
mented as micro-executors that perform microservices that
in aggregate amount to a full test case execution service.
Such micro-executors can start executions, without waiting,
of their respective microservices based on asynchronous
messages subscribed to and received by the micro-execu-
tors, as soon as the messages are emitted.

[0106] Based on this test execution model, various types
of test cases, whether they comprise dependent (or synchro-
nized) test steps and/or independent (or non-synchronized)
test steps, can be efficiently executed. Each of these test
cases, whether test steps therein are synchronously executed
or executed in parallel, may be executed with high effi-
ciency.

[0107] The test execution model can be scaled up to
handle numerous test cases concurrently or in sequence,
commensurate with scales and functional complexities of
various systems under test. Each of messages of test case
topic 332 and test case completion topic 338 may comprise
test case identification information that uniquely identifies a
corresponding test case among all test cases to have been
received by a test agent for execution. Each of messages of
test step topic 334 or test step topic 336 may comprise test
step identification information that uniquely identifies a
corresponding test step among all test steps in a test case.

[0108] Messages on a messaging bus as described herein
can be easily handled by multiple threads and/or multiple
processes and/or multiple computing processors. For
example, multiple test case schedulers can be used to publish
new test cases of the test case topic onto the messaging bus.
Multiple test case subscribers can be used to receive the new
test cases by way of messages of the test case topic on the
messaging bus and to schedule executing test steps of
respective test cases whether they comprise test steps of a
sequential test step execution order and/or test steps of any
order by publishing initial or independent test steps in
messages of the test step topic on the messaging bus.

[0109] Multiple test step subscribers can be used to
receive the messages of the test step topic on the messaging

Feb. 20, 2020

bus and to operate with multiple dependent test step sub-
scribers to execute any test steps that are ordered in specific
test step execution orders.

[0110] As soon as the underlying test steps in the test cases
have completed successfully or failed, appropriate final test
execution statues of the test cases can be determined by test
case completion subscribers in response to messages or
updates of the messages of the test case completion topic on
the messaging bus.

[0111] Example tests as described herein may include, but
are not necessarily limited to only, those related to any of:
production system functionality, system functionality in
various stages of development and/or test phases, function-
ality related to user experiences, checking login pool,
orchestration of multiple services, accesses to multiple data
centers and/or data stores, system or service health checks,
ping checks, transactions, account creation, reporting soft-
ware, results analysis, alerting, visualization, multi-step
tests, data creation tests, data deletion tests, data entry tests,
complicated and/or uncomplicated transactions, services
exposed to user systems, internal services not exposed to
user systems, HTTP-based operations, Ul related function-
ality, web-based accesses, SMTP-based operations, FTP-
based operations, network functionality, real-time opera-
tions, near-real-time operations, non-real-time operations,
and so forth.

[0112] It has been described that dependent (or synchro-
nous) test steps and/or independent (or non-synchronous)
test steps in test cases can be executed under control based
at least in part on asynchronous messages. It should be
noted, however, that in various other embodiments, execu-
tions of operations other than test steps in a test case can be
controlled with asynchronous messages. For example, non-
test operations such as completing a login into a production
database system, performing report generation operations
with data stored in the production database system, perform-
ing distribution of reports, etc., can be executed based on
asynchronous messages of various operation-execution-con-
trol topics of a messaging bus. For example, instead of or in
addition to a test case topic, a database operational set topic
may be used to publish information about database opera-
tional sets. Similarly, instead of or in addition to a test step
topic, a database operation topic may be used to publish
information about database operations in the database opera-
tional sets. Instead of or in addition to a dependent test step
topic, a dependent database operation topic may be used to
publish information about dependent database operations.
Instead of or in addition to a test case completion topic, a
database operation set completion topic may be used to
publish information about database operation set comple-
tions. Thus, these and other variations may be used to
control various types of operation sets and operations
therein.

