US 20180061122A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2018/0061122 Al

CLARBERG 43) Pub. Date: Mar. 1, 2018
(54) MULTI-RESOLUTION DEFERRED SHADING GO6T 15/50 (2006.01)
USING TEXEL SHADERS IN COMPUTING GO6T 15/04 (2006.01)
ENVIRONMENTS GO6T 15/00 (2006.01)
(52) US. CL
(71) Applicant: INTEL CORPORATION, Santa Clara, CPC oo GO6T 15/80 (2013.01); GO6T 1/20
CA (US) (2013.01); GO6F 3/013 (2013.01); GO6T
15/005 (2013.01); GO6T 15/503 (2013.01);
SE
(21) Appl. No.: 15/252,004 7 ABSTRACT
_ A mechanism is described for facilitating multi-resolution
(22) Filed: Aug. 30, 2016 deferred shading using texel shaders in computing environ-
Publication Classificati ments. A method of embodiments, as described herein,
ublication € lassilication includes facilitating computation of shading rate in a first
(51) Int. CL pass in a graphics pipeline, where the shading rate relates to
GO6T 15/80 (2006.01) a plurality of pixels. The method may further include
GO6T 1720 (2006.01) facilitating texel shading operations in a second pass using
GO6F 3/01 (2006.01) the shading rate, where the first pass is performed separate
GO6T 1/60 (2006.01) from and prior to the second pass.
7 o emin —wiaa s oy i e e R nad o i e nae onie i e nac i eman e nace e mman iena e eman .--__-T I
PROCESSOR CORE(S) - 107 | |!!
GRAPHICS CACHE REGISTER tl
PROCESSOR(S) 104 FILE INSTRUCTION SET i
4 LA iy o~ |
1og 108 109 N
L
PROCESSOR(S)
102
| PROCESSOR BUS |
110 \/‘
________ - MEMORY DEVICE - 120
: EXTERNAL i MEMORY E P——————— }
GRAPHICS ! CONTROLLER -lel
: PROCESSOR ;@ HUB <::>
12 i 8
L me 118 | omAm |
DATA STORAGE “ LEGACY O
DEVICE K > <:> CONTROLLER
124 140
USB CONTROLLER(S)
WIRELESS o 142
TRANSCEIVER <:> CONTROLLER <::> " TKEYROARD
KEYBOARD
1% HUB | /MOUSE - 144
J—.a.g B omar oam mam wmac ama e mom monr
FIRMWARE
; AUDIO CONTROLLER
NTERFACE () = 0
NETWORK
CONTROLLER
134

100

Patent Application Publication

Mar. 1, 2018 Sheet 1 of 21

PROCESSOR CORE(S) - 107 | |!!
GRAPHICS cacHe || REGISTER {l
PROCESSOR(S) ‘o4 FILE INSTRUCTION SET !
108 - 106 109 E:
!
PROCESSOR(S)
102
E PROCESSOR BUS
110J ! E v
________ MEMORY DEVICE - 120
! EXTERNAL | MEMORY
! GRAPHICS | <li:> CONTROLLER INSTRUCTIONS - 121
; PROCESSOR | HUB
112 z .
L e 116 DATA- 122
DATA STORAGE : C%EE&/\R%’LESR
DEVICE <ﬁ>
124 140
USB CONTROLLER(S)
WIRELESS 0 142
TRANSCEIVER <:> CONTROLLER {"' - ngfénO;\-RS -
1% HUB | MOUSE-144 |
l&g Bae mnn mann wmane e nmaw memn e e
FIRMWARE
AUDIO CONTROLLER
INTERFACE
e (2 o
NETWORK
CONTROLLER
1 FIG. 1

100

US 2018/0061122 A1l

—
= ¢ 9Ol
a
y—
o
S
¢)
y—
;]
wn
-
y—
o 80¢
o ¥0SSIO0Ud SOHAVYD
= e
m HITIOHINGD
AV1dSIa
=]
8 1% ZIZ - ONIY o3
~ — d3TIOHINOD 907 - (S)LINN FHOVD CIMVHS —
= A 1% AN = &1 JINAOW AHOWIN
S SILINN m,.. %J | S Ol a3aaaans
HITIOHLN
= mo:m > iz (SIUNN | MEE (S)LINN
2 300 L 309 | 2HOvO
S IN3OV NELSAS | NeDZ3¥00 ¥z0Z 3H0D
_w [P —
=W
=
S
s
(=9
-
=
g 002 H0SSID0Yd
=W

—

-

N o
= 07

o

[l

S 30IA30
= AY1dSId
M AN

= zZ X

pLE - JOVIHIINI AHOWIW

Mar. 1,2018 Sheet 3 of 21

04009 aANIddld WALSAS-ENS ANITEdid INIONI H3TI0HINGD
O30 VIdan VId3wae ae 1d AV 1dSId

Md.// 01€
ANIONT

aaaaaaaaaaaaaaaaaaaaaaaaaaa I ONISSIV0Yd SOHAYND

H

H

H

H

H

i i

i i

i i

30¢ oo Hv GIE AH at | 70€ ¢08

aNieNg | i

” |

i i

i i

i

H

H

00¢
H0SSH00Ud SOHAVHO

Patent Application Publication

—
“ .
8 I7A]E
y—
y—
o
[l
>
®
m
n Aiowspy
- W04
b 4
S
< (S)3HOVD — -———
3 5Ty -
= — , e
7 7 . < —1 INMAdid K
® NOILYDINNWINDD Y07 — 77 w3 |
S QYIUHLNAING NOLONN AVHEY 3HOD o
~ ey | azms G SOIHAYHD o5
= HIVI — HINYIHLS
= ANVWINOD
244 S mm—
I 1dINYS = 453
7 INIT3dId
N N
¥344n4
NYNLIY
a3IHiNg <

Oy

ANIONT ONISS300Hd SOIHAYYO

Patent Application Publication

US 2018/0061122 A1l

Mar. 1,2018 Sheet 5 of 21

Patent Application Publication

W e o by
: NbOS |y Ne9s |
M_ SUITNYS || SNa __
| NO9S - 3400-aNS w_

! NI I

R §
m_w NbSs) NG| w_
|} S¥3TdYS 1 sn3]

009
40S53004d
SOIHdYYED

GOl

V085 - 3400 SOIHAYHD

795
SYITNYS

Vo8
sn3

¥009S - IH00-4NS

Y05

S304N0S3Y J34VHS

755
SYITNYS

VZ5s
sn3

V0SS IHOO-8NS

9cs
AN{Tddld
AHLINOTO

¥es
N3 INOY
03aIA

£es
XA

0cs
J0A

J€8 - INIONT VIGAN

€04
HANVIELS
ONVININOD

LO3NNOOYIINI ONIY

05 \\w

INZ-INOHS
ANIM3dIid

05

US 2018/0061122 A1l

Mar. 1,2018 Sheet 6 of 21

i m.ll . 1 i i i
7 | |
140d V1Y | T | e | 00 | @60 -
M na na | n3 JHOYO NOLLONYLSNI
19 | |
HOVOWYO |
mi.. -
079 | e " 0 | 900 e @
W TRE0S b | OR08 | VB0S || M3HOLYGSI | MOSSI00N
L " n3 n3 Qv3dHL | Y3aVHS
]

Patent Application Publication

009
SJIDOTNOILLNOIXS

US 2018/0061122 A1l

Mar. 1,2018 Sheet 7 of 21

Patent Application Publication

067 - yep Jopap, —s GXXXXL0L0=2p0oado N_ WE
§71 - el joleied —» AXXx0{D010=0p0odo
571 - SNOSUE|ROSIN — QXXX | | g0=2poodo
Fh7 - 104UOT) MO —br Qxxxxmo LO0=8poodo
751 - obo/enop —» Qxxxxwoooumvooao
j,_m, oftfz]elv|s]ols
0z
340330 300340
Zel | 02 | 81 i v ZrL
FOHS 1 00MS | 1530 110HINOD § X3AN! 1300340
| 0% m
NOILOMYLSNI LOVdWOD LIg+9
jmm T il T T T T =T — —
| 8§71 V%21 | 27 | 022 | 8L | 912 pT1 Tl
i FA0OW SSFHAAY/SSIOOV wmomm FOMS | 00dS | 1530 1321S-03E1 T0HINOD 1300240
01z

NOILOMNYLSNI 1ig-8¢)

001

SLVINYO] NOLLOMYLSNI HOSS330ud SOHJVYED

Patent Application Publication = Mar. 1, 2018 Sheet 8 of 21 US 2018/0061122 A1

GRAPHICS PROCESSOR
800 MEDIA PIPELINE
\ 830
DISPLAY ENGINE
840
| COMMAND
™ STREAMER | ,-==g === Y-
GRAPHICS 803 A
mrene L2 (" vbEo - S
7 820 - , ¥
7 E\:’__,_._..,___,_..i 834 g3 'l 2D ENGINE DISPLAY |
L ; * i P 841 CONTROLLER i
i | VERTEX TR T T T T " - 843 g
"] FETCHER [T} EXECUTION LOGIC 1 — — - — . _ el
805 ; 850
i poavir
i f_&_“\ : h/\i
§
f VERTEX Y ! EXECUTION
| . SAMPLER
§ SH@ER P L1 %ng’ 854 |lrexTure
- el o |CACHE == ~n || CACHE
2 COTROLL Y o g51 | |[EXECUTION 55
L ! ER |t L = UNITS PORT I} ==
= 1 SHADER |topl 856
& ‘ 811 ’) 8508 856
Q ! oo i = Y)
< I s s R -
] ! : w
= ' | TESSELLATOR] 4 =
- } 813 i 7T
O g13 <
= E : L A ! Y 3 [RENDER
o ! CACHE
IR = RASTER/| | L3 PIXEL || “a7s
Lol SHADER » | DEPTH | | cacHE| | ops | L=
! o >
R e 873 875 g7z | [DEPTH
OB CACHE
e Ay 879
' (GEOMETRY 1
i 819 : A
: a
i v i
S STREAM § ! RENDER OUTPUT
R ouT ; PIPELINE
'y ; 823 ! 870
§ ;
§ !
}]
H i
{ i
i

FIG. 8

Patent Application Publication @ Mar. 1, 2018 Sheet 9 of 21 US 2018/0061122 A1

G. 9A GRAPHICS PROCESSOR COMMAND FORMAT
900
CLIENT | OPCODE |SUB-OPCODE| DATA | COMMAND SIZE
902 904 905 906 908
GRAPHICS PROCESSOR COMMAND SEQUENCE
910
e
PIPELINE FLUSH |
912 |
SO — ; O,
Y
| PIPELINE SELECT 5
913 |
fcons soonones saononoe saananae ; annonoe sononon sononons sononoee
PIPELINE CONTROL
914
RETURN BUFFER STATE
916
% 924
922 ~5 920 Media~""
é Pipeime’) B —— ‘
3D PIPELINE STATE MEDIA PIPELINE STATE
930 940
3D PRIMITIVE MEDIA OBJECT
932 942
EXECUTE EXECUTE
934 944

Patent Application Publication = Mar. 1, 2018 Sheet 10 of 21 US 2018/0061122 A1

DATA PROCESSING SYSTEM -1000

< 3D GRAPHICS APPLICATION
1019
SHADER INSTRUCTIONS EXECUTABLE INSTRUCTIONS
1012 1014
GRAPHICS
OBJECTS
1016

A4 ¥ ¥

OPERATING SYSTEM (0S)
1020
vEMoRY | USER MODE %Fg;?\fmcs DRIVER SHADER -
1050 = —£D2 % COMPILER |- ? 02
SHADER COMPILER 1024 _—
1027
T
: 0S KERNEL MODE FUNCTIONS
KERNEL MODE GRAPHICS l_” 1028
< DRIVER ==
1029
& 8 &
A J A4 v
GRAPHICS GENERAL
S8
PROCESSOR PRO%‘S"OR FURPOSE CORE(s)
1032 i 1034

t 1

FIG. 10

US 2018/0061122 A1l

Mar. 1, 2018 Sheet 11 of 21

Patent Application Publication

01l ALNIOVA NOISEA

Gy
NOISIA 1H3ATT
HIISNVHL ¥3LSIO3Y

il
130N NOLLYTINIIS

0iil
NOLLYTNAIS
ERLINE

0911
NOILDINNOD
SSITIUIM NP
£33
0511 N
NOILOANNOD
Q3YIM
™ AT
{(vL¥Q N9IS3d
TWOISAH HO 1aH)
N | 300N FuvmadvH
art opiL
AHOWIW
ALITIOVA :
NOLLYOINEY4 INLYIOIN-NON

0011 - INFNHOT3A3T FHOO di

Patent Application Publication = Mar. 1, 2018 Sheet 12 of 21 US 2018/0061122 A1
SOC
INTEGRATED CIRCUIT
(\1300
7 \
APPLICATION GRAPHICS
PROCESSOR(s) PROCESSOR
1205 1210
IMAGE VIDEO
PROCESSOR PROCESSOR
1215 1220
USB UART SPISDIO | | PS/PC DISPLAY
1225 1230 1235 1240 1245
iséﬁgﬁj?’i MEMORY | | FLASH : MIP! E HDMI
| S | |
> /)

Patent Application Publication = Mar. 1, 2018 Sheet 13 of 21 US 2018/0061122 A1
GRAPHICS PROCESSOR
1310
g -~ ~0)
VERTEX PROCESSOR
1305
FRAGMENT E—_%§A5MEQ¥_'§ | FRAGMENT |
PROCESSOR | PROCESSOR | == em | PROCESSOR |
1315A | 1315C , 1315N-1 |
| FRAGMENT | | FRAGMENT ; | FRAGMENT |
| PROCESSOR | | PROCESSOR | o ' PROCESSOR |
boqase 1t 13D 131N |
MMU | MMU ;
13204 : 13208 :
mmmmmmmmmmmm ot
|jmT T T T |
CACHE g CACHE |
1325A a 13258 ;
b v v o e e e 4
|jmT T T T T |
INTERCONNECT g INTERCONNECT |
1330A a 13308 |
e o e o o e e e o]
A)

Patent Application Publication = Mar. 1, 2018 Sheet 14 of 21 US 2018/0061122 A1

GRAPHICS PROCESSOR
1410
(7 \
INTER-CORE TASK-MANAGER
(e.g., THREAD DISPATCHER)
1405
SHADER | | SHADER 1 | SHADER | | SHADER |
CORE |! CORE 1! CORE | ewem | CORE |
14150 b 1415¢ 11 1415 P o1415N-1
S S | N |
| SHADER | | SHADER | | SHADER | | SHADER |
| CORE |! CORE I! CORE | ouem ' CORE |
| 14158 11 1415D 11 1415F | VY
e o e o med B o e o od b o o mmem d o o e o
TILING UNIT
1418
r'"'""""""‘"'"""""""'""'""""""'""i
MMU | MMU |
13204 | 13208 a
____________ o
[mT T a
CACHE : CACHE |
1325A | 13258 |
I e v mv mn . ar v A A e e .
[mT T a
INTERCONNECT : INTERCONNECT |
1330A i 13308 |
I e v mv mn . ar v A A e e .

Patent Application Publication = Mar. 1, 2018 Sheet 15 of 21 US 2018/0061122 A1

G. 15

COMPUTING DEVICE (e.g., HOST MACHINE)
1500

OPERATING SYSTEM (OS)
1506

GRAPHICS DRIVER
1516

MULTI-RESOLUTION DEFERRED SHADING
MECHANISM

1510

GRAPHICS PROCESSING
UNIT (GPU)
1514

CENTRAL PROCESSING
UNIT (CPU) MEMORY

1312 1508

INPUT/OUTPUT (1/0) SOURCE(S)
(e.9., CAMERA(S), MICROPROCESSOR(S),
SPEAKER(S), SENSOR(S), DISPLAY SCREEN(S),
MEDIA PLAYER(S), ETC.)

