US 20180063246A1

12y Patent Application Publication o) Pub. No.: US 2018/0063246 A1

a9y United States

VANGELOYV et al.

43) Pub. Date: Mar. 1, 2018

(54) METHOD AND APPARATUS FOR
EFFICIENT DATA TRANSFER PROTOCOL
IN A LIMITED-BANDWIDTH VEHICLE
ENVIRONMENT

(71) Applicant: FORD GLOBAL TECHNOLOGIES,
LLC, Dearborn, MI (US)

(72) Inventors: John Naum VANGELOV, South Lyon,
MI (US); Jason Michael MILLER,
Woodhaven, MI (US); Sangeetha
SANGAMESWARAN, Canton, MI
(US); John William SCHMOTZER,
Canton, MI (US)

(21) Appl. No.: 15/253,177

(22) Filed: Aug. 31, 2016

Publication Classification

(51) Int. CL
HO4L 29/08
BG6OR 16/023
HO4L 12/40

(2006.01)
(2006.01)
(2006.01)

(52) US.CL
CPC ... HO4L 67/12 (2013.01); B60R 16/023
(2013.01); HO4L 41/12 (2013.01); HO4L
12/40013 (2013.01); HO4L 67/327 (2013.01)

(57) ABSTRACT

A system includes a processor configured to receive a 29-bit
request transmitted over a vehicle controller area network
(CAN) bus. The processor is also configured to identify a
vehicle electronic control unit (ECU) as a target recipient
based on a target identifier included with the request. The
processor is further configured to identify a source which
sent the request based on a source identifier included with
the request. Also, the processor is configured to verify the
identified source as permitted to send the request to the ECU
and, responsive to the verification, route the request to an
ECU application, executing on the ECU, identified by an
application identifier included with the request.

VEHICLE
Npav. DEV.

PERSONAL =
54
Nav. DEV. N

ii

TAACT CAYR)
ﬁm/w/ TYNOSHE o

US 2018/0063246 Al

Mar. 1,2018 Sheet 1 of 5

WANRY

| w g M:&E

AEC CAYN
FIOIHEA 7109

_i\....\%

Patent Application Publication

Patent Application Publication

Mar. 1,2018 Sheet 2 of 5§ US 2018/0063246 Al

Z03A
APPLICATION PROGRAMMING INTERFACE
213714 ArP1 1218704 Arr2 | 217714 ArP3
219774 APPLICATION SECURITY
211
TELEMATICS PROTOCOL.
22377 APPLICATION ROUTING
22574 SESSION STATE MACHINE
22777 4 FUNCTION DEFINITION
22070/ MESSAGE RATE CONTROL
231 233 225 22’5;7
SOURCE TARGET DIRECTION PRIORITY
23974 CAN DRIVER 7 CAN MESSAGE HANDLER

Patent Application Publication = Mar. 1, 2018 Sheet 3 of 5 US 2018/0063246 A1

ECU
CLIENT
(TCU)
% HS CAN
203
HS C ANwlis SDLC oo HS CAN Bl E L
@ MS CAI\% e X8
VCS 67
ECU ECU a{s
305 FiG. 3A
/ 302
CLIENT Z7
(TCW)
ECU

oo 1155 (AR s mommondipd 1= (1]

é S— el
ECU ECU
205 2315

Patent Application Publication = Mar. 1, 2018 Sheet 4 of 5 US 2018/0063246 A1

%fffwgzi

. CLIENT
ves e P qow
ECU L ECU
315 313
ECU B ECU

ECU
v
ECU ECU ECU

Fi1G. 3C

Patent Application Publication

RECEIVE 29

BIT REQUEST

Mar. 1,2018 Sheet S of 5 US 2018/0063246 Al

e

IDENTIFY ECL)

<
RAS
&
{0

7

401

A9

'

SEND TO ECU

REJECT

IDENTIFY

1411

SOURCE

PRIORITIZE

R

S P

,,,,,,,,,,,,,,,,,,,, —

4177 A

IDENTIFY
APPLICATION

419
SEND TC
APPLICATION

FiGg. 4

US 2018/0063246 Al

METHOD AND APPARATUS FOR
EFFICIENT DATA TRANSFER PROTOCOL
IN A LIMITED-BANDWIDTH VEHICLE
ENVIRONMENT

TECHNICAL FIELD

[0001] The illustrative embodiments generally relate to a
method and apparatus for efficient data transfer protocol in
a limited-bandwidth vehicle environment.