3.0 Example Embodiments

[0113] FIG. 4 illustrates an example process flow that may
be implemented by a computing system (or device) as
described herein. In block 402, a test execution engine (e.g.,
124 of FIG. 1B, etc.) operating with a test agent (e.g., 118
of FIG. 1B, 118-1 through 118-N of FIG. 1A, etc.) identifies
a specific test step to be executed next based at least in part
on a test step execution order in a set of test steps for a test
case.

US 2020/0057713 Al

[0114] In block 404, in response to identifying the specific
test step to be executed next, the test execution engine (or a
message publisher herein) publishes a test step message to
indicate that the specific test step is to be executed next, the
test step message as published causing a subscriber of the
test step message to receive the test step message and
execute the specific test step in response to receiving the test
step message.

[0115] In block 406, in response to determining that the
specific test step has ended, the test execution engine (or a
message publisher therein) publishes a dependent test step
message to indicate that the specific test step has ended, the
dependent test step message as published causing a second
different subscriber of the dependent test step message to
receive the dependent test step message.

[0116] In block 408, in response to receiving the depen-
dent test step message: the second different subscriber
determines whether a next test step should be executed
following the specific test step in the test step execution
order.

[0117] Inblock 410, in response to determining that a next
test step should be executed following the specific test step
in the test step execution order, the test execution engine
repeats blocks 404 through 410 by using the next test step in
place of the specific test step.

[0118] In an embodiment, the test execution engine is
further configured to perform: in response to determining
that a next test step should not be executed following the
specific test step in the test step execution order, publishing
a test case completion message for the test case. The test
case completion message causes a subscriber of the test case
completion message to determine a final test execution
status for the test case.

[0119] In an embodiment, to determine whether a next test
step is to be executed following the specific test step in the
test step execution order, the test execution engine is further
configured to perform: determining whether the specific test
step has completed successfully; in response to determining
that the specific test step has completed successfully, deter-
mining whether the specific test step is the last test step in
the test step execution order; in response to determining that
the specific test step is not the last test step in the test step
execution order, identifying the next test step in the test step
execution order; etc.

[0120] In an embodiment, the test execution engine is
further configured to perform: in response to determining
that the specific test step has not completed successfully,
publishing a test case completion message for the test case.
The test case completion message causes a subscriber of the
test case completion message to determine a final test
execution status for the test case.

[0121] In an embodiment, the test execution engine is
further configured to perform: in response to determining
that the specific test step is the last test step in the test step
execution order, publishing a test case completion message
for the test case. The test case completion message causes a
subscriber of the test case completion message to determine
a final test execution status for the test case.

[0122] In an embodiment, the test step message is pub-
lished and subscribed as a message of a test step topic on a
messaging bus; the dependent test step message is published
and subscribed as a message of a dependent test step topic
on the messaging bus; the messaging bus further comprises
a test case message published and subscribed as a message

Feb. 20, 2020

of a test case topic and a test case completion message
published and subscribed as a message of a test case
completion topic.

[0123] In an embodiment, the test step message is pub-
lished by one of a test case subscriber or a subscriber of the
dependent test step subscriber; the dependent test step
message is published by the subscriber of the dependent test
step subscriber.

[0124] In an embodiment, the specific test step represents
an initial test step in the test step execution order; the test
step message is published by a test case subscriber in
response to receiving a test case message published by a test
case scheduler.

[0125] In an embodiment, the test step execution order
represents one of: a sequential test step execution, a parallel
test step execution, a combination of the sequential test step
execution and the parallel test step execution, and so forth.

[0126] In some embodiments, process flows involving
operations, methods, etc., as described herein can be per-
formed through one or more computing devices or units.

[0127] In an embodiment, an apparatus comprises a pro-
cessor and is configured to perform any of these operations,
methods, process flows, etc.

[0128] Inan embodiment, a non-transitory computer read-
able storage medium, storing software instructions, which
when executed by one or more processors cause perfor-
mance of any of these operations, methods, process flows,
etc.

[0129] In an embodiment, a computing device comprising
one or more processors and one or more storage media
storing a set of instructions which, when executed by the one
or more processors, cause performance of any of these
operations, methods, process flows, etc. Note that, although
separate embodiments are discussed herein, any combina-
tion of embodiments and/or partial embodiments discussed
herein may be combined to form further embodiments.