1504

PIXEL SHADING COMPUTATION LOGIC
1607

SHADING PASS LOGIC
1609

EXECUTION/FORWARDING LOGIC
1611

COMMUNICATION/COMPATIBILTY LOGIC
1613

I I

CENTRAL GRAPHICS
PROCESSING PROCESSING
UNIT (CPU) UNIT (GPU)

1512 1514

Patent Application Publication = Mar. 1, 2018 Sheet 16 of 21 US 2018/0061122 A1
COMPUTING DEVICE {e.g., COMMUNICATON DEVICES,
DATA PROCESSING DEVICES, MOBILE COMPUTERS,
SMART DEVICES, GAMING DEVICES, ETC))
1500
GRAPHICS DRIVER
1516
MULTI-RESOLUTION DEFERRED SHADING
MECHANISM 1625~
DETECTION/RECEPTION LOGIC /“COMMUNICATION)
1601 MEDIUM(S) ¢
(e.g., CLOUD
NETWORK,
DIVISION/SPLITTING LOGIC INTERNET,
1605 PROXIMITY

. NETWORK,

_Erc)—"

____________________ DATABASE(S)

US 2018/0061122 A1l

Mar. 1, 2018 Sheet 17 of 21

Patent Application Publication

{Ld) 3¥Nixal
TyHNa300Nd

1V 40lHd

HIAVHS 13XEL

—
od
oo
-
J

130¥VL HAANT

S1

L~ LV

(" 13LvNIvAT

J

1 NO

\

GLil

\

4 7A3

eat\

6041 AVIAS G0L1 €041 1041

l...luu...l..l _I...IMII.J u.....l..Mll.J J J

Sd i SO i+ SA i+ SH —] SA [+ VI
f | S — | | S — |

bLil

Ay

Patent Application Publication

1730

<

FIG. 17B
PRIOR ART

TRADITIONAL

DEFERRRED SHADING

¥

RENDER
G-BUFFER

1733

¥

COMPUTE
PER-TILE
LIGHT LISTS

1735

¥

FULLSCREEN
SHADING PASS
(SCREEN SPACE)

~-1737

Y

FULLSCREEN
POST-PROCESSING
PASS

1739

END

1741

Mar. 1, 2018 Sheet 18 of 21

FIG. 18A

MULTI-RESOLUTION

DEFERRED SHADING

US 2018/0061122 A1l

RENDER
G-BUFFER

1803

'

COMPUTE
PER-TILE
LIGHT LISTS

1805

A4

COMPUTE
PER-PIXEL
SHADING RATE

1807

A4

FULLSCREEN
SHADING PASS
(TEXTURE SPACE)

—-1809

¥

FULLSCREEN
POST-PROCESSING
PASS

1811

US 2018/0061122 A1l

Mar. 1, 2018 Sheet 19 of 21

Patent Application Publication

S1SI7
S —— ———— 1H9N vl
| [|
| H34H4Ng9| |
m ONIQYHS | M
T3X3L-d3d
m + | 578l
_ WA 1%2 § 6¢8) mmmr 1281
Y M ,ﬂ M 31V {
SSF00Md|, | VHATY | | ONIQYHS | ONIQYHS | 4 | ONIQYHS \M344NE-D 3INOVO
1S0d mvda | HO134 HIOONL | | | TEXIdYAd MvHa
v C | |1 3LNdNOD
ce8l £egl M (30vdS 2™NIX3L) |

JAAVHS 13XEL IHL ONISN ONIAYHS d34HM3430 NOILNTOSTY- LN

LV dOld
SIS
Hon fseLt
4 A
i Ya] $5300Yd || VHATY |, %,m%m.w R
150 Mved XA MYHa
) ; g !
194} 651 1514 o1 ol

0641
ONIQVHS (3443430 TYNOLLIAVYL

Patent Application Publication

Mar. 1, 2018 Sheet 20 of 21

G. 18C

COMPUT PER-PIXEL SHADING RATE

(EYE TRACKING DATA, .)

LOAD EXTERNAL
INPUT 1853

‘

FOR EACH PIXEL (x,y)

ON SCREEN 1855

'

LOAD ATTRIBUTES AT (xy)

FROM G-BUEFER | 1857

.

COMPUTE SHADING RATE

ATTRIBUTES AND/OR

(lod) BASED ON 1850

EXTERNAL INPUT

l

STORE SHADING RATE

lod AT PIXEL (xy) | 1001

YES

. PIXELS?

US 2018/0061122 A1l

1850

Patent Application Publication

1871

Mar. 1, 2018 Sheet 21 of 21

= a) TRIGGER TEXEL SHADING

»| FOREACH PIXEL (x.y)
ON SCREEN

v

LOAD SHADING
RATE (LOD)

1877

v

COMPUTE FILTER
FOOTPRINT
BASED ON (x, y, lod)

1879

v

FOR EACH TEXEL (u, v)
IN FILTER FOOTPRINT

A4

1861

STEXEL (0,v) N
“_SHADED? ~

SHADE TEXEL
(USING G-BUFFER
ATTRIBUTES,
LIGHT LISTS, .)

1885

v

STORE SHADING
TO PROCEDURAL
TEXTURE (PT)

1887

US 2018/0061122 A1
1870
o
1893
b) FETCH TEXEL SHADING
| FOR EACH PIXEL (x,y)
> ON SCREEN 1834
LOAD SHADING
RATE (LOD) 1895
SAMPLE TEXEL SHADING
AT {x, y, lod) TO OBTAIN [1896
FILTERED COLOR
STORE COLOR TO)
PIXEL (x, y) IN FRAME [1897
BUFFER

< _PIXELS? .

PIXELS? ~

FIG. 18D

US 2018/0061122 Al

MULTI-RESOLUTION DEFERRED SHADING
USING TEXEL SHADERS IN COMPUTING
ENVIRONMENTS

FIELD

[0001] Embodiments described herein generally relate to
computers. More particularly, embodiments are described
for facilitating multi-resolution deferred shading using texel
shaders in computing environments.

BACKGROUND

[0002] Three-dimensional (3D) computing games and
benchmarks typically spend a majority of the frame time on
computing the appearance (shading) of each pixel, where
shading is determined based on material properties and light
sources. These lighting computations are often expensive,
such as in order of hundreds or even thousands of shader
instructions per pixel. With high-resolution displays, next-
generation virtual reality (VR) headsets, etc., having both
high resolution and high refresh rates, the shading cost
becomes prohibitive for low/medium-powered graphics
devices. Further, with eye tracking hardware becoming more
widespread, such as in case of next-generation VR/aug-
mented reality (AR) computing devices, their shading rate
continues to be significantly high even in the periphery
where the user is not looking. In order to reduce the shading
cost and make rendering on such devices feasible, it is
desirable to exploit certain characteristics of the rendered
image to avoid/reduce expensive computations, such as
often large parts of a rendered image are smooth or of low
contrast.

[0003] Deferred shading (also known as deferred lighting)
is a prevalent rendering technique is today’s application;
however, with this technique, applications uniformly lower
the rendering/shading resolution and then up-scale the rel-
evant images before display. This results in substantial
reduction in image quality as image features, including
sharp edges and high-frequency details, are under-sampled.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Embodiments are illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings in which like reference numerals refer to
similar elements.

[0005] FIG. 1 is a block diagram of a processing system,
according to an embodiment.

[0006] FIG. 2 is a block diagram of an embodiment of a
processor having one or more processor cores, an integrated
memory controller, and an integrated graphics processor.
[0007] FIG. 3 is a block diagram of a graphics processor,
which may be a discrete graphics processing unit, or may be
a graphics processor integrated with a plurality of processing
cores.

[0008] FIG. 4 is a block diagram of a graphics processing
engine of a graphics processor in accordance with some
embodiments.

[0009] FIG. 5 is a block diagram of another embodiment
of a graphics processor.

[0010] FIG. 6 illustrates thread execution logic including
an array of processing elements employed in some embodi-
ments of a graphics processing engine.

Mar. 1, 2018

[0011] FIG. 7 is a block diagram illustrating a graphics
processor instruction formats according to some embodi-
ments.

[0012] FIG. 8 is a block diagram of another embodiment
of a graphics processor.

[0013] FIG. 9A is a block diagram illustrating a graphics
processor command format according to an embodiment.
[0014] FIG. 9B is a block diagram illustrating a graphics
processor command sequence according to an embodiment.
[0015] FIG. 10 illustrates exemplary graphics software
architecture for a data processing system according to some
embodiments.

[0016] FIG. 11 is a block diagram illustrating an IP core
development system that may be used to manufacture an
integrated circuit to perform operations according to an
embodiment.

[0017] FIG. 12 is a block diagram illustrating an exem-
plary system on a chip integrated circuit that may be
fabricated using one or more IP cores, according to an
embodiment.

[0018] FIG. 13 is a block diagram illustrating an exem-
plary graphics processor of a system on a chip integrated
circuit that may be fabricated using one or more IP cores,
according to an embodiment.

[0019] FIG. 14 is a block diagram illustrating an addi-
tional exemplary graphics processor of a system on a chip
integrated circuit that may be fabricated using one or more
IP cores, according to an embodiment.

[0020] FIG. 15 illustrates a computing device employing
a multi-resolution deferred shading mechanism according to
one embodiment.

[0021] FIG. 16 illustrates a multi-resolution deferred shad-
ing mechanism according to one embodiment.

[0022] FIG. 17A illustrates a conventional graphics pipe-
line implementing texel shading.

[0023] FIG. 17B illustrates a conventional method for
deferred shading.

[0024] FIG. 17C illustrates a conventional transaction
sequence for deferred shading.

[0025] FIG. 18A illustrates a method for multi-resolution
deferred shading according to one embodiment.

[0026] FIG. 18B illustrates a transaction sequence for
multi-resolution deferred shading using a texel shader
according to one embodiment.

[0027] FIG. 18C illustrates a method for computing per-
pixel shading rate according to one embodiment.

[0028] FIG. 18D illustrates a method for performing
fullscreen shading pass (texture space) according to one
embodiment.

DETAILED DESCRIPTION

[0029] In the following description, numerous specific
details are set forth. However, embodiments, as described
herein, may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in details in order not to obscure
the understanding of this description.

[0030] Embodiment provide for a novel technique of
multi-resolution deferred shading in a single pass by selec-
tively reducing shading resolution to continuously maintain
high quality of imaging results. This novel technique lever-
ages the texel shader stage in the graphics pipeline to allow
for greater accuracy and efficiency in rendering of images at
high-resolution displays, VR/AR devices, etc. Further, this

US 2018/0061122 Al

novel technique may facilitate use and exploitation of hard-
ware/application programming interface (API)-based sup-
port for texel shaders in a different manner than it is typically
intended or used.

[0031] This novel multi-resolution shading technique
reduces the shading costs and makes rendering feasible on
certain devices (such as next-generation VR/AR computing
devices) by selectively reducing the resolution at which
shading computations are done.

[0032] For example, instead of performing deferred shad-
ing calculations in a shader running once per pixel, in one
embodiment, calculations are performed in a shader running
once per texel (e.g., texel shader) on a fullscreen texture. By
varying the mipmap level (e.g., Level of Detail (“LOD” or
“lod™)), the shading rate is effectively controlled and the cost
of shading each texel is amortized over multiple pixels.
[0033] In graphics computing, a procedural texture (PT)
refers to a computer-generated image created using an
algorithm to render a realistic representation of a material,
where procedural texture may be regarded as a generaliza-
tion of traditional memory-based textures to allow a texel
shader (TS) to generate texels. Texel shading, using a texel
shader, is in some embodiments regarded as a 1-pass model
where the texel shader runs synchronously, such as issuing
pixel shader thread waits for the texel shader thread(s) to
finish and return a shaded result. In other embodiments,
texel shading is regarded as a 2-pass model, where the texel
shader runs asynchronously. In that case, the pixel shader
thread issues a request to shade a group of texels, but it does
not wait for the texel shader thread(s) to finish.

[0034] It is contemplated that terms like “request”,
“query”, “job”, “work”, “work item”, and “workload” may
be referenced interchangeably throughout this document.
Similarly, an “application” or “agent” may refer to or
include a computer program, a software application, a game,
a workstation application, etc., offered through an applica-
tion programming interface (API), such as a free rendering
API, such as Open Graphics Library (OpenGL®), DirectX®
11, DirectX® 12, etc., where “dispatch” may be inter-
changeably referred to as “work unit” or “draw” and simi-
larly, “application” may be interchangeably referred to as
“workflow” or simply “agent”. For example, a workload,
such as that of a three-dimensional (3D) game, may include
and issue any number and type of “frames” where each
frame may represent an image (e.g., sailboat, human face).
Further, each frame may include and offer any number and
type of work units, where each work unit may represent a
part (e.g., mast of sailboat, forehead of human face) of the
image (e.g., sailboat, human face) represented by its corre-
sponding frame. However, for the sake of consistency, each
item may be referenced by a single term (e.g., “dispatch”,
“agent”, etc.) throughout this document.

[0035] In some embodiments, terms like “display screen”
and “display surface” may be used interchangeably referring
to the visible portion of a display device while the rest of the
display device may be embedded into a computing device,
such as a smartphone, a wearable device, etc. It is contem-
plated and to be noted that embodiments are not limited to
any particular computing device, software application, hard-
ware component, display device, display screen or surface,
protocol, standard, etc. For example, embodiments may be
applied to and used with any number and type of real-time
applications on any number and type of computers, such as
desktops, laptops, tablet computers, smartphones, head-

Mar. 1, 2018

mounted displays and other wearable devices, and/or the
like. Further, for example, rendering scenarios for efficient
performance using this novel technique may range from
simple scenarios, such as desktop compositing, to complex
scenarios, such as 3D games, augmented reality applica-
tions, etc.

[0036] System Overview

[0037] FIG. 1 is a block diagram of a processing system
100, according to an embodiment. In various embodiments
the system 100 includes one or more processors 102 and one
or more graphics processors 108, and may be a single
processor desktop system, a multiprocessor workstation
system, or a server system having a large number of pro-
cessors 102 or processor cores 107. In one embodiment, the
system 100 is a processing platform incorporated within a
system-on-a-chip (SoC) integrated circuit for use in mobile,
handheld, or embedded devices.

[0038] An embodiment of system 100 can include, or be
incorporated within a server-based gaming platform, a game
console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 100 is a mobile
phone, smart phone, tablet computing device or mobile
Internet device. Data processing system 100 can also
include, couple with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system 100 is
a television or set top box device having one or more
processors 102 and a graphical interface generated by one or
more graphics processors 108.

[0039] In some embodiments, the one or more processors
102 each include one or more processor cores 107 to process
instructions which, when executed, perform operations for
system and user software. In some embodiments, each of the
one or more processor cores 107 is configured to process a
specific instruction set 109. In some embodiments, instruc-
tion set 109 may facilitate Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC),
or computing via a Very Long Instruction Word (VLIW).
Multiple processor cores 107 may each process a different
instruction set 109, which may include instructions to facili-
tate the emulation of other instruction sets. Processor core
107 may also include other processing devices, such a
Digital Signal Processor (DSP).

[0040] In some embodiments, the processor 102 includes
cache memory 104. Depending on the architecture, the
processor 102 can have a single internal cache or multiple
levels of internal cache. In some embodiments, the cache
memory is shared among various components of the pro-
cessor 102. In some embodiments, the processor 102 also
uses an external cache (e.g., a Level-3 (L3) cache or Last
Level Cache (LLC)) (not shown), which may be shared
among processor cores 107 using known cache coherency
techniques. A register file 106 is additionally included in
processor 102 which may include different types of registers
for storing different types of data (e.g., integer registers,
floating point registers, status registers, and an instruction
pointer register). Some registers may be general-purpose
registers, while other registers may be specific to the design
of the processor 102.

[0041] In some embodiments, processor 102 is coupled
with a processor bus 110 to transmit communication signals
such as address, data, or control signals between processor

US 2018/0061122 Al

102 and other components in system 100. In one embodi-
ment the system 100 uses an exemplary ‘hub’ system
architecture, including a memory controller hub 116 and an
Input Output (/O) controller hub 130. A memory controller
hub 116 facilitates communication between a memory
device and other components of system 100, while an /O
Controller Hub (ICH) 130 provides connections to 1/O
devices via a local I/O bus. In one embodiment, the logic of
the memory controller hub 116 is integrated within the
processor.

[0042] Memory device 120 can be a dynamic random
access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, phase-
change memory device, or some other memory device
having suitable performance to serve as process memory. In
one embodiment the memory device 120 can operate as
system memory for the system 100, to store data 122 and
instructions 121 for use when the one or more processors
102 executes an application or process. Memory controller
hub 116 also couples with an optional external graphics
processor 112, which may communicate with the one or
more graphics processors 108 in processors 102 to perform
graphics and media operations.

[0043] In some embodiments, ICH 130 enables peripher-
als to connect to memory device 120 and processor 102 via
a high-speed 1/O bus. The 1/O peripherals include, but are
not limited to, an audio controller 146, a firmware interface
128, a wireless transceiver 126 (e.g., Wi-Fi, Bluetooth), a
data storage device 124 (e.g., hard disk drive, flash memory,
etc.), and a legacy 1/O controller 140 for coupling legacy
(e.g., Personal System 2 (PS/2)) devices to the system. One
or more Universal Serial Bus (USB) controllers 142 connect
input devices, such as keyboard and mouse 144 combina-
tions. A network controller 134 may also couple with ICH
130. In some embodiments, a high-performance network
controller (not shown) couples with processor bus 110. It
will be appreciated that the system 100 shown is exemplary
and not limiting, as other types of data processing systems
that are differently configured may also be used. For
example, the I/O controller hub 130 may be integrated
within the one or more processor 102, or the memory
controller hub 116 and I/O controller hub 130 may be
integrated into a discreet external graphics processor, such
as the external graphics processor 112.

[0044] FIG. 2 is a block diagram of an embodiment of a
processor 200 having one or more processor cores 202A-
202N, an integrated memory controller 214, and an inte-
grated graphics processor 208. Those elements of FIG. 2
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 200 can include additional
cores up to and including additional core 202N represented
by the dashed lined boxes. Each of processor cores 202A-
202N includes one or more internal cache units 204A-204N.
In some embodiments each processor core also has access to
one or more shared cached units 206.

[0045] The internal cache units 204A-204N and shared
cache units 206 represent a cache memory hierarchy within
the processor 200. The cache memory hierarchy may include
at least one level of instruction and data cache within each
processor core and one or more levels of shared mid-level
cache, such as a Level 2 (1.2), Level 3 (L3), Level 4 (L4),
or other levels of cache, where the highest level of cache

Mar. 1, 2018

before external memory is classified as the LLC. In some
embodiments, cache coherency logic maintains coherency
between the various cache units 206 and 204A-204N.

[0046] In some embodiments, processor 200 may also
include a set of one or more bus controller units 216 and a
system agent core 210. The one or more bus controller units
216 manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 210 provides management
functionality for the various processor components. In some
embodiments, system agent core 210 includes one or more
integrated memory controllers 214 to manage access to
various external memory devices (not shown).

[0047] In some embodiments, one or more of the proces-
sor cores 202A-202N include support for simultaneous
multi-threading. In such embodiment, the system agent core
210 includes components for coordinating and operating
cores 202A-202N during multi-threaded processing. System
agent core 210 may additionally include a power control unit
(PCU), which includes logic and components to regulate the
power state of processor cores 202A-202N and graphics
processor 208.