BACKGROUND

[0002] Vehicle telematics systems have added a powerful
tool to the vehicular computing arsenal. Using a telematics
control unit (TCU) and a wirelessly connected device (such
as a cell phone) or on-board modem, a vehicle can access a
variety of data that is stored remotely from the vehicle. At
the same time, the vehicle can run off-board diagnostics, file
updates, error checking and general system queries. Many
off-board access requests require or request some data
typically available over a vehicle controller area network
(CAN). The CAN bus connects a variety of vehicle modules,
allowing communication among modules and further pro-
viding data resources (such as data from modules) to remote
system queries.

[0003] CAN is the main communication method on pres-
ent day automobiles. As a result, automotive original equip-
ment manufacturers (OEM)s have to take into account
bandwidth limitations of the physical layer, as well as
network topology that has multiple baud rates and modules
that may exist on different subnets across different product
lines. The result of different product lines having similar
modules or electronic control units (ECUs) on different
subnets is that a message sender that would route a message
to a first subnet on a first vehicle model to reach ECU; may
have to route the same message to a different subnet on a
different vehicle model to reach ECU,. If gateways or
senders route messages based on a predefined message type,
a sender may have to reconfigure the message type for each
product line to ensure it reaches the proper destination
(and/or know which subnet contains the desired ECU in
advance). Otherwise, the sender would route a predefined
message of type X to the appropriate subnet (based on it
being a type X message) on the first product line and the
same, but wrong, subnet on the second product line (because
the intended ECU lies on a different subnet in the second
product line).

[0004] Also, OEM additions to the variety of intended
uses of the CAN bus in conjunction with the TCU, such as
firmware updates and new telematics features, may exhaust
the usable network 11-bit IDs. Improved transfer protocols
address and work with existing limitations to allow for
improved functionality and communication across a variety
of subnets.

SUMMARY

[0005] Inafirstillustrative embodiment, a system includes
a processor configured to receive a 29-bit request transmit-
ted over a vehicle controller area network (CAN) bus. The
processor is also configured to identify a vehicle electronic
control unit (ECU) as a target recipient based on a target
identifier included with the request. The processor is further
configured to identify a source which sent the request based
on a source identifier included with the request. Also, the

Mar. 1, 2018

processor is configured to verify the identified source as
permitted to send the request to the ECU and, responsive to
the verification, route the request to an ECU application,
executing on the ECU, identified by an application identifier
included with the request.

[0006] In a second illustrative embodiment, a computer-
implemented method includes routing a message to an
identified target ECU via a synchronous data link control
module, responsive to receipt of a 29-bit message, including
a 10-bit target identifier identifying a target electronic con-
trol unit (ECU) and 10-bit source identifier identifying a
message source, following verification by the ECU of both
the identified source as being permitted to exchange mes-
sages with the ECU and 29-bit request handling capability.

[0007] In a third illustrative embodiment, a non-transitory
computer-readable storage medium stores instructions that,
when executed by a processor, cause the processor to
perform a method including identifying a vehicle electronic
control unit (ECU) as a target recipient based on a target
identifier included with a 29-bit request from a vehicle
controller area network (CAN) bus. The method also
includes verifying a source identified in the 29-bit request as
permitted to send the request to the ECU and routing the
request to an ECU application, executing on the ECU,
responsive to the verification, the application identified by
an application identifier included with the request.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 shows an illustrative vehicle computing
system,
[0009] FIG. 2 shows an illustrative electronic control unit

(ECU) software network stack;

[0010] FIG. 3A shows an illustrative physical network
topology;

[0011] FIG. 3B shows a second illustrative physical net-
work topology;

[0012] FIG. 3C shows an illustrative abstracted software
network topology;

[0013] FIG. 4 shows an illustrative process for message
handling using an illustrative 29-bit protocol.

DETAILED DESCRIPTION

[0014] As required, detailed embodiments are disclosed
herein; however, it is to be understood that the disclosed
embodiments are merely illustrative and may be embodied
in various and alternative forms. The figures are not neces-
sarily to scale; some features may be exaggerated or mini-
mized to show details of particular components. Therefore,
specific structural and functional details disclosed herein are
not to be interpreted as limiting, but merely as a represen-
tative basis for teaching one skilled in the art to variously
employ the claimed subject matter.

