
(19) United States
US 20080247641A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0247641 A1
Rasmuss0n et al. (43) Pub. Date: Oct. 9, 2008

(54)

(76)

(21)

(22)

(60)

FRAME BUFFER COMPRESSION AND
DECOMPRESSION METHOD FOR
GRAPHICS RENDERING

Jim Rasmusson, Vellinge (SE);
Tomas Akenine-Moller, Lund
(SE); Jon Hasselgren,
Bunkeflostrand (SE); Jacob
Munkberg, Malmo (SE)

Inventors:

Correspondence Address:
COATS & BENNETT, PLLC
1400 Crescent Green, Suite 300
Cary, NC 27518 (US)

Appl. No.: 11/953,339

Filed: Dec. 10, 2007

Related U.S. Application Data

Provisional application No. 60/910,112, filed on Apr.
4, 2007.

LOSSY
COMPRESSION

120

110

f

30

s s N

Publication Classification

(51) Int. Cl.
G06K 9/00 (2006.01)

(52) U.S. Cl. .. 382/166
(57) ABSTRACT

Methods and apparatus are disclosed for the processing of
frame buffer data, Such as color buffer data, in graphics pro
cessing applications. Although more generally applicable,
these methods and apparatus are particularly useful in real
time, polygon-based, 3D rendering applications. An exem
plary method for processing graphics data according to one or
more embodiments of the invention begins with the retrieval,
from a buffer, of pixel values corresponding to a tile of two or
more pixels, and with the updating of one or more of those
updated pixel values. The updated pixel values are selectively
compressed using a lossy compression operation or a lossless
compression operation, based on an accumulated error metric
value for the tile. If lossy compression is used, then the
accumulated error metric value for the tile is updated; in
either event, the compressed pixel values are stored in the
frame buffer for further processing. With this approach, the
accumulated error caused by Successive, or tandem, compres
sion operations may be limited to a pre-determined maxi

l

6

Patent Application Publication Oct. 9, 2008 Sheet 1 of 4 US 2008/0247641 A1

2

&O

: s

8 s

2

Patent Application Publication Oct. 9, 2008 Sheet 2 of 4 US 2008/0247641 A1

RETRIEVE PXEL VALUES
FROM FRAMEBUFFER

FORCURRENTTLE

UPDATE ONE ORMORE
PXEL VALUES

CALCULATE new

240

210

220

225

230

S
aCCumneWP

threshold?
NO

LOSSY
COMPRESSION

250
LOSSLESS

COMPRESSION

UPDATE accum
(acCum--tacCumt (new)

STORE NEW aCCum

STORE COMPRESSED
PXEL VALUES

FIG. 2

Patent Application Publication Oct. 9, 2008 Sheet 3 of 4 US 2008/0247641 A1

310
TRANSFORMPXEL VALUES

FROM RGB SPACE TO
LUMINANCE-CHROMINANCE SPACE

320
PREDICTLUMINANCEVALUES

FOR PIXELS FROM
NEIGHBOR VALUES

330
COMPUTEERROR RESIDUALS

FORLUMINANCEVALUES

340
ENCODE RESIDUALS USING

ENTROPY ENCODING

SUBSAMPLE CHROMINANCE
VALUES

360
STORE COMPRESSED LUMENANCE

AND CHROMINANCEVALUES

FIG. 3

350

Patent Application Publication Oct. 9, 2008 Sheet 4 of 4 US 2008/0247641 A1

GRAPHICS
DISPLAY

540

FRAME BUFFER
520 GRAPHCS

DISPLAY
540

FIG. 5

US 2008/0247641 A1

FRAME BUFFER COMPRESSION AND
DECOMPRESSION METHOD FOR

GRAPHCS RENDERING

RELATED APPLICATION

0001. This application claims priority under 35 U.S.C.
S119(e) from U.S. Provisional Patent Application Ser. No.
60/910,112, which was filed on 4 Apr. 2007 and is entitled
“Color Buffer Compression and Decompression Method for
Graphics Rendering.”