[0048] In some embodiments, processor 200 additionally
includes graphics processor 208 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 208 couples with the set of shared cache units 206,
and the system agent core 210, including the one or more
integrated memory controllers 214. In some embodiments, a
display controller 211 is coupled with the graphics processor
208 to drive graphics processor output to one or more
coupled displays. In some embodiments, display controller
211 may be a separate module coupled with the graphics
processor via at least one interconnect, or may be integrated
within the graphics processor 208 or system agent core 210.

[0049] In some embodiments, a ring based interconnect
unit 212 is used to couple the internal components of the
processor 200. However, an alternative interconnect unit
may be used, such as a point-to-point interconnect, a
switched interconnect, or other techniques, including tech-
niques well known in the art. In some embodiments, graph-
ics processor 208 couples with the ring interconnect 212 via
an I/O link 213.

[0050] The exemplary I/O link 213 represents at least one
of multiple varieties of /O interconnects, including an on
package 1/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 218, such as an eDRAM
module. In some embodiments, each of the processor cores
202A-202N and graphics processor 208 use embedded
memory modules 218 as a shared Last Level Cache.

[0051] Insome embodiments, processor cores 202A-202N
are homogenous cores executing the same instruction set
architecture. In another embodiment, processor cores 202A-
202N are heterogeneous in terms of instruction set archi-
tecture (ISA), where one or more of processor cores 202A-
202N execute a first instruction set, while at least one of the
other cores executes a subset of the first instruction set or a
different instruction set. In one embodiment processor cores
202A-202N are heterogeneous in terms of microarchitec-
ture, where one or more cores having a relatively higher
power consumption couple with one or more power cores
having a lower power consumption. Additionally, processor

US 2018/0061122 Al

200 can be implemented on one or more chips or as an SoC
integrated circuit having the illustrated components, in addi-
tion to other components.

[0052] FIG. 3 is a block diagram of a graphics processor
300, which may be a discrete graphics processing unit, or
may be a graphics processor integrated with a plurality of
processing cores. In some embodiments, the graphics pro-
cessor communicates via a memory mapped /O interface to
registers on the graphics processor and with commands
placed into the processor memory. In some embodiments,
graphics processor 300 includes a memory interface 314 to
access memory. Memory interface 314 can be an interface to
local memory, one or more internal caches, one or more
shared external caches, and/or to system memory.

[0053] Insome embodiments, graphics processor 300 also
includes a display controller 302 to drive display output data
to a display device 320. Display controller 302 includes
hardware for one or more overlay planes for the display and
composition of multiple layers of video or user interface
elements. In some embodiments, graphics processor 300
includes a video codec engine 306 to encode, decode, or
transcode media to, from, or between one or more media
encoding formats, including, but not limited to Moving
Picture Experts Group (MPEG) formats such as MPEG-2,
Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421M/VC-1, and Joint Pho-
tographic Experts Group (JPEG) formats such as JPEG, and
Motion JPEG (MJPEG) formats.

[0054] In some embodiments, graphics processor 300
includes a block image transfer (BLIT) engine 304 to
perform two-dimensional (2D) rasterizer operations includ-
ing, for example, bit-boundary block transfers. However, in
one embodiment, 2D graphics operations are performed
using one or more components of graphics processing
engine (GPE) 310. In some embodiments, GPE 310 is a
compute engine for performing graphics operations, includ-
ing three-dimensional (3D) graphics operations and media
operations.

[0055] In some embodiments, GPE 310 includes a 3D
pipeline 312 for performing 3D operations, such as render-
ing three-dimensional images and scenes using processing
functions that act upon 3D primitive shapes (e.g., rectangle,
triangle, etc.). The 3D pipeline 312 includes programmable
and fixed function elements that perform various tasks
within the element and/or spawn execution threads to a
3D/Media sub-system 315. While 3D pipeline 312 can be
used to perform media operations, an embodiment of GPE
310 also includes a media pipeline 316 that is specifically
used to perform media operations, such as video post-
processing and image enhancement.

[0056] Insomeembodiments, media pipeline 316 includes
fixed function or programmable logic units to perform one
or more specialized media operations, such as video decode
acceleration, video de-interlacing, and video encode accel-
eration in place of, or on behalf of video codec engine 306.
In some embodiments, media pipeline 316 additionally
includes a thread spawning unit to spawn threads for execu-
tion on 3D/Media sub-system 315. The spawned threads
perform computations for the media operations on one or
more graphics execution units included in 3D/Media sub-
system 315.

[0057] In some embodiments, 3D/Media subsystem 315
includes logic for executing threads spawned by 3D pipeline

Mar. 1, 2018

312 and media pipeline 316. In one embodiment, the pipe-
lines send thread execution requests to 3D/Media subsystem
315, which includes thread dispatch logic for arbitrating and
dispatching the various requests to available thread execu-
tion resources. The execution resources include an array of
graphics execution units to process the 3D and media
threads. In some embodiments, 3D/Media subsystem 315
includes one or more internal caches for thread instructions
and data. In some embodiments, the subsystem also includes
shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

[0058] Graphics Processing Engine

[0059] FIG. 4 is a block diagram of a graphics processing
engine 410 of a graphics processor in accordance with some
embodiments. In one embodiment, the graphics processing
engine (GPE) 410 is a version of the GPE 310 shown in FIG.
3. Elements of FIG. 4 having the same reference numbers (or
names) as the elements of any other figure herein can operate
or function in any manner similar to that described else-
where herein, but are not limited to such. For example, the
3D pipeline 312 and media pipeline 316 of FIG. 3 are
illustrated. The media pipeline 316 is optional in some
embodiments of the GPE 410 and may not be explicitly
included within the GPE 410. For example and in at least
one embodiment, a separate media and/or image processor
is coupled to the GPE 410.

[0060] In some embodiments, GPE 410 couples with or
includes a command streamer 403, which provides a com-
mand stream to the 3D pipeline 312 and/or media pipelines
316. In some embodiments, command streamer 403 is
coupled with memory, which can be system memory, or one
or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 403
receives commands from the memory and sends the com-
mands to 3D pipeline 312 and/or media pipeline 316. The
commands are directives fetched from a ring buffer, which
stores commands for the 3D pipeline 312 and media pipeline
316. In one embodiment, the ring buffer can additionally
include batch command buffers storing batches of multiple
commands. The commands for the 3D pipeline 312 can also
include references to data stored in memory, such as but not
limited to vertex and geometry data for the 3D pipeline 312
and/or image data and memory objects for the media pipe-
line 316. The 3D pipeline 312 and media pipeline 316
process the commands and data by performing operations
via logic within the respective pipelines or by dispatching
one or more execution threads to a graphics core array 414.
[0061] In various embodiments the 3D pipeline 312 can
execute one or more shader programs, such as vertex shad-
ers, geometry shaders, pixel shaders, fragment shaders,
compute shaders, or other shader programs, by processing
the instructions and dispatching execution threads to the
graphics core array 414. The graphics core array 414 pro-
vides a unified block of execution resources. Multi-purpose
execution logic (e.g., execution units) within the graphic
core array 414 includes support for various 3D API shader
languages and can execute multiple simultaneous execution
threads associated with multiple shaders.

[0062] In some embodiments the graphics core array 414
also includes execution logic to perform media functions,
such as video and/or image processing. In one embodiment,
the execution units additionally include general-purpose
logic that is programmable to perform parallel general

US 2018/0061122 Al

purpose computational operations, in addition to graphics
processing operations. The general purpose logic can per-
form processing operations in parallel or in conjunction with
general purpose logic within the processor core(s) 107 of
FIG. 1 or core 202A-202N as in FIG. 2.

[0063] Output data generated by threads executing on the
graphics core array 414 can output data to memory in a
unified return buffer (URB) 418. The URB 418 can store
data for multiple threads. In some embodiments the URB
418 may be used to send data between different threads
executing on the graphics core array 414. In some embodi-
ments the URB 418 may additionally be used for synchro-
nization between threads on the graphics core array and
fixed function logic within the shared function logic 420.
[0064] In some embodiments, graphics core array 414 is
scalable, such that the array includes a variable number of
graphics cores, each having a variable number of execution
units based on the target power and performance level of
GPE 410. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

[0065] The graphics core array 414 couples with shared
function logic 420 that includes multiple resources that are
shared between the graphics cores in the graphics core array.
The shared functions within the shared function logic 420
are hardware logic units that provide specialized supple-
mental functionality to the graphics core array 414. In
various embodiments, shared function logic 420 includes
but is not limited to sampler 421, math 422, and inter-thread
communication (ITC) 423 logic. Additionally, some
embodiments implement one or more cache(s) 425 within
the shared function logic 420. A shared function is imple-
mented where the demand for a given specialized function
is insufficient for inclusion within the graphics core array
414. Instead a single instantiation of that specialized func-
tion is implemented as a stand-alone entity in the shared
function logic 420 and shared among the execution
resources within the graphics core array 414. The precise set
of functions that are shared between the graphics core array
414 and included within the graphics core array 414 varies
between embodiments.

[0066] FIG. 5 is a block diagram of another embodiment
of a graphics processor 500. Elements of FIG. 5 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0067] In some embodiments, graphics processor 500
includes a ring interconnect 502, a pipeline front-end 504, a
media engine 537, and graphics cores 580A-580N. In some
embodiments, ring interconnect 502 couples the graphics
processor to other processing units, including other graphics
processors or one or more general-purpose processor cores.
In some embodiments, the graphics processor is one of many
processors integrated within a multi-core processing system.
[0068] In some embodiments, graphics processor 500
receives batches of commands via ring interconnect 502.
The incoming commands are interpreted by a command
streamer 503 in the pipeline front-end 504. In some embodi-
ments, graphics processor 500 includes scalable execution
logic to perform 3D geometry processing and media pro-
cessing via the graphics core(s) 580A-580N. For 3D geom-
etry processing commands, command streamer 503 supplies
commands to geometry pipeline 536. For at least some

Mar. 1, 2018

media processing commands, command streamer 503 sup-
plies the commands to a video front end 534, which couples
with a media engine 537. In some embodiments, media
engine 537 includes a Video Quality Engine (VQE) 530 for
video and image post-processing and a multi-format encode/
decode (MFX) 533 engine to provide hardware-accelerated
media data encode and decode. In some embodiments,
geometry pipeline 536 and media engine 537 each generate
execution threads for the thread execution resources pro-
vided by at least one graphics core 580A.

[0069] In some embodiments, graphics processor 500
includes scalable thread execution resources featuring
modular cores 580A-580N (sometimes referred to as core
slices), each having multiple sub-cores 550A-550N, 560A-
560N (sometimes referred to as core sub-slices). In some
embodiments, graphics processor 500 can have any number
of graphics cores 580A through 580N. In some embodi-
ments, graphics processor 500 includes a graphics core
580A having at least a first sub-core 550A and a second
sub-core 560A. In other embodiments, the graphics proces-
sor is a low power processor with a single sub-core (e.g.,
550A). In some embodiments, graphics processor 500
includes multiple graphics cores 580A-580N, each including
a set of first sub-cores 550A-550N and a set of second
sub-cores 560A-560N. Each sub-core in the set of first
sub-cores 550A-550N includes at least a first set of execu-
tion units 552A-552N and media/texture samplers 554A-
554N. Each sub-core in the set of second sub-cores 560A-
560N includes at least a second set of execution units
562A-562N and samplers 564A-564N. In some embodi-
ments, each sub-core 550A-550N, 560A-560N shares a set
of shared resources 570A-570N. In some embodiments, the
shared resources include shared cache memory and pixel
operation logic. Other shared resources may also be
included in the various embodiments of the graphics pro-
Ccessor.

[0070] Execution Units

[0071] FIG. 6 illustrates thread execution logic 600
including an array of processing elements employed in some
embodiments of' a GPE. Elements of FIG. 6 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such.

[0072] In some embodiments, thread execution logic 600
includes a shader processor 602, a thread dispatcher 604,
instruction cache 606, a scalable execution unit array includ-
ing a plurality of execution units 608 A-608N, a sampler 610,
adata cache 612, and a data port 614. In one embodiment the
scalable execution unit array can dynamically scale by
enabling or disabling one or more execution units (e.g., any
of'execution unit 608A, 608B, 608C, 608D, through 608N-1
and 608N) based on the computational requirements of a
workload. In one embodiment the included components are
interconnected via an interconnect fabric that links to each
of the components. In some embodiments, thread execution
logic 600 includes one or more connections to memory, such
as system memory or cache memory, through one or more
of instruction cache 606, data port 614, sampler 610, and
execution units 608A-608N. In some embodiments, each
execution unit (e.g. 608A) is a stand-alone programmable
general purpose computational unit that is capable of execut-
ing multiple simultaneous hardware threads while process-
ing multiple data elements in parallel for each thread. In

US 2018/0061122 Al

various embodiments, the array of execution units 608A-
608N is scalable to include any number individual execution
units.

[0073] In some embodiments, the execution units 608A-
608N are primarily used to execute shader programs. A
shader processor 602 can process the various shader pro-
grams and dispatch execution threads associated with the
shader programs via a thread dispatcher 604. In one embodi-
ment the thread dispatcher includes logic to arbitrate thread
initiation requests from the graphics and media pipelines and
instantiate the requested threads on one or more execution
unit in the execution units 608A-608N. For example, the
geometry pipeline (e.g., 536 of FIG. 5) can dispatch vertex,
tessellation, or geometry shaders to the thread execution
logic 600 (FIG. 6) for processing. In some embodiments,
thread dispatcher 604 can also process runtime thread
spawning requests from the executing shader programs.
[0074] In some embodiments, the execution units 608A-
608N support an instruction set that includes native support
for many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers). Each of the execution units 608A-608N is capable of
multi-issue single instruction multiple data (SIMD) execu-
tion and multi-threaded operation enables an efficient execu-
tion environment in the face of higher latency memory
accesses. Each hardware thread within each execution unit
has a dedicated high-bandwidth register file and associated
independent thread-state. Execution is multi-issue per clock
to pipelines capable of integer, single and double precision
floating point operations, SIMD branch capability, logical
operations, transcendental operations, and other miscella-
neous operations. While waiting for data from memory or
one of the shared functions, dependency logic within the
execution units 608A-608N causes a waiting thread to sleep
until the requested data has been returned. While the waiting
thread is sleeping, hardware resources may be devoted to
processing other threads. For example, during a delay asso-
ciated with a vertex shader operation, an execution unit can
perform operations for a pixel shader, fragment shader, or
another type of shader program, including a different vertex
shader.

[0075] Each execution unit in execution units 608 A-608N
operates on arrays of data elements. The number of data
elements is the “execution size,” or the number of channels
for the instruction. An execution channel is a logical unit of
execution for data element access, masking, and flow control
within instructions. The number of channels may be inde-
pendent of the number of physical Arithmetic Logic Units
(ALUs) or Floating Point Units (FPUs) for a particular
graphics processor. In some embodiments, execution units
608A-608N support integer and floating-point data types.

[0076] The execution unit instruction set includes SIMD
instructions. The various data elements can be stored as a
packed data type in a register and the execution unit will
process the various elements based on the data size of the
elements. For example, when operating on a 256-bit wide
vector, the 256 bits of the vector are stored in a register and
the execution unit operates on the vector as four separate
64-bit packed data elements (Quad-Word (QW) size data

Mar. 1, 2018

elements), eight separate 32-bit packed data elements
(Double Word (DW) size data elements), sixteen separate
16-bit packed data elements (Word (W) size data elements),
or thirty-two separate 8-bit data elements (byte (B) size data
elements). However, different vector widths and register
sizes are possible.

[0077] One or more internal instruction caches (e.g., 606)
are included in the thread execution logic 600 to cache
thread instructions for the execution units. In some embodi-
ments, one or more data caches (e.g., 612) are included to
cache thread data during thread execution. In some embodi-
ments, a sampler 610 is included to provide texture sampling
for 3D operations and media sampling for media operations.
In some embodiments, sampler 610 includes specialized
texture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.

[0078] During execution, the graphics and media pipelines
send thread initiation requests to thread execution logic 600
via thread spawning and dispatch logic. Once a group of
geometric objects has been processed and rasterized into
pixel data, pixel processor logic (e.g., pixel shader logic,
fragment shader logic, etc.) within the shader processor 602
is invoked to further compute output information and cause
results to be written to output surfaces (e.g., color buffers,
depth buffers, stencil buffers, etc.). In some embodiments, a
pixel shader or fragment shader calculates the values of the
various vertex attributes that are to be interpolated across the
rasterized object. In some embodiments, pixel processor
logic within the shader processor 602 then executes an
application programming interface (API)-supplied pixel or
fragment shader program. To execute the shader program,
the shader processor 602 dispatches threads to an execution
unit (e.g., 608A) via thread dispatcher 604. In some embodi-
ments, pixel shader 602 uses texture sampling logic in the
sampler 610 to access texture data in texture maps stored in
memory. Arithmetic operations on the texture data and the
input geometry data compute pixel color data for each
geometric fragment, or discards one or more pixels from
further processing.

[0079] In some embodiments, the data port 614 provides
a memory access mechanism for the thread execution logic
600 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 614 includes or couples to one or more cache
memories (e.g., data cache 612) to cache data for memory
access via the data port.

[0080] FIG. 7 is a block diagram illustrating a graphics
processor instruction formats 700 according to some
embodiments. In one or more embodiment, the graphics
processor execution units support an instruction set having
instructions in multiple formats. The solid lined boxes
illustrate the components that are generally included in an
execution unit instruction, while the dashed lines include
components that are optional or that are only included in a
sub-set of the instructions. In some embodiments, instruc-
tion format 700 described and illustrated are macro-instruc-
tions, in that they are instructions supplied to the execution
unit, as opposed to micro-operations resulting from instruc-
tion decode once the instruction is processed.