[0015] FIG. 1 illustrates an example block topology for a
vehicle based computing system 1 (VCS) for a vehicle 31.
An example of such a vehicle-based computing system 1 is
the SYNC system manufactured by THE FORD MOTOR
COMPANY. A vehicle enabled with a vehicle-based com-
puting system may contain a visual front end interface 4
located in the vehicle. The user may also be able to interact
with the interface if it is provided, for example, with a touch
sensitive screen. In another illustrative embodiment, the

US 2018/0063246 Al

interaction occurs through, button presses, spoken dialog
system with automatic speech recognition and speech syn-
thesis.

[0016] In the illustrative embodiment 1 shown in FIG. 1,
a processor 3 controls at least some portion of the operation
of the vehicle-based computing system. Provided within the
vehicle, the processor allows onboard processing of com-
mands and routines. Further, the processor is connected to
both non-persistent 5 and persistent storage 7. In this illus-
trative embodiment, the non-persistent storage is random
access memory (RAM) and the persistent storage is a hard
disk drive (HDD) or flash memory. In general, persistent
(non-transitory) memory can include all forms of memory
that maintain data when a computer or other device is
powered down. These include, but are not limited to, HDDs,
CDs, DVDs, magnetic tapes, solid state drives, portable
USB drives and any other suitable form of persistent
memory.

[0017] The processor is also provided with a number of
different inputs allowing the user to interface with the
processor. In this illustrative embodiment, a microphone 29,
an auxiliary input 25 (for input 33), a USB input 23, a GPS
input 24, screen 4, which may be a touchscreen display, and
a BLUETOOTH input 15 are all provided. An input selector
51 is also provided, to allow a user to swap between various
inputs. Input to both the microphone and the auxiliary
connector is converted from analog to digital by a converter
27 before being passed to the processor. Although not
shown, numerous of the vehicle components and auxiliary
components in communication with the VCS may use a
vehicle network (such as, but not limited to, a CAN bus) to
pass data to and from the VCS (or components thereof).
[0018] Outputs to the system can include, but are not
limited to, a visual display 4 and a speaker 13 or stereo
system output. The speaker is connected to an amplifier 11
and receives its signal from the processor 3 through a
digital-to-analog converter 9. Output can also be made to a
remote BLUETOOTH device such as PND 54 or a USB
device such as vehicle navigation device 60 along the
bi-directional data streams shown at 19 and 21 respectively.
[0019] In one illustrative embodiment, the system 1 uses
the BLUETOOTH transceiver 15 to communicate 17 with a
user’s nomadic device 53 (e.g., cell phone, smart phone,
PDA, or any other device having wireless remote network
connectivity). The nomadic device can then be used to
communicate 59 with a network 61 outside the vehicle 31
through, for example, communication 55 with a cellular
tower 57. In some embodiments, tower 57 may be a Wi-Fi
access point.

[0020] Exemplary communication between the nomadic
device and the BLUETOOTH transceiver is represented by
signal 14.

[0021] Pairing a nomadic device 53 and the BLU-
ETOOTH transceiver 15 can be instructed through a button
52 or similar input. Accordingly, the CPU is instructed that
the onboard BLUETOOTH transceiver will be paired with a
BLUETOOTH transceiver in a nomadic device.

[0022] Data may be communicated between CPU 3 and
network 61 utilizing, for example, a data-plan, data over
voice, or DTMF tones associated with nomadic device 53.
Alternatively, it may be desirable to include an onboard
modem 63 having antenna 18 in order to communicate 16
data between CPU 3 and network 61 over the voice band.
The nomadic device 53 can then be used to communicate 59

Mar. 1, 2018

with a network 61 outside the vehicle 31 through, for
example, communication 55 with a cellular tower 57. In
some embodiments, the modem 63 may establish commu-
nication 20 with the tower 57 for communicating with
network 61. As a non-limiting example, modem 63 may be
a USB cellular modem and communication 20 may be
cellular communication.

[0023] In one illustrative embodiment, the processor is
provided with an operating system including an API to
communicate with modem application software. The
modem application software may access an embedded mod-
ule or firmware on the BLUETOOTH transceiver to com-
plete wireless communication with a remote BLUETOOTH
transceiver (such as that found in a nomadic device). Blu-
etooth is a subset of the IEEE 802 PAN (personal area
network) protocols. IEEE 802 LAN (local area network)
protocols include Wi-Fi and have considerable cross-func-
tionality with IEEE 802 PAN. Both are suitable for wireless
communication within a vehicle. Another communication
means that can be used in this realm is free-space optical
communication (such as IrDA) and non-standardized con-
sumer IR protocols.