BACKGROUND

0002 The present invention generally relates to the pro
cessing of graphics data, and particularly relates to methods
and apparatus for compressing frame buffer data in a three
dimensional (3D) graphics rendering system.
0003) 3D graphics rendering systems typically utilize sev
eral memory buffers during the rendering process, such as
texture buffers, depth buffers (often called Z-buffers), and
color buffers. These buffers often are stored in random-access
memory (RAM) external to the graphics processing unit
(GPU), which may have relatively small cache memories on
board. Because the buffered data may be retrieved and re
written several times during the rendering process, the
memory bandwidth (the capacity for writing data to memory
and reading data from memory) must often be quite high,
especially to Support real-time graphics processing applica
tions such as real-time games. On a desktop personal com
puter, the available memory bandwidth might be very high,
perhaps several gigabytes per second. In a mobile phone,
several hundred megabytes per second of data transfer might
be available.
0004. Even with these high available memory bandwidths,
the performance of a GPU might nonetheless be constrained
by the memory bandwidth. Reducing the amount of data
retrieved from and written to the external RAM is thus gen
erally advantageous. The advantages of reducing memory
transactions are particularly pronounced in mobile platforms,
Such as a mobile telephone, since the increased clock rates
and wider data buses required to Support very high memory
bandwidths also result in increased power consumption,
draining batteries more quickly.
0005 Data compression is one approach to reducing the
memory bandwidth required to support advanced 3D render
ing applications. Lossless data compression techniques,
which permit the reconstruction of the original data without
any loss of information, are sometimes used today in 3D
graphics rendering applications. Lossy data compression
algorithms, which can provide significantly higher compres
sion ratios but which may result in the introduction of visual
artifacts in the reconstructed data, are commonly used in
Video applications, such as digital television, but appear to
have been neglected with respect to compressing the color
buffer in 3D rendering applications.
0006. One reason for avoiding lossy compression schemes
in 3D rendering applications is that it is possible to introduce
large errors into the color buffer data when lossy compression
is used several times. The need for repeated compression and
decompression operations distinguishes many 3D graphics
rendering applications from digital video applications, for
instance, where a given frame is typically compressed just
once. Some or all of the color buffer data for a single frame
may be compressed and decompressed several times during

Oct. 9, 2008

the graphics rendering process. In a triangle-based 3D ren
dering system, for example, several triangles may be succes
sively written to a segment (e.g., a tile, or block) of data. Each
time, the segment of data may be retrieved from the frame
buffer, decompressed, processed, compressed again, and
written back to the color buffer. If lossy compression is used
to compress the data segment each time, this tandem com
pression may result in repeated losses of information, intro
ducing unacceptable errors into the final data.

SUMMARY

0007. The methods and apparatus taught herein provide a
novel approach to the processing of frame buffer data, e.g.,
color buffer data, in graphics processing applications.
Although more generally applicable, these methods and
apparatus are particularly useful in real-time, polygon-based,
3D rendering applications. Those skilled in the art will appre
ciate that the methods and apparatus disclosed herein may be
applied to reduce the memory bandwidth requirements for a
given graphics application, to facilitate more advanced graph
ics processing, or both. Those skilled in the art will also
appreciate that the techniques disclosed herein may provide
particular advantages in a battery-powered portable device,
Such as a mobile phone, where higher memory bandwidth
requirements generally result in increased energy consump
tion and shorter battery life.
0008. An exemplary method for processing graphics data
according to one or more embodiments of the invention
begins with the retrieval, from a buffer, of pixel values corre
sponding to a tile of two or more pixels, and with the updating
of one or more of the retrieved pixel values. The updated pixel
values are selectively compressed using a lossy compression
operation or a lossless compression operation, based on an
accumulated error metric value for the tile. If lossy compres
sion is used, then the accumulated error metric value for the
tile is updated; in eitherevent, the compressed pixel values are
stored in the frame buffer for further processing. With this
approach, the accumulated error caused by Successive, or
tandem, compression operations may be limited to a pre
determined maximum.

0009. In some embodiments, the effect of lossy compres
sion on the accumulated error metric value for the tile is
predicted before the compression operation is performed, and
lossy compression or lossless compression is performed
based on the predicted effect. In some of these embodiments,
one of two or more lossy compression operations may be
used, based on the predicted effect. In several embodiments,
a lossless compression operation is used if the accumulated
error metric value exceeds a pre-determined threshold; oth
erwise a lossy compression operation is used. In embodi
ments where the pixel values comprise pixel color values, the
method may further comprise selecting the pre-determined
threshold based on whether the updated pixel values comprise
alpha values for alpha blending.
0010. In some embodiments, the lossless compression
operation comprises entropy encoding of residual errors from
neighbor-based predictors of pixel values. Some of these
embodiments may use Golomb-Rice coding. The lossy com
pression operation may comprise, in various embodiments,
one or more of quantization, Subsampling, or averaging of the
updated pixel values. In embodiments where the pixel values
comprise pixel color values, the lossy compression operation
may comprise compressing luminance components of the

US 2008/0247641 A1

pixel values using a lossless algorithm and compressing
chrominance components of the pixel values using a lossy
algorithm.
0011 When the pixel values comprise pixel color values,
various embodiments may further comprise transforming the
pixel values from a first color space to a second color space
before the pixel values are updated, and transforming the
updated pixel values from the second color space to the first
color space before compressing the updated pixel values. In
several of these embodiments, the second color space com
prises the red-green-blue (RGB) color space, and the first
color space comprises a reversible, bit-exact transform of the
first color space. Such as the YCoCg color space.
0012 Apparatus for processing graphics data according to
one or more of the above methods, as well as variations of
those methods, are also disclosed herein. Of course, the
present invention is not limited to the above features and
advantages. Those skilled in the art will recognize additional
features and advantages upon reading the following detailed
description, and upon viewing the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 illustrates the effects of tandem compression
on pixel data.
0014 FIG. 2 is a flow diagram illustrating an exemplary
method for processing graphics data according to one or more
embodiments of the invention.
0015 FIG. 3 is a flow diagram illustrating an exemplary
method for compressing color buffer data.
0016 FIG. 4 illustrates the prediction of pixel data from
neighbor pixels.
0017 FIG. 5 is a block diagram of an apparatus for pro
cessing graphics data according to one or more embodiments
of the invention.

