
US00784.0555B2

(12) United States Patent (10) Patent No.: US 7,840,555 B2
Burger et al. (45) Date of Patent: Nov. 23, 2010

(54) SYSTEMAND A METHOD FOR 5,899.986 A * 5/1999 Ziauddin 707/2
IDENTIFYING ASELECTION OF INDEX 5,926,813 A * 7/1999 Chaudhuri et al. ... 707/5
CANDDATES FOR ADATABASE 6,230,153 B1* 5/2001 Howard et al. 707/2

6,449,605 B1* 9/2002 Witkowski 707.3
75 2005/0060311 A1* 3/2005 Tong et al. 707/7
(75) Inventors: ENSE viny R 2005/0192943 A1* 9/2005 Siddiqui et al. 707/3

rank Roderic VanderVOrt, Ramona, 2005/0234900 A1* 10/2005 Bossman et al. 7O7/4
CA (US) 2006/025.9621 A1* 1 1/2006 Ranganathan et al. TO9,226

(73) Assignee: Teradata US, Inc., Miamisburg, OH * cited by examiner
US (US) Primary Examiner John R. Cottingham

(*) Notice: Subject to any disclaimer, the term of this Assistant Examiner Nicholas E Allen
patent is extended or adjusted under 35
U.S.C. 154(b) by 482 days. (57) ABSTRACT

A system and method for identifying a selection of index
(21) Appl. No.: 11/530,991 candidates for a relational database. The system includes a
(22) Filed: Sep. 12, 2006 Predicate Analyzer for examining database queries in work

load and recording column and predicate information; a
(65) Prior Publication Data Search Engine for performing a combinatorial search of

index candidates; an Index Emulator for emulating the exist
US 2007/OO67261 A1 Mar. 22, 2007 ence of a set of candidate indexes by making necessary “fake”

O O entries into the relational database management system data
Related U.S. Application Data dictionary; and a Query Optimizer for estimating the cost of

(60) Provisional application No. 60/718,836, filed on Sep. a given query within a given index configuration. In accor
20, 2005. dance with the method, data indicative of a workload com

prising one or more queries is received, and predicates are
(51) Int. Cl. then analysed and organized into column groups for each

G6F 70 (2006.01) basic predicate type. Statistics are collected on each of these
G06F 7/30 (2006.01) groups. Non-predicate portions of each query are scanned to

(52) U.S. Cl. .. 707f715 obtain additional covering columns. A combinational search
(58) Field of Classification Search 707/715 is performed on the column groups to identify covering and

non-covering candidates. These are then used in conjunction
with collected Statistics and baseline costs are calculated to

(56) References Cited perform a cost bases analysis of the candidates and generate
U.S. PATENT DOCUMENTS index candidate recommendations.

See application file for complete search history.