[0024] In another embodiment, nomadic device 53
includes a modem for voice band or broadband data com-
munication. In the data-over-voice embodiment, a technique
known as frequency division multiplexing may be imple-
mented when the owner of the nomadic device can talk over
the device while data is being transferred. At other times,
when the owner is not using the device, the data transfer can
use the whole bandwidth (300 Hz to 3.4 kHz in one
example). While frequency division multiplexing may be
common for analog cellular communication between the
vehicle and the internet, and is still used, it has been largely
replaced by hybrids of Code Domain Multiple Access
(CDMA), Time Domain Multiple Access (TDMA), Space-
Domain Multiple Access (SDMA) for digital cellular com-
munication. If the user has a data-plan associated with the
nomadic device, it is possible that the data-plan allows for
broad-band transmission and the system could use wider
bandwidth (speeding up data transfer). In still another
embodiment, nomadic device 53 is replaced with a cellular
communication device (not shown) that is installed to
vehicle 31. In yet another embodiment, the ND 53 may be
a wireless local area network (LAN) device capable of
communication over, for example (and without limitation),
an 802.11g network (i.e., Wi-Fi) or a WiMax network.
[0025] In one embodiment, incoming data can be passed
through the nomadic device via a data-over-voice or data-
plan, through the onboard BLUETOOTH transceiver and
into the vehicle’s internal processor 3. In the case of certain
temporary data, for example, the data can be stored on the
HDD or other storage media 7 until such time as the data is
no longer needed.

[0026] Additional sources that may interface with the
vehicle include a personal navigation device 54, having, for
example, a USB connection 56 and/or an antenna 58, a
vehicle navigation device 60 having a USB 62 or other
connection, an onboard GPS device 24, or remote navigation
system (not shown) having connectivity to network 61. USB
is one of a class of serial networking protocols. IEEE 1394
(FireWire™ (Apple), i.LINK™ (Sony), and Lynx™ (Texas
Instruments)), EIA (Electronics Industry Association) serial
protocols, IEEE 1284 (Centronics Port), S/PDIF (Sony/
Philips Digital Interconnect Format) and USB-IF (USB

US 2018/0063246 Al

Implementers Forum) form the backbone of the device-
device serial standards. Most of the protocols can be imple-
mented for either electrical or optical communication.
[0027] Further, the CPU could be in communication with
a variety of other auxiliary devices 65. These devices can be
connected through a wireless 67 or wired 69 connection.
Auxiliary device 65 may include, but are not limited to,
personal media players, wireless health devices, portable
computers, and the like.

[0028] Also, or alternatively, the CPU could be connected
to a vehicle based wireless router 73, using for example a
Wi-Fi (IEEE 803.11) 71 transceiver. This could allow the
CPU to connect to remote networks in range of the local
router 73.

[0029] In addition to having exemplary processes
executed by a vehicle computing system located in a vehicle,
in certain embodiments, the exemplary processes may be
executed by a computing system in communication with a
vehicle computing system. Such a system may include, but
is not limited to, a wireless device (e.g., and without
limitation, a mobile phone) or a remote computing system
(e.g., and without limitation, a server) connected through the
wireless device. Collectively, such systems may be referred
to as vehicle associated computing systems (VACS). In
certain embodiments particular components of the VACS
may perform particular portions of a process depending on
the particular implementation of the system. By way of
example and not limitation, if a process has a step of sending
or receiving information with a paired wireless device, then
it is likely that the wireless device is not performing that
portion of the process, since the wireless device would not
“send and receive” information with itself. One of ordinary
skill in the art will understand when it is inappropriate to
apply a particular computing system to a given solution.
[0030] The illustrative embodiments provide an approach
to solving physical layer bandwidth limitations while meet-
ing use-case requirements that may be encountered by
OEMs seeking to fully utilize the CAN network for
enhanced vehicle telematics functionality. Some of the con-
siderations addressed include, but are not limited to, secu-
rity, payload, source-receiver, application identification, pri-
oritization and dynamic changing of bandwidth utilization.
[0031] In present CAN communication in vehicles, a
gateway module may facilitate communication between
remote sources and ECUs, and between the ECUs them-
selves. Each ECU’s address is prerecorded in a database,
and the gateway module includes a persistent definition of
these addresses, as well as a routing schema that fixedly
defines which messages are routed to which ECU addresses
and/or subnets. This schema may be fixed for a product line,
and thus any message that would be desired to interact with
a particular ECU across multiple product lines may need to
be individually configured for each product line to accom-
modate the routing schema. By utilizing the illustrative
embodiments, the addressing of ECUs (the physical address
of the ECU) can be abstracted such that a message can be
designated for the particular ECU, and the 29-bit protocol
will help ensure the message arrives at the appropriate ECU
on each product line, without having to reference the specific
routing schema saved with respect to a gateway module on
each product line.