4.0 Implementation Mechanisms—Hardware
Overview

[0130] According to one embodiment, the techniques
described herein are implemented by one or more special-
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or
may include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

[0131] For example, FIG. 5 is a block diagram that illus-
trates a computer system 500 upon which an embodiment of
the invention may be implemented. Computer system 500
includes a bus 502 or other communication mechanism for
communicating information, and a hardware processor 504

US 2020/0057713 Al

coupled with bus 502 for processing information. Hardware
processor 504 may be, for example, a general purpose
Microprocessor.

[0132] Computer system 500 also includes a main
memory 506, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 502 for storing
information and instructions to be executed by processor
504. Main memory 506 also may be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
504. Such instructions, when stored in non-transitory storage
media accessible to processor 504, render computer system
500 into a special-purpose machine that is device-specific to
perform the operations specified in the instructions.

[0133] Computer system 500 further includes a read only
memory (ROM) 508 or other static storage device coupled
to bus 502 for storing static information and instructions for
processor 504. A storage device 510, such as a magnetic disk
or optical disk, is provided and coupled to bus 502 for
storing information and instructions.

[0134] Computer system 500 may be coupled via bus 502
to a display 512, such as a liquid crystal display (LCD), for
displaying information to a computer user. An input device
514, including alphanumeric and other keys, is coupled to
bus 502 for communicating information and command
selections to processor 504. Another type of user input
device is cursor control 516, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 504 and for
controlling cursor movement on display 512. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0135] Computer system 500 may implement the tech-
niques described herein using device-specific hard-wired
logic, one or more ASICs or FPGAs, firmware and/or
program logic which in combination with the computer
system causes or programs computer system 500 to be a
special-purpose machine. According to one embodiment, the
techniques herein are performed by computer system 500 in
response to processor 504 executing one or more sequences
of one or more instructions contained in main memory 506.
Such instructions may be read into main memory 506 from
another storage medium, such as storage device 510. Execu-
tion of the sequences of instructions contained in main
memory 506 causes processor 504 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

[0136] The term “storage media” as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 510.
Volatile media includes dynamic memory, such as main
memory 506. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Feb. 20, 2020

[0137] Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 502. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.
[0138] Various forms of media may be involved in carry-
ing one or more sequences of one or more instructions to
processor 504 for execution. For example, the instructions
may initially be carried on a magnetic disk or solid state
drive of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem
local to computer system 500 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 502. Bus 502 carries the
data to main memory 506, from which processor 504
retrieves and executes the instructions. The instructions
received by main memory 506 may optionally be stored on
storage device 510 either before or after execution by
processor 504.

[0139] Computer system 500 also includes a communica-
tion interface 518 coupled to bus 502. Communication
interface 518 provides a two-way data communication cou-
pling to a network link 520 that is connected to a local
network 522. For example, communication interface 518
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 518 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.
[0140] Network link 520 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 528. Local
network 522 and Internet 528 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 520 and through communication interface 518,
which carry the digital data to and from computer system
500, are example forms of transmission media.

[0141] Computer system 500 can send messages and
receive data, including program code, through the network
(s), network link 520 and communication interface 518. In
the Internet example, a server 530 might transmit a
requested code for an application program through Internet
528, ISP 526, local network 522 and communication inter-
face 518.

[0142] The received code may be executed by processor
504 as it is received, and/or stored in storage device 510, or
other non-volatile storage for later execution.

US 2020/0057713 Al

5.0 Equivalents, Extensions, Alternatives and
Miscellaneous

[0143] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. Thus, the sole and exclusive indicator of what is
the invention, and is intended by the applicants to be the
invention, is the set of claims that issue from this applica-
tion, in the specific form in which such claims issue,
including any subsequent correction. Any definitions
expressly set forth herein for terms contained in such claims
shall govern the meaning of such terms as used in the claims.
Hence, no limitation, element, property, feature, advantage
or attribute that is not expressly recited in a claim should
limit the scope of such claim in any way. The specification
and drawings are, accordingly, to be regarded in an illus-
trative rather than a restrictive sense.