[0081] In some embodiments, the graphics processor
execution units natively support instructions in a 128-bit
instruction format 710. A 64-bit compacted instruction for-
mat 730 is available for some instructions based on the

US 2018/0061122 Al

selected instruction, instruction options, and number of
operands. The native 128-bit instruction format 710 pro-
vides access to all instruction options, while some options
and operations are restricted in the 64-bit format 730. The
native instructions available in the 64-bit format 730 vary by
embodiment. In some embodiments, the instruction is com-
pacted in part using a set of index values in an index field
713. The execution unit hardware references a set of com-
paction tables based on the index values and uses the
compaction table outputs to reconstruct a native instruction
in the 128-bit instruction format 710.

[0082] For each format, instruction opcode 712 defines the
operation that the execution unit is to perform. The execu-
tion units execute each instruction in parallel across the
multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 714 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the
128-bit instruction format 710 an exec-size field 716 limits
the number of data channels that will be executed in parallel.
In some embodiments, exec-size field 716 is not available
for use in the 64-bit compact instruction format 730.

[0083] Some execution unit instructions have up to three
operands including two source operands, src0 720, srcl 722,
and one destination 718. In some embodiments, the execu-
tion units support dual destination instructions, where one of
the destinations is implied. Data manipulation instructions
can have a third source operand (e.g., SRC2 724), where the
instruction opcode 712 determines the number of source
operands. An instruction’s last source operand can be an
immediate (e.g., hard-coded) value passed with the instruc-
tion.

[0084] In some embodiments, the 128-bit instruction for-
mat 710 includes an access/address mode field 726 speci-
fying, for example, whether direct register addressing mode
or indirect register addressing mode is used. When direct
register addressing mode is used, the register address of one
or more operands is directly provided by bits in the instruc-
tion.

[0085] In some embodiments, the 128-bit instruction for-
mat 710 includes an access/address mode field 726, which
specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode is used to
define a data access alignment for the instruction. Some
embodiments support access modes including a 16-byte
aligned access mode and a 1-byte aligned access mode,
where the byte alignment of the access mode determines the
access alignment of the instruction operands. For example,
when in a first mode, the instruction may use byte-aligned
addressing for source and destination operands and when in
a second mode, the instruction may use 16-byte-aligned
addressing for all source and destination operands.

[0086] In one embodiment, the address mode portion of
the access/address mode field 726 determines whether the
instruction is to use direct or indirect addressing. When
direct register addressing mode is used bits in the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode is used, the

Mar. 1, 2018

register address of one or more operands may be computed
based on an address register value and an address immediate
field in the instruction.

[0087] In some embodiments instructions are grouped
based on opcode 712 bit-fields to simplify Opcode decode
740. For an 8-bit opcode, bits 4, 5, and 6 allow the execution
unit to determine the type of opcode. The precise opcode
grouping shown is merely an example. In some embodi-
ments, a move and logic opcode group 742 includes data
movement and logic instructions (e.g., move (mov), com-
pare (cmp)). In some embodiments, move and logic group
742 shares the five most significant bits (MSB), where move
(mov) instructions are in the form of 0000xxxxb and logic
instructions are in the form of 0001xxxxb. A flow control
instruction group 744 (e.g., call, jump (jmp)) includes
instructions in the form of 0010xxxxb (e.g., 0x20). A
miscellaneous instruction group 746 includes a mix of
instructions, including synchronization instructions (e.g.,
wait, send) in the form of 0011xxxxb (e.g., 0x30). A parallel
math instruction group 748 includes component-wise arith-
metic instructions (e.g., add, multiply (mul)) in the form of
0100xxxxb (e.g., 0x40). The parallel math group 748 per-
forms the arithmetic operations in parallel across data chan-
nels. The vector math group 750 includes arithmetic instruc-
tions (e.g., dp4) in the form of 0101xxxxb (e.g., 0x50). The
vector math group performs arithmetic such as dot product
calculations on vector operands.

[0088] Graphics Pipeline

[0089] FIG. 8 is a block diagram of another embodiment
of a graphics processor 800. Elements of FIG. 8 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0090] In some embodiments, graphics processor 800
includes a graphics pipeline 820, a media pipeline 830, a
display engine 840, thread execution logic 850, and a render
output pipeline 870. In some embodiments, graphics pro-
cessor 800 is a graphics processor within a multi-core
processing system that includes one or more general purpose
processing cores. The graphics processor is controlled by
register writes to one or more control registers (not shown)
or via commands issued to graphics processor 800 via a ring
interconnect 802. In some embodiments, ring interconnect
802 couples graphics processor 800 to other processing
components, such as other graphics processors or general-
purpose processors. Commands from ring interconnect 802
are interpreted by a command streamer 803, which supplies
instructions to individual components of graphics pipeline
820 or media pipeline 830.

[0091] In some embodiments, command streamer 803
directs the operation of a vertex fetcher 805 that reads vertex
data from memory and executes vertex-processing com-
mands provided by command streamer 803. In some
embodiments, vertex fetcher 805 provides vertex data to a
vertex shader 807, which performs coordinate space trans-
formation and lighting operations to each vertex. In some
embodiments, vertex fetcher 805 and vertex shader 807
execute vertex-processing instructions by dispatching
execution threads to execution units 852A-852B via a thread
dispatcher 831.

[0092] Insome embodiments, execution units 852A-852B
are an array of vector processors having an instruction set for
performing graphics and media operations. In some embodi-

US 2018/0061122 Al

ments, execution units 852A-852B have an attached L1
cache 851 that is specific for each array or shared between
the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that is partitioned to
contain data and instructions in different partitions.

[0093] In some embodiments, graphics pipeline 820
includes tessellation components to perform hardware-ac-
celerated tessellation of 3D objects. In some embodiments,
a programmable hull shader 811 configures the tessellation
operations. A programmable domain shader 817 provides
back-end evaluation of tessellation output, where tessellator
813 operates at the direction of hull shader 811 and contains
special purpose logic to generate a set of detailed geometric
objects based on a coarse geometric model that is provided
as input to graphics pipeline 820. In some embodiments, if
tessellation is not used, tessellation components (e.g., hull
shader 811, tessellator 813, and domain shader 817) can be
bypassed.

[0094] In some embodiments, complete geometric objects
can be processed by a geometry shader 819 via one or more
threads dispatched to execution units 852A-852B, or can
proceed directly to the clipper 829. In some embodiments,
the geometry shader operates on entire geometric objects,
rather than vertices or patches of vertices as in previous
stages of the graphics pipeline. If the tessellation is disabled
the geometry shader 819 receives input from the vertex
shader 807. In some embodiments, geometry shader 819 is
programmable by a geometry shader program to perform
geometry tessellation if the tessellation units are disabled.

[0095] Before rasterization, a clipper 829 processes vertex
data. The clipper 829 may be a fixed function clipper or a
programmable clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer and depth test
component 873 in the render output pipeline 870 dispatches
pixel shaders to convert the geometric objects into their per
pixel representations. In some embodiments, pixel shader
logic is included in thread execution logic 850. In some
embodiments, an application can bypass the rasterizer and
depth test component 873 and access un-rasterized vertex
data via a stream out unit 823.

[0096] The graphics processor 800 has an interconnect
bus, interconnect fabric, or some other interconnect mecha-
nism that allows data and message passing amongst the
major components of the processor. In some embodiments,
execution units 852A-852B and associated cache(s) 851,
texture and media sampler 854, and texture/sampler cache
858 interconnect via a data port 856 to perform memory
access and communicate with render output pipeline com-
ponents of the processor. In some embodiments, sampler
854, caches 851, 858 and execution units 852A-852B each
have separate memory access paths.

[0097] In some embodiments, render output pipeline 870
contains a rasterizer and depth test component 873 that
converts vertex-based objects into an associated pixel-based
representation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
878 and depth cache 879 are also available in some embodi-
ments. A pixel operations component 877 performs pixel-
based operations on the data, though in some instances, pixel
operations associated with 2D operations (e.g. bit block
image transfers with blending) are performed by the 2D
engine 841, or substituted at display time by the display
controller 843 using overlay display planes. In some

Mar. 1, 2018

embodiments, a shared L3 cache 875 is available to all
graphics components, allowing the sharing of data without
the use of main system memory.

[0098] In some embodiments, graphics processor media
pipeline 830 includes a media engine 837 and a video front
end 834. In some embodiments, video front end 834 receives
pipeline commands from the command streamer 803. In
some embodiments, media pipeline 830 includes a separate
command streamer. In some embodiments, video front-end
834 processes media commands before sending the com-
mand to the media engine 837. In some embodiments, media
engine 837 includes thread spawning functionality to spawn
threads for dispatch to thread execution logic 850 via thread
dispatcher 831.

[0099] In some embodiments, graphics processor 800
includes a display engine 840. In some embodiments, dis-
play engine 840 is external to processor 800 and couples
with the graphics processor via the ring interconnect 802, or
some other interconnect bus or fabric. In some embodi-
ments, display engine 840 includes a 2D engine 841 and a
display controller 843. In some embodiments, display
engine 840 contains special purpose logic capable of oper-
ating independently of the 3D pipeline. In some embodi-
ments, display controller 843 couples with a display device
(not shown), which may be a system integrated display
device, as in a laptop computer, or an external display device
attached via a display device connector.

[0100] In some embodiments, graphics pipeline 820 and
media pipeline 830 are configurable to perform operations
based on multiple graphics and media programming inter-
faces and are not specific to any one application program-
ming interface (API). In some embodiments, driver software
for the graphics processor translates API calls that are
specific to a particular graphics or media library into com-
mands that can be processed by the graphics processor. In
some embodiments, support is provided for the Open Graph-
ics Library (OpenGL), Open Computing Language
(OpenCL), and/or Vulkan graphics and compute API, all
from the Khronos Group. In some embodiments, support
may also be provided for the Direct3D library from the
Microsoft Corporation. In some embodiments, a combina-
tion of these libraries may be supported. Support may also
be provided for the Open Source Computer Vision Library
(OpenCV). A future API with a compatible 3D pipeline
would also be supported if a mapping can be made from the
pipeline of the future API to the pipeline of the graphics
processor.

[0101] Graphics Pipeline Programming

[0102] FIG. 9A is a block diagram illustrating a graphics
processor command format 900 according to some embodi-
ments. FIG. 9B is a block diagram illustrating a graphics
processor command sequence 910 according to an embodi-
ment. The solid lined boxes in FIG. 9A illustrate the com-
ponents that are generally included in a graphics command
while the dashed lines include components that are optional
or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 900 of FIG. 9A includes data fields to identify a target
client 902 of the command, a command operation code
(opcode) 904, and the relevant data 906 for the command. A
sub-opcode 905 and a command size 908 are also included
in some commands.

[0103] In some embodiments, client 902 specifies the
client unit of the graphics device that processes the com-

US 2018/0061122 Al

mand data. In some embodiments, a graphics processor
command parser examines the client field of each command
to condition the further processing of the command and
route the command data to the appropriate client unit. In
some embodiments, the graphics processor client units
include a memory interface unit, a render unit, a 2D unit, a
3D unit, and a media unit. Each client unit has a correspond-
ing processing pipeline that processes the commands. Once
the command is received by the client unit, the client unit
reads the opcode 904 and, if present, sub-opcode 905 to
determine the operation to perform. The client unit performs
the command using information in data field 906. For some
commands an explicit command size 908 is expected to
specify the size of the command. In some embodiments, the
command parser automatically determines the size of at least
some of the commands based on the command opcode. In
some embodiments commands are aligned via multiples of
a double word.

[0104] The flow diagram in FIG. 9B shows an exemplary
graphics processor command sequence 910. In some
embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence is shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be issued as batch of commands in a
command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

[0105] Insomeembodiments, the graphics processor com-
mand sequence 910 may begin with a pipeline flush com-
mand 912 to cause any active graphics pipeline to complete
the currently pending commands for the pipeline. In some
embodiments, the 3D pipeline 922 and the media pipeline
924 do not operate concurrently. The pipeline flush is
performed to cause the active graphics pipeline to complete
any pending commands. In response to a pipeline flush, the
command parser for the graphics processor will pause
command processing until the active drawing engines com-
plete pending operations and the relevant read caches are
invalidated. Optionally, any data in the render cache that is
marked ‘dirty’ can be flushed to memory. In some embodi-
ments, pipeline flush command 912 can be used for pipeline
synchronization or before placing the graphics processor
into a low power state.

[0106] In some embodiments, a pipeline select command
913 is used when a command sequence requires the graphics
processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 913 is required
only once within an execution context before issuing pipe-
line commands unless the context is to issue commands for
both pipelines. In some embodiments, a pipeline flush
command 912 is required immediately before a pipeline
switch via the pipeline select command 913.

[0107] Insome embodiments, a pipeline control command
914 configures a graphics pipeline for operation and is used
to program the 3D pipeline 922 and the media pipeline 924.
In some embodiments, pipeline control command 914 con-
figures the pipeline state for the active pipeline. In one
embodiment, the pipeline control command 914 is used for

Mar. 1, 2018

pipeline synchronization and to clear data from one or more
cache memories within the active pipeline before processing
a batch of commands.

[0108] In some embodiments, return buffer state com-
mands 916 are used to configure a set of return buffers for
the respective pipelines to write data. Some pipeline opera-
tions require the allocation, selection, or configuration of
one or more return buffers into which the operations write
intermediate data during processing. In some embodiments,
the graphics processor also uses one or more return buffers
to store output data and to perform cross thread communi-
cation. In some embodiments, the return buffer state 916
includes selecting the size and number of return buffers to
use for a set of pipeline operations.

[0109] The remaining commands in the command
sequence differ based on the active pipeline for operations.
Based on a pipeline determination 920, the command
sequence is tailored to the 3D pipeline 922 beginning with
the 3D pipeline state 930 or the media pipeline 924 begin-
ning at the media pipeline state 940.

[0110] The commands to configure the 3D pipeline state
930 include 3D state setting commands for vertex buffer
state, vertex element state, constant color state, depth buffer
state, and other state variables that are to be configured
before 3D primitive commands are processed. The values of
these commands are determined at least in part based on the
particular 3D API in use. In some embodiments, 3D pipeline
state 930 commands are also able to selectively disable or
bypass certain pipeline elements if those elements will not
be used.

[0111] In some embodiments, 3D primitive 932 command
is used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 932
command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D
primitive 932 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buffers. In some embodiments, 3D primitive 932
command is used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 922 dispatches shader execution threads to graphics
processor execution units.

[0112] In some embodiments, 3D pipeline 922 is triggered
via an execute 934 command or event. In some embodi-
ments, a register write triggers command execution. In some
embodiments execution is triggered via a ‘go’ or ‘kick’
command in the command sequence. In one embodiment,
command execution is triggered using a pipeline synchro-
nization command to flush the command sequence through
the graphics pipeline. The 3D pipeline will perform geom-
etry processing for the 3D primitives. Once operations are
complete, the resulting geometric objects are rasterized and
the pixel engine colors the resulting pixels. Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations.
[0113] Insome embodiments, the graphics processor com-
mand sequence 910 follows the media pipeline 924 path
when performing media operations. In general, the specific
use and manner of programming for the media pipeline 924
depends on the media or compute operations to be per-
formed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media

US 2018/0061122 Al

decode can be performed in whole or in part using resources
provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor is used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

[0114] In some embodiments, media pipeline 924 is con-
figured in a similar manner as the 3D pipeline 922. A set of
commands to configure the media pipeline state 940 are
dispatched or placed into a command queue before the
media object commands 942. In some embodiments, media
pipeline state commands 940 include data to configure the
media pipeline elements that will be used to process the
media objects. This includes data to configure the video
decode and video encode logic within the media pipeline,
such as encode or decode format. In some embodiments,
media pipeline state commands 940 also support the use of
one or more pointers to “indirect” state elements that contain
a batch of state settings.

[0115] In some embodiments, media object commands
942 supply pointers to media objects for processing by the
media pipeline. The media objects include memory buffers
containing video data to be processed. In some embodi-
ments, all media pipeline states must be valid before issuing
a media object command 942. Once the pipeline state is
configured and media object commands 942 are queued, the
media pipeline 924 is triggered via an execute command 944
or an equivalent execute event (e.g., register write). Output
from media pipeline 924 may then be post processed by
operations provided by the 3D pipeline 922 or the media
pipeline 924. In some embodiments, GPGPU operations are
configured and executed in a similar manner as media
operations.

[0116] Graphics Software Architecture

[0117] FIG. 10 illustrates exemplary graphics software
architecture for a data processing system 1000 according to
some embodiments. In some embodiments, software archi-
tecture includes a 3D graphics application 1010, an operat-
ing system 1020, and at least one processor 1030. In some
embodiments, processor 1030 includes a graphics processor
1032 and one or more general-purpose processor core(s)
1034. The graphics application 1010 and operating system
1020 each execute in the system memory 1050 of the data
processing system.

[0118] In some embodiments, 3D graphics application
1010 contains one or more shader programs including
shader instructions 1012. The shader language instructions
may be in a high-level shader language, such as the High
Level Shader Language (HLSL) or the OpenGL Shader
Language (GLSL). The application also includes executable
instructions 1014 in a machine language suitable for execu-
tion by the general-purpose processor core 1034. The appli-
cation also includes graphics objects 1016 defined by vertex
data.