[0032] The illustrative embodiments provide security for-
mats, payload size and connectivity operations that allow for
vehicle electronic control units (ECU)s to exist on the

Mar. 1, 2018

broader Internet Of Things ecosystem as independent enti-
ties routed through a centralized vehicle connectivity gate-
way. The proposed protocol (an on-vehicle telematics pro-
tocol (OVTP)) may be defined in a way that allows it to be
accessible across multiple physical layers, and agnostic to
Ethernet, CAN, local interconnect network (LIN), etc.
[0033] While the illustrative embodiments are described
with respect to an on-vehicle telematics protocol, non-
telematics related modules can also use the 29-bit protocol
described to send and receive information. In the examples,
the OVTP may be used to facilitate, for example, over-the-
air (OTA) updates, but more generally modules of varied
types can use the described protocol can be used to improve
communication over the existing physical layers, which may
share no relationship to telematics. For example, an OEM
may elect to use the 29-bit protocol as a key distribution
protocol for setting up secure CAN communications.
[0034] Inone implementation, the OVTP is partitioned via
two identification methodologies for CAN node identifica-
tion. Specifically, OVTP communication will happen via a
29-bit identifier, while normal CAN communication will
happen via standard 11-bit identifiers (11-bit identifiers
being commonly used in vehicle architecture). This allows
for a star network topology to be condensed into a singular
network once abstracted to the OVTP layer. Routing will
happen based on Net ID and whether the ID is 29-bit or
11-bit. Additionally, this allows for an ECU to recognize an
OVTP request much lower in its network stack and ignore
the message if the ECU does not support OVTP. This
provides for more efficient message handling.

[0035] The OVTP on 29-bit also facilitates the use of the
stack in parallel to a normal diagnostic request, thus allow-
ing for the ECU to maintain connectivity even when in
diagnostic mode in the vehicle. With only 11-bit protocols,
for example, a vehicle in diagnostic mode (or having an
insurance tracking or other device plugged into an onboard
diagnostics (OBD) port can actually block communication
with modules for purpose of updating those modules. With
the OVTP on 29-bit protocol, ECU connectivity persists
even when a customer or technician attaches a diagnostic
device to the vehicle.

[0036] Also, by using 29-bit identifiers, the OVTP system
may utilize a defined address space that facilitates abstrac-
tion of the node location on the bus, thus a node may
communicate to the master through a dedicated channel
regardless of where it sits in the vehicle and regardless of
what physical layers are between the node and the destina-
tion. Thus, a sender does not need to know or identify the
physical location of the node and the subnet on which the
node resides for a particular product line before sending a
message intended for that node (the request or message from
the sender is agnostic with regards to the address). Through
use of the protocol, the gateway provided to a vehicle
dynamically learns on which network the ECU is located.
[0037] FIG. 2 shows an illustrative electronic control unit
(ECU) software network stack 203a. Various applications
213, 215, 217 execute on the ECU to provide the function-
ality ascribable to that ECU. The interaction of the ECU
specific applications with other ECUs and remote entities,
over the CAN, is facilitated by a common application
programming interface 211. The API layer also includes
application security.

[0038] Applications that utilize the OVTP may require
header information that can properly route the information

US 2018/0063246 Al

provided in the payload. Illustrative parameters used for that
identification are contained as part of the message header.
This allows for OVTP to support numerous furture physical
layer implementations. Illustrative header information used
by one example of OVTP is described below.

Header Parameter Description Bit Allocation
Priority Used to define the priority of 3 bits
the message relative to the
vehicle control signals
<Reserved> Reserved bits for future use 3 bits
Application Used to define the application 3 bits
that is sending or receiving
information
Target Used to define the module that 10 bits
will be receiving the message
transmitted
Source Used to define the module that 10 bits
will be sending the message
transmitted
[0039] In this example, a Priority Parameter defines the

priority of the messages relative to the diagnostic and
control messages on the vehicle. An individual server may
not care what the contents of these three bits are. These may
be used for the client to be able to dynamically assign
networking priority. An example of this parameter with an
illustrative value is shown below.

