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(57) ABSTRACT 

Methods and apparatus are disclosed for the processing of 
frame buffer data, Such as color buffer data, in graphics pro 
cessing applications. Although more generally applicable, 
these methods and apparatus are particularly useful in real 
time, polygon-based, 3D rendering applications. An exem 
plary method for processing graphics data according to one or 
more embodiments of the invention begins with the retrieval, 
from a buffer, of pixel values corresponding to a tile of two or 
more pixels, and with the updating of one or more of those 
updated pixel values. The updated pixel values are selectively 
compressed using a lossy compression operation or a lossless 
compression operation, based on an accumulated error metric 
value for the tile. If lossy compression is used, then the 
accumulated error metric value for the tile is updated; in 
either event, the compressed pixel values are stored in the 
frame buffer for further processing. With this approach, the 
accumulated error caused by Successive, or tandem, compres 
sion operations may be limited to a pre-determined maxi 
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FRAME BUFFER COMPRESSION AND 
DECOMPRESSION METHOD FOR 

GRAPHCS RENDERING 

RELATED APPLICATION 

0001. This application claims priority under 35 U.S.C. 
S119(e) from U.S. Provisional Patent Application Ser. No. 
60/910,112, which was filed on 4 Apr. 2007 and is entitled 
“Color Buffer Compression and Decompression Method for 
Graphics Rendering.” 

BACKGROUND 

0002 The present invention generally relates to the pro 
cessing of graphics data, and particularly relates to methods 
and apparatus for compressing frame buffer data in a three 
dimensional (3D) graphics rendering system. 
0003) 3D graphics rendering systems typically utilize sev 
eral memory buffers during the rendering process, such as 
texture buffers, depth buffers (often called Z-buffers), and 
color buffers. These buffers often are stored in random-access 
memory (RAM) external to the graphics processing unit 
(GPU), which may have relatively small cache memories on 
board. Because the buffered data may be retrieved and re 
written several times during the rendering process, the 
memory bandwidth (the capacity for writing data to memory 
and reading data from memory) must often be quite high, 
especially to Support real-time graphics processing applica 
tions such as real-time games. On a desktop personal com 
puter, the available memory bandwidth might be very high, 
perhaps several gigabytes per second. In a mobile phone, 
several hundred megabytes per second of data transfer might 
be available. 
0004. Even with these high available memory bandwidths, 
the performance of a GPU might nonetheless be constrained 
by the memory bandwidth. Reducing the amount of data 
retrieved from and written to the external RAM is thus gen 
erally advantageous. The advantages of reducing memory 
transactions are particularly pronounced in mobile platforms, 
Such as a mobile telephone, since the increased clock rates 
and wider data buses required to Support very high memory 
bandwidths also result in increased power consumption, 
draining batteries more quickly. 
0005 Data compression is one approach to reducing the 
memory bandwidth required to support advanced 3D render 
ing applications. Lossless data compression techniques, 
which permit the reconstruction of the original data without 
any loss of information, are sometimes used today in 3D 
graphics rendering applications. Lossy data compression 
algorithms, which can provide significantly higher compres 
sion ratios but which may result in the introduction of visual 
artifacts in the reconstructed data, are commonly used in 
Video applications, such as digital television, but appear to 
have been neglected with respect to compressing the color 
buffer in 3D rendering applications. 
0006. One reason for avoiding lossy compression schemes 
in 3D rendering applications is that it is possible to introduce 
large errors into the color buffer data when lossy compression 
is used several times. The need for repeated compression and 
decompression operations distinguishes many 3D graphics 
rendering applications from digital video applications, for 
instance, where a given frame is typically compressed just 
once. Some or all of the color buffer data for a single frame 
may be compressed and decompressed several times during 
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the graphics rendering process. In a triangle-based 3D ren 
dering system, for example, several triangles may be succes 
sively written to a segment (e.g., a tile, or block) of data. Each 
time, the segment of data may be retrieved from the frame 
buffer, decompressed, processed, compressed again, and 
written back to the color buffer. If lossy compression is used 
to compress the data segment each time, this tandem com 
pression may result in repeated losses of information, intro 
ducing unacceptable errors into the final data. 

SUMMARY 

0007. The methods and apparatus taught herein provide a 
novel approach to the processing of frame buffer data, e.g., 
color buffer data, in graphics processing applications. 
Although more generally applicable, these methods and 
apparatus are particularly useful in real-time, polygon-based, 
3D rendering applications. Those skilled in the art will appre 
ciate that the methods and apparatus disclosed herein may be 
applied to reduce the memory bandwidth requirements for a 
given graphics application, to facilitate more advanced graph 
ics processing, or both. Those skilled in the art will also 
appreciate that the techniques disclosed herein may provide 
particular advantages in a battery-powered portable device, 
Such as a mobile phone, where higher memory bandwidth 
requirements generally result in increased energy consump 
tion and shorter battery life. 
0008. An exemplary method for processing graphics data 
according to one or more embodiments of the invention 
begins with the retrieval, from a buffer, of pixel values corre 
sponding to a tile of two or more pixels, and with the updating 
of one or more of the retrieved pixel values. The updated pixel 
values are selectively compressed using a lossy compression 
operation or a lossless compression operation, based on an 
accumulated error metric value for the tile. If lossy compres 
sion is used, then the accumulated error metric value for the 
tile is updated; in eitherevent, the compressed pixel values are 
stored in the frame buffer for further processing. With this 
approach, the accumulated error caused by Successive, or 
tandem, compression operations may be limited to a pre 
determined maximum. 