DETAILED DESCRIPTION

0.018. The various methods and devices disclosed herein
describe a tile-based compression and decompression
scheme for use in graphics processing, particularly in 3D
graphics rendering applications. In much of the following
discussion, the inventive techniques will be illustrated in the
context of processing color buffer data, but those skilled in the
art will appreciate the applicability of these techniques to
other graphics data, such as texture buffer data, depth buffer
data, or intensity data. Using the disclosed schemes, the quan
tity of graphics data that must be buffered may be reduced
considerably, reducing the memory bandwidth required for
storing and retrieving the graphics data, or freeing memory
bandwidth for more advanced and/or more rapid graphics
processing. As disclosed herein, lossy compression tech
niques may be used to achieve the largest compression gains,
while lossless compression techniques are selectively applied
to keep the accumulated errors introduced by the compres
sion operations to acceptable levels.
0019. As discussed above, applying lossy compression
techniques to 3D graphics rendering contexts may introduce
particular problems. Because 3D graphics data may be com
pressed and decompressed several times during the rendering
of a single frame, the accumulated errors caused by repeated
lossy compression operations may grow beyond acceptable
levels, causing undesirable visual artifacts in the rendered
image. This is illustrated in FIG.1. At step 110, a first triangle
112 is written to a tile 115 of sixteen pixels. Specifically, a

Oct. 9, 2008

color value C is written to each of the pixels covered by
triangle 112, including the pixel in the upper-left corner of tile
115. Subsequently, the color data for tile 115 is compressed,
using a lossy compression operation, at Step 120. This lossy
compression introduces an error into the tile data, so that upon
decompression (not shown), the upper-left pixel contains a
value of G, not C. At step 130, triangle 132 is written to tile
115. In this example, the writing of triangle 132 has no direct
effect on the color value associated with the upper-left pixel.
However, after another compression operation at step 140,
additional erroris introduced to the color value for the upper
left pixel, so that the new value, at step 150, equals C. Those
skilled in the art will appreciated that the errors introduced by
tandem compression, as illustrated in FIG.1, may grow with
out bound under certain circumstances. However, using the
techniques disclosed herein, lossy compression of graphics
data may be applied, while still keeping the introduced errors
under control.

0020 FIG. 2 illustrates an exemplary method for process
ing graphics data according to one or more embodiments of
the present invention. At block 210, pixel values are retrieved
from a frame buffer for processing. The term “frame buffer
is used hereinto denote a memory structure for storing graph
ics data related to a given rendering of a graphics image. In
some applications, the pixels of the frame buffer may directly
correspond to the pixels of a video display device, so that the
frame buffer comprises a complete frame of video data. In
others, however, the frame buffer data may undergo addi
tional processing before it is sent to a video display. In any
event, the frame buffer typically comprises a color buffer,
which includes a pixel color value for each pixel, and may
also include a depth buffer, and a texture buffer. The color
buffer data may also include alpha channel data used for alpha
blending.
0021. In the discussion that follows, the term “pixel’ is
used to describe a single element in a two-dimensional array
of graphics data. Again, a single pixel of graphics data may or
may not correspond to a single output pixelona Video display.
Furthermore, those skilled in the art will be familiar with
various graphics processing techniques that involve multi
sampling or Supersampling of graphics data. Those practitio
ners will further appreciate that the inventive techniques
described herein may be applied to Supersampled or multi
sampled graphics data as well, for instance when that data
must be repeatedly stored and retrieved from a buffer.
Accordingly, the term 'pixel’, as used herein, may refer to
each element of Supersampled or multi-sampled graphics
data.
0022. At least for purposes of compression and decom
pression operations, the pixel data retrieved from the frame
buffer is conveniently processed in blocks, or “tiles, com
prising two or more pixel values. (The term “tile' is used
herein to refer to a segment, or “block', of graphics data,
comprising at least two pixel values.) For instance, the pixel
data may be processed in eight-by-eight pixel tiles. Thus,
each tile may be separately and independently compressed
(and decompressed) according to the techniques described
herein.

0023 Invarious embodiments of the present invention, the
process of retrieving pixel data from the frame buffer includes
decompression of the pixel data before Subsequent process
ing. As will be well understood by those skilled in the art,
decompression involves reversing the operations used to
compress the data. If a lossless Scheme was employed to

US 2008/0247641 A1

compress the data, then the original data may be recon
structed exactly, i.e., with no loss of information. On the other
hand, if a lossy compression scheme was used, the corre
sponding decompression operation may restore the original
data format and/or size, but some of the information in the
original data is irretrievably lost.
0024. In some embodiments of the present invention, the
frame buffer includes or is associated with data indicating
whether lossy or lossless compression was used. In several
embodiments, each compressed tile is combined with header
information before it is written to the frame buffer. In some of
these embodiments, this data may include information indi
cating which of several compression algorithms was used.
This data may be tile-specific, such that the use of lossy or
lossless compression schemes may be independently sig
naled for each tile.