Priority Value SDLC Routing

Default Value 0b110 Don’t Care

[0040] A <Reserved> Section defines a reserved section of
the 29-bit header for future development. In one illustrative
implementation, as long as this section is reserved, the
OVTP handler shall reject any Net ID’s that don’t have a
certain value specified in this location. An example of this
parameter with an illustrative value is shown below.

Priority Value SDLC Routing

Default Value Obl111 Don’t Care

[0041] An Application Parameter defines which applica-
tion is using OVTP to transmit or receive module application
information. Non-limiting examples of this parameter with
illustrative values are shown below. Inclusion of the appli-
cation parameter bits allow multiple transactions to occur to
the same ECU (e.g., a segmented OTA request being trans-
mitted in parallel to a segmented command and control
request). So a diagnostic read request can co-exist on the
physical layer with an update request, which wouldn’t be
possible using existing vehicle architecture and only an
11-bit protocol.

Application Value SDLC Routing
OTA 0b001 Don’t Care
PARSED Request Response 0b010 Don’t Care
PARSED Push 0b011 Don’t Care

Mar. 1, 2018

-continued
Application Value SDLC Routing
Command and Control 0b100 Don’t Care
Wrapped Diagnostics 0b101 Don’t Care

[0042] In the above table, the various applications, while
illustrative in nature, may correspond to the following:
[0043] OTA Application—each ECU may interpret mes-
sages being routed under this application as Over the Air
Software Update messages, and route the messages to an
OTA-corresponding application provided to the ECU, for
handling.

[0044] PARSED Request Response Application—each
ECU may interpret messages being routed under this appli-
cation as Processing and Reporting System for Efficient
Data upload messages, and route the messages to a corre-
sponding application for handling.

[0045] PARSED Push Application—The PARSED Push
Application may contain the functioning transmission of
data based on an internal ECU event. The Push functionality
may only be active when the PARSED application has been
properly configured by the Request Response component of
PARSED.

[0046] A Target parameter defines a target module for the
OVTP message. For messages originating at the Client, the
target may be defined as the ECU that is receiving the Client
information. Typically, for requests the Target is the Server,
and for responses the Target is the Client. Individual module
definitions are based upon ECU addresses stored in a
database. Inclusion of this parameter allows for a hardware
routing numeric value to be applied to software abstraction
layers in a controlled manner. This allows for routing of data
through various software layers without having to open up
a payload. For example, the first several layers of the
software stack can do this routing, and the next layers of the
stack know to look at the first byte to determine if the
software is valid. This allows for each abstraction layer of
the hardware to leverage the hardware characteristics of
design to maximize efficiency.

[0047] By using the first 10 bits for the target, in one
example, a vehicle computer can configure a module at the
physical layer to filter those 10 bits to look for only
information coming from a specific ECU (bottom two layers
of software), and everything above the physical layer can
ignore the message.

[0048] A Source parameter defines an originating module
for the OVTP message. For messages originating at the
Client, the Source may be defined as the Client that is
sending the information to the Server. Typically, for requests
the Source is the Client, and for responses the Source is the
Server. Again, individual module definitions are based upon
ECU addresses stored in the database.

[0049] Source identification allows for multiple sources
talking to multiple targets all independently without a con-
flict of information flow on the network. The addressing
componentry, instead of being hardcoded, is now designed
as logical constructs are in the software that facilitates the
use of the 10 source bits and the overall 20 source/target bits.
This allows for an application that provides mesh-based
networking of module messages across the entire network
without conflict. This also leverages the physical layers of
the CAN protocol design relative to other networks, which
can allow for multiple senders and receivers on the same
physical wire.

US 2018/0063246 Al

[0050] For example, a system could have two modules on
the vehicle that both have internet connection—such as an
infotainment module and a telematics module. These may
represent different nodes, having different source addresses,
which both talk on CAN. Under the illustrative embodi-
ments, those two modules can control both the same down-
stream or separate modules at the same time, there are no
conflicts of message transmission on the physical wire of the
network. This also allows for addition of connected modules
without requiring architecture redesign.

[0051] The table below shows illustrative 29-bit NetIDs
for illustrative messages of various application types from
various senders to various receivers, conforming to the
illustrative protocol as described above.