5,668,966 A * 9/1997 Ono et al. 71.5/853 16 Claims, 5 Drawing Sheets

-2 d
-i. -21

US 7,840,555 B2 Sheet 1 of 5 Nov. 23, 2010 U.S. Patent

FIG. 1

Sheet 2 of 5 Nov. 23, 2010 U.S. Patent US 7,840,555 B2

r – – – – – – + ~ ~

{ ! | | | | I | |

± = • • • • • • • • •= = = = = = = = = = = = = = = = • • • • • • • • •

US 7,840,555 B2 Sheet 3 of 5 Nov. 23, 2010 U.S. Patent

INDEX
EMULATOR

QUERY
-- OPTIMIZER FG. 3

U.S. Patent Nov. 23, 2010

30

QUERY OPTIMIZER
CALCULATES

BASELINE COST
USING EXISTING

INDEXES

38

SEARCHENGINE
RESULTS

F.G. 4

Sheet 4 of 5 US 7,840,555 B2

31

INDEX EMULATOR EMULATES
EXISTENCE OF A SET OF INDEX

CANDIDATES

32

QUERY OPTIMIZER GENERATES
OPTMAL EXECUTION PLAN FOR
EACH OUERY IN THE WORKLOAD
GIVEN SIMULATED INDEXES

35

YES

SAVE SET IN LIST

34

36 DETERMINE
WHETHEREACH
INDEX INSET WAS
USED IN PLAN

p

USED

MARK INDEX

DENTIFY MARKED INDEXES
THAT CORRESPOND TO

INDEXES INSEARCHRESULTS

40

MAKE RECOMMENDATIONS

37

39

U.S. Patent Nov. 23, 2010 Sheet 5 of 5 US 7,840,555 B2

FGS

RECEIVE DATA NOCATIVE
OFA WORKLOAD

ANALYZE PREDICATES

50

52

ORGANIZE INTO COLUMN SCAN
GROUPS FOR BASIC NON-PREDICATE
PREDCATE TYPES PORTIONS

54

JON VALUE ADDITIONAL
ACCESS ACCESS COVERING
GROUPS GROUPS COLUMNS

COLLECT PERFORM
STATISTICS COMBINATORIAL

SEARCH
56

COVERNG NON
CANDIDATES COVERING

CANDDATES

CALCULATE BASELINE
COSTS USNG

EXISTING INDEXES
PERFORM COST-BASED

ANALYSIS

MAKE RECOMMENDATIONS

64

US 7,840,555 B2
1.

SYSTEMAND AMETHOD FOR
IDENTIFYING ASELECTION OF INDEX

CANDDATES FOR ADATABASE

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority under 35 U.S.C. S 119(e) to
the following and commonly-assigned patent application,
which is incorporated herein by reference: U.S. Provisional
Application Ser. No. 60/718,836, entitled “A System and
Method for Identifying a Selection of Index Candidates for a
Database.” filed on Sep. 20, 2005.

BACKGROUND

Any discussion of the prior art throughout the specification
should in no way be considered as an admission that Such
prior art is widely known or forms part of common general
knowledge in the field.

Physical database design is an essential step to implement
ing a high performance data warehouse. In particular, users
must make choices regarding the physical characteristics of
their relational tables and columns. Such choices typically
include indexes, partitioning strategies, and Summary tables.
The process of making these choices manually is difficult and
mistaken prone, even for experienced users. For this reason,
Database Management Systems (DBMS) vendors often pro
vide tools—often referred to as “wizards' that make rec
ommendations directed towards physical database design.
Known tools are relatively rudimentary, and limited to rec
ommending simple structures such as secondary indexes.
Many DBMS vendors offer relatively advanced index

structures that store and maintain derived data. Such index
structures are commonly referred to as “materialized views”
and are used to store a Subset of a table's rows and columns,
pre-joined results, or aggregated data. One of the major draw
backs of materialized views is their complexity and the result
ing difficulty users have in defining them for their particular
workload.

Identifying materialized views having particular character
istics is particularly challenging because of the large number
of candidate views. Indeed, it generally not feasible to search
and analyze the entire Solution space due to the excessive
amount of CPU resources and time that would be required.

SUMMARY OF THE INVENTION

It is an object of the present invention to overcome or
ameliorate at least one of the disadvantages of the prior art, or
to provide a useful alternative.

In accordance with a first aspect of the invention, there is
provided a system for identifying a selection of index candi
dates for a database, the system including an interface for
receiving data indicative of a workload defined by a plurality
of queries; and an analyzing processor responsive to the data
for identifying a selection of index candidates.

In accordance with a second aspect of the invention, there
is provided a method for identifying a selection of index
candidates for a database, the method including the steps of
receiving data indicative of a workload defined by a plurality
of queries; and analyzing the data for identifying a selection
of index candidates.

BRIEF DESCRIPTION OF THE DRAWINGS

The benefits and advantages of the present invention will
become apparent to those skilled in the art to which this

5

10

15

25

30

35

40

45

50

55

60

65

2
invention relates from the Subsequent description of exem
plary embodiments and the appended claims, taken in con
junction with the accompanying drawings, in which:

FIG. 1 is a schematic view of a system according to the
invention;

FIG. 2 is a schematic view of a further system according to
the invention;

FIG. 3 is a schematic view of a further embodiment;
FIG. 4 is a flowchart illustrating an option for cost based

analysis; and
FIG. 5 is a flowchart depicting an exemplary method

according to the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring to the drawings, it will be appreciated that, in the
different figures, corresponding features have been denoted
by corresponding reference numerals.