0009. In some embodiments, the effect of lossy compres 
sion on the accumulated error metric value for the tile is 
predicted before the compression operation is performed, and 
lossy compression or lossless compression is performed 
based on the predicted effect. In some of these embodiments, 
one of two or more lossy compression operations may be 
used, based on the predicted effect. In several embodiments, 
a lossless compression operation is used if the accumulated 
error metric value exceeds a pre-determined threshold; oth 
erwise a lossy compression operation is used. In embodi 
ments where the pixel values comprise pixel color values, the 
method may further comprise selecting the pre-determined 
threshold based on whether the updated pixel values comprise 
alpha values for alpha blending. 
0010. In some embodiments, the lossless compression 
operation comprises entropy encoding of residual errors from 
neighbor-based predictors of pixel values. Some of these 
embodiments may use Golomb-Rice coding. The lossy com 
pression operation may comprise, in various embodiments, 
one or more of quantization, Subsampling, or averaging of the 
updated pixel values. In embodiments where the pixel values 
comprise pixel color values, the lossy compression operation 
may comprise compressing luminance components of the 
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pixel values using a lossless algorithm and compressing 
chrominance components of the pixel values using a lossy 
algorithm. 
0011 When the pixel values comprise pixel color values, 
various embodiments may further comprise transforming the 
pixel values from a first color space to a second color space 
before the pixel values are updated, and transforming the 
updated pixel values from the second color space to the first 
color space before compressing the updated pixel values. In 
several of these embodiments, the second color space com 
prises the red-green-blue (RGB) color space, and the first 
color space comprises a reversible, bit-exact transform of the 
first color space. Such as the YCoCg color space. 
0012 Apparatus for processing graphics data according to 
one or more of the above methods, as well as variations of 
those methods, are also disclosed herein. Of course, the 
present invention is not limited to the above features and 
advantages. Those skilled in the art will recognize additional 
features and advantages upon reading the following detailed 
description, and upon viewing the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0013 FIG. 1 illustrates the effects of tandem compression 
on pixel data. 
0014 FIG. 2 is a flow diagram illustrating an exemplary 
method for processing graphics data according to one or more 
embodiments of the invention. 
0015 FIG. 3 is a flow diagram illustrating an exemplary 
method for compressing color buffer data. 
0016 FIG. 4 illustrates the prediction of pixel data from 
neighbor pixels. 
0017 FIG. 5 is a block diagram of an apparatus for pro 
cessing graphics data according to one or more embodiments 
of the invention. 

DETAILED DESCRIPTION 

0.018. The various methods and devices disclosed herein 
describe a tile-based compression and decompression 
scheme for use in graphics processing, particularly in 3D 
graphics rendering applications. In much of the following 
discussion, the inventive techniques will be illustrated in the 
context of processing color buffer data, but those skilled in the 
art will appreciate the applicability of these techniques to 
other graphics data, such as texture buffer data, depth buffer 
data, or intensity data. Using the disclosed schemes, the quan 
tity of graphics data that must be buffered may be reduced 
considerably, reducing the memory bandwidth required for 
storing and retrieving the graphics data, or freeing memory 
bandwidth for more advanced and/or more rapid graphics 
processing. As disclosed herein, lossy compression tech 
niques may be used to achieve the largest compression gains, 
while lossless compression techniques are selectively applied 
to keep the accumulated errors introduced by the compres 
sion operations to acceptable levels. 
0019. As discussed above, applying lossy compression 
techniques to 3D graphics rendering contexts may introduce 
particular problems. Because 3D graphics data may be com 
pressed and decompressed several times during the rendering 
of a single frame, the accumulated errors caused by repeated 
lossy compression operations may grow beyond acceptable 
levels, causing undesirable visual artifacts in the rendered 
image. This is illustrated in FIG.1. At step 110, a first triangle 
112 is written to a tile 115 of sixteen pixels. Specifically, a 
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color value C is written to each of the pixels covered by 
triangle 112, including the pixel in the upper-left corner of tile 
115. Subsequently, the color data for tile 115 is compressed, 
using a lossy compression operation, at Step 120. This lossy 
compression introduces an error into the tile data, so that upon 
decompression (not shown), the upper-left pixel contains a 
value of G, not C. At step 130, triangle 132 is written to tile 
115. In this example, the writing of triangle 132 has no direct 
effect on the color value associated with the upper-left pixel. 
However, after another compression operation at step 140, 
additional erroris introduced to the color value for the upper 
left pixel, so that the new value, at step 150, equals C. Those 
skilled in the art will appreciated that the errors introduced by 
tandem compression, as illustrated in FIG.1, may grow with 
out bound under certain circumstances. However, using the 
techniques disclosed herein, lossy compression of graphics 
data may be applied, while still keeping the introduced errors 
under control. 