[0119] In some embodiments, operating system 1020 is a
Microsoft® Windows® operating system from the Micro-
soft Corporation, a proprietary UNIX-like operating system,
or an open source UNIX-like operating system using a
variant of the Linux kernel. The operating system 1020 can
support a graphics API 1022 such as the Direct3D API, the
OpenGL API, or the Vulkan API. When the Direct3D API is
in use, the operating system 1020 uses a front-end shader

Mar. 1, 2018

compiler 1024 to compile any shader instructions 1012 in
HLSL into a lower-level shader language. The compilation
may be a just-in-time (JIT) compilation or the application
can perform shader pre-compilation. In some embodiments,
high-level shaders are compiled into low-level shaders dur-
ing the compilation of the 3D graphics application 1010. In
some embodiments, the shader instructions 1012 are pro-
vided in an intermediate form, such as a version of the
Standard Portable Intermediate Representation (SPIR) used
by the Vulkan API.

[0120] In some embodiments, user mode graphics driver
1026 contains a back-end shader compiler 1027 to convert
the shader instructions 1012 into a hardware specific repre-
sentation. When the OpenGL API is in use, shader instruc-
tions 1012 in the GLSL high-level language are passed to a
user mode graphics driver 1026 for compilation. In some
embodiments, user mode graphics driver 1026 uses operat-
ing system kernel mode functions 1028 to communicate
with a kernel mode graphics driver 1029. In some embodi-
ments, kernel mode graphics driver 1029 communicates
with graphics processor 1032 to dispatch commands and
instructions.

[0121] IP Core Implementations

[0122] One or more aspects of at least one embodiment
may be implemented by representative code stored on a
machine-readable medium which represents and/or defines
logic within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.
[0123] FIG. 11 is a block diagram illustrating an IP core
development system 1100 that may be used to manufacture
an integrated circuit to perform operations according to an
embodiment. The IP core development system 1100 may be
used to generate modular, re-usable designs that can be
incorporated into a larger design or used to construct an
entire integrated circuit (e.g., an SOC integrated circuit). A
design facility 1130 can generate a software simulation 1110
of an IP core design in a high level programming language
(e.g., C/C++). The software simulation 1110 can be used to
design, test, and verify the behavior of the IP core using a
simulation model 1112. The simulation model 1112 may
include functional, behavioral, and/or timing simulations. A
register transfer level (RTL) design 1115 can then be created
or synthesized from the simulation model 1112. The RTL
design 1115 is an abstraction of the behavior of the inte-
grated circuit that models the flow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 1115, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the initial design and simula-
tion may vary.

US 2018/0061122 Al

[0124] The RTL design 1115 or equivalent may be further
synthesized by the design facility into a hardware model
1120, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP
core design. The IP core design can be stored for delivery to
a 3™ party fabrication facility 1165 using non-volatile
memory 1140 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 1150 or wireless connection 1160. The fabrica-
tion facility 1165 may then fabricate an integrated circuit
that is based at least in part on the IP core design. The
fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein.

[0125] Exemplary System on a Chip Integrated Circuit
[0126] FIGS. 12-14 illustrated exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what is illus-
trated, other logic and circuits may be included, including
additional graphics processors/cores, peripheral interface
controllers, or general purpose processor cores.

[0127] FIG. 12 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 1200 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 1200 includes
one or more application processor(s) 1205 (e.g., CPUs), at
least one graphics processor 1210, and may additionally
include an image processor 1215 and/or a video processor
1220, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 1200
includes peripheral or bus logic including a USB controller
1225, UART controller 1230, an SPI/SDIO controller 1235,
and an I?S/I°C controller 1240. Additionally, the integrated
circuit can include a display device 1245 coupled to one or
more of a high-definition multimedia interface (HDMI)
controller 1250 and a mobile industry processor interface
(MIPI) display interface 1255. Storage may be provided by
a flash memory subsystem 1260 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 1265 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 1270.

[0128] FIG. 13 is a block diagram illustrating an exem-
plary graphics processor 1310 of a system on a chip inte-
grated circuit that may be fabricated using one or more IP
cores, according to an embodiment. Graphics processor
1310 can be a variant of the graphics processor 1210 of FIG.
12. Graphics processor 1310 includes a vertex processor
1305 and one or more fragment processor(s) 1315A1315N
(e.g., 1315A, 1315B, 1315C, 1315D, through 1315N-1, and
1315N). Graphics processor 1310 can execute different
shader programs via separate logic, such that the vertex
processor 1305 is optimized to execute operations for vertex
shader programs, while the one or more fragment processor
(s) 1315A-1315N execute fragment (e.g., pixel) shading
operations for fragment or pixel shader programs. The
vertex processor 1305 performs the vertex processing stage
of the 3D graphics pipeline and generates primitives and
vertex data. The fragment processor(s) 1315A-1315N use
the primitive and vertex data generated by the vertex pro-
cessor 1305 to produce a framebuffer that is displayed on a

Mar. 1, 2018

display device. In one embodiment, the fragment processor
(s) 1315A-1315N are optimized to execute fragment shader
programs as provided for in the OpenGL API, which may be
used to perform similar operations as a pixel shader program
as provided for in the Direct 3D APL

[0129] Graphics processor 1310 additionally includes one
or more memory management units (MMUs) 1320A-1320B,
cache(s) 1325A-1325B, and circuit interconnect(s) 1330A-
1330B. The one or more MMU(s) 1320A-1320B provide for
virtual to physical address mapping for integrated circuit
1310, including for the vertex processor 1305 and/or frag-
ment processor(s) 1315A-1315N, which may reference ver-
tex or image/texture data stored in memory, in addition to
vertex or image/texture data stored in the one or more
cache(s) 1325A-1325B. In one embodiment the one or more
MMU(s) 1325A-1325B may be synchronized with other
MMUs within the system, including one or more MMUSs
associated with the one or more application processor(s)
1205, image processor 1215, and/or video processor 1220 of
FIG. 12, such that each processor 1205-1220 can participate
in a shared or unified virtual memory system. The one or
more circuit interconnect(s) 1330A-1330B enable graphics
processor 1310 to interface with other IP cores within the
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

[0130] FIG. 14 is a block diagram illustrating an addi-
tional exemplary graphics processor 1410 of a system on a
chip integrated circuit that may be fabricated using one or
more IP cores, according to an embodiment. Graphics pro-
cessor 1410 can be a variant of the graphics processor 1210
of FIG. 12. Graphics processor 1410 includes the one or
more MMU(s) 1320A-1320B, caches 1325A-1325B, and
circuit interconnects 1330A-1330B of the integrated circuit
1300 of FIG. 13.

[0131] Graphics processor 1410 includes one or more
shader core(s) 1415A-1415N (e.g., 1415A, 14158, 1415C,
1415D, 1415E, 1415F, through 1315N-1, and 1315N),
which provides for a unified shader core architecture in
which a single core or type or core can execute all types of
programmable shader code, including shader program code
to implement vertex shaders, fragment shaders, and/or com-
pute shaders. The exact number of shader cores present can
vary among embodiments and implementations. Addition-
ally, graphics processor 1410 includes an inter-core task
manager 1405, which acts as a thread dispatcher to dispatch
execution threads to one or more shader cores 1415A-1415N
and a tiling unit 1418 to accelerate tiling operations for
tile-based rendering, in which rendering operations for a
scene are subdivided in image space, for example to exploit
local spatial coherence within a scene or to optimize use of
internal caches.

[0132] FIG. 15 illustrates a computing device 1500
employing a multi-resolution deferred shading mechanism
(“shading mechanism™) 1510 according to one embodiment.
Computing device 1500 (e.g., smart wearable devices, vir-
tual reality (VR) devices, head-mounted display (HMDs),
mobile computers, Internet of Things (IoT) devices, laptop
computers, desktop computers, server computers, etc.) may
be the same as data processing system 100 of FIG. 1 and
accordingly, for brevity, clarity, and ease of understanding,
many of the details stated above with reference to FIGS.
1-14 are not further discussed or repeated hereafter. As
illustrated, in one embodiment, computing device 1500 is
shown as hosting shading mechanism 1510.

US 2018/0061122 Al

[0133] As illustrated, in one embodiment, shading mecha-
nism 1510 may be hosted by or part of graphics driver 1516.
In another embodiment, shading mechanism 1510 may be
hosted by or part of firmware of graphics processing unit
(“GPU” or “graphics processor”) 1514. In yet another
embodiment, shading mechanism 1510 may be hosted by or
part of firmware of central processing unit (“CPU” or
“application processor”) 1512.

[0134] In yet another embodiment, shading mechanism
1510 may be hosted as software or firmware logic by
operating system 1506. In yet another embodiment, shading
mechanism 1510 may be partially and simultaneously
hosted by multiple components of computing device 1500,
such as one or more of graphics driver 1516, GPU 1514,
GPU firmware, CPU 1512, CPU firmware, operating system
1506, and/or the like. For brevity, clarity, and ease of
understanding, throughout the rest of this document, shading
mechanism 1510 is shown and discussed as part of GPU
1514; however, embodiments are not limited as such. It is
contemplated and to be noted that shading mechanism 1510
or one or more of its components may be implemented as
hardware, software, and/or firmware.

[0135] Throughout the document, term “user” may be

2% < CLIYS

interchangeably referred to as “viewer”, “observer”, “per-
son”, “individual”, “end-user”, and/or the like. It is to be
noted that throughout this document, terms like “graphics
domain” may be referenced interchangeably with “graphics
processing unit”, “graphics processor”, or simply “GPU”
and similarly, “CPU domain” or “host domain” may be
referenced interchangeably with “computer processing
unit”, “application processor”, or simply “CPU”.

[0136] Computing device 1500 may include any number
and type of communication devices, such as large computing
systems, such as server computers, desktop computers, etc.,
and may further include set-top boxes (e.g., Internet-based
cable television set-top boxes, etc.), global positioning sys-
tem (GPS)-based devices, etc. Computing device 1500 may
include mobile computing devices serving as communica-
tion devices, such as cellular phones including smartphones,
personal digital assistants (PDAs), tablet computers, laptop
computers, e-readers, smart televisions, television plat-
forms, wearable devices (e.g., glasses, watches, bracelets,
smartcards, jewelry, clothing items, etc.), media players, etc.
For example, in one embodiment, computing device 1500
may include a mobile computing device employing a com-
puter platform hosting an integrated circuit (“IC”), such as
system on a chip (“SoC” or “SOC”), integrating various
hardware and/or software components of computing device
1500 on a single chip.

[0137] As illustrated, in one embodiment, computing
device 1500 may include any number and type of hardware
and/or software components, such as (without limitation)
GPU 1514, graphics driver (also referred to as “GPU
driver”, “graphics driver logic”, “driver logic”, user-mode
driver (UMD), UMD, user-mode driver framework
(UMDF), UMDF, or simply “driver”) 1516, CPU 1512,
memory 1508, network devices, drivers, or the like, as well
as input/output (I/O) sources 1504, such as touchscreens,
touch panels, touch pads, virtual or regular keyboards,
virtual or regular mice, ports, connectors, etc. Computing
device 1500 may include operating system (OS) 1506 serv-
ing as an interface between hardware and/or physical
resources of the computer device 1500 and a user. It is
contemplated that CPU 1512 may include one or more

Mar. 1, 2018

processors, such as processor(s) 102 of FIG. 1, while GPU
1514 may include one or more graphics processors, such as
graphics processor(s) 108 of FIG. 1.

[0138] It is to be noted that terms like “node”, “computing
node”, “server”, “server device”, “cloud computer”, “cloud
server”, “cloud server computer”, “machine”, “host
machine”, “device”, “computing device”, “computer”,
“computing system”, and the like, may be used interchange-
ably throughout this document. It is to be further noted that
terms like “application”, “software application”, “program”,
“software program”, “package”, “software package”, and
the like, may be used interchangeably throughout this docu-
ment. Also, terms like “job”, “input”, “request”, “message”,
and the like, may be used interchangeably throughout this
document.

[0139] It is contemplated and as further described with
reference to FIGS. 1-14, some processes of the graphics
pipeline as described above are implemented in software,
while the rest are implemented in hardware. A graphics
pipeline may be implemented in a graphics coprocessor
design, where CPU 1512 is designed to work with GPU
1514 which may be included in or co-located with CPU
1512. In one embodiment, GPU 1514 may employ any
number and type of conventional software and hardware
logic to perform the conventional functions relating to
graphics rendering as well as novel software and hardware
logic to execute any number and type of instructions, such
as instructions 121 of FIG. 1, to perform the various novel
functions of shading mechanism 1510 as disclosed through-
out this document.

[0140] As aforementioned, memory 1508 may include a
random access memory (RAM) comprising application
database having object information. A memory controller
hub, such as memory controller hub 116 of FIG. 1, may
access data in the RAM and forward it to GPU 1514 for
graphics pipeline processing. RAM may include double data
rate RAM (DDR RAM), extended data output RAM (EDO
RAM), etc. CPU 1512 interacts with a hardware graphics
pipeline, as illustrated with reference to FIG. 3, to share
graphics pipelining functionality. Processed data is stored in
a buffer in the hardware graphics pipeline, and state infor-
mation is stored in memory 1508. The resulting image is
then transferred to /O sources 1504, such as a display
component, such as display device 320 of FIG. 3, for
displaying of the image. It is contemplated that the display
device may be of various types, such as Cathode Ray Tube
(CRT), Thin Film Transistor (TFT), Liquid Crystal Display
(LCD), Organic Light Emitting Diode (OLED) array, etc., to
display information to a user.

[0141] Memory 1508 may comprise a pre-allocated region
of a buffer (e.g., frame buffer); however, it should be
understood by one of ordinary skill in the art that the
embodiments are not so limited, and that any memory
accessible to the lower graphics pipeline may be used.
Computing device 1500 may further include input/output
(I/0) control hub (ICH) 150 as referenced in FIG. 1, one or
more I/O sources 1504, etc.

[0142] CPU 1512 may include one or more processors to
execute instructions in order to perform whatever software
routines the computing system implements. The instructions
frequently involve some sort of operation performed upon
data. Both data and instructions may be stored in system
memory 1508 and any associated cache. Cache is typically
designed to have shorter latency times than system memory

US 2018/0061122 Al

1508; for example, cache might be integrated onto the same
silicon chip(s) as the processor(s) and/or constructed with
faster static RAM (SRAM) cells whilst the system memory
1508 might be constructed with slower dynamic RAM
(DRAM) cells. By tending to store more frequently used
instructions and data in the cache as opposed to the system
memory 1508, the overall performance efficiency of com-
puting device 1500 improves. It is contemplated that in some
embodiments, GPU 1514 may exist as part of CPU 1512
(such as part of a physical CPU package) in which case,
memory 1508 may be shared by CPU 1512 and GPU 1514
or kept separated.

[0143] System memory 1508 may be made available to
other components within the computing device 1500. For
example, any data (e.g., input graphics data) received from
various interfaces to the computing device 1500 (e.g., key-
board and mouse, printer port, Local Area Network (LAN)
port, modem port, etc.) or retrieved from an internal storage
element of the computer device 1500 (e.g., hard disk drive)
are often temporarily queued into system memory 1508
prior to their being operated upon by the one or more
processor(s) in the implementation of a software program.
Similarly, data that a software program determines should be
sent from the computing device 1500 to an outside entity
through one of the computing system interfaces, or stored
into an internal storage element, is often temporarily queued
in system memory 1508 prior to its being transmitted or
stored.

[0144] Further, for example, an ICH, such as ICH 130 of
FIG. 1, may be used for ensuring that such data is properly
passed between the system memory 1508 and its appropriate
corresponding computing system interface (and internal
storage device if the computing system is so designed) and
may have bi-directional point-to-point links between itself
and the observed 1/O sources/devices 1504. Similarly, an
MCH, such as MCH 116 of FIG. 1, may be used for
managing the various contending requests for system
memory 1508 accesses amongst CPU 1512 and GPU 1514,
interfaces and internal storage elements that may proxi-
mately arise in time with respect to one another.

[0145] 1/O sources 1504 may include one or more 110
devices that are implemented for transferring data to and/or
from computing device 1500 (e.g., a networking adapter);
or, for a large scale non-volatile storage within computing
device 1500 (e.g., hard disk drive). User input device,
including alphanumeric and other keys, may be used to
communicate information and command selections to GPU
1514. Another type of user input device is cursor control,
such as a mouse, a trackball, a touchscreen, a touchpad, or
cursor direction keys to communicate direction information
and command selections to GPU 1514 and to control cursor
movement on the display device. Camera and microphone
arrays of computer device 1500 may be employed to observe
gestures, record audio and video and to receive and transmit
visual and audio commands.

[0146] Computing device 1500 may further include net-
work interface(s) to provide access to a network, such as a
LAN, a wide area network (WAN), a metropolitan area
network (MAN), a personal area network (PAN), Bluetooth,
a cloud network, a mobile network (e.g., 3"“Generation
(3G), 4” Generation (4G), etc.), an intranet, the Internet, etc.
Network interface(s) may include, for example, a wireless
network interface having antenna, which may represent one
or more antenna(e). Network interface(s) may also include,

Mar. 1, 2018

for example, a wired network interface to communicate with
remote devices via network cable, which may be, for
example, an Ethernet cable, a coaxial cable, a fiber optic
cable, a serial cable, or a parallel cable.

[0147] Network interface(s) may provide access to a LAN,
for example, by conforming to IEEE 802.11b and/or IEEE
802.11g standards, and/or the wireless network interface
may provide access to a personal area network, for example,
by conforming to Bluetooth standards. Other wireless net-
work interfaces and/or protocols, including previous and
subsequent versions of the standards, may also be supported.
In addition to, or instead of, communication via the wireless
LAN standards, network interface(s) may provide wireless
communication using, for example, Time Division, Multiple
Access (TDMA) protocols, Global Systems for Mobile
Communications (GSM) protocols, Code Division, Multiple
Access (CDMA) protocols, and/or any other type of wireless
communications protocols.