Referring initially to FIG. 1, there is provided a system 1
for identifying a selection 2 of index candidates 3 for a data
base 4. System 1 includes an interface 5 for receiving data 6
indicative of a workload 7 defined by a plurality of queries 8.
System 1 further includes an analysing processor 9 respon
sive to data 6 for identifying the selection 2 of index candi
dates 3.
The illustrated embodiments are described by particular

reference to a Teradata Relational Database Management
Systems (RDBMS), such as Teradata V2R5 and V2R6. Tera
data is a trademark of NCR corporation. The embodiments
are not limited by the use of Teradata RDBMS, and are
applicable to a variety of alternate systems making use of
other databases and/or DBMS. In particular, embodiments of
the invention are particularly suitable to other SQL type data
bases. Although components of TeradataV2R5 and V2R6 are
referred to herein, these should not be taken as limiting, and
those skilled in the art will readily recognise corresponding
components that are used in alternate implementations. Fur
ther, examples of SQL code provided below are intended to be
indicative only, and those skilled in the art will recognise
various modifications and variations that are made to Such
code in alternate implementations. Systems utilising Such
variations, modifications, or alternatives should not be
regarded as being beyond the scope of the present disclosure.

Workload 7 is defined by a set of queries 8 that a user 15
runs through database 4, as Schematically represented on the
left hand side of FIG.1. In some embodiments these queries
include customer transactions, tactical queries, database
entry modification, and the like. In the illustrated embodi
ment, workload 7 is defined by only two queries 8, which are
described in detail below for the sake of example. It will be
appreciated that the small number of queries 8 in this embodi
ment is for the sake of simplicity. In many practical embodi
ments workload 7 is defined by a much larger number of
queries, spanning several orders of magnitude or more.
Embodiments of the present invention are readily able to
handle Such large workloads.

Although user 15 is graphically represented as an indi
vidual, user 15 is meant to designate a plurality of individual
users of database 2. In broad terms, user 2 designates the party
using system 1. In some embodiments user 2 is an automated
process that runs periodically either at predetermined times or
in response to a command to invoke the operation of system 1.

Data 6 is indicative of workload 7 to the extent that the
precise nature of queries 8 is extractable from data 6. In the
present embodiment data 6 is a table having entries contain

US 7,840,555 B2
3

ing the SQL code for each of queries 8. Alternate techniques
for containing the relevant information in data 6 are used in
other embodiments.

User 15 provides data 6 to interface 5. Interface 5 repre
sents an input mechanism of system 1. In the present embodi
ments interface 5 is a shell of a software application, which
includes a Graphical User Interface (GUI) that provides a
mechanism for conveniently identifying and receiving the
table defining data 6. Alternate interfaces are used in other
embodiments. Fore example, in some embodiments applica
tion 5 is a background functionality invoked by running a
particular Script or code through a Suitably adapted console.

Processor 9 is responsive to data 6 for identifying the
selection 2 of index candidates 3. In the present embodiment,
the index candidates include primary index candidates. As is
the norm in an SQL environment, each query 8 includes a
WHERE clause having one or more predicates. Processor 9
analyses the predicates to identify one or more basic predicate
types for workload 7. Processor 9 then organizes the predi
cates into column groups for each basic predicate type. These
column groups include value access groups and join access
groups.

In addition to value access groups and join access groups,
there is a third group type: additional covering columns.
These represent other columns appearing in each query. Pro
cessor 9 scans the remaining non-predicate portions of each
query to identify all additional columns. Like value access
and join access groups, additional covering columns are orga
nized and/or separated by query and their respective owning
table.