0025. In a similar fashion, accumulated error information
may be independently maintained for each tile. This accumu
lated error information thus includes an accumulated error
metric value for each tile, the accumulated error metric value
indicating the error introduced into the tile data from one or
more lossy compression operations. The accumulated error
metric values may be stored in the same memory as the frame
buffer, or maintained in a separate memory. In a typical
embodiment, the accumulated error metric values are initial
ized to Zero at the beginning of a frame rendering operation,
and updated after the use of one or more lossy compression
operations on one or more of the tiles.
0026. Thus, referring again to FIG. 2, an accumulated
error metric value, t, is retrieved from memory for a
current tile to be processed, as shown at block 220. In some
embodiments, t, represents the accumulated mean
square error for the tile, although other measures, such as the
root mean square error, or the maximum error level for any of
the pixels in the tile, may be used. Another useful error metric
is the sum of absolute differences between the reconstructed
pixel values and their “true' values. The choice of which error
metric to use generally involves a trade-off between the num
ber of bits needed to represent an error metric value and the
precision of control that the error metric facilitates. Indeed, in
Some embodiments, more than one error metric may be used,
to provide even finer control of the error introduced by tile
compression, although the processing and storing of addi
tional metric values may diminish the benefits gained from
compressing the pixel data. In any event, the retrieved error
metric value to indicates the error introduced thus far by
previous lossy compression operations performed upon the
current tile.

0027. Once decompressed, the pixel data for the current
tile is updated according to a current rendering operation, as
shown at block 225. In a polygon-based 3D rendering appli
cation, for example, color values corresponding to a new
triangle may be written to one or more of the pixels for the
current tile. The rendered triangle may completely overlap the
tile, so that all of the pixel values are updated, or may only
partially cover the tile, so that one or several of the pixel
values are updated while others remain unchanged. Other
operations, such as shading, texturing, or alpha blending, may
also be applied, according to techniques well known in the art.
0028. Those skilled in the art will recognize that certain
operations on a tile will make the corresponding accumulated
error metric value obsolete. For example, if a triangle com
pletely overlaps a tile, so that all the pixel color values for the
tile are re-written, the accumulated error metric value result

Oct. 9, 2008

ing from previous compression operations is no longer appli
cable (assuming that the previous values are not blended with
the new values). In these instances, then, the updating of the
pixel values is followed by resetting the accumulated error
metric value (or values) for the tile to Zero. In other instances,
Such as when a rendered triangle only partly overlaps a tile,
the accumulated error metric value continues to provide a
meaningful indicator of the previously introduced compres
sion errors.
0029. In any event, after the pixel values are updated, the

tile is compressed again, and stored back in the frame buffer
to free up on-board RAM for processing of other tiles.
Depending on the value of t, however, further compres
sion operations may be limited to lossless compression, so
that to does not increase further. Accordingly, t, may
be compared to a threshold valuet, fift,>t,...,
then lossless compression is performed, to avoid introducing
further error into the compressed data. On the other hand, if
T st, at least one additional lossy compression ser

operation may be tolerated.
0030. In some embodiments, the effect of a projected lossy
compression operation on the accumulated error metric value
for the tile is predicted before determining whether to use the
lossy compression operation or a lossless operation. Thus, at
block 230, an error contribution T, is calculated, based on
the projected lossy compression operation. At block 240, the
accumulated error that would result from using the projected
compression operation, e.g., the Sum of t, and t, is
compared to a pre-determined threshold valuet. If the
projected lossy compression operation would result in the
accumulated error metric value exceeding the threshold, then
a lossless compression operation is performed instead, as
shown at block 250, and the compressed pixel values are
stored in (e.g., re-writtento) the frame buffer at block 290. On
the other hand, if the projected lossy compression operation
will not introduce an unacceptable error level, then the lossy
compression operation is performed, as shown at block 260.
0031. In the event that the lossy compression operation is
used, then the accumulated error metric value for the tile is
updated, as shown at block 270. For instance, a previous
accumulated error metric value may be replaced with a Sum of
the previous accumulated error metric value and the contri
bution from the newly performed compression operation. At
block 280, the updated accumulated error metric value is
stored for use in later processing of the tile, and the com
pressed tile is stored in the frame buffer at block 290.
0032 Those skilled in the art will appreciate that the
method illustrated in FIG.2 may readily be extended to facili
tate the selective application of several lossy compression
algorithms. For instance, two different lossy compression
algorithms may be available. One may offer greater compres
sion than the other, at the expense of increased error intro
duction. If multiple lossy compression algorithms are avail
able, then the error contribution calculation of block 230 may
be performed first for the algorithm offering the highest com
pression. If the predicted total accumulated error does not
exceed the threshold, then that algorithm is used at block 250.
On the other hand, if the first algorithm would result in exces
sive error, then a predicted error contribution for the second
algorithm is calculated and tested. If this algorithm results in
an acceptable error level, then it is used. Otherwise, lossless
compression is used, as in the previously discussed method.
0033. In yet another variation, the accumulated error met
ric value is used to select one of two or more lossy compres

US 2008/0247641 A1

sion algorithms. For instance, in one embodiment, if the accu
mulated error metric value is below a first threshold, then a
first lossy compression algorithm is used. If the accumulated
error metric value is above the first threshold, but below a
second threshold, then a second lossy compression algorithm
is used instead. Typically, the second compression algorithm
is chosen to introduce less error than the first. If, on the other
hand, the accumulated error metric value exceeds the second
pre-determined threshold value, then lossless compression is
used.