[0148] Network interface(s) may include one or more
communication interfaces, such as a modem, a network
interface card, or other well-known interface devices, such
as those used for coupling to the Ethernet, token ring, or
other types of physical wired or wireless attachments for
purposes of providing a communication link to support a
LAN or a WAN, for example. In this manner, the computer
system may also be coupled to a number of peripheral
devices, clients, control surfaces, consoles, or servers via a
conventional network infrastructure, including an Intranet or
the Internet, for example.

[0149] It is to be appreciated that a lesser or more
equipped system than the example described above may be
preferred for certain implementations. Therefore, the con-
figuration of computing device 1500 may vary from imple-
mentation to implementation depending upon numerous
factors, such as price constraints, performance requirements,
technological improvements, or other circumstances.
Examples of the electronic device or computer system 1500
may include (without limitation) a mobile device, a personal
digital assistant, a mobile computing device, a smartphone,
a cellular telephone, a handset, a one-way pager, a two-way
pager, a messaging device, a computer, a personal computer
(PC), a desktop computer, a laptop computer, a notebook
computer, a handheld computer, a tablet computer, a server,
a server array or server farm, a web server, a network server,
an Internet server, a work station, a mini-computer, a main
frame computer, a supercomputer, a network appliance, a
web appliance, a distributed computing system, multipro-
cessor systems, processor-based systems, consumer elec-
tronics, programmable consumer electronics, television,
digital television, set top box, wireless access point, base
station, subscriber station, mobile subscriber center, radio
network controller, router, hub, gateway, bridge, switch,
machine, or combinations thereof.

[0150] Embodiments may be implemented as any or a
combination of: one or more microchips or integrated cir-
cuits interconnected using a parentboard, hardwired logic,
software stored by a memory device and executed by a
microprocessor, firmware, an application specific integrated
circuit (ASIC), and/or a field programmable gate array
(FPGA). The term “logic” may include, by way of example,
software or hardware and/or combinations of software and
hardware.

[0151] Embodiments may be provided, for example, as a
computer program product which may include one or more

US 2018/0061122 Al

machine-readable media having stored thereon machine-
executable instructions that, when executed by one or more
machines such as a computer, network of computers, or
other electronic devices, may result in the one or more
machines carrying out operations in accordance with
embodiments described herein. A machine-readable medium
may include, but is not limited to, floppy diskettes, optical
disks, CD-ROMs (Compact Disc-Read Only Memories),
and magneto-optical disks, ROMs, RAMs, EPROMs (Eras-
able Programmable Read Only Memories), EEPROMs
(Electrically Erasable Programmable Read Only Memories),
magnetic or optical cards, flash memory, or other type of
media/machine-readable medium suitable for storing
machine-executable instructions.

[0152] Moreover, embodiments may be downloaded as a
computer program product, wherein the program may be
transferred from a remote computer (e.g., a server) to a
requesting computer (e.g., a client) by way of one or more
data signals embodied in and/or modulated by a carrier wave
or other propagation medium via a communication link
(e.g., a modem and/or network connection).

[0153] FIG. 16 illustrates shading mechanism 1510 of
FIG. 15 according to one embodiment. For brevity, many of
the details already discussed with reference to FIGS. 1-15
are not repeated or discussed hereafter. In one embodiment,
shading mechanism 1510 may include any number and type
of components, such as (without limitations): detection/
reception logic 1601; division/splitting logic 1605; pixel
shading computation logic (“computation logic”) 1607,
shading pass logic 1609; execution/forwarding logic 1611;
and communication/compatibility logic 1613.

[0154] Computing device 1500 is further shown to be in
communication with one or more repositories, datasets,
and/or databases, such as database(s) 1630 (e.g., cloud
storage, non-cloud storage, etc.), where database(s) 1630
may reside at a local storage or a remote storage over
communication medium(s) 1625, such as one or more net-
works (e.g., cloud network, proximity network, mobile
network, intranet, Internet, etc.).

[0155] It is contemplated that a software application run-
ning at computing device 1500 may be responsible for
performing or facilitating performance of any number and
type of tasks using one or more components (e.g., GPU
1514, graphics driver 1516, CPU 1512, etc.) of computing
device 1500. When performing such tasks, as defined by the
software application, one or more components, such as GPU
1514, graphics driver 1516, CPU 1512, etc., may commu-
nicate with each other to ensure accurate and timely pro-
cessing and completion of those tasks.

[0156] Prior to discussing the workings of shading mecha-
nism 1510, let us consider that conventional deferred shad-
ing is computed per-pixel. Applications typically compute
acceleration information, such as per-tile light lists of all
light sources that contribute to a tile of pixels. Then, for each
light source and pixel in the image, expensive lighting
computations are performed. The cost associated with per-
pixel deferred shading is particularly prohibitive when the
number of pixels gets very large and thus, to reduce pixel
count, several conventional techniques are employed.
[0157] One conventional technique, known as uniformly
reduced resolution, is intended to be used to reduce both
shading and memory bandwidth, but, in turn, significantly
reduces image quality. To improve quality smart upscaling
filters (e.g., bilateral) are commonly used, but features that

Mar. 1, 2018

are missed due to under-sampling are still lost, which shows
up as jaggies along edges and/or flickering geometric alias-
ing.

[0158] Another conventional technique, known as multi-
pass deferred shading, allows for multiple fullscreen passes,
where each shading is a subset of the pixels in a geometry
buffer (also referred to as “G-buffer”), such that the result is
blended/filtered together in yet another pass. Applications
can use a stencil buffer to select between per-pixel shading
and reduced rate shading (e.g., once per 2x2 pixels), but the
drawback is consumption of additional memory bandwidth
and the dealing with an overhead of performing multiple
fullscreen passes. Further, depending on how the data is
stored, using hardware texture filtering in the blending/
filtering pass is also impractical.

[0159] Another conventional technique, known as
deferred shading using coarse pixel shading (CPS), is used
to select between two different rates, such as coarse pixel
and pixel rate, where a coarse pixel size can be of any of
[1,2,4]%[1,2,4] pixels, but remains constant per draw call or
determined based on a radial falloff. A drawback of this
conventional technique is that the rate cannot be chosen at
a fine granularity and that the final image is not smoothly
filtered. Further, any performance benefits may be small or
none, unless all pixels under a coarse pixel are discarded;
otherwise, the shader needs to run at both rates.

[0160] Embodiments provide for novel technique, through
shading mechanism 1510, to facilitate 1) performance of
shading in a single pass, 2) controlling of shading granular-
ity at a relatively fine granularity, and 3) smoothly filtering
of the shading, where these factors allow for improvement
of performance and/or image quality.

[0161] In one embodiment, shading mechanism 1510 uti-
lizes the texel shader (TS) stage of a graphics pipeline,
where it is contemplated that the TS stage is expected to be
part of current and future 3D graphics APIs. For example, an
exemplary 3D graphics pipeline having a TS stage is shown
with reference to FIG. 17A and as illustrated, a TS is
triggered by a pixel shader (PS), where the PS requests texel
shading by issuing “Evaluate” operations on a PT, where the
PT is a sparsely populated texture, where each texel can be
either “unshaded” or “shaded”, where the TS is invoked the
first time an “unshaded” texel is accessed. As illustrated in
FIG. 17A, in this case, the output of the TS is written to the
PT and the texel is marked as “shaded”.

[0162] The Evaluate operation ensures that all texels that
lie under the texture filter footprint are shaded. The footprint
is determined by the sampling mode and texture coordinates
(u,v). Note that procedural textures may be a mipmap
hierarchy. Thus, a single Evaluate operation can trigger texel
shaders for multiple texels in one or for one or more mip
map levels and multiple texels in each mip.

[0163] Itis contemplated that embodiments are not limited
to any particular graphics pipeline or its various stages and
their variants. For example, in some embodiments, filtered
shading is immediately returned to the calling PS, while, in
some other embodiments, the resulting PT is sampled in a
later rendering pass.

[0164] In one embodiment, shading mechanism 1510 pro-
vides for moving the deferred lighting computations into a
TS, where the TS operates on a fullscreen PT with multiple
mipmap levels, such as the base resolution of the PT is the
same as the screen dimensions, while any subsequent mip
levels are smaller. Further, in one embodiment, shading

US 2018/0061122 Al

mechanism 1510 allows for splitting the conventional
fullscreen deferred shading pass into two shaders: 1) a pixel
shader that determines shading rate and triggers texel shad-
ing; and 2) texel shader that performs the actual lighting
computations.

[0165] Inone embodiment, detection/reception logic 1601
may be used to detect a relevant stage in a graphics pipeline,
such a whether a particular pipeline stage has just com-
menced or ended or is still being performed. For example,
detection/reception logic 1601 may keep detect and keep
track of any number and type of graphics pipeline stages,
such as rendering G-buffer, computing per-tile, light lists,
etc., so that they may be communicated with other compo-
nents, such as division/splitting logic 1605, computation
logic 1607, shading pass logic 1609, etc., to perform their
tasks to achieve efficiency and higher performance.

[0166] For example, upon reaching a fullscreen deferred
shading pass, division/splitting logic 1605 may be triggered
to divide or split the process into being performed by two
shaders, such as a pixel shader and a texel shader as
represented by computation logic 1607 and shading pass
logic 1609, respectively. For example, computation logic
1607 may be used to determine or compute the shading rate
and trigger shading pass logic 1609, while shading pass
logic 1609 to perform any lighting computations. For
example, the shading rate, as computed by computation
logic 1607, may be effectively controlled by, first, selecting
the mip level at which the TS executes, where this selection
can be performed at a fine granularity, such as per pixel,
allowing an application to shade finely near important
features and more coarsely in other areas of the screen.
[0167] It is contemplated that shader at coarse level (e.g.,
higher mip) may translate into each texel covering a larger
screen space area. For example, shading at lod=2 using a
mipmap chain with resolution, as per below, may reflect that
each texel occupies 4x4 pixels in screen space: lod O:
1920x1080 (screen resolution); lod 1: 960x540 (1/2 resolu-
tion); 3) lod 2: 480x270 (1/4 resolution); and lod 3: 240x135
(1/8 resolution).

[0168] In one embodiment, as illustrated with respect to
FIG. 18A, shading rate may be determined or computed by
computation logic 1607 in a separate fullscreen pass prior to
the main lighting pass. In another embodiment, FIG. 18B
illustrates a transaction sequence that assumes a 2-pass texel
shader solution, where texel shading is first triggered and
then sampled in a separate fullscreen pass (such as through
fetch texel shading) as facilitated by shading pass logic
1609. Stated differently, in one embodiment, shading rate is
computed in a separate pass before the fullscreen shading
pass, while, in another embodiment, this shading rate is
computed as part of the fullscreen shading pass immediately
before triggering the TS. It is contemplated that transparent
surfaces may be handled the same way as is done in other
techniques, such as by blending transparent (e.g., alpha)
objects on top of the final frame buffer after deferred
shading.

[0169] Inone embodiment, once the per-pixel shading rate
is computed, as facilitated by computation logic 1607, and
a fullscreen shading pass (e.g., texture space) is performed,
as facilitated by shading pass logic 1609, execution/forward-
ing logic 1611 may be used to execute these tasks and
perform any application of such tasks in moving the process
forward in the graphics pipeline, such as by using the
shading rate in performing a fullscreen shading pass, fol-

Mar. 1, 2018

lowed by triggering or initiating a next stage, such as a
fullscreen post-processing pass, in the graphics pipeline.
[0170] In one embodiment, if the shading rate is com-
puted, as facilitated by computation logic 1607, in a separate
pass prior to the main lighting/shading pass, as facilitated by
shading pass logic 1609, the shading may then be stored in
a compact fullscreen texture to minimize memory band-
width, such as using an 8 bits/pixel format (e.g. DXGI_
FORMAT_R8_UNORM in DirectX®). In some embodi-
ments, the shading rate is not computed per pixel, but rather
per group of pixels (such as a tile).

[0171] It is contemplated that computation of the desired
shading rate can be performed using a number of different
heuristics. For example, it may be desirable to generally
shade at a high rate (e.g., full per-pixel rate) near sharp
discontinuities to avoid blurring across visible edges in the
image. For example, it may be desirable to shade at the full
rate near the silhouettes objects. With regard to computing
games, similar strategies may be used in determining where
to apply anti-aliasing, etc.

[0172] Examples of suitable heuristics for computing the
shading rate may include, but are not limited to, one or more
of the following metrics: 1) scene-based heuristics, such as
(without limitation) a) depth discontinuities, b) normal dif-
ference exceeding some threshold, c¢) surface curvature
based on normal, d) object/primitive/texture identification,
e) color difference in diffuse surface texture, f) texture
coordinates; g) depth-of-field (e.g., depth from focus plane),
and h) motion vectors; 2) virtual/augmented reality, such as
(without limitation) a) per-pixel bias based on lens/rendering
distortion, and b) reduced shading rate in the periphery; and
3) external/contextual input, such as (without limitation) a)
eye-tracking information, and b) gaze point prediction based
on content.

[0173] With regard to filtering and over-shading, depend-
ing on the filtering mode used to trigger texel shading, as
facilitated by shading pass logic 1609, multiple mipmap
levels may be shaded. For example, if using trilinear filtering
and a fractional shading rate (e.g., lod=1.5), both mip level
1 and level 2 may be shaded for a group of texels and the
shading linearly interpolated between the 8 nearest texels
(e.g., 2x2 at each mip level). When sampling the resulting
shading from the PT, the application may get a smooth
transition from per-pixel shading to the lower shading rates.
[0174] Similarly, it is contemplated that the hardware may
generally shade groups of multiple texels together, where the
minimum granularity may, for example, be 4x4 texels to fill
a single instruction, multiple data (SIMD) 16 dispatch.
Using trilinear filtering, where two mip levels may be
shaded, this can result in more over-shading and smaller
performance gains, compared to using bilinear or point
sampling.

[0175] With regard to pseudo code, an exemplary pseudo
code for conventional per-pixel deferred shading may be as
follows:

// Traditional per-pixel deferred shading
/
Texture2D<float3> position : register(t0)
Texture2D<float3> normal : register(tl)
Texture2D<float2> texcoord : register(t2)

float4 MainPS(float4 pos : SV__Position) : SV__Target

// Fetch attributes

US 2018/0061122 Al

-continued

float3 P = position.Load(int3(pos.xy, 0));
float3 N = normal.Load(int3(pos.xy, 0));
float2 uv = texcoord.Load(int3(pos.xy, 0));
// Compute shading

return ComputeLighting(P, N, uv);

[0176] Inone embodiment, a novel pseudo code for multi-
resolution deferred shading, as facilitated by shading mecha-
nism 1510, may appear as follows:

// Multi-resolution deferred shading
I
Texture2D<float3> position
Texture2D<float3> normal : register(tl)
Texture2D<float2> texcoord : register(t2)
Texture2D<float> shadingL.OD
ProcTexture2D<float4> procTex

void MainPS(float4 pos : SV__Position)

: register(t0)

: register(t3)
: register(p0)

float lod = shadingl.OD.Load(int3(pos.xy,0));
float2 uv = pos.xy * one_over_frame_ size;
// Trigger texel shader
procTex.EvaluateLevel(samplerLinear, uv, lod);

float4 MainTS(float4 pos : SV__TexelPosFloat)
: SV__ProcTex
{

// Fetch attributes

float3 P = position.Sample(sampLinear, pos.xy);
float3 N = normal.Sample(sampLinear, pos.xy);
float3 uv = texcoord.Sample(sampLinear, pos.xy);
// Compute shading

return ComputeLighting(P, N, uv);

[0177] For example, as illustrated above, the pixel shader
(MainPS) in the illustrated embodiment of the novel code
may be responsible for one or more of: 1) loading/comput-
ing the shading level-of-detail, and 2) triggering the texel
shader based on the pixel position and the lod. The illus-
trated embodiment of the code may assume a 2-pass texel
shader implementation, where the evaluate level (Evalu-
ateLevel) function triggers texel shading, but does not return
a result. Similarly, the texel shader (MainTS) in the illus-
trated embodiment of the novel code starts by fetching
G-buffer attributes. As illustrated, here, bilinear sampling is
used to access the G-buffer, as the texel shader may be
running at a lower resolution. There may not always be a 1:1
correspondence between texels and pixels and by bilinearly
sampling the attributes, we get smooth transitions.

[0178] Inone embodiment, such attributes may be directly
loaded from the nearest pixel (point sampling) for slightly
improved performance at the expensive of image quality. In
some embodiments, smarter filters may be employed to
fetch G-buffer attributes, for example, bilateral filters may
avoid the risk of blurring across edges. After such attributes
are fetched, the texel shader may perform the lighting or
shading computations (ComputeLighting) identical to tradi-
tional deferred shading. This is where the bulk of the work
lies and performance gains may come from the fact that
often the majority of the images may be shaded at signifi-
cantly lower than pixel rate.

[0179] In some embodiments, main shading function may
remain unmodified, while other functions, such as how
attributes are fetched, may be modified. Further, in some

16

Mar. 1, 2018

embodiments, shaders for per-pixel deferred shading are
automatically or semi-automatically transformed into PS/TS
pairs for multi-resolution deferred shading, where such code
transformations may be implemented as part of the shader
compiler, as part of API utility libraries, or as part of
third-party tools. For example, in some embodiments, a
fullscreen PT may be allocated, where this is of the same
dimensions as the frame buffer, so such an allocation may be
performed at the time of creating the frame buffer.