For the sake of example, consider workload 8 to be defined
by the following queries 8:

First Example Query:

SELECT t1.f. t1...g., t2.col, t3.col
FROM t1, t2, t3
WHERE t1...a = 10 AND t1b = 20 AND
t1.c = t2.c and t1.d = t2.d and t2...e = t3.e.:

Second Example Query:

SELECT t1.f, t1.h
FROM t1
WHERE t1.c = B100 and t1.d = “C200

System 1 is used in relation to table t1. There are value
access conditions on column sets (a,b) and (c,d), and join
access conditions on column sets (c,d). The additional cov
ering columns are (fg) and (h).

Processor 9 includes a search engine 16 for performing a
combinatorial search on the groups to reveal combinations,
wherein each combination represents an alternative partition
ing scheme. Search engine 16 then identifies one or more
index candidates for each partitioning scheme, each candi
date having a primary index column.

In a parallel environment Such as Teradata, one such cat
egory consists of those candidates that represent alternative
methods of data partitioning. Each Teradata base table is
defined with exactly one partitioning method that is specified
via the PRIMARY INDEX clause during table creation. The
choice of primary index is very important to query perfor
mance because it allows queries with value conditions on the
primary index column or columns to be executed on only a
single partition and queries with join conditions on the pri

5

10

15

25

30

35

40

45

50

55

60

65

4
mary index column or columns to execute in place without
having to redistribute data between processors. Furthermore,
it is very often the case that a given table will have numerous
primary index candidates each of which result in improved
performance to certain queries in workload 7. The Teradata
RDBMS as it stands in Teradata V2R5 and V2R6 supports
materialized views by a Join Index feature. Join Indexes pro
vide a method of Supporting multiple partitioning schemes
for one set of data. The basic syntax for defining Join Indexes
in Teradata is:

CREATE JOIN INDEXAS <query> PRIMARY
INDEX <column list

where <query> is the standard SQL SELECT statement. The
<query) specification allows the index to contain a Subset of
the columns and rows from a specified base table. Such as t1.
The PRIMARY INDEX clause allows users to define a par
titioning key that is different than the underlying base table. In
the Teradata partitioned parallel environment, the primary
index is used to hash distribute a table's rows across multiple
processors.

In the present example, the candidates identified by search
engine 16 are:

Join Index with PRIMARY INDEX (a).
Join Index with PRIMARY INDEX (b).
Join Index with PRIMARY INDEX (a,b).
Join Index with PRIMARY INDEX (c).
Join Index with PRIMARY INDEX (d).
Join Index with PRIMARY INDEX (c,d).
It will be appreciated that, in addition to a PRIMARY

INDEX clause, each Join Index candidate must have a defined
SELECT list consisting of one or more simple columns, or
alternatively the keyword ROWID.

If a Join Index contains all of a table's columns referenced
in a given query, then the Join Index can be used to “cover the
query meaning the base table need not be accessed. Because
there is little benefit from partial covering, there is no need to
consider all combinations of other columns appearing in the
query. A covering candidate is defined by a candidate
SELECT list containing the primary index column or col
umns and any remaining table columns or columns refer
enced by a particular one of the queries. In many situations,
covering Join Indexes significantly reduces the time and cost
of executing queries. That being said, there are drawbacks:
more space is occupied, and more maintenance is required
during updates. For this reason, those columns that exceed a
user specified threshold for update frequency are removed
from covering consideration as are those candidate Join
Indexes that would exceed a user specified space limit. In the
present example, the covering candidates identified by search
engine 16 are:

Join Index with SELECT list (a,f,g,h) and PRIMARY
INDEX (a).

Join Index with SELECT list (b,figh) and PRIMARY
INDEX (b).

Join Index with SELECT list (a,b,figh) and PRIMARY
INDEX (a,b).

Join Index with SELECT list (c.f.g.h) and PRIMARY
INDEX (c).

Join Index with SELECT list (d. figh) and PRIMARY
INDEX (d).

Join Index with SELECT list (c.d. figh) and PRIMARY
INDEX (c,d).

The SELECT list of Join Index candidates representing
non-covering candidates consists of the primary index col
umns for the current candidate and the keyword ROWID.