0020 FIG. 2 illustrates an exemplary method for process 
ing graphics data according to one or more embodiments of 
the present invention. At block 210, pixel values are retrieved 
from a frame buffer for processing. The term “frame buffer 
is used hereinto denote a memory structure for storing graph 
ics data related to a given rendering of a graphics image. In 
some applications, the pixels of the frame buffer may directly 
correspond to the pixels of a video display device, so that the 
frame buffer comprises a complete frame of video data. In 
others, however, the frame buffer data may undergo addi 
tional processing before it is sent to a video display. In any 
event, the frame buffer typically comprises a color buffer, 
which includes a pixel color value for each pixel, and may 
also include a depth buffer, and a texture buffer. The color 
buffer data may also include alpha channel data used for alpha 
blending. 
0021. In the discussion that follows, the term “pixel’ is 
used to describe a single element in a two-dimensional array 
of graphics data. Again, a single pixel of graphics data may or 
may not correspond to a single output pixelona Video display. 
Furthermore, those skilled in the art will be familiar with 
various graphics processing techniques that involve multi 
sampling or Supersampling of graphics data. Those practitio 
ners will further appreciate that the inventive techniques 
described herein may be applied to Supersampled or multi 
sampled graphics data as well, for instance when that data 
must be repeatedly stored and retrieved from a buffer. 
Accordingly, the term 'pixel’, as used herein, may refer to 
each element of Supersampled or multi-sampled graphics 
data. 
0022. At least for purposes of compression and decom 
pression operations, the pixel data retrieved from the frame 
buffer is conveniently processed in blocks, or “tiles, com 
prising two or more pixel values. (The term “tile' is used 
herein to refer to a segment, or “block', of graphics data, 
comprising at least two pixel values.) For instance, the pixel 
data may be processed in eight-by-eight pixel tiles. Thus, 
each tile may be separately and independently compressed 
(and decompressed) according to the techniques described 
herein. 

0023 Invarious embodiments of the present invention, the 
process of retrieving pixel data from the frame buffer includes 
decompression of the pixel data before Subsequent process 
ing. As will be well understood by those skilled in the art, 
decompression involves reversing the operations used to 
compress the data. If a lossless Scheme was employed to 
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compress the data, then the original data may be recon 
structed exactly, i.e., with no loss of information. On the other 
hand, if a lossy compression scheme was used, the corre 
sponding decompression operation may restore the original 
data format and/or size, but some of the information in the 
original data is irretrievably lost. 
0024. In some embodiments of the present invention, the 
frame buffer includes or is associated with data indicating 
whether lossy or lossless compression was used. In several 
embodiments, each compressed tile is combined with header 
information before it is written to the frame buffer. In some of 
these embodiments, this data may include information indi 
cating which of several compression algorithms was used. 
This data may be tile-specific, such that the use of lossy or 
lossless compression schemes may be independently sig 
naled for each tile. 

0025. In a similar fashion, accumulated error information 
may be independently maintained for each tile. This accumu 
lated error information thus includes an accumulated error 
metric value for each tile, the accumulated error metric value 
indicating the error introduced into the tile data from one or 
more lossy compression operations. The accumulated error 
metric values may be stored in the same memory as the frame 
buffer, or maintained in a separate memory. In a typical 
embodiment, the accumulated error metric values are initial 
ized to Zero at the beginning of a frame rendering operation, 
and updated after the use of one or more lossy compression 
operations on one or more of the tiles. 
0026. Thus, referring again to FIG. 2, an accumulated 
error metric value, t, is retrieved from memory for a 
current tile to be processed, as shown at block 220. In some 
embodiments, t, represents the accumulated mean 
square error for the tile, although other measures, such as the 
root mean square error, or the maximum error level for any of 
the pixels in the tile, may be used. Another useful error metric 
is the sum of absolute differences between the reconstructed 
pixel values and their “true' values. The choice of which error 
metric to use generally involves a trade-off between the num 
ber of bits needed to represent an error metric value and the 
precision of control that the error metric facilitates. Indeed, in 
Some embodiments, more than one error metric may be used, 
to provide even finer control of the error introduced by tile 
compression, although the processing and storing of addi 
tional metric values may diminish the benefits gained from 
compressing the pixel data. In any event, the retrieved error 
metric value to indicates the error introduced thus far by 
previous lossy compression operations performed upon the 
current tile. 

