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(57) ABSTRACT

A method for processing an electronic image including
receiving, by a viewer, the electronic image and a FOV (field
of view), wherein the FOV includes at least one coordinate,
at least one dimension, and a magnification factor, loading,
by the viewer, a plurality of tiles within the FOV, determin-
ing, by the viewer, a state of the plurality of tiles in a cache,
and in response to determining that the state of the plurality
of'tiles in the cache is a fully loaded state, rendering, by the
viewer, the plurality of tiles to a display.
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SYSTEMS AND METHODS TO PROCESS
ELECTRONIC IMAGES TO PROVIDE
IMPROVED VISUALIZATION AND
RENDERING OF HISTOPATHOLOGY
SLIDES

RELATED APPLICATION(S)

[0001] This application claims priority to U.S. Provisional
Application No. 63/064,401 filed Aug. 11, 2020 the entire
disclosure of which is hereby incorporated herein by refer-
ence in its entirety.

FIELD OF THE DISCLOSURE

[0002] Various embodiments of the present disclosure
pertain generally to improving the visualization and render-
ing of histopathology slides. More specifically, particular
embodiments of the present disclosure relate to systems and
methods for processing electronic images to provide
improved visualization and rendering of histopathology
slides. The present disclosure further provides systems and
methods for using machine learning, artificial intelligence,
and computer vision to process electronic images to provide
improved visualization and rendering of histopathology
slides.

BACKGROUND

[0003] Histopathology slides are tissue sections extracted
from a biopsy and placed on a glass slide for microscope
inspection. In order for the tissue to be visible under a
microscope, these sections are stained with one or more
pigments, the most common of which is Hematoxylin and
Eosin (H&E) which give slides their remarkable pink hue.
While these slides may be historically examined under a
microscope, recent years have seen a push for digital pathol-
ogy. In digital pathology, slides may be scanned at very high
resolutions to be later viewed on a monitor. While digital
pathology provides certain advantages, it can be challenging
to scan and visualize slides with sufficient resolution to
provide for desired images and fields of view.

[0004] The foregoing general description and the follow-
ing detailed description are exemplary and explanatory only
and are not restrictive of the disclosure. The background
description provided herein is for the purpose of generally
presenting the context of the disclosure. Unless otherwise
indicated herein, the materials described in this section are
not prior art to the claims in this application and are not
admitted to be prior art, or suggestions of the prior art, by
inclusion in this section.

SUMMARY

[0005] According to certain aspects of the present disclo-
sure, systems and methods are disclosed for processing
electronic images to provide improved visualization and
rendering of histopathology slides.

[0006] A computer-implemented method for processing
an electronic image, the method comprising: receiving, by a
viewer, the electronic image and a FOV (field of view),
wherein the FOV includes at least one coordinate, at least
one dimension, and a magnification factor, loading, by the
viewer, a plurality of tiles within the FOV, determining, by
the viewer, a state of the plurality of tiles in a cache; and in
response to determining that the state of the plurality of tiles
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in the cache is a fully loaded state, rendering, by the viewer,
the plurality of tiles to a display.

[0007] A computer system for processing an electronic
image, the computer system comprising at least one memory
storing instructions, and at least one processor configured to
execute the instructions to perform operations comprising:
receiving, by a viewer, the electronic image and a FOV (field
of view), wherein the FOV includes at least one coordinate,
at least one dimension, and a magnification factor, loading,
by the viewer, a plurality of tiles within the FOV, determin-
ing, by the viewer, a state of the plurality of tiles in a cache;
and in response to determining that the state of the plurality
of'tiles in the cache is a fully loaded state, rendering, by the
viewer, the plurality of tiles to a display.

[0008] A non-transitory computer-readable medium stor-
ing instructions that, when executed by a processor, cause
the processor to perform operations for processing an elec-
tronic image, the operations comprising: receiving, by a
viewer, the electronic image and a FOV (field of view),
wherein the FOV includes at least one coordinate, at least
one dimension, and a magnification factor, loading, by the
viewer, a plurality of tiles within the FOV, determining, by
the viewer, a state of the plurality of tiles in a cache; and in
response to determining that the state of the plurality of tiles
in the cache is a fully loaded state, rendering, by the viewer,
the plurality of tiles to a display.

[0009] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory only and are not restrictive of
the disclosed embodiments, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
various exemplary embodiments and together with the
description, serve to explain the principles of the disclosed
embodiments.

[0011] FIG. 1 depicts a pyramidal structure of a whole
slide image, according to an exemplary embodiment of the
present disclosure.

[0012] FIG. 2 depicts a Field of View (FOV) of an
exemplary viewer, according to an embodiment of the
present disclosure.

[0013] FIG. 3 depicts an architecture of an exemplary
viewer, according to an embodiment of the present disclo-
sure.