US 7,840,555 B2
5

That is, a non-covering candidate is defined by a candidate
SELECT list containing the primary index column or col
umns and the keyword ROWID. The non-covering case has
the advantage of minimizing the space occupied by the Join
Index as well as the cost to maintain it during updates. The
drawback of non-covering candidates is the extra time
required to fetch the other referenced columns from the
underlying base table. In the present example, the non-cov
ering candidates identified by search engine 16 are:

Join Index with SELECT list (a, ROWID) and PRIMARY
INDEX (a).

Join Index with SELECT list (b., ROWID) and PRIMARY
INDEX (b).

Join Index with SELECT list(a,b.ROWID) and PRIMARY
INDEX (a,b).

Join Index with SELECT list (c.ROWID) and PRIMARY
INDEX (c).

Join Index with SELECT list (d.ROWID) and PRIMARY
INDEX (d).

Join Index with SELECT list (c,d,ROWID) and PRIMARY
INDEX (c,d).

In the present embodiment, the above-detailed covering
and non-covering candidates make up selection 2. Although
covering and non-covering candidates are both identified in
this example, in Some embodiments a decision is made to
exclusively identify one or the other.

In Summary, where a given value access or join access
group consists of M columns, there are (2M-1) different
combinations of those columns each representing a candidate
PRIMARY INDEX for a Join Index Candidate. Furthermore,
each of these candidates is either made to be covering or
non-covering. It will be appreciated adding the additional
covering columns for that particular table to the Join Index
SELECT list makes a candidate covering, and adding the
keyword ROWID to the Join Index SELECT list makes a
candidate non-covering.

In this case, the total size of the search space of Join Index
candidates for a given table calculated by the following
pseudo code:

size = 0
for i = 1 to N

size = size + (2') - 1)* 2

where N represents the total number of value access groups
and join access groups, and Mi represents the number of
columns in group i.

Thus, the task of the search engine 16 is to perform a
combinatorial search on the solution space defined above. In
this embodiment, the search engine enumerates sets of can
didate indexes for each table where the size of each set is
based on a user specified setting which denotes the maximum
number of new indexes to recommend for a given table. Each
set is then costed and ranked as described below.

In the embodiment of FIG. 2, system 1 carries out further
Some processing on selection 2 to derive a further selection
17. Selection 17 is a subset of selection 2 that represents the
two candidates 3 that result in the lowest workload costs. It
will be appreciated that, in other embodiments, this further
processing identifies an alternate reduced selection of candi
dates. For example, the least cost-effective candidates.

To carry out the further processing, system 1 includes a
costing processor 18 for estimating a workload cost for each
index candidate in selection 2. To assist in the calculation of
cost estimates, processor 9 collects statistics 19 on one or

5

10

15

25

30

35

40

45

50

55

60

65

6
more column groups, to which processor 18 is responsive for
estimating the workload cost. It will be appreciated that, in
other embodiments, the collection of statistics is performed
by a component other than processor 9. Suitable applications,
components and hardware for estimating the cost of running
queries will be known to those skilled in the art. It is particu
larly noted that, in the present embodiment, statistics are only
collected on the value access groups and join access groups,
and not on the additional covering columns.

System 1 includes an emulator 20 for providing simula
tions of the behaviour of the index candidates in the selection.
Processor 18 uses the simulations forestimating the workload
costs. That is, emulator 20 provides a simulation based on an
implementation of a particular candidate 3 from selection 2.
and processor 18 calculates the cost of running each query 8
under that candidate. In the present embodiment emulator 20
operates in response to a command from the search engine,
however in other embodiments alternate commands are uti
lised. The respective costs of running queries 8 under a par
ticular candidate 3 are summed to derive an estimated work
load cost for workload 7 under that particular candidate 3. The
process is repeated for each candidate 3. As such, data is
available to create a report detailing the workload costs asso
ciated with each of candidates 3.

System 1 includes a ranking processor 21 that is responsive
to costing processor 18 for relatively ranking selection 2
based on the estimated workload costs, and from this deriving
selection 17 in accordance with a predefined protocol. As
mentioned above, the protocol in this embodiment involves
selecting the two candidates 3 with the lowest costs. Alternate
approaches are adopted in other embodiments. Processor 21
transmits a signal 22 indicative of selection 17. This will be
recognised as a recommendation to user 15 of the most Suit
able indexing candidates identified for workload 7, following
a cost-based analysis. User 15 is then able to modify the
physical design of database 4 for improved efficiency based
on the recommendations. In some embodiments, system 1
provides a tool for automatically or selectively modifying the
physical design based on the recommendations.