0027. Once decompressed, the pixel data for the current 
tile is updated according to a current rendering operation, as 
shown at block 225. In a polygon-based 3D rendering appli 
cation, for example, color values corresponding to a new 
triangle may be written to one or more of the pixels for the 
current tile. The rendered triangle may completely overlap the 
tile, so that all of the pixel values are updated, or may only 
partially cover the tile, so that one or several of the pixel 
values are updated while others remain unchanged. Other 
operations, such as shading, texturing, or alpha blending, may 
also be applied, according to techniques well known in the art. 
0028. Those skilled in the art will recognize that certain 
operations on a tile will make the corresponding accumulated 
error metric value obsolete. For example, if a triangle com 
pletely overlaps a tile, so that all the pixel color values for the 
tile are re-written, the accumulated error metric value result 
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ing from previous compression operations is no longer appli 
cable (assuming that the previous values are not blended with 
the new values). In these instances, then, the updating of the 
pixel values is followed by resetting the accumulated error 
metric value (or values) for the tile to Zero. In other instances, 
Such as when a rendered triangle only partly overlaps a tile, 
the accumulated error metric value continues to provide a 
meaningful indicator of the previously introduced compres 
sion errors. 
0029. In any event, after the pixel values are updated, the 

tile is compressed again, and stored back in the frame buffer 
to free up on-board RAM for processing of other tiles. 
Depending on the value of t, however, further compres 
sion operations may be limited to lossless compression, so 
that to does not increase further. Accordingly, t, may 
be compared to a threshold valuet, fift,>t,..., 
then lossless compression is performed, to avoid introducing 
further error into the compressed data. On the other hand, if 
T st, at least one additional lossy compression ser 

operation may be tolerated. 
0030. In some embodiments, the effect of a projected lossy 
compression operation on the accumulated error metric value 
for the tile is predicted before determining whether to use the 
lossy compression operation or a lossless operation. Thus, at 
block 230, an error contribution T, is calculated, based on 
the projected lossy compression operation. At block 240, the 
accumulated error that would result from using the projected 
compression operation, e.g., the Sum of t, and t, is 
compared to a pre-determined threshold valuet. If the 
projected lossy compression operation would result in the 
accumulated error metric value exceeding the threshold, then 
a lossless compression operation is performed instead, as 
shown at block 250, and the compressed pixel values are 
stored in (e.g., re-writtento) the frame buffer at block 290. On 
the other hand, if the projected lossy compression operation 
will not introduce an unacceptable error level, then the lossy 
compression operation is performed, as shown at block 260. 
0031. In the event that the lossy compression operation is 
used, then the accumulated error metric value for the tile is 
updated, as shown at block 270. For instance, a previous 
accumulated error metric value may be replaced with a Sum of 
the previous accumulated error metric value and the contri 
bution from the newly performed compression operation. At 
block 280, the updated accumulated error metric value is 
stored for use in later processing of the tile, and the com 
pressed tile is stored in the frame buffer at block 290. 
0032 Those skilled in the art will appreciate that the 
method illustrated in FIG.2 may readily be extended to facili 
tate the selective application of several lossy compression 
algorithms. For instance, two different lossy compression 
algorithms may be available. One may offer greater compres 
sion than the other, at the expense of increased error intro 
duction. If multiple lossy compression algorithms are avail 
able, then the error contribution calculation of block 230 may 
be performed first for the algorithm offering the highest com 
pression. If the predicted total accumulated error does not 
exceed the threshold, then that algorithm is used at block 250. 
On the other hand, if the first algorithm would result in exces 
sive error, then a predicted error contribution for the second 
algorithm is calculated and tested. If this algorithm results in 
an acceptable error level, then it is used. Otherwise, lossless 
compression is used, as in the previously discussed method. 
0033. In yet another variation, the accumulated error met 
ric value is used to select one of two or more lossy compres 
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sion algorithms. For instance, in one embodiment, if the accu 
mulated error metric value is below a first threshold, then a 
first lossy compression algorithm is used. If the accumulated 
error metric value is above the first threshold, but below a 
second threshold, then a second lossy compression algorithm 
is used instead. Typically, the second compression algorithm 
is chosen to introduce less error than the first. If, on the other 
hand, the accumulated error metric value exceeds the second 
pre-determined threshold value, then lossless compression is 
used. 

0034. Those skilled in the art will appreciate that the 
method illustrated in FIG. 2 may be used with any lossless 
compression algorithm suitable for compression of block 
organized pixel data, as well as with any suitable lossy com 
pression algorithm. Those skilled in the art will appreciate, 
however, that when the techniques of the present invention are 
applied to color data, it may be advantageous to employ the 
compression algorithms in a luminance-chrominance color 
space, rather than the red-green-blue (RGB) color space used 
for many standard graphics processing processes. Accord 
ingly, evenifall or most pixel updating operations (such as the 
rendering of triangles, pixel shading, etc.) are performed in 
the RGB space, compression is advantageously performed 
upon pixel data that has been transformed to a luminance 
chrominance space. As is well known in the art, more efficient 
compression is thus enabled, due to the decorrelation of the 
RGB channels. 