[0014] FIG. 4 illustrates a timing breakdown of an exem-
plary tile request from a viewer, according to an embodiment
of the present disclosure.

[0015] FIG. 5 is a flowchart illustrating a control flow of
an exemplary tile request, according to an embodiment of
the present disclosure.

[0016] FIG. 6A is an architecture of a viewer, according to
an embodiment of the present disclosure.

[0017] FIG. 6B is an architecture of a native application of
a viewer, according to an embodiment of the present dis-
closure.

[0018] FIG. 7Ais a flowchart illustrating a control flow of
a tile request, according to an embodiment of the present
disclosure.

[0019] FIG. 7B is a flowchart illustrating a control flow of
a tile request with latency indications, according to an
embodiment of the present disclosure.
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[0020] FIG. 8 is a flowchart illustrating a static control
flow of a tile request, according to an embodiment of the
present disclosure.

[0021] FIG. 9 is a flowchart illustrating the main loops of
a viewer architecture, according to an embodiment of the
present disclosure.

[0022] FIG. 10A depicts a first look at a slide in a viewer,
according to an embodiment of the present disclosure.
[0023] FIG. 10B depicts a loading Field of View in a
viewer, according to an embodiment of the present disclo-
sure.

[0024] FIG. 11 depicts a Field of View with preloading
tiles in an exemplary viewer, according to an embodiment of
the present disclosure.

[0025] FIG. 12 illustrates a timing breakdown of an exem-
plary tile decoding within a viewer, according to an embodi-
ment of the present disclosure.

[0026] FIG. 13A illustrates a Field of View (FOV)
completion for an exemplary embodiment with dynamic
tiling, according to an embodiment of the present disclosure.
[0027] FIG. 13B illustrates a FOV completion for an
exemplary embodiment with static tiling, according to an
embodiment of the present disclosure.

[0028] FIG. 14 illustrates a FOV completion for an exem-
plary embodiment with tile preloading, according to an
embodiment of the present disclosure.

[0029] FIG. 15A-15F illustrate different FOV completions
for an exemplary embodiment, according to an embodiment
of the present disclosure.

[0030] FIG. 16 is an exemplary architecture of a streaming
viewer, according to an embodiment of the present disclo-
sure.

DESCRIPTION OF THE EMBODIMENTS

[0031] Reference will now be made in detail to the exem-
plary embodiments of the present disclosure, examples of
which are illustrated in the accompanying drawings. Wher-
ever possible, the same reference numbers will be used
throughout the drawings to refer to the same or like parts.
[0032] The systems, devices, and methods disclosed
herein are described in detail by way of examples and with
reference to the figures. The examples discussed herein are
examples only and are provided to assist in the explanation
of the apparatuses, devices, systems, and methods described
herein. None of the features or components shown in the
drawings or discussed below should be taken as mandatory
for any specific implementation of any of these devices,
systems, or methods unless specifically designated as man-
datory.

[0033] Also, for any methods described, regardless of
whether the method is described in conjunction with a flow
diagram, it should be understood that unless otherwise
specified or required by context, any explicit or implicit
ordering of steps performed in the execution of a method
does not imply that those steps must be performed in the
order presented but instead may be performed in a different
order or in parallel.

[0034] As used herein, the term “exemplary” is used in the
sense of “example,” rather than “ideal.” Moreover, the terms
“a” and “an” herein do not denote a limitation of quantity,
but rather denote the presence of one or more of the
referenced items.

[0035] Scanner manufacturers often maintain their own
software to visualize slides alongside their scanner. They
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may also enable third-party software to open and read these
slides in much the same fashion. These software packages or
modules are commonly called slide viewers. The present
disclosure includes, among other things, an exemplary
embodiment of a novel slide viewer that can open slides
acquired from a variety of scanners. This viewer may run on
all modern internet browsers (i.e. Google Chrome, Mozilla
Firefox, Microsoft Edge, Apple Safari, etc.). On top of its
slide viewing capabilities, the slide viewer may also tie in to
other products by featuring advanced medical-grade artifi-
cial intelligence inference for cancer detection.

[0036] Slide scans are images with resolutions ranging
from 20,000x20,000 to over 120,000x120,000 pixels. These
images are descriptively called Whole Slide Images (WSIs)
and can weigh multiple gigabytes on disk, even after lossy
compression, and cannot be efficiently transferred to a client
to be viewed in a timely manner. Certain technological
obstacles exist with handling large digital images. First,
bandwidth is a limiting factor to how much data can be
transferred in a specific amount of time. Since the viewer is
accessed via the Internet, this bandwidth usually has an
upper limit of a few megabytes per second. This means that
transferring a gigabyte image would take multiple seconds
or even minutes. In addition, substantial processing power
may be required in order to decode these images. While a
small 256x256 image can be decoded in the order of a
millisecond, decoding a gigapixel image will take seconds,
if not minutes. Finally, in terms of memory, while the
compressed image might weigh in the order of a gigabyte,
the uncompressed data is an order of magnitude larger. Such
an amount of data will not fit at once in a computer’s
memory.