0034. Those skilled in the art will appreciate that the
method illustrated in FIG. 2 may be used with any lossless
compression algorithm suitable for compression of block
organized pixel data, as well as with any suitable lossy com
pression algorithm. Those skilled in the art will appreciate,
however, that when the techniques of the present invention are
applied to color data, it may be advantageous to employ the
compression algorithms in a luminance-chrominance color
space, rather than the red-green-blue (RGB) color space used
for many standard graphics processing processes. Accord
ingly, evenifall or most pixel updating operations (such as the
rendering of triangles, pixel shading, etc.) are performed in
the RGB space, compression is advantageously performed
upon pixel data that has been transformed to a luminance
chrominance space. As is well known in the art, more efficient
compression is thus enabled, due to the decorrelation of the
RGB channels.

0035 Another advantage from using aluminance-chromi
nance color space for compressing pixel color data is that
separate compression schemes may be used for the luminance
and chrominance values. Since the human visual system is
more Susceptible to errors in the luminance components,
some embodiments of the methods disclosed herein may
always use lossless compression for the luminance compo
nents, while selectively employing lossy compression for the
chrominance components according to the techniques dis
closed herein. In other embodiments, lossy compression may
selectively be permitted for both the luminance and chromi
nance components, but different schemes, with different
threshold levels, employed to determine when to switch from
lossy to lossless compression. In yet others, accumulated
error metric values may be tracked separately for the lumi
nance and chrominance components, and/or applied to sepa
rate thresholds, such that lossless compression is introduced
Sooner for luminance data than for chrominance data.

0036) Several luminance-chrominance representations of
pixel color data are known in the art. Because the present
techniques employ at least one lossless compression scheme,
so that compressed data may be reconstructed exactly, the
color space transformation should also be exactly reversible.
One such color transformation scheme is the RGB to YCC
(luminance plus offset orange plus offset green) transform
introduced by Henrique Malvar and Gary Sullivan in their
July 2003 contribution to the Joint Video Team of ISO/IEC
PMEP & ITU-TVCEG, entitled “YCOCG-R: A Color Space
with RGB Reversibility and Low Dynamic Range.” Docu
ment No. JVT-I014r3. Using this approach, transforming
from RGB to YCC is done according to:

Oct. 9, 2008

Y=t+(Cass 1) (1)

and the corresponding transform from YCC to RGB is:

R=B+C. (2)

If the RGB components are stored using n bits each, the Y
component will require n bits, and the chrominance compo
nents n+1 bits. Thus, transforming to the YCC space may
cost two additional bits. However, it has been shown that in
certain contexts, color data transformed according to this
approach may be compressed more efficiently than corre
sponding RGB data, or data transformed according to the
commonly-used YCC transform. (See Charles Poynton,
Digital Video and HDTV San Francisco: Morgan Kaufman
Publishers, 2003, for a description of the YCC transform.)
It must be noted that the YCC transform, is not, in general,
reversible without information loss. An alternative color
transform to YCC, however, is the exactly reversible com
ponent transformation (RCT) from the JPEG-2000 standard.
0037 Suitable lossy compression algorithms may be quite
simple. For example, pixel values may simply be quantized to
a limited set of possible values, thus reducing the number of
bits needed to store the values. This quantization process may
simply involve truncation of the pixel values, in which case
decompression simply requires the adding of Zeroes to the
truncated values to obtain full-precision data for Subsequent
processing. Alternatively, pixel values may be “rounded
before truncation. In other embodiments, pixel values may be
Subsampled. Thus, in one or more embodiments, a single
value may be stored in the frame buffer to represent two or
more pixel values. For example, a two-by-two sub-tile of four
pixel values may be reduced to one value. The stored value
may be selected from one of the four values, or may be an
average of the four values. Those skilled in the art will rec
ognize that various combinations of these schemes are also
possible.
0038 Lossless tile-based compression algorithms, since
they mustavoid the loss of any information in the compressed
data, might be somewhat more complicated. In an exemplary
embodiment, the lossless compression algorithm comprises
entropy encoding of residual errors resulting from neighbor
based predictors of pixel values.
0039. Such a lossless compression algorithm is illustrated
in the flowchart of FIG.3. FIG.3 begins with a transformation
of pixel color values from the RGB space to a luminance
chrominance space, as illustrated at block 310. As was
explained above, transforming pixel color data to a lumi
nance-chrominance color space may offer several advan
tages, due to the decorrelation of the RGB data. Accordingly,
the RGB data may be transformed in some embodiments to
YCC, data, using Equation (1).
0040. An exemplary approach to lossless compression of
the luminance values for the current tile's pixels is illustrated
at blocks 320, 330, and 340. First, luminance values for the
pixels are predicted, using the values for neighboring pixels.
One possible predictor was previously described in Wein
berger, M. J. et al., LOCO-I: A Low Complexity, Context
Based, Lossless Image Compression Algorithm, in Data
Compression Conference (1996), pp. 140-149, and is illus
trated in FIG. 4, where luminance values (XXX) for three

US 2008/0247641 A1

neighbor pixels 410 are used to predict a luminance value (x)
for pixel 420. The luminance value x may be predicted
according to Equation (3) below:

min(x1, x2), X3 2 min(x1, x2) (3)
& = max(x1, x2), X3 is min(x1, x2)

x1 + x2 - x3 otherwise.