0035 Another advantage from using aluminance-chromi 
nance color space for compressing pixel color data is that 
separate compression schemes may be used for the luminance 
and chrominance values. Since the human visual system is 
more Susceptible to errors in the luminance components, 
some embodiments of the methods disclosed herein may 
always use lossless compression for the luminance compo 
nents, while selectively employing lossy compression for the 
chrominance components according to the techniques dis 
closed herein. In other embodiments, lossy compression may 
selectively be permitted for both the luminance and chromi 
nance components, but different schemes, with different 
threshold levels, employed to determine when to switch from 
lossy to lossless compression. In yet others, accumulated 
error metric values may be tracked separately for the lumi 
nance and chrominance components, and/or applied to sepa 
rate thresholds, such that lossless compression is introduced 
Sooner for luminance data than for chrominance data. 

0036) Several luminance-chrominance representations of 
pixel color data are known in the art. Because the present 
techniques employ at least one lossless compression scheme, 
so that compressed data may be reconstructed exactly, the 
color space transformation should also be exactly reversible. 
One such color transformation scheme is the RGB to YCC 
(luminance plus offset orange plus offset green) transform 
introduced by Henrique Malvar and Gary Sullivan in their 
July 2003 contribution to the Joint Video Team of ISO/IEC 
PMEP & ITU-TVCEG, entitled “YCOCG-R: A Color Space 
with RGB Reversibility and Low Dynamic Range.” Docu 
ment No. JVT-I014r3. Using this approach, transforming 
from RGB to YCC is done according to: 
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Y=t+(Cass 1) (1) 

and the corresponding transform from YCC to RGB is: 

R=B+C. (2) 

If the RGB components are stored using n bits each, the Y 
component will require n bits, and the chrominance compo 
nents n+1 bits. Thus, transforming to the YCC space may 
cost two additional bits. However, it has been shown that in 
certain contexts, color data transformed according to this 
approach may be compressed more efficiently than corre 
sponding RGB data, or data transformed according to the 
commonly-used YCC transform. (See Charles Poynton, 
Digital Video and HDTV San Francisco: Morgan Kaufman 
Publishers, 2003, for a description of the YCC transform.) 
It must be noted that the YCC transform, is not, in general, 
reversible without information loss. An alternative color 
transform to YCC, however, is the exactly reversible com 
ponent transformation (RCT) from the JPEG-2000 standard. 
0037 Suitable lossy compression algorithms may be quite 
simple. For example, pixel values may simply be quantized to 
a limited set of possible values, thus reducing the number of 
bits needed to store the values. This quantization process may 
simply involve truncation of the pixel values, in which case 
decompression simply requires the adding of Zeroes to the 
truncated values to obtain full-precision data for Subsequent 
processing. Alternatively, pixel values may be “rounded 
before truncation. In other embodiments, pixel values may be 
Subsampled. Thus, in one or more embodiments, a single 
value may be stored in the frame buffer to represent two or 
more pixel values. For example, a two-by-two sub-tile of four 
pixel values may be reduced to one value. The stored value 
may be selected from one of the four values, or may be an 
average of the four values. Those skilled in the art will rec 
ognize that various combinations of these schemes are also 
possible. 
0038 Lossless tile-based compression algorithms, since 
they mustavoid the loss of any information in the compressed 
data, might be somewhat more complicated. In an exemplary 
embodiment, the lossless compression algorithm comprises 
entropy encoding of residual errors resulting from neighbor 
based predictors of pixel values. 
0039. Such a lossless compression algorithm is illustrated 
in the flowchart of FIG.3. FIG.3 begins with a transformation 
of pixel color values from the RGB space to a luminance 
chrominance space, as illustrated at block 310. As was 
explained above, transforming pixel color data to a lumi 
nance-chrominance color space may offer several advan 
tages, due to the decorrelation of the RGB data. Accordingly, 
the RGB data may be transformed in some embodiments to 
YCC, data, using Equation (1). 
0040. An exemplary approach to lossless compression of 
the luminance values for the current tile's pixels is illustrated 
at blocks 320, 330, and 340. First, luminance values for the 
pixels are predicted, using the values for neighboring pixels. 
One possible predictor was previously described in Wein 
berger, M. J. et al., LOCO-I: A Low Complexity, Context 
Based, Lossless Image Compression Algorithm, in Data 
Compression Conference (1996), pp. 140-149, and is illus 
trated in FIG. 4, where luminance values (XXX) for three 
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neighbor pixels 410 are used to predict a luminance value (x) 
for pixel 420. The luminance value x may be predicted 
according to Equation (3) below: 

min(x1, x2), X3 2 min(x1, x2) (3) 
& = max(x1, x2), X3 is min(x1, x2) 

x1 + x2 - x3 otherwise. 