Sender Receiver Application NetID

ECU 1 (0x11) ECU2 Appl 0x1BA08811
(0x22) Reg/Resp

ECU 2 (0x22) ECU1 Appl 0x1BA04422
(0x11) Reg/Resp

ECU 2 (0x22) ECU1 App 1 Push 0x1BB08811
(0x11)

ECU 1 (0x11) ECU3 App 2 0x1B90CC11
(0x33)

ECU 3 (0x33) ECU1 App 2 0x1B904433
(0x11)

ECU 4 (0x44) ECU2 App 0x1BA04044
(0x11) 1Req/Resp

ECU 1 (0x11) ECU4 App 0x1BA11011
(0x44) 1Req/Resp

Funct (0x3FF) ECU3 App 2 0x1B9CC3FF
(0x33)

[0052] A telematics protocol is also included in the ECU
network stack. This protocol defines request-addressing for
a request, allowing the ECU to interpret the request in
accordance with specific parameters stored at specific bits
within the request. The protocol defined on the ECU stack
will provide for application routing 223. This allows the
ECU to route a request to a particular ECU-specific appli-
cation 213, 215, 217 to which the request is directed (or
which will handle the request). A request includes a defini-
tion of the target application 233, which may be 3 bits of the
request in a 29-bit protocol request.

[0053] The ECU network stack also includes handling for
creating and maintaining a session statemachine 225 The
Session statemachine may be used for the following pur-
poses, for example:

[0054] Reject unsecure or improperly encrypted
requests
[0055] Allow the ECU to release resources that may be

in use for PARSED or OTA to other applications
because a session is not active

[0056] Suppress transmission of data so that an OEM
can remotely control the bandwidth utilization of the
vehicle network.

[0057] Provide a handshake so that the Server knows
that the Client is awake and ready to receive data.
[0058] The protocol includes a set of function definitions
227, which define functions that are utilized by various
schema taking advantage of the 29-bit protocol. For
example, without limitation, over the air updates (OTA)
have a defined set of available functions, and these function
definition bits can reference a function associated with a
message. Finally, the protocol includes a message rate

Mar. 1, 2018

control portion 229, which controls the fastest that indi-
vidual CAN frames for a given OVTP message, which often
consist of multiple CAN frames, can be sent. This allows for
dynamic and predictable control of the maximum bandwidth
that will be utilized.

[0059] A given request to/from the ECU that will be
handled by the ECU stack will include a source identifica-
tion 231 (10 bits of the 29-bit OVTP protocol), a target
module identification 233 (10 bits of the 29-bit OVTP
protocol), and a priority identification 237.

[0060] The protocol also includes functionality 239 for
CAN message handling, which allows the ECU to Send
Messages, Receive Messages, and Push Messages to the
CAN.

[0061] FIG. 3A shows an illustrative physical network 301
topology. This illustrative physical network includes a client
(in this example the TCU) 303 and a vehicle computing
system 305 (such as an infotainment system like FORD
SYNC). A high-speed (HS) CAN connects the TCU and
VCS to a synchronous data link control module (SDLC)
309. The SDLC handles communication between the TCU
(which can include remote requests received via the TCU),
VCS (which can include occupant requests received via the
VCS), and the various ECUs 313, 315. Some of the ECUs
communicate with the SDLC via a high speed (HS) CAN
and some communicate via a medium speed (MS) CAN 311.

[0062] FIG. 3B shows a second illustrative physical net-
work topology 302. This represents a physical network
similar to that of FIG. 3A, but on a different product line. As
seen in FIG. 3B, the various ECUs 313, 315 in this product
line, corresponding to the same ECU types in that of FIG.
3A, reside on different subnets in this product line.

[0063] FIG. 3C shows an illustrative abstracted software
network topology 321.

[0064] In this abstracted version of the physical network
topology, the OVTP 323 facilitates communication between
the various ECUs 313, 315 regardless of where the ECUs
actually reside in the physical network. As such, this abstrac-
tion can be representative of both physical networks shown
in FIGS. 3A and 3B, and demonstrates how the physical
address of the ECU does not necessarily need to be known
for message handling once the network is abstracted to this
level.

[0065] FIG. 4 shows an illustrative process for message
handling using an illustrative 29-bit protocol. In this illus-
trative example, a handling process receives a 29-bit request
501, such as those described in the illustrative embodiments.
Based on a target identifier included in the message, for
example, the process determines which ECU should receive
the request 503. In this example, the ECU addresses iden-
tified in the request have been abstracted, so the request
identifies the abstracted address, not the address of the ECU.
This accommodates for ECUs located on different networks
in different product lines (i.e., a single formatted request can
be passed to multiple product lines without having to know
the addresses of the intended recipient-ECUs).