Those skilled in the art will appreciate that the first two cases
of Equation (3) perform simple (and limited) edge detection,
in which case the color value is predicted based on just one of
the neighbors. In the illustrated approach, for pixels along the
lower and left edge of a tile, only one neighbor value is
accessible. In each of these cases, the color of the single
neighbor is used as the predicted value for the subject pixel. A
value of Zero is used to “predict the lower-left pixel color
value. This results in a first error residual, for the lower-left
pixel, that equals the pixel’s actual value.
0041 Referring again to FIG.3, error residuals for each of
the pixels are computed, at block 330, by subtracting the
predictor value for each pixel from the pixel’s current value.
The residuals are generally of Small magnitude, with occa
sional (but infrequent) large values. These latter values are
typically found for discontinuity edges, or where the behavior
of this simple predictor is not well-suited to the structure of
the image.
0042. The residuals are then encoded at block 340, using
an entropy encoding algorithm, to minimize the number of
bits needed to store the residual values. In one embodiment, a
Golomb-Rice coder is used. (Rice, R. F. Some Practical
Universal Noiseless Coding Techniques, Tech. Rep. 22, Jet
Propulsion Lab, 1979.) Golomb-Rice begins with dividing a
residual value, ex-x, by a constant 2'. The result is a quo
tient q and a remainder r. The quotient q is stored using unary
coding, while the remainder r is stored using normal binary
coding with k bits. Because the Golomb-Rice compressor
works only with positive numbers, negative residual values
are first converted to positive values using an "overlap and
interleave remapping method where a negative number n is
remapped to 2n-1, while a positive number m is remapped
to 2m. That is, negative numbers are mapped to new odd
numbers and positive numbers are mapped to new even num
bers. For example, the negative number -3 is mapped to
2:3-1=5, and the positive number 3 is mapped to 2-3-6.
0043. To illustrate with an example, assume that the values
–3, 0, 9, and 1 are to be encoded, and further assume that k=2.
The values are first transformed to eliminate negative values,
resulting in the transformed values 5, 0, 18, and 2. The divi
sion step results in four (q, r) pairs: (1,1), (0,0), (4.2), and
(0.2). Unary coding of the quotient q results in a series of q
ones followed by a terminating Zero. The encoded values in
our example thus become (1001), (0,00), (1111010),
and (0. 10), for a total of 17 bits. This compares to 20 bits
required to encode the same data as signed binary values.
0044 An optimal value for k may be selected for each
two-by-two Sub-tile using an exhaustive search. In addition,
the special case where q is zero for all sub-tile values may be
tested for. In this special case, the terminating Zero bit may be
removed from the encoded values. The value of k is stored
along with each tile for use in reconstructing the compressed
data. In some embodiments, the range of potential values for
k may be limited to a pre-determined range of values. For

Oct. 9, 2008

example, empirical testing of this algorithm has revealed that
k is often relatively evenly distributed in the range 0.6.
Furthermore, the special case (where q is Zero for all pixels in
a sub-tile) is most often encountered when the entire sub-tile
consists only of Zero values. Thus, in one or more embodi
ments, the value of k may be encoded as a 3-bit header for
each sub-tile, wherein the 3 bits comprise the value of kunless
the 3 bits are all ones (representing a value of seven), which
indicates that the entire sub-tile is equal to Zero and that no
more data for that sub-tile follows. In other cases, the header
is followed by the Golomb-Rice encoded residuals.
0045 Referring once more to FIG. 3, the chrominance
components of the pixel values are compressed at block 350,
and the compressed luminance and chrominance components
stored in the color buffer at block 360. As noted above, any of
several compression methods may be used to compress the
chrominance components. In the method illustrated in FIG.3,
Subsampling is used. However, truncation, quantization, and/
or simple averaging may also be used.
0046. In view of the previously illustrated methods, those
skilled in the art will appreciate that the techniques described
herein may be used in various combinations, to achieve a
desired balance between compression performance and
acceptable errors. For instance, FIG. 3 illustrates the applica
tion of lossless compression to luminance values of a color
buffer. Those skilled in the art will appreciate that the same, or
similar, lossless compression algorithm may be applied to
chrominance values when a maximum acceptable error
threshold has been reached. Similarly, those skilled in the art
will appreciate that the lossy compression techniques dis
cussed above may be applied, in some embodiments, to lumi
nance components of pixel color data as well as chrominance
components, until a threshold error level is reached.
0047. Furthermore, although the lossless and lossy com
pression techniques were illustrated above with respect to
luminance-chrominance color space data, the same or similar
techniques may be applied to RGB color data, as well as color
data transformed to another color space, although the com
pression efficiency may suffer. Finally, the compression tech
niques discussed herein are applicable to other types of
graphics data in addition to color buffer data, Such as texture
buffer data, or depth-buffer data. Those skilled in the art will
appreciate that different thresholds, or different error metrics
altogether, may be applied depending on the graphics data
type. In some embodiments, one portion of the graphics data
may have a different characteristic than another portion; in
these embodiments, one of several different threshold values
may be selected for use with a given tile, depending on that
characteristic. For instance, Some data might include or cor
respond to alpha values for alpha blending; one pre-deter
mined threshold value might be selected for use with those
tiles for which alpha blending is employed, while another
threshold value is selected for use with those tiles where alpha
blending is not employed.
0048. With the above range of variations and applications
in mind, an exemplary processing circuit for processing
graphics data is illustrated in FIG. 5. The processing circuit
includes a graphics processing unit (GPU) 510 and a frame
buffer 520. GPU 510 may be a dedicated graphics rendering
device for a personal computer, workstation, game console,
mobile phone, or the like, or may be a general purpose pro
cessing system programmed to performed graphics process
ing operations. GPU 510 may comprise one or more micro
processors, microcontrollers, digital signal processors, and/