Those skilled in the art will appreciate that the first two cases 
of Equation (3) perform simple (and limited) edge detection, 
in which case the color value is predicted based on just one of 
the neighbors. In the illustrated approach, for pixels along the 
lower and left edge of a tile, only one neighbor value is 
accessible. In each of these cases, the color of the single 
neighbor is used as the predicted value for the subject pixel. A 
value of Zero is used to “predict the lower-left pixel color 
value. This results in a first error residual, for the lower-left 
pixel, that equals the pixel’s actual value. 
0041 Referring again to FIG.3, error residuals for each of 
the pixels are computed, at block 330, by subtracting the 
predictor value for each pixel from the pixel’s current value. 
The residuals are generally of Small magnitude, with occa 
sional (but infrequent) large values. These latter values are 
typically found for discontinuity edges, or where the behavior 
of this simple predictor is not well-suited to the structure of 
the image. 
0042. The residuals are then encoded at block 340, using 
an entropy encoding algorithm, to minimize the number of 
bits needed to store the residual values. In one embodiment, a 
Golomb-Rice coder is used. (Rice, R. F. Some Practical 
Universal Noiseless Coding Techniques, Tech. Rep. 22, Jet 
Propulsion Lab, 1979.) Golomb-Rice begins with dividing a 
residual value, ex-x, by a constant 2'. The result is a quo 
tient q and a remainder r. The quotient q is stored using unary 
coding, while the remainder r is stored using normal binary 
coding with k bits. Because the Golomb-Rice compressor 
works only with positive numbers, negative residual values 
are first converted to positive values using an "overlap and 
interleave remapping method where a negative number n is 
remapped to 2n-1, while a positive number m is remapped 
to 2m. That is, negative numbers are mapped to new odd 
numbers and positive numbers are mapped to new even num 
bers. For example, the negative number -3 is mapped to 
2:3-1=5, and the positive number 3 is mapped to 2-3-6. 
0043. To illustrate with an example, assume that the values 
–3, 0, 9, and 1 are to be encoded, and further assume that k=2. 
The values are first transformed to eliminate negative values, 
resulting in the transformed values 5, 0, 18, and 2. The divi 
sion step results in four (q, r) pairs: (1,1), (0,0), (4.2), and 
(0.2). Unary coding of the quotient q results in a series of q 
ones followed by a terminating Zero. The encoded values in 
our example thus become (1001), (0,00), (1111010), 
and (0. 10), for a total of 17 bits. This compares to 20 bits 
required to encode the same data as signed binary values. 
0044 An optimal value for k may be selected for each 
two-by-two Sub-tile using an exhaustive search. In addition, 
the special case where q is zero for all sub-tile values may be 
tested for. In this special case, the terminating Zero bit may be 
removed from the encoded values. The value of k is stored 
along with each tile for use in reconstructing the compressed 
data. In some embodiments, the range of potential values for 
k may be limited to a pre-determined range of values. For 
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example, empirical testing of this algorithm has revealed that 
k is often relatively evenly distributed in the range 0.6. 
Furthermore, the special case (where q is Zero for all pixels in 
a sub-tile) is most often encountered when the entire sub-tile 
consists only of Zero values. Thus, in one or more embodi 
ments, the value of k may be encoded as a 3-bit header for 
each sub-tile, wherein the 3 bits comprise the value of kunless 
the 3 bits are all ones (representing a value of seven), which 
indicates that the entire sub-tile is equal to Zero and that no 
more data for that sub-tile follows. In other cases, the header 
is followed by the Golomb-Rice encoded residuals. 
0045 Referring once more to FIG. 3, the chrominance 
components of the pixel values are compressed at block 350, 
and the compressed luminance and chrominance components 
stored in the color buffer at block 360. As noted above, any of 
several compression methods may be used to compress the 
chrominance components. In the method illustrated in FIG.3, 
Subsampling is used. However, truncation, quantization, and/ 
or simple averaging may also be used. 
0046. In view of the previously illustrated methods, those 
skilled in the art will appreciate that the techniques described 
herein may be used in various combinations, to achieve a 
desired balance between compression performance and 
acceptable errors. For instance, FIG. 3 illustrates the applica 
tion of lossless compression to luminance values of a color 
buffer. Those skilled in the art will appreciate that the same, or 
similar, lossless compression algorithm may be applied to 
chrominance values when a maximum acceptable error 
threshold has been reached. Similarly, those skilled in the art 
will appreciate that the lossy compression techniques dis 
cussed above may be applied, in some embodiments, to lumi 
nance components of pixel color data as well as chrominance 
components, until a threshold error level is reached. 
0047. Furthermore, although the lossless and lossy com 
pression techniques were illustrated above with respect to 
luminance-chrominance color space data, the same or similar 
techniques may be applied to RGB color data, as well as color 
data transformed to another color space, although the com 
pression efficiency may suffer. Finally, the compression tech 
niques discussed herein are applicable to other types of 
graphics data in addition to color buffer data, Such as texture 
buffer data, or depth-buffer data. Those skilled in the art will 
appreciate that different thresholds, or different error metrics 
altogether, may be applied depending on the graphics data 
type. In some embodiments, one portion of the graphics data 
may have a different characteristic than another portion; in 
these embodiments, one of several different threshold values 
may be selected for use with a given tile, depending on that 
characteristic. For instance, Some data might include or cor 
respond to alpha values for alpha blending; one pre-deter 
mined threshold value might be selected for use with those 
tiles for which alpha blending is employed, while another 
threshold value is selected for use with those tiles where alpha 
blending is not employed. 
0048. With the above range of variations and applications 
in mind, an exemplary processing circuit for processing 
graphics data is illustrated in FIG. 5. The processing circuit 
includes a graphics processing unit (GPU) 510 and a frame 
buffer 520. GPU 510 may be a dedicated graphics rendering 
device for a personal computer, workstation, game console, 
mobile phone, or the like, or may be a general purpose pro 
cessing system programmed to performed graphics process 
ing operations. GPU 510 may comprise one or more micro 
processors, microcontrollers, digital signal processors, and/ 
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or customized hardware, and may be implemented as a 
standalone chip or as part of an application-specific inte 
grated circuit (ASIC) that includes other functions. In many 
embodiments, GPU 510 comprises on-board random access 
memory and/or cache memory. 
0049 Frame buffer 520 comprises a memory structure for 
storing graphics data for at least one frame of a graphical 
image. In the graphics processing circuit of FIG. 5, frame 
buffer 520 comprises three or more buffers, a color buffer 
522, which includes color data for each of a number of pixels, 
a depth buffer 524, comprising depth data for each pixel, and 
texture buffer 526. In some embodiments, frame buffer 520 
may comprise additional buffers, such as a stencil buffer. 
Frame buffer 520 is typically implemented using fast random 
access memory (RAM), such as static RAM (SRAM), 
although other memory types, such as DRAM, flash, etc., are 
possible. All or part of frame buffer 520 may be implemented 
with one or more separate memory circuits orchips, or may be 
implemented as part of an ASIC that may also include all or a 
portion of GPU 510. 
0050 GPU 510 is programmed, using software, firmware, 
or some combination of the two, and/or hardwired to carry out 
one or more of the methods described herein. Thus, GPU 510 
is programmed, in Some embodiments, to process graphics 
data by: retrieving pixel values from frame buffer 520, the 
pixel values corresponding to a tile of two or more pixels; 
updating one or more of the pixel values to obtain updated 
pixel values; selectively compressing the updated pixel val 
ues using a lossy compression operation or a lossless com 
pression operation, based on an accumulated error metric 
value for the tile; updating the accumulated error metric value 
if lossy compression is used; and storing the compressed pixel 
values inframe buffer 520. Those skilled in the art will appre 
ciate that one or more of the operations of GPU 510 may be 
performed by hardwired circuits while others are performed 
by one or more programmable processor elements. 
0051 Graphics data stored in frame buffer 520 in com 
pressed form must be decompressed before it is displayed to 
the user. In some embodiments, this decompression opera 
tion, typically performed after a frame has been completely 
rendered, may be performed by GPU510. However, it may be 
advantageous in Some applications to perform color buffer 
decompression in a display controller, or in a hardware pro 
cessing block prior to the display controller. Thus, FIG. 5 
further illustrates a display driver 530, and a graphics display 
540. In one or more embodiments of the invention, the display 
driver 530 is configured to retrieve the stored, compressed 
pixel values from frame buffer 520, to decompress the 
retrieved pixel values, to transform the updated pixel values 
from the first color space to the RGB color space, and to 
provide the transformed, updated pixel values to the display 
540. 