Throughout the specification, reference is made to various
components of system 1. These components are leveraged
from other software applications in Some embodiments. In
Some cases, a single software application handles one or more
functionalities of one or more of the components. As such, the
components should be read conceptually as defined by their
respective functionalities rather than as necessarily discrete
units.

Referring to FIG.3, system 1 is conveniently implemented
by leveraging known Teradata components. That is, the func
tionality required to carry out the processes of system 1 are
taken on by these known components, noting that some of the
known components will require Some modification and/or
instruction in light of the rules and heuristics unique to system
1. The known components that are leveraged are:

Predicate Analyzer. This Optimizer component is capable
of examining each query 8 in workload 7 and recording
column and predicate information that is useful for the
Subsequent search phase. This component is the same
one used by Query Optimizer to identify predicates and
columns that are eligible for indexed access. Using the
same component for system 1 ensures the quality of the
columns that will be considered as index candidates.

Search Engine: This component is capable of performing a
combinatorial search of the index candidates.

Index Emulator: This component is capable of emulating
the existence of a set of candidate indexes by making

US 7,840,555 B2
7

necessary “fake' entries in the RDBMS data dictionary.
It is capable of simulating any configuration of existing
and/or candidate indexes.

Query Optimizer: This component is capable of estimating
the cost of a given query within a given index configu- 5
ration. When running as part of system 1, the Query
Optimizer behaves as if the candidate “fake indexes
stored in the dictionary actually exist.

In embodiments that do not include these components
other components with similar functionalities are able to be 10
used. Such components will be recognised by those skilled in
the art.

The Predicate Analyzer component is first called to analyze
the predicates appearing in the WHERE clause of each query
and organize them into column groups for each basic predi- 15
cate type including value and join access. Statistics are then
collected on the columns identified by the Predicate Analyzer.
These statistics are used to improve the accuracy of the Sub
sequent Query Optimizer cost estimates. For the sake of expe
diency, statistics are collected on only a sample of the data. 20
The Search Engine component is called to perform a combi
natorial search on the groups of value and join access columns
where each combination represents an alternative partition
ing scheme. For each partitioning scheme the covering and
non-covering candidates are identified. The Search Engine 25
then calls the Emulator component for each index candidate
and the Query Optimizer is then called to choose the best
execution plan for the current set of existing and candidate
indexes. The cost of the chosen plan is recorded and the
candidates that result in the lowest workload cost are retained 30
as the final recommendations.

In this embodiment, the cost based analysis is performed in
accordance with the method of FIG. 4. To commence, Query
Optimizer is called for each query 8 in workload 7 at 30. This
is often performed prior to performing the combinatorial 35
search. Query Optimizer calculates the workload cost for
workload 7 on the basis of an existing set of realindexes. That
is, a set of indexes pre-existing user defined indexes. This
workload cost defines a baseline cost that system 1 should
attempt to improve upon. 40
The Index Emulator component is called to simulate the

existence of each candidate index in the data dictionary of
database 4 at 31. The Query Optimizer component is then
called to generate the optimal execution plan for each query in
the workload with the simulated indexes defined at 32. The 45
returned execution plan includes an estimated total cost along
with information about which candidate indexes were used in
the chosen plans, and those which were not used in the chosen
plans. At 33 the estimated cost based on the simulated set of
candidate indexes is compared to the baseline cost. If the 50
estimated cost is lower than the baseline cost, then that set of
indexes is saved in a list at 34. Otherwise the set is discarded
at 35. At 36 indexes are checked to determine whether they
were actually used by the Optimizer in the optimal execution
plan. Those that were used are marked at 37. If a particular 55
index was not used, it is not marked and no action is taken.