What is claimed is:

1. A method, comprising:

based at least in part on an operation execution order in a

set of operations, identifying a specific operation to be

executed next;

in response to identifying the specific operation to be

executed next, performing:
(a) publishing an operation topic message to indicate
that the specific operation is to be executed next, the
operation topic message as published causing a sub-
scriber of the operation topic message to receive the
operation topic message and execute the specific
operation in response to receiving the operation topic
message; and
(b) in response to determining, by the subscriber of the
operation topic message, that the specific operation
has ended, publishing, by the subscriber of the
operation topic message, a dependent operation topic
message to indicate that the specific operation has
ended, the dependent operation topic message as
published causing a second different subscriber of
the dependent operation topic message to receive the
dependent operation topic message and perform in
response to receiving the dependent operation topic
message:
determining whether a next operation should be
executed following the specific operation in the
operation execution order; and

in response to determining that a next operation
should be executed following the specific opera-
tion in the operation execution order, causing
repeating steps (a) and (b) by using the next
operation in place of the specific operation.

2. The method as recited in claim 1, further comprising:
in response to determining that a next operation should not
be executed following the specific operation in the operation
execution order, publishing an operation completion mes-
sage for the set of operations, wherein the operation comple-
tion message causes a subscriber of the operation comple-
tion message to determine a final operation execution status
for the set of operations.

3. The method as recited in claim 1, wherein determining
whether a next operation is to be executed following the
specific operation in the operation execution order com-
prises:

determining whether the specific operation has completed

successfully;

Feb. 20, 2020

in response to determining that the specific operation has

completed successfully, determining whether the spe-

cific operation is the last operation in the operation
execution order;

in response to determining that the specific operation is

not the last operation in the operation execution order,

identifying the next operation in the operation execu-
tion order.

4. The method as recited in claim 3, further comprising:
in response to determining that the specific operation has not
completed successtully, publishing an operation completion
message for the set of operations, wherein the operation
completion message causes a subscriber of the operation
completion message to determine a final operation execution
status for the set of operations.

5. The method as recited in claim 3, further comprising:
in response to determining that the specific operation is the
last operation in the operation execution order, publishing an
operation completion message for the set of operations,
wherein the operation completion message causes a sub-
scriber of the operation completion message to determine a
final operation execution status for the set of operations.

6. The method as recited in claim 1, wherein a messaging
bus is used to publish operation topic messages, dependent
operation topic messages and operation completion mes-
sages.

7. The method as recited in claim 1, wherein the specific
operation represents an initial operation in the operation
execution order.

8. One or more non-transitory computer readable media
storing a program of instructions that is executable by a
device to perform:

based at least in part on an operation execution order in a

set of operations, identifying a specific operation to be

executed next;

in response to identifying the specific operation to be

executed next, performing:
(a) publishing an operation topic message to indicate
that the specific operation is to be executed next, the
operation topic message as published causing a sub-
scriber of the operation topic message to receive the
operation topic message and execute the specific
operation in response to receiving the operation topic
message; and
(b) in response to determining, by the subscriber of the
operation topic message, that the specific operation
has ended, publishing, by the subscriber of the
operation topic message, a dependent operation topic
message to indicate that the specific operation has
ended, the dependent operation topic message as
published causing a second different subscriber of
the dependent operation topic message to receive the
dependent operation topic message and perform in
response to receiving the dependent operation topic
message:
determining whether a next operation should be
executed following the specific operation in the
operation execution order; and

in response to determining that a next operation
should be executed following the specific opera-
tion in the operation execution order,

causing repeating steps (a) and (b) by using the next

operation in place of the specific operation.

US 2020/0057713 Al

9. The media as recited in claim 8, wherein the program
of instructions is executable by the device to further per-
form: in response to determining that a next operation
should not be executed following the specific operation in
the operation execution order, publishing an operation
completion message for the set of operations, wherein the
operation completion message causes a subscriber of the
operation completion message to determine a final operation
execution status for the set of operations.