[0037] One goal is to find ways to improve a current
technology stack when it comes to WSIs. A few areas of
interest addressed by this disclosure include new ways of
streaming histopathology slide data. Current slide viewers
may use open source libraries and vendor Software Devel-
opment Kits (SDKs) to open and read slides. These options
are not the most efficient, and better techniques could
significantly speed up streaming.

[0038] For instance, this could involve changing the data
representation format of slides as they are stored on disk to
enable new optimizations or to leverage existing optimiza-
tions to their fullest. Historically, slides have been stored in
their original format, which is fully dependent on the scan-
ner vendor. Different vendors may have different constraints
and this means that having no unified format may make it
harder to optimize all possible pathways.

[0039] New compression techniques may also improve
current technology in slide viewing. This axis of research
focuses on new compression techniques that can more
efficiently store slide image data. For instance, tissue detec-
tion algorithms can avoid having to store large parts of the
image where no tissues have been detected. Newer image
formats might also yield better compression ratios by lever-
aging more advanced techniques or more computing power
during encoding.

[0040] Further, server-side rendering may improve current
slide viewing technology. Virtual Network Computing
(VNC) technologies have proven that it is possible to build
real-time interactive experiences by streaming a visual feed
to a client, which in turns sends user input to the server. Such
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an approach may be able to minimize data transfers thanks
to performant video codecs while enabling exceptional user
experience.

[0041] In addition, slide-viewing technology improve-
ments may include frontend rendering techniques. Web
browsers have now been able to leverage Graphics Process-
ing Unit (GPU) rendering. The WebGL Application Pro-
gramming Interface (API) allows a JavaScript application to
execute rendering instructions in an idiom inspired by
OpenGL, which is the industry standard for 3D rendering.
More recently, new APIs such as WebGL 2.0 and WebGPU
have gone even further by allowing lower-level access to
GPU primitives. These technologies could be applied to the
slide viewer in order to speed up the slide viewer and
decrease its memory consumption.

[0042] In the following sections, specific vocabulary will
be used to describe concepts related to an exemplary WSI
viewer.

[0043] As described above, WSIs are high-resolution
image scans of histopathology slides. The resolutions of
these images range in the gigapixels. This property makes it
impractical to store and display these images in a conven-
tional manner. Indeed, it is very difficult to decode a whole
image in memory as it would come to occupy tens of
gigabytes, which is more than the memory endowment of
many personal computers available today. Furthermore, it
would be also be difficult to display the whole image, since
monitor resolutions are closer to the megapixels.

[0044] Therefore, WSIs are encoded in such a way that
they allow for region decoding. Each region of the image
may be displayed without having to read or decode the
whole image with it. As mentioned before, the monitor that
apathologist uses to view a slide typically cannot display the
full resolution image. As a result, typically only the region
that is currently presented on screen may be decoded and
sent to the client. This optimization makes it possible to
index and read into WSIs in real-time.

[0045] However, this approach falls short if the patholo-
gist decides to zoom out and display the whole slide on
screen. In order to show even a downsampled version of the
full image, it may still be necessary to read it entirely. To
remedy this, on top of the full resolution baseline image,
WSIs also include intermediate magnification levels with
smaller resolutions, all the way down to a thumbnail image
that can fit on the screen. Such an organization is often
referred to as a pyramidal structure, where the base of the
pyramid is the baseline image, and each level above may be
an intermediate magnification level.

[0046] In order to allow for region decoding, each level
may be cut into tiles in a regular grid. These tiles may be
randomly accessed. In order to decode a region of the image,
only the tiles that overlap it may need to be read and
decoded. FIG. 1 is a schema of this pyramidal structure.
[0047] As shown in FIG. 1, the pyramidal structure has a
baseline image 1 comprising a full resolution image. At least
one downsampled image, i.e., downsampled images 2 and 3
in FIG. 1, may be placed on top of the baseline image 1. The
baseline image 1, as well as downsampled images 2 and 3
may be cut into the regular grid as described above.
[0048] The Field Of View (FOV) of the viewer is the area
of the image that is currently on display. It can be thought
of as the grouping of coordinates (x, y), dimensions (w, h),
and magnification factor z. The magnification factor may
determine which level of the WSI is best suited for display,
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while the coordinates and dimensions may determine which
region of the level image should be decoded.