Search Results 38 from the combinatorial search are com
pared to the list including one or more marked indexes at 39.
After the Search Engine component finishes its task, the best
candidate set for each table is known. Those indexes within 60
these sets that were both saved in the list by Optimizer and
also marked form the set of final recommendations at 40.

FIG. 5 illustrates an exemplary method according to an
embodiment of the present invention. Data indicative of a
workload comprising one or more queries is received at 50. 65
The predicates are then analysed at 51. Following this, predi
cates are organized into column groups for each basic predi

8
cate type at 52, being join access groups 54 and value access
groups 55. Statistics are collected on each of these groups at
56.
The non-predicate portions of each query are scanned at 57

to obtain the additional covering columns 58. These, along
with groups 54 and 55, are used as part of the combinatorial
search at 59. Covering candidates 60 and non-covering can
didates 61 are identified. These are then used in conjunction
with statistics collected at 56 and baseline costs calculated at
62 to perform a cost bases analysis of the candidates at 63. It
will be appreciated that although the calculation of baseline
costs 62 is shown to be prompted by step 50, step 62 is
performed at varying times among embodiments. Analysis 63
is carried out along a number of lines depending on the
precise embodiment, including the method disclosed in FIG.
4. Finally, recommendations are made at 64.

Although the present invention has been described with
particular reference to certain preferred embodiments
thereof, variations and modifications of the present invention
can be effected within the spirit and scope of the following
claims.

What is claimed is:
1. A system for identifying a selection of index candidates

for a database, the system including:
an interface for receiving data indicative of a workload

defined by a plurality of queries; and
an analysing processor responsive to the data for identify

ing a selection of index candidates, wherein each query
includes a WHERE clause having one or more predi
cates and wherein the analyzing processor organizes the
predicates into column groups including either or both
of value access groups and join access groups.

2. A system according to claim 1 wherein the index candi
dates include primary index candidates.

3. A system according to claim 1 wherein the analysing
processor includes a search engine for performing a combi
natorial search on the groups to reveal combinations, wherein
each combination represents an alternative partitioning
scheme.

4. A system according to claim3 wherein the search engine
identifies one or more index candidates for each partitioning
scheme, each candidate having a primary index column.

5. A system according to claim 4 wherein the index candi
dates for each partitioning scheme include any one or more
of:

a candidate SELECT list containing the primary index
column or columns and the keyword ROWID; and

a candidate SELECT list containing the primary index
column or columns and any remaining table columns or
columns referenced by a particular one of the queries.

6. A system according to claim 1 including a costing pro
cessor for estimating a workload cost for each index candi
date in the selection.

7. A system according to claim 6 wherein the costing
processor:

calculates estimated query costs for performing each query
in the workload under each of the index candidates in
Selection; and

derives from the calculation an estimated workload cost for
the workload under each index candidate in the selec
tion.

8. A system according to claim 6 wherein the analysing
processor collects statistics on one or more column groups
and the costing processor is responsive to the statistics for
estimating the workload cost.

US 7,840,555 B2

9. A system according to claim 6 including a ranking pro
cessor that is responsive to the costing processor for relatively
ranking the selection of index candidates based on the esti
mated workload costs.

10. A system according to claim 9 wherein the ranking
processor is responsive to the relative ranking for transmitting
a signal indicative of one or more index candidates.

11. A system according to claim 10 wherein the signal is
indicative of one or more index candidates having the lowest
relative workload costs.

12. A system according to claim 6 including an emulator
for providing simulations of the behaviour of the index can
didates in the selection.

13. A system according to claim 12 wherein the costing
processor uses the simulations for estimating the workload
COStS.

10

15

10
14. A method for identifying a selection of index candi

dates for a database, the method including the steps of:
receiving data indicative of a workload defined by a plu

rality of queries;
analysing the data for identifying a selection of index can

didates, wherein each query of the plurality of queries
includes a WHERE clause having one or more predi
cates; and

organizing the predicates into column groups including
either or both of value access groups and join access
groups.

15. A method according to claim 14 wherein the index
candidates include primary index candidates.

16. A method according to claim 15 wherein analysing the
data includes analysing the predicates to identify one or more
basic predicate types for the workload.

k k k k k