[0180] Communication/compatibility logic 1613 may be
used to facilitate dynamic communication and compatibility
between computing device 1500 and any number and type of
other computing devices (such as mobile computing device,
desktop computer, server computing device, etc.); process-
ing devices or components (such as CPUs, GPUs, etc.);
capturing/sensing/detecting devices (such as capturing/sens-
ing components including cameras, depth sensing cameras,
camera sensors, red green blue (RGB) sensors, micro-
phones, etc.); display devices (such as output components
including display screens, display areas, display projectors,
etc.); user/context-awareness components and/or identifica-
tion/verification sensors/devices (such as biometric sensors/
detectors, scanners, etc.); database(s) 1630, such as memory
or storage devices, databases, and/or data sources (such as
data storage devices, hard drives, solid-state drives, hard
disks, memory cards or devices, memory circuits, etc.);
communication medium(s) 1625, such as one or more com-
munication channels or networks (e.g., Cloud network, the
Internet, intranet, cellular network, proximity networks,
such as Bluetooth, Bluetooth low energy (BLE), Bluetooth
Smart, Wi-Fi proximity, Radio Frequency Identification
(RFID), Near Field Communication (NFC), Body Area
Network (BAN), etc.); wireless or wired communications
and relevant protocols (e.g., Wi-Fi®, WiMAX, Ethernet,
etc.); connectivity and location management techniques;
software applications/websites (e.g., social and/or business
networking websites, etc., business applications, games and
other entertainment applications, etc.); and programming
languages, etc., while ensuring compatibility with changing
technologies, parameters, protocols, standards, etc.

[0181] Throughout this document, terms like “logic”,
“component”, “module”, “framework”, “engine”, “mecha-
nism”, and the like, may be referenced interchangeably and
include, by way of example, software, hardware, and/or any
combination of software and hardware, such as firmware. In
one example, “logic” may refer to or include a software
component that is capable of working with one or more of
an operating system (e.g., operating system 1506), a graph-
ics driver (e.g., graphics driver 1516), etc., of a computing
device, such as computing device 1500. In another example,
“logic” may refer to or include a hardware component that
is capable of being physically installed along with or as part
of one or more system hardware elements, such as an
application processor (e.g., CPU 1512), a graphics processor
(e.g., GPU 1514), etc., of a computing device, such as
computing device 1500. In yet another embodiment, “logic”
may refer to or include a firmware component that is capable
of being part of system firmware, such as firmware of an
application processor (e.g., CPU 1512) or a graphics pro-
cessor (e.g., GPU 1514), etc., of a computing device, such
as computing device 1500.

[0182] Further, any use of a particular brand, word, term,

phrase, name, and/or acronym, such as “GPU”, “GPU
domain”, “GPGPU”, “CPU”, “CPU domain”, “graphics

US 2018/0061122 Al

driver”, “workload”, “application”, “graphics pipeline”,
“pipeline processes”, “pixel shader”, “PS”, “texel shader”,
“TS”, “per-tile shading rate”, “shading rate”, “fullscreen
shading pass”, “fetch shading”, “execution unit”, “EU”,
“instruction”, “API”, “3D API”, “OpenGL®”, “DirectX®”,
“fragment shader”, “YUV texture”, “shader execution”,
“existing UAV capabilities”, “existing backend”, “hard-
ware”, “software”, “agent”, “graphics driver”, “kernel mode
graphics driver”, “user-mode driver”, “user-mode driver
framework™, “buffer”, “graphics buffer”, “task”, “process”,
“operation”, “software application”, “game”, etc., should
not be read to limit embodiments to software or devices that
carry that label in products or in literature external to this

document.

[0183] It is contemplated that any number and type of
components may be added to and/or removed from shading
mechanism 1510 to facilitate various embodiments includ-
ing adding, removing, and/or enhancing certain features. For
brevity, clarity, and ease of understanding of shading mecha-
nism 1510, many of the standard and/or known components,
such as those of a computing device, are not shown or
discussed here. It is contemplated that embodiments, as
described herein, are not limited to any particular technol-
ogy, topology, system, architecture, and/or standard and are
dynamic enough to adopt and adapt to any future changes.
[0184] FIG. 17A illustrates a conventional graphics pipe-
line 1700 implementing texel shading. For brevity, many of
the details previously discussed with reference to FIGS.
1-16 may not be discussed or repeated hereafter. As illus-
trated, input assembler (IA) 1701 reads index and vertex
data from memory and feeds vertex shader (VS) 1703,
where VS 1703 to perform shading operations on each
vertex, such as changing each vertex’s three-dimensional
(3D) position in virtual space to a three-dimensional homo-
geneous (3DH) position in clip space, which after perspec-
tive division defines the two-dimensional (2D) coordinate at
which it appears on the screen and generates results in the
form of primitives (e.g., triangles). This is then followed by
a tessellation portion of graphics pipeline 1700, where the
tessellation portion includes hull shader (HS) 1705 and
domain shader (DS) 1707 to compute high-detailed surface
geometry based on lower-detail input surface geometry that
is defined as triangles or quads, etc. For example, the
lower-detail input primitives may be called patches. For
example, HS 1705 accepts an input patch and produces an
output patch or patches that are then used to produced tiled,
normalized domains of appropriate type, such as quads or
triangles, while DS 1707 is executed against these domains
to compute the actual vertex position of any given point in
a domain resulting from tessellation, outputting vertex posi-
tions.

[0185] Continuing with pipeline 1700, geometry shader
(GS) 1709 takes inputs, such as a primitive, a vertex
position, etc., producing corresponding outputs, such as
more primitives, etc. GS 1709 is more like a hull/domain
shader which takes input vertices and produces output
vertices such that for a single input vertex, several output
vertices can be produced so that they can be used to generate
geometry.

[0186] As illustrated, pixel shader (PS) 1711 then issues
evaluate request 1721, such as evaluate texels shading
request, on procedural texture (PT) 1719. The issuing thread
may continue its execution, passing shaded pixels to the
output merger (OM) 1713 to perform various operations,

Mar. 1, 2018

such as alpha blending, and writes the pixels back to the
backbuffer, producing render target 1715. Any un-shaded
texels are marked as “shaded” and one or more threads
associated with TS 1717 are scheduled to evaluate their
shading and write the results (e.g., colors) to memory within
PT 1719.

[0187] FIG. 17B illustrates a conventional method 1730
for deferred shading. For brevity, many of the details pre-
viously discussed with reference to FIGS. 1-17A may not be
discussed or repeated hereafter. As illustrated, method 1730
starts at block 1731 with creation of a G-buffer at block 1733
by drawing all opaque (non-transparent) geometry and
recording for each pixel its attributes that are necessary for
lighting/shading computations. These involve positions,
normal, and texture coordinates, other user-defined attri-
butes, and/or the like.

[0188] To accelerate the lighting computations, at block
1735, many applications compute lighting acceleration data
that is commonly in the form of per-tile light lists that
indicate, for each tile of pixels, which light sources are
capable of contributing to the shading of those pixels. This
is denoted as “light lists™, but that other formats are also
contemplated and the embodiments are not limited as such.
[0189] At block 1737, a main lighting pass is performed,
where this main lighting pass includes a fullscreen rendering
pass that consumes the G-buffer data and light lists to
compute the shading/lighting at each pixel. In some cases,
this pass is divided into multiple sub-passes, for example,
for each shader and/or light source or class of light source
types. Applications that require transparent geometry typi-
cally draw such elements on top of the shaded image using
blending. Finally, at block 1739, applications typically
involve one or more additional fullscreen passes that com-
pute other, unrelated effects, such as fog, defocus blur, etc.,
and method 1730 ends at block 1741.

[0190] FIG. 17C illustrates a conventional transaction
sequence 1750 for deferred shading. For brevity, many of the
details previously discussed with reference to FIGS. 1-17B
may not be discussed or repeated hereafter. As illustrated,
transaction sequence 1750 starts at block 1751 with drawing
of all opaque (non-transparent) geometry and recording for
each pixel, its attributes that are necessary for lighting/
shading computations as part of a rasterization pass at block
1753, resulting in G-buffer 1763. At block 1755, a fullscreen
pass is performed including pre-pixel shading of G-buffer,
which is then followed by another process of the rasteriztion
pass including drawing of alpha at block 1757. At block
1759, as part of the fullscreen pass, post processing is
performed which then results in displaying of content, such
as images, using one or more display screens or devices at
block 1761. It is further illustrated that light lists 1765 are
inputted into the processes of per-pixel shading G-buffer of
block 1755 and drawing of alpha at block 1757.

[0191] FIG. 18A illustrates a method 1800 for multi-
resolution deferred shading according to one embodiment.
For brevity, many of the details previously discussed with
reference to FIGS. 1-17C may not be discussed or repeated
hereafter. Method 1800 may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, etc.), software (such as instruc-
tions run on a processing device), or a combination thereof,
as facilitated by shading mechanism 1510 of FIG. 15. The
processes of method 1800 are illustrated in linear sequences
for brevity and clarity in presentation; however, it is con-

US 2018/0061122 Al

templated that any number of them can be performed in
parallel, asynchronously, or in different orders.

[0192] Method 1800 begins at block 1801 with rendering
of' a G-buffer at block 1803 and computing of per-tile light
lists at block 1805. As previously discussed with reference
to FIG. 16, in one embodiment, shading rate may be
determined in a separate fullscreen pass prior to main light
pass as shown in reference to blocks 1807 and 1809 and
further illustrated in detail with reference to FIGS. 18C-18D.
Stated differently, in one embodiment, deferred lighting
computations are moved into a TS, where the TS operates on
a fullscreen PT with multiple mipmap levels, such as the
base resolution of the PT may be the same as screen
dimensions, while any subsequent mip levels may be rela-
tively small. Further, in one embodiment, a fullscreen
deferred shading pass (screen space), such as block 1737 of
FIG. 17B, is split into two shaders: 1) a pixel shader, as
facilitated by computation logic 1607 of FIG. 16, for deter-
mining a shading rate at block 1807 and triggering texel
shading; and 2) a texel shader, as facilitated by shading pass
logic 1609 of FIG. 16, to perform the actual lighting or
shading computations to facilitate a fullscreen lighting or
shading pass (texture space) at block 1809.

[0193] As previously discussed with reference to FIG. 16,
the shading rate may be controlled by selecting the mip level
at which the texel shader executes, where this selection can
be done at fine granularity, such as per pixel, allowing an
application to shade finely near important features and more
coarsely in other areas of the screen, where shading coarsely
(at higher mip) may mean that each texel covers a larger
screen space area. Method 1800 then continues with a
fullscreen post-processing pass at block 1811 and ends at
block 1813.

[0194] FIG. 18B illustrates a transaction sequence 1820
for multi-resolution deferred shading using a texel shader
according to one embodiment. For brevity, many of the
details previously discussed with reference to FIGS. 1-18A
may not be discussed or repeated hereafter. Transaction
sequence 1820 may be performed by processing logic that
may comprise hardware (e.g., circuitry, dedicated logic,
programmable logic, etc.), software (such as instructions run
on a processing device), or a combination thereof, as facili-
tated by shading mechanism 1510 of FIG. 15. The processes
of transaction sequence 1820 are illustrated in linear
sequences for brevity and clarity in presentation; however, it
is contemplated that any number of them can be performed
in parallel, asynchronously, or in different orders.

[0195] Transaction sequence 1820 starts at block 1821
with drawing of all opaque (non-transparent) geometry and
recording for each pixel, its attributes that are necessary for
lighting/shading computations as part of a rasterization pass
at block 1823, resulting in G-buffer 1839. As illustrated, in
one embodiment, this G-buffer 1839 may then be used as an
input for computing per-pixel shading rate at block 1825 and
per-texel shading at block 1831.

[0196] As aforementioned with reference to FIG. 16,
transaction sequence 1820 assumes a 2-pass texel shader
technique, where texel shading is first triggered at block
1827 and then sampled in a separate fullscreen pass, such as
fetch texel shading at block 1829. In this embodiment, the
shading rate is computed in a separate pass at block 1825
before the fullscreen shading pass (texel space) 1845 involv-
ing triggering of texel shading at block 1827, fetching of
texel shading at block 1829, and per-texel shading of G-buf-

Mar. 1, 2018

fer at block 1831, resulting in writing of shaded texels to one
or more PTs, such as PT 1841, which may also be used as
an input to fetch shading at block 1829. In another embodi-
ment, the shading rate may be computed as part of fullscreen
shading pass 1845, such as immediately before triggering of
the texel shader at block 1827.

[0197] Transaction sequence 1820 continues at block 1833
with the usual handling of transparent surfaces by blending
transparent (e.g., alpha) objects on top of a final frame buffer
after deferred shading, using light lists 1843 as an input,
where light lists 1843 may also be used an input for per-texel
shading of G-buffer at block 1831. As illustrated, transaction
sequence 1820 continues with post processing at block 1835
and ends with displaying of contents using one or more
display devices at block 1837.

[0198] FIG. 18C illustrates a method 1850 for computing
per-pixel shading rate according to one embodiment. For
brevity, many of the details previously discussed with ref-
erence to FIGS. 1-18B may not be discussed or repeated
hereafter. Method 1850 may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, etc.), software (such as instruc-
tions run on a processing device), or a combination thereof,
as facilitated by shading mechanism 1510 of FIG. 15. The
processes of method 1850 are illustrated in linear sequences
for brevity and clarity in presentation; however, it is con-
templated that any number of them can be performed in
parallel, asynchronously, or in different orders.

[0199] As an initial matter, it is contemplated and to be
noted that in one embodiment, method 1850 reflects or
represents block 1807 of FIG. 18A and/or block 1825 of
FIG. 18B. Method 1850 begins at block 1851 with loading
of'external input (e.g., eye-tracking data, etc.) at block 1853.
Now, at block 1855, a computational process is triggered for
each pixel (x,y) on screen, which leads to loading of
attributes at (x,y) from G-buffer at block 1857. At block
1859, shading rate (lod) is computed based on the attributes
of block 1857 and/or any external inputs of block 1853. At
block 1861, the shading rate (lod) is stored at pixel (X,y). At
block 1863, a determination is made as to whether there are
any more pixels for which the computation need be per-
formed. If yes, method 1850 continues at block 1855. If not,
method 1850 ends at block 1865.

[0200] FIG. 18D illustrates a method 1870 for performing
fullscreen shading pass (texture space) according to one
embodiment. For brevity, many of the details previously
discussed with reference to FIGS. 1-18C may not be dis-
cussed or repeated hereafter. Method 1870 may be per-
formed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, etc.),
software (such as instructions run on a processing device),
or a combination thereof, as facilitated by shading mecha-
nism 1510 of FIG. 15. The processes of method 1850 are
illustrated in linear sequences for brevity and clarity in
presentation; however, it is contemplated that any number of
them can be performed in parallel, asynchronously, or in
different orders.

[0201] As an initial matter, it is contemplated and to be
noted that in one embodiment, method 1850 reflects or
represents block 1809 of FIG. 18A and/or block 1845 of
FIG. 18B. In the illustrated embodiment, method 1870 is
shown as being divided into two following two methods or
processes: trigger texel shading 1871 (corresponding to

US 2018/0061122 Al

block 1827 of FIG. 18B) and fetch texel shading 1893
(corresponding to block 1829 of FIG. 18B).

[0202] Method 1870 starts at block 1873 with determina-
tion of each pixel (X,y) on screen at block 1875, followed by
loading of shading rate (lod) (such as computed through an
earlier process as set forth with respect to FIG. 18A) at block
1877. At block 1879, filter footprint is then computed based
on (x,y,lod) and subsequently used for each texel (u,v) in
filter footprint at block 1881. At block 1883, a determination
is made as to whether texel (u,v) is shaded. If not, texel is
shaded (using G-buffer attributes, light lists, etc.) at block
1885, while this shading is then stored to PT at block 1887.
Referring back to block 1883, if texel (u,v) is shaded,
method 1870 continues at block 1889 with another deter-
mination as to whether there are any more texels. If yes,
method 1870 continues the process at block 1881. If not, at
block 1891, yet another determination is made as to whether
there are more pixels. If yes, method 1870 continues with the
process of block 1875. If not, the phase or portion method
1870 relating trigger texel shading 1871 moves into another
phase or portion relating to fetch text shading 1893.
[0203] In one embodiment, in fetch text shading 1893,
upon determining there are no more pixels as determined
from block 1891, a process is triggered for each pixel (x,y)
on screen at block 1894 such that shading rate (lod) is loaded
at block 1895. At block 1896, texel shading at (x,y,lod) is
sampled to obtain filtered color, where the color is stored to
pixel (x,y) in a frame buffer at block 1897. At block 1898,
another determination is made as to whether there are more
pixels. If yes, method 1870 continues with the process of
block 1894. If not, method 1870 ends at block 1899.
[0204] References to “one embodiment”, “an embodi-
ment”, “example embodiment”, “various embodiments”,
etc., indicate that the embodiment(s) so described may
include particular features, structures, or characteristics, but
not every embodiment necessarily includes the particular
features, structures, or characteristics. Further, some
embodiments may have some, all, or none of the features
described for other embodiments.

[0205] In the foregoing specification, embodiments have
been described with reference to specific exemplary embodi-
ments thereof. It will, however, be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of embodiments
as set forth in the appended claims. The Specification and
drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense.

[0206] In the following description and claims, the term
“coupled” along with its derivatives, may be used.
“Coupled” is used to indicate that two or more elements
co-operate or interact with each other, but they may or may
not have intervening physical or electrical components
between them.

[0207] As used in the claims, unless otherwise specified
the use of the ordinal adjectives “first”, “second”, “third”,
etc., to describe a common element, merely indicate that
different instances of like elements are being referred to, and
are not intended to imply that the elements so described must
be in a given sequence, either temporally, spatially, in
ranking, or in any other manner.