0052. In some embodiments, display driver 530 is imple 
mented with hardware closely associated with graphics dis 
play 540; for example, many mobile phones already include a 
display processing block providing features Such as scaling, 
overlay, color depth transformation, and the like. Color buffer 
decompression (and color space transformation, if needed) 
may be performed in Such a display processing block. Alter 
natively, the functions of display driver 530 may be per 
formed by the same circuit or circuits used to perform the 
functions of GPU 510. 

0053 With the above range of variations and applications 
in mind, it should be understood that the present invention is 
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not limited by the foregoing description, nor is it limited by 
the accompanying drawings. Instead, the present invention is 
limited only by the following claims, and their legal equiva 
lents. 
What is claimed is: 
1. A method for processing graphics data, comprising: 
retrieving, from a frame buffer, pixel values corresponding 

to a tile of two or more pixels; 
updating one or more of the pixel values to obtain updated 

pixel values; 
selectively compressing the updated pixel values using a 

lossy compression operation or a lossless compression 
operation, based on an accumulated error metric value 
for the tile; 

updating the accumulated error metric value if lossy com 
pression is used; and 

storing the compressed pixel values in the frame buffer. 
2. The method of claim 1, wherein selectively compressing 

the updated pixel values comprises predicting the effect of the 
lossy compression on the accumulated error metric value, and 
using the lossy compression operation or the lossless com 
pression operation based on the predicted effect. 

3. The method of claim 1, wherein selectively compressing 
the updated pixel values comprises predicting the effects of 
two or more lossy compression operations on the accumu 
lated error metric value and selecting the lossless compres 
sion operation or one of the two or more lossy compression 
operations, based on the predicted effect. 