US 2008/0247641 A1

or customized hardware, and may be implemented as a
standalone chip or as part of an application-specific inte
grated circuit (ASIC) that includes other functions. In many
embodiments, GPU 510 comprises on-board random access
memory and/or cache memory.
0049 Frame buffer 520 comprises a memory structure for
storing graphics data for at least one frame of a graphical
image. In the graphics processing circuit of FIG. 5, frame
buffer 520 comprises three or more buffers, a color buffer
522, which includes color data for each of a number of pixels,
a depth buffer 524, comprising depth data for each pixel, and
texture buffer 526. In some embodiments, frame buffer 520
may comprise additional buffers, such as a stencil buffer.
Frame buffer 520 is typically implemented using fast random
access memory (RAM), such as static RAM (SRAM),
although other memory types, such as DRAM, flash, etc., are
possible. All or part of frame buffer 520 may be implemented
with one or more separate memory circuits orchips, or may be
implemented as part of an ASIC that may also include all or a
portion of GPU 510.
0050 GPU 510 is programmed, using software, firmware,
or some combination of the two, and/or hardwired to carry out
one or more of the methods described herein. Thus, GPU 510
is programmed, in Some embodiments, to process graphics
data by: retrieving pixel values from frame buffer 520, the
pixel values corresponding to a tile of two or more pixels;
updating one or more of the pixel values to obtain updated
pixel values; selectively compressing the updated pixel val
ues using a lossy compression operation or a lossless com
pression operation, based on an accumulated error metric
value for the tile; updating the accumulated error metric value
if lossy compression is used; and storing the compressed pixel
values inframe buffer 520. Those skilled in the art will appre
ciate that one or more of the operations of GPU 510 may be
performed by hardwired circuits while others are performed
by one or more programmable processor elements.
0051 Graphics data stored in frame buffer 520 in com
pressed form must be decompressed before it is displayed to
the user. In some embodiments, this decompression opera
tion, typically performed after a frame has been completely
rendered, may be performed by GPU510. However, it may be
advantageous in Some applications to perform color buffer
decompression in a display controller, or in a hardware pro
cessing block prior to the display controller. Thus, FIG. 5
further illustrates a display driver 530, and a graphics display
540. In one or more embodiments of the invention, the display
driver 530 is configured to retrieve the stored, compressed
pixel values from frame buffer 520, to decompress the
retrieved pixel values, to transform the updated pixel values
from the first color space to the RGB color space, and to
provide the transformed, updated pixel values to the display
540.

0052. In some embodiments, display driver 530 is imple
mented with hardware closely associated with graphics dis
play 540; for example, many mobile phones already include a
display processing block providing features Such as scaling,
overlay, color depth transformation, and the like. Color buffer
decompression (and color space transformation, if needed)
may be performed in Such a display processing block. Alter
natively, the functions of display driver 530 may be per
formed by the same circuit or circuits used to perform the
functions of GPU 510.

0053 With the above range of variations and applications
in mind, it should be understood that the present invention is

Oct. 9, 2008

not limited by the foregoing description, nor is it limited by
the accompanying drawings. Instead, the present invention is
limited only by the following claims, and their legal equiva
lents.
What is claimed is:
1. A method for processing graphics data, comprising:
retrieving, from a frame buffer, pixel values corresponding

to a tile of two or more pixels;
updating one or more of the pixel values to obtain updated

pixel values;
selectively compressing the updated pixel values using a

lossy compression operation or a lossless compression
operation, based on an accumulated error metric value
for the tile;

updating the accumulated error metric value if lossy com
pression is used; and

storing the compressed pixel values in the frame buffer.
2. The method of claim 1, wherein selectively compressing

the updated pixel values comprises predicting the effect of the
lossy compression on the accumulated error metric value, and
using the lossy compression operation or the lossless com
pression operation based on the predicted effect.