10. The media as recited in claim 8, wherein the program
of instructions is executable by the device to further per-
form:

determining whether the specific operation has completed

successfully;

in response to determining that the specific operation has

completed successfully, determining whether the spe-
cific operation is the last operation in the operation
execution order;

in response to determining that the specific operation is

not the last operation in the operation execution order,
identifying the next operation in the operation execu-
tion order.

11. The media as recited in claim 10, wherein the program
of instructions is executable by the device to further per-
form: in response to determining that the specific operation
has not completed successfully, publishing an operation
completion message for the set of operations, wherein the
operation completion message causes a subscriber of the
operation completion message to determine a final operation
execution status for the set of operations.

12. The media as recited in claim 10, wherein the program
of instructions is executable by the device to further per-
form: in response to determining that the specific operation
is the last operation in the operation execution order, pub-
lishing an operation completion message for the set of
operations, wherein the operation completion message
causes a subscriber of the operation completion message to
determine a final operation execution status for the set of
operations.

13. The media as recited in claim 10, wherein a messaging
bus is used to publish operation topic messages, dependent
operation topic messages and operation completion mes-
sages.

14. The media as recited in claim 10, wherein the specific
operation represents an initial operation in the operation
execution order.

15. A system, comprising:

one or more computing processors;

one or more non-transitory computer readable media

storing a program of instructions that is executable by
the one or more computing processors to perform:
based at least in part on an operation execution order in

a set of operations, identifying a specific operation to

be executed next;

in response to identifying the specific operation to be
executed next, performing:

(a) publishing an operation topic message to indicate
that the specific operation is to be executed next,
the operation topic message as published causing
a subscriber of the operation topic message to
receive the operation topic message and execute
the specific operation in response to receiving the
operation topic message; and

Feb. 20, 2020

(b) in response to determining, by the subscriber of
the operation topic message, that the specific
operation has ended, publishing, by the subscriber
of the operation topic message, a dependent opera-
tion topic message to indicate that the specific
operation has ended, the dependent operation
topic message as published causing a second dif-
ferent subscriber of the dependent operation topic
message to receive the dependent operation topic
message and perform in response to receiving the
dependent operation topic message:

determining whether a next operation should be
executed following the specific operation in the
operation execution order; and

in response to determining that a next operation
should be executed following the specific
operation in the operation execution order,
causing repeating steps (a) and (b) by using the
next operation in place of the specific operation.

16. The system as recited in claim 15, wherein the
program of instructions is executable by the one or more
computing processors to further perform: in response to
determining that a next operation should not be executed
following the specific operation in the operation execution
order, publishing an operation completion message for the
set of operations, wherein the operation completion message
causes a subscriber of the operation completion message to
determine a final operation execution status for the set of
operations.

17. The system as recited in claim 15, wherein the
program of instructions is executable by the one or more
computing processors to further perform:

determining whether the specific operation has completed
successfully;

in response to determining that the specific operation has
completed successfully, determining whether the spe-
cific operation is the last operation in the operation
execution order;

in response to determining that the specific operation is
not the last operation in the operation execution order,
identifying the next operation in the operation execu-
tion order.

18. The system as recited in claim 17, wherein the
program of instructions is executable by the one or more
computing processors to further perform: in response to
determining that the specific operation has not completed
successfully, publishing an operation completion message
for the set of operations, wherein the operation completion
message causes a subscriber of the operation completion
message to determine a final operation execution status for
the set of operations.

19. The system as recited in claim 17, wherein the
program of instructions is executable by the one or more
computing processors to further perform: in response to
determining that the specific operation is the last operation
in the operation execution order, publishing an operation
completion message for the set of operations, wherein the
operation completion message causes a subscriber of the
operation completion message to determine a final operation
execution status for the set of operations.

US 2020/0057713 Al
14

20. The system as recited in claim 17, wherein a messag-
ing bus is used to publish operation topic messages, depen-
dent operation topic messages and operation completion
messages.

Feb. 20, 2020