[0208] The following clauses and/or examples pertain to
further embodiments or examples. Specifics in the examples
may be used anywhere in one or more embodiments. The
various features of the different embodiments or examples

Mar. 1, 2018

may be variously combined with some features included and
others excluded to suit a variety of different applications.
Examples may include subject matter such as a method,
means for performing acts of the method, at least one
machine-readable medium including instructions that, when
performed by a machine cause the machine to performs acts
of the method, or of an apparatus or system for facilitating
hybrid communication according to embodiments and
examples described herein.

[0209] Some embodiments pertain to Example 1 that
includes an apparatus to facilitate multi-resolution deferred
shading using texel shaders in computing environments, the
apparatus comprising: pixel shading computation logic to
facilitate computation of shading rate in a first pass in a
graphics pipeline, wherein the shading rate relates to a
plurality of pixels; and shading pass logic to facilitate texel
shading operations in a second pass using the shading rate,
wherein the first pass is performed separate from and prior
to the second pass.

[0210] Example 2 includes the subject matter of Example
1, further comprising: division/splitting logic to split a
fullscreen shading pass into the first pass and the second
pass, wherein the fullscreen shading pass is performed in
texture space.

[0211] Example 3 includes the subject matter of Example
1, wherein the pixel shading computation logic is further to
facilitate a pixel shader to compute the shading rate in the
first pass immediately before the second pass, wherein the
shading rate is computed on per-pixel basis for each pixel of
plurality of pixels or per-tile bases for groups of pixels of the
plurality of pixels.

[0212] Example 4 includes the subject matter of Example
1, wherein the shading pass logic is further to perform the
texel shading operations on a procedural texture, wherein
the texel shading operations comprise trigger a texel shader
to facilitate per-texel shading of a geometry buffer.

[0213] Example 5 includes the subject matter of Example
1, wherein the texel shading operations further comprise
fetch texel shading.

[0214] Example 6 includes the subject matter of Example
4, wherein the texel shader operations to query the proce-
dural texture to determine whether relevant texels of a
plurality of texels have already been shaded prior to trigger
the texel shader.

[0215] Example 7 includes the subject matter of Example
1, further comprising: detection/reception logic to detect one
or more stages of the graphics pipeline, wherein the one or
more stages include rendering of the geometry buffer, com-
puting per-tile light lists, the first phase, the second phase,
and fullscreen post processing pass; and execution/forward-
ing logic to execute the computation of the shading rate and
the performance of the fullscreen shading pass to perform
graphics processing of contents having one or more images
to be display using one or more display devices coupled to
the apparatus.

[0216] Example 8 includes the subject matter of Example
3, wherein the computation of the shading rate in the first
pass further comprises loading attributes from the geometry
buffer and analyzing the loaded attributes, and wherein the
computation of the shading rate further comprises loading
data from external sensors to facilitate shading rate compu-
tations, wherein the external sensors include an eye tracker.
[0217] Some embodiments pertain to Example 9 that
includes a method for facilitating multi-resolution deferred

US 2018/0061122 Al

shading using texel shaders in computing environments, the
method comprising: facilitating computation of shading rate
in a first pass in a graphics pipeline, wherein the shading rate
relates to a plurality of pixels; and facilitating texel shading
operations in a second pass using the shading rate, wherein
the first pass is performed separate from and prior to the
second pass.

[0218] Example 10 includes the subject matter of Example
9, further comprising splitting a fullscreen shading pass into
the first pass and the second pass, wherein the fullscreen
shading pass is performed in texture space.

[0219] Example 11 includes the subject matter of Example
9, further comprising facilitating a pixel shader to compute
the shading rate in the first pass immediately before the
second pass, wherein the shading rate is computed on
per-pixel basis for each pixel of plurality of pixels or per-tile
bases for groups of pixels of the plurality of pixels.

[0220] Example 12 includes the subject matter of Example
9, further comprising performing the texel shading opera-
tions on a procedural texture, wherein the texel shading
operations comprise trigger a texel shader to facilitate per-
texel shading of a geometry buffer.

[0221] Example 13 includes the subject matter of Example
9, wherein the texel shading operations further comprise
fetch texel shading.

[0222] Example 14 includes the subject matter of Example
12, wherein the texel shader operations to query the proce-
dural texture to determine whether relevant texels of a
plurality of texels have already been shaded prior to trigger
the texel shader.

[0223] Example 15 includes the subject matter of Example
9, further comprising: detecting one or more stages of the
graphics pipeline, wherein the one or more stages include
rendering of the geometry buffer, computing per-tile light
lists, the first phase, the second phase, and fullscreen post
processing pass; and executing the computation of the
shading rate and the performance of the fullscreen shading
pass to perform graphics processing of contents having one
or more images to be display using one or more display
devices coupled to the apparatus.

[0224] Example 16 includes the subject matter of Example
11, wherein the computation of the shading rate in the first
pass further comprises loading attributes from the geometry
buffer and analyzing the loaded attributes, and wherein the
computation of the shading rate further comprises loading
data from external sensors to facilitate shading rate compu-
tations, wherein the external sensors include an eye tracker.
[0225] Some embodiments pertain to Example 17 includes
a system comprising a computing device including a storage
device having instructions, and a processor to execute the
instructions to perform one or more operations comprising:
facilitating computation of shading rate in a first pass in a
graphics pipeline, wherein the shading rate relates to a
plurality of pixels; and facilitating texel shading operations
in a second pass using the shading rate, wherein the first pass
is performed separate from and prior to the second pass.
[0226] Example 18 includes the subject matter of Example
17, wherein the one or more operations comprise splitting a
fullscreen shading pass into the first pass and the second
pass, wherein the fullscreen shading pass is performed in
texture space.

[0227] Example 19 includes the subject matter of Example
17, wherein the one or more operations comprise facilitating
a pixel shader to compute the shading rate in the first pass

Mar. 1, 2018

immediately before the second pass, wherein the shading
rate is computed on per-pixel basis for each pixel of plurality
of pixels or per-tile bases for groups of pixels of the plurality
of pixels.

[0228] Example 20 includes the subject matter of Example
17, wherein the one or more operations comprise performing
the texel shading operations on a procedural texture,
wherein the texel shading operations comprise trigger a texel
shader to facilitate per-texel shading of a geometry buffer.
[0229] Example 21 includes the subject matter of Example
17, wherein the texel shading operations further comprise
fetch texel shading.

[0230] Example 22 includes the subject matter of Example
21, wherein the texel shader operations to query the proce-
dural texture to determine whether relevant texels of a
plurality of texels have already been shaded prior to trigger
the texel shader.

[0231] Example 23 includes the subject matter of Example
17, wherein the one or more operations comprise: detecting
one or more stages of the graphics pipeline, wherein the one
or more stages include rendering of the geometry buffer,
computing per-tile light lists, the first phase, the second
phase, and fullscreen post processing pass; and executing
the computation of the shading rate and the performance of
the fullscreen shading pass to perform graphics processing
of contents having one or more images to be display using
one or more display devices coupled to the apparatus.
[0232] Example 24 includes the subject matter of Example
20, wherein the computation of the shading rate in the first
pass further comprises loading attributes from the geometry
buffer and analyzing the loaded attributes, and wherein the
computation of the shading rate further comprises loading
data from external sensors to facilitate shading rate compu-
tations, wherein the external sensors include an eye tracker.
[0233] Some embodiments pertain to Example 25 includes
an apparatus comprising: means for facilitating computation
of shading rate in a first pass in a graphics pipeline, wherein
the shading rate relates to a plurality of pixels; and means for
facilitating texel shading operations in a second pass using
the shading rate, wherein the first pass is performed separate
from and prior to the second pass.

[0234] Example 26 includes the subject matter of Example
25, further comprising means for splitting a fullscreen
shading pass into the first pass and the second pass, wherein
the fullscreen shading pass is performed in texture space.
[0235] Example 27 includes the subject matter of Example
25, further comprising means for facilitating a pixel shader
to compute the shading rate in the first pass immediately
before the second pass, wherein the shading rate is computed
on per-pixel basis for each pixel of plurality of pixels or
per-tile bases for groups of pixels of the plurality of pixels.
[0236] Example 28 includes the subject matter of Example
25, further comprising means for performing the texel
shading operations on a procedural texture, wherein the
texel shading operations comprise trigger a texel shader to
facilitate per-texel shading of a geometry buffer.

[0237] Example 29 includes the subject matter of Example
25, wherein the texel shading operations further comprise
fetch texel shading.

[0238] Example 30 includes the subject matter of Example
28, wherein the texel shader operations to query the proce-
dural texture to determine whether relevant texels of a
plurality of texels have already been shaded prior to trigger
the texel shader.

US 2018/0061122 Al

[0239] Example 31 includes the subject matter of Example
25, further comprising: means for detecting one or more
stages of the graphics pipeline, wherein the one or more
stages include rendering of the geometry buffer, computing
per-tile light lists, the first phase, the second phase, and
fullscreen post processing pass; and means for executing the
computation of the shading rate and the performance of the
fullscreen shading pass to perform graphics processing of
contents having one or more images to be display using one
or more display devices coupled to the apparatus.

[0240] Example 32 includes the subject matter of Example
27, wherein the computation of the shading rate in the first
pass further comprises loading attributes from the geometry
buffer and analyzing the loaded attributes, and wherein the
computation of the shading rate further comprises loading
data from external sensors to facilitate shading rate compu-
tations, wherein the external sensors include an eye tracker.
[0241] Example 33 includes at least one non-transitory or
tangible machine-readable medium comprising a plurality of
instructions, when executed on a computing device, to
implement or perform a method as claimed in any of claims
or examples 9-16.

[0242] Example 34 includes at least one machine-readable
medium comprising a plurality of instructions, when
executed on a computing device, to implement or perform a
method as claimed in any of claims or examples 9-16.
[0243] Example 35 includes a system comprising a
mechanism to implement or perform a method as claimed in
any of claims or examples 9-16.

[0244] Example 36 includes an apparatus comprising
means for performing a method as claimed in any of claims
or examples 9-16.

[0245] Example 37 includes a computing device arranged
to implement or perform a method as claimed in any of
claims or examples 9-16.

[0246] Example 38 includes a communications device
arranged to implement or perform a method as claimed in
any of claims or examples 9-16.

[0247] Example 39 includes at least one machine-readable
medium comprising a plurality of instructions, when
executed on a computing device, to implement or perform a
method or realize an apparatus as claimed in any preceding
claims.

[0248] Example 40 includes at least one non-transitory or
tangible machine-readable medium comprising a plurality of
instructions, when executed on a computing device, to
implement or perform a method or realize an apparatus as
claimed in any preceding claims.

[0249] Example 41 includes a system comprising a
mechanism to implement or perform a method or realize an
apparatus as claimed in any preceding claims.

[0250] Example 42 includes an apparatus comprising
means to perform a method as claimed in any preceding
claims.

[0251] Example 43 includes a computing device arranged
to implement or perform a method or realize an apparatus as
claimed in any preceding claims.

[0252] Example 44 includes a communications device
arranged to implement or perform a method or realize an
apparatus as claimed in any preceding claims.

[0253] The drawings and the forgoing description give
examples of embodiments. Those skilled in the art will
appreciate that one or more of the described elements may
well be combined into a single functional element. Alterna-

Mar. 1, 2018

tively, certain elements may be split into multiple functional
elements. Flements from one embodiment may be added to
another embodiment. For example, orders of processes
described herein may be changed and are not limited to the
manner described herein. Moreover, the actions of any flow
diagram need not be implemented in the order shown; nor do
all of the acts necessarily need to be performed. Also, those
acts that are not dependent on other acts may be performed
in parallel with the other acts. The scope of embodiments is
by no means limited by these specific examples. Numerous
variations, whether explicitly given in the specification or
not, such as differences in structure, dimension, and use of
material, are possible. The scope of embodiments is at least
as broad as given by the following claims.

What is claimed is:

1. An apparatus comprising:

pixel shading computation logic to facilitate computation

of shading rate in a first pass in a graphics pipeline,
wherein the shading rate relates to a plurality of pixels;
and

shading pass logic to facilitate texel shading operations in

a second pass using the shading rate, wherein the first
pass is performed separate from and prior to the second
pass.
2. The apparatus of claim 1, further comprising: division/
splitting logic to split a fullscreen shading pass into the first
pass and the second pass, wherein the fullscreen shading
pass is performed in texture space.
3. The apparatus of claim 1, wherein the pixel shading
computation logic is further to facilitate a pixel shader to
compute the shading rate in the first pass immediately before
the second pass, wherein the shading rate is computed on
per-pixel basis for each pixel of plurality of pixels or per-tile
bases for groups of pixels of the plurality of pixels.
4. The apparatus of claim 1, wherein the shading pass
logic is further to perform the texel shading operations on a
procedural texture, wherein the texel shading operations
comprise trigger a texel shader to facilitate per-texel shading
of a geometry buffer.
5. The apparatus of claim 1, wherein the texel shading
operations further comprise fetch texel shading.
6. The apparatus of claim 4, wherein the texel shader
operations to query the procedural texture to determine
whether relevant texels of a plurality of texels have already
been shaded prior to trigger the texel shader.
7. The apparatus of claim 1, further comprising:
detection/reception logic to detect one or more stages of
the graphics pipeline, wherein the one or more stages
include rendering of the geometry buffer, computing
per-tile light lists, the first phase, the second phase, and
fullscreen post processing pass; and

execution/forwarding logic to execute the computation of
the shading rate and the performance of the fullscreen
shading pass to perform graphics processing of con-
tents having one or more images to be display using one
or more display devices coupled to the apparatus.

8. The apparatus of claim 3, wherein the computation of
the shading rate in the first pass further comprises loading
attributes from the geometry buffer and analyzing the loaded
attributes, and wherein the computation of the shading rate
further comprises loading data from external sensors to
facilitate shading rate computations, wherein the external
sensors include an eye tracker.

US 2018/0061122 Al

9. A method comprising:

facilitating computation of shading rate in a first pass in
a graphics pipeline, wherein the shading rate relates to
a plurality of pixels; and

facilitating texel shading operations in a second pass
using the shading rate, wherein the first pass is per-
formed separate from and prior to the second pass.

10. The method of claim 9, further comprising splitting a
fullscreen shading pass into the first pass and the second
pass, wherein the fullscreen shading pass is performed in
texture space.

11. The method of claim 9, further comprising facilitating
a pixel shader to compute the shading rate in the first pass
immediately before the second pass, wherein the shading
rate is computed on per-pixel basis for each pixel of plurality
of pixels or per-tile bases for groups of pixels of the plurality
of pixels.

12. The method of claim 9, further comprising performing
the texel shading operations on a procedural texture,
wherein the texel shading operations comprise trigger a texel
shader to facilitate per-texel shading of a geometry buffer.

13. The method of claim 9, wherein the texel shading
operations further comprise fetch texel shading.

14. The method of claim 12, wherein the texel shader
operations to query the procedural texture to determine
whether relevant texels of a plurality of texels have already
been shaded prior to trigger the texel shader.

15. The method of claim 9, further comprising:

detecting one or more stages of the graphics pipeline,

wherein the one or more stages include rendering of the
geometry buffer, computing per-tile light lists, the first
phase, the second phase, and fullscreen post processing
pass; and

executing the computation of the shading rate and the

performance of the fullscreen shading pass to perform
graphics processing of contents having one or more
images to be display using one or more display devices
coupled to the apparatus.

16. The method of claim 11, wherein the computation of
the shading rate in the first pass further comprises loading
attributes from the geometry buffer and analyzing the loaded
attributes, and wherein the computation of the shading rate
further comprises loading data from external sensors to
facilitate shading rate computations, wherein the external
sensors include an eye tracker.

17. At least one machine-readable storage medium com-
prising a plurality of instructions, executed on a computing
device, to facilitate the computing device to:

Mar. 1, 2018

facilitate computation of shading rate in a first pass in a
graphics pipeline, wherein the shading rate relates to a
plurality of pixels; and

facilitate texel shading operations in a second pass using
the shading rate, wherein the first pass is performed
separate from and prior to the second pass.

18. The machine-readable medium of claim 17, wherein
the computing device is further to split a fullscreen shading
pass into the first pass and the second pass, wherein the
fullscreen shading pass is performed in texture space.

19. The machine-readable medium of claim 17, wherein
the computing device is further to facilitate a pixel shader to
compute the shading rate in the first pass immediately before
the second pass, wherein the shading rate is computed on
per-pixel basis for each pixel of plurality of pixels or per-tile
bases for groups of pixels of the plurality of pixels.

20. The machine-readable medium of claim 17, wherein
the computing device is further to perform the texel shading
operations on a procedural texture, wherein the texel shad-
ing operations comprise trigger a texel shader to facilitate
per-texel shading of a geometry buffer.

21. The machine-readable medium of claim 17, wherein
the texel shading operations further comprise fetch texel
shading.

22. The machine-readable medium of claim 20, wherein
the texel shader operations to query the procedural texture to
determine whether relevant texels of a plurality of texels
have already been shaded prior to trigger the texel shader.

23. The machine-readable medium of claim 17, herein the
computing device is further to:

detect one or more stages of the graphics pipeline,
wherein the one or more stages include rendering of the
geometry buffer, computing per-tile light lists, the first
phase, the second phase, and fullscreen post processing
pass; and

execute the computation of the shading rate and the
performance of the fullscreen shading pass to perform
graphics processing of contents having one or more
images to be display using one or more display devices
coupled to the apparatus.

24. The machine-readable medium of claim 19, wherein
the computation of the shading rate in the first pass further
comprises loading attributes from the geometry buffer and
analyzing the loaded attributes, and wherein the computa-
tion of the shading rate further comprises loading data from
external sensors to facilitate shading rate computations,
wherein the external sensors include an eye tracker.

#* #* #* #* #*