3. The method of claim 1, wherein selectively compressing
the updated pixel values comprises predicting the effects of
two or more lossy compression operations on the accumu
lated error metric value and selecting the lossless compres
sion operation or one of the two or more lossy compression
operations, based on the predicted effect.

4. The method of claim 1, wherein selectively compressing
the updated pixel values comprises using the lossless com
pression operation if the accumulated error metric value
exceeds a pre-determined threshold and otherwise using the
lossy compression operation.

5. The method of claim 4, wherein otherwise using the
lossy compression operation comprises selecting the lossy
compression operation from two or more candidate lossy
compression operations based on the accumulated error met
ric value.

6. The method of claim 4, wherein the pixel values com
prise pixel color values, and wherein the method further com
prises selecting the pre-determined threshold based on
whether the updated pixel values comprise alpha values.

7. The method of claim 1, wherein the lossless compression
operation comprises entropy encoding of residual errors from
neighbor-based predictors of pixel values.

8. The method of claim 7, wherein entropy encoding of
residual errors comprises Golomb-Rice coding.

9. The method of claim 1, wherein the lossy compression
operation comprises one or more of quantization, Subsam
pling, or averaging of the updated pixel values.

10. The method of claim 1, wherein the pixel values com
prise pixel color values and wherein the lossy compression
operation comprises compressing luminance components of
the updated pixel values using a lossless algorithm and com
pressing chrominance components of the updated pixel val
ues using a lossy algorithm.

11. The method of claim 10, wherein the lossless algorithm
comprises Golomb-Rice encoding of residual errors from
neighbor-based predictors of luminance values for the
updated pixel values, and wherein the lossy algorithm com
prises one or more of quantization, Subsampling, or averaging
of the chrominance components of the updated pixel values.

12. The method of claim 1, wherein the pixel values com
prise pixel color values and wherein the method further com

US 2008/0247641 A1

prises transforming the pixel values from a first color space to
a second color space before updating one or more of the pixel
values and transforming the updated pixel values from the
second color space to the first color space before selectively
compressing the updated pixel values.

13. The method of claim 12, wherein the second color
space comprises the RGB color space and wherein the first
color space comprises a reversible, bit-exact transform of the
first color space.

14. The method of claim 13, wherein the first color space
comprises the YCoCg color space.

15. An apparatus for processing graphics data, comprising
a frame buffer and
a graphics processor configured to:

retrieve, from the frame buffer, pixel values correspond
ing to a tile of two or more pixels;

update one or more of the pixel values to obtain updated
pixel values;

Selectively compress the updated pixel values using a
lossy compression operation or a lossless compres
sion operation, based on an accumulated error metric
value for the tile;

update the accumulated error metric value if lossy com
pression is used; and

store the compressed pixel values in the frame buffer.
16. The apparatus of claim 15, wherein the graphics pro

cessor is configured to selectively compress the updated pixel
values by predicting the effect of the lossy compression on the
accumulated error metric value and using the lossy compres
sion operation or the lossless compression operation based on
the predicted effect.

17. The apparatus of claim 15, wherein the graphics pro
cessor is configured to selectively compress the updated pixel
values by predicting the effects of two or more lossy com
pression operations on the accumulated error metric value
and selecting the lossless compression operation or one of the
two or more lossy compression operations, based on the pre
dicted effects.

18. The apparatus of claim 15, wherein the graphics pro
cessor is configured to compress the updated pixel values
using the lossless compression operation if the accumulated

Oct. 9, 2008

error metric value exceeds a pre-determined threshold and
using the lossy compression operation otherwise.

19. The apparatus of claim 18, wherein the graphics pro
cessor is further configured to select the lossy compression
operation from two or more candidate lossy compression
operations based on the accumulated error metric value if the
accumulated error metric value does not exceed the pre-de
termined threshold.

20. The apparatus of claim 18, wherein the pixel values
comprise pixel color values and wherein the graphics proces
sor is further configured to select the pre-determined thresh
old based on whether the updated pixel values comprise alpha
values.

21. The apparatus of claim 15, wherein the pixel values
comprise pixel color values and wherein the lossy compres
sion operation comprises compressing luminance compo
nents of the updated pixel values using a lossless algorithm
and compressing chrominance components of the updated
pixel values using a lossy algorithm.

22. The apparatus of claim 15, wherein the pixel values
comprise pixel color values and wherein the graphics proces
sor is further configured to transform the pixel values from a
first color space to a second color space before updating one
or more of the pixel values and to transform the updated pixel
values from the second color space to the first color space
before selectively compressing the updated pixel values.

23. The apparatus of claim 22, wherein the second color
space comprises the RGB color space and wherein the first
color space comprises a reversible, bit-exact transform of the
first color space.

24. The apparatus of claim 23, further comprising a display
and a display driver, wherein the display driver is configured
tO:

retrieve the stored, compressed, updated pixel values from
the frame buffer;

decompress the retrieved, compressed updated pixel val
lues,

transform the updated pixel values from the first color
space to the RGB color space; and

provide the transformed, updated pixel values to the
display.