4. The method of claim 1, wherein selectively compressing 
the updated pixel values comprises using the lossless com 
pression operation if the accumulated error metric value 
exceeds a pre-determined threshold and otherwise using the 
lossy compression operation. 

5. The method of claim 4, wherein otherwise using the 
lossy compression operation comprises selecting the lossy 
compression operation from two or more candidate lossy 
compression operations based on the accumulated error met 
ric value. 

6. The method of claim 4, wherein the pixel values com 
prise pixel color values, and wherein the method further com 
prises selecting the pre-determined threshold based on 
whether the updated pixel values comprise alpha values. 

7. The method of claim 1, wherein the lossless compression 
operation comprises entropy encoding of residual errors from 
neighbor-based predictors of pixel values. 

8. The method of claim 7, wherein entropy encoding of 
residual errors comprises Golomb-Rice coding. 

9. The method of claim 1, wherein the lossy compression 
operation comprises one or more of quantization, Subsam 
pling, or averaging of the updated pixel values. 

10. The method of claim 1, wherein the pixel values com 
prise pixel color values and wherein the lossy compression 
operation comprises compressing luminance components of 
the updated pixel values using a lossless algorithm and com 
pressing chrominance components of the updated pixel val 
ues using a lossy algorithm. 

11. The method of claim 10, wherein the lossless algorithm 
comprises Golomb-Rice encoding of residual errors from 
neighbor-based predictors of luminance values for the 
updated pixel values, and wherein the lossy algorithm com 
prises one or more of quantization, Subsampling, or averaging 
of the chrominance components of the updated pixel values. 

12. The method of claim 1, wherein the pixel values com 
prise pixel color values and wherein the method further com 
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prises transforming the pixel values from a first color space to 
a second color space before updating one or more of the pixel 
values and transforming the updated pixel values from the 
second color space to the first color space before selectively 
compressing the updated pixel values. 

13. The method of claim 12, wherein the second color 
space comprises the RGB color space and wherein the first 
color space comprises a reversible, bit-exact transform of the 
first color space. 

14. The method of claim 13, wherein the first color space 
comprises the YCoCg color space. 

15. An apparatus for processing graphics data, comprising 
a frame buffer and 
a graphics processor configured to: 

retrieve, from the frame buffer, pixel values correspond 
ing to a tile of two or more pixels; 

update one or more of the pixel values to obtain updated 
pixel values; 

Selectively compress the updated pixel values using a 
lossy compression operation or a lossless compres 
sion operation, based on an accumulated error metric 
value for the tile; 

update the accumulated error metric value if lossy com 
pression is used; and 

store the compressed pixel values in the frame buffer. 
16. The apparatus of claim 15, wherein the graphics pro 

cessor is configured to selectively compress the updated pixel 
values by predicting the effect of the lossy compression on the 
accumulated error metric value and using the lossy compres 
sion operation or the lossless compression operation based on 
the predicted effect. 

17. The apparatus of claim 15, wherein the graphics pro 
cessor is configured to selectively compress the updated pixel 
values by predicting the effects of two or more lossy com 
pression operations on the accumulated error metric value 
and selecting the lossless compression operation or one of the 
two or more lossy compression operations, based on the pre 
dicted effects. 

18. The apparatus of claim 15, wherein the graphics pro 
cessor is configured to compress the updated pixel values 
using the lossless compression operation if the accumulated 
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error metric value exceeds a pre-determined threshold and 
using the lossy compression operation otherwise. 

19. The apparatus of claim 18, wherein the graphics pro 
cessor is further configured to select the lossy compression 
operation from two or more candidate lossy compression 
operations based on the accumulated error metric value if the 
accumulated error metric value does not exceed the pre-de 
termined threshold. 

20. The apparatus of claim 18, wherein the pixel values 
comprise pixel color values and wherein the graphics proces 
sor is further configured to select the pre-determined thresh 
old based on whether the updated pixel values comprise alpha 
values. 

21. The apparatus of claim 15, wherein the pixel values 
comprise pixel color values and wherein the lossy compres 
sion operation comprises compressing luminance compo 
nents of the updated pixel values using a lossless algorithm 
and compressing chrominance components of the updated 
pixel values using a lossy algorithm. 

22. The apparatus of claim 15, wherein the pixel values 
comprise pixel color values and wherein the graphics proces 
sor is further configured to transform the pixel values from a 
first color space to a second color space before updating one 
or more of the pixel values and to transform the updated pixel 
values from the second color space to the first color space 
before selectively compressing the updated pixel values. 

23. The apparatus of claim 22, wherein the second color 
space comprises the RGB color space and wherein the first 
color space comprises a reversible, bit-exact transform of the 
first color space. 

24. The apparatus of claim 23, further comprising a display 
and a display driver, wherein the display driver is configured 
tO: 

retrieve the stored, compressed, updated pixel values from 
the frame buffer; 

decompress the retrieved, compressed updated pixel val 
lues, 

transform the updated pixel values from the first color 
space to the RGB color space; and 

provide the transformed, updated pixel values to the 
display. 