[0066] The message is routed to a relevant ECU 505,
based on the target identifier. The ECU can determine if it
can handle a 29-bit request 507. Some ECUs which are
intended recipients of 29-bit requests may not be configured
to handle 29-bit requests, so these ECUs can reject 29-bit
requests 509 low in the stack, if such requests are not

US 2018/0063246 Al

supported. If the requests are supported, the ECU can
determine the source 511, which is also identified in the
29-bit request.
[0067] Since only certain verified sources may be permit-
ted to send requests to an ECU, for example, the ECU may
reject requests from sources that are not identified as per-
missible sources for sending a request to the ECU.
[0068] Also, in this example, the 29-bits include a priority
identifier, which allows the receiving ECU to prioritize the
incoming request 515. The request also includes an identifier
which identifies an application, executing as part of the
ECU, which will handle the payload associated with the
request. The ECU can identify this application based on the
appropriate bits in the request 517, and route the payload
associated with the request to the appropriate application
519. The application executing on the ECU can then handle
the request appropriately.
[0069] While illustrative embodiments are described
above, it is not intended that these embodiments describe all
possible forms. Rather, the words used in the specification
are words of description rather than limitation, and it is
understood that various changes may be made without
departing from the spirit and scope of the invention. Addi-
tionally, the features of various implementing embodiments
may be combined as would be understood by a skilled
artisan to form variations that achieve the same ends as
discussed with respect to the illustrative examples.
What is claimed is:
1. A system comprising:
a processor configured to:
receive a 29-bit request transmitted over a vehicle con-
troller area network (CAN) bus;
identify a vehicle electronic control unit (ECU) as a target
recipient based on a target identifier included with the
request;
identify a source which sent the request based on a source
identifier included with the request;
verify the identified source as permitted to send the
request to the ECU; and
responsive to the verification, route the request to an ECU
application, executing on the ECU, identified by an
application identifier included with the request.
2. The system of claim 1, wherein the target identifier is
a 10-bit identifier.
3. The system of claim 1, wherein the target identifier
identifies a software-abstracted address for the ECU.
4. The system of claim 1, wherein the source identifier is
a 10-bit identifier.
5. The system of claim 1, wherein the application iden-
tifier is a 3-bit identifier.
6. The system of claim 1, wherein the processor is
configured to:
determine if the ECU is capable of handling 29-bit
requests; and
reject the request if the ECU is incapable of handling
29-bit requests.

Mar. 1, 2018

7. The system of claim 1, wherein the processor is
configured to:

identify a request priority based on a priority designation

included with the request; and

prioritize the request for processing in accordance with

the request priority.

8. The system of claim 7, wherein the priority designation
is a 3-bit identifier.

9. The system of claim 1, wherein the request is agnostic
with regards to a physical address of the ECU.

10. A computer-implemented method comprising:

responsive to receipt of a 29-bit message, including a

10-bit target identifier identifying a target electronic
control unit (ECU) and 10-bit source identifier identi-
fying a message source, routing, the message to the
identified target ECU via a synchronous data link
control module, following verification by the ECU of
both the identified source as being permitted to
exchange messages with the ECU and 29-bit request
handling capability.

11. The method of claim 10, wherein the 10-bit target
identifier identifies an abstracted ECU address.

12. The method of claim 10, further comprising:

extracting an application identifier from the message, via

the ECU, identifying an ECU application designated to
handle the message; and

routing a message payload to the ECU application iden-

tifier by the application identifier.

13. The method of claim 10, wherein the application
identifier is a 3-bit identifier.

14. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor,
cause the processor to perform a method comprising:

identifying a vehicle electronic control unit (ECU) as a

target recipient based on a target identifier included
with a 29-bit request from a vehicle controller area
network (CAN) bus;

verifying a source identified in the 29-bit request as

permitted to send the request to the ECU; and

route the request to an ECU application, executing on the

ECU, responsive to the verification, the application
identified by an application identifier included with the
request.

15. The storage medium of claim 14, wherein the target
identifier is a 10-bit identifier.

16. The storage medium of claim 15, wherein the target
identifier identifies a software-abstracted address for the
ECU.

17. The storage medium of claim 14, wherein the veri-
fying is performed by the ECU.

18. The storage medium of claim 14 wherein the appli-
cation is identified by a 3-bit identifier.

19. The storage medium of claim 14, wherein the method
further includes rejecting the request responsive to a deter-
mination by the ECU that the ECU is incapable of handling
29-bit requests.

20. The storage medium of claim 14, wherein the request
is agnostic with regards to a physical address of the ECU.

#* #* #* #* #*