[0049] FIG. 2 shows how only a few active tiles 11 of the
level image 10 may need to be decoded in order to display
the requested FOV 12. The idle tiles 13 may not be included
in the FOV 12.

[0050] When the FOV 12 moves, the active tiles 11 will
change. Only the tiles that are currently needed for display
might need to be kept in memory. As such, the graphics
memory needed may be a function of the resolution of the
display, and not a function of the size of the image.
[0051] In order to better identify the different areas to
improve, one possible approach was to take a closer look at
the architecture of exemplary slide viewers. The architecture
of an exemplary slide viewer is illustrated in FIG. 3. The
exemplary slide viewer may be composed of a frontend 20
and a backend (“tile server”) 30. The frontend 20 may be
responsible for displaying the WSIs to the user, while the
backend 30 may be responsible for communicating the
potentially necessary data to the frontend. More detail about
exemplary components are disclosed in the following sec-
tions.

[0052] Since the user may access an exemplary slide
viewer through a web browser, the frontend 20 (as illustrated
in FIG. 3) may be a web application written in JavaScript.
The exemplary slide viewer may make extensive use of a
viewer 21, such as the OpenSeadragon open-source library,
which is a web-based viewer for high-resolution images.
[0053] The viewer 21, for example OpenSeadragon, may
handle some or all the rendering of WSIs, as well as user
interactions such as panning, zooming, and jumping around
using the “Slide Navigation” panel. The user may drag the
screen with the mouse to pan the display, while scrolling
zooms in and out. There may be additional features such as
rotating the display, measuring physical distances, drawing
annotations on the canvas, and others.

[0054] As disclosed above, WSIs are divided into multiple
magnification levels and cut into tiles (see pyramid of FIG.
1). In order to display a given FOV, the viewer 21 (such as
OpenSeadragon) loads all the tiles that cover the FOV from
a backend 30, which may also be called a tile server.
[0055] OpenSeadragon is a robust solution for viewing
high resolution images. However, compared to some other
high-resolution image viewer solutions targeting the web
platform, OpenSeadragon is not always able to maintain a
constant 60 Frames Per Second (FPS) during user interac-
tion. This may make for a sub-optimal user experience.
Seadragon also may only support rendering using only the
2D browser canvas Application Programming Interface
(API). As a result, WebGL may be used as a more perfor-
mant API that can take better advantage of the graphical
capabilities of the client.

[0056] OpenSeadragon is not be the only possible solution
available for viewing large images in a browser. Other
suitable viewer solutions include OpenlLayers, Leaflet, Map-
Box, and DeckGL. All of these solutions are tailored for
geographic data, but may be adapted to support 2D pixel
data. Some of these solutions support WebGL and have good
performance. However, they may include features that are
not needed. As a result, the surface areas of the possible
solutions may be quite large, which makes modification
harder.

[0057] The frontend 20 may also include a business logic
algorithm 22.
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[0058] The backend 30 of the exemplary slide viewer may
comprise a web server 31 written in C#. The web server 31
may leverage software on an IIS web server 32 to efficiently
serve HTTP requests.

[0059] The backend 30 is one component of interest in the
exemplary viewer: given a request for a tile of dimensions
(w, h) at coordinates (x, y) and magnification level z, the
backend 30 returns the corresponding image. Since an
exemplary slide viewer may support a number of WSI
formats, the backend 30 may call into different implemen-
tations 34, such as Deep Zoom implementations 34, as
illustrated in FIG. 3. These implementations 34 own the
logic that decodes the requested image regions from the
original WSI files. Generally, WSI files may be stored on the
file system 35 associated with the backend 30.

[0060] Deep Zoom is a technology for streaming and
visualizing very large images. A Deep Zoom Image (DZI) is
composed of two parts: a DZI file and a directory. A DZI file
(.dzi) describes the format of the image for the purpose of
visualization. Two important properties may be the tile size
and baseline resolution, from which it is possible to infer
some or all intermediate magnification levels by multiplying
the baseline resolution with negative powers of two. For
instance, with a baseline resolution of 1024x1024, the first
intermediate level will have a resolution of 512x512, the
second of 256x256, etc. Aside from the DZI file, the
directory may contain some or all tile images, themselves
arranged in folders corresponding to the different magnifi-
cation levels. For instance, the file stored under the path
tiles/3/1_2.jpg corresponds to the tile at magnification level
7z=3, and at coordinates (x, y)=(1, 2). At z=3, the level
resolution is an eighth of the baseline images.

[0061] In terms of the performance of a web server, tile
requests should be near-instantaneous. In order for the
viewer to feel responsive, tile requests may need to have
low-latency and high-throughput. As such, the pipeline for
retrieving and serving tiles may need to be kept as short as
possible, using the fastest technology available. In this case,
using a full-blown web server such as IIS may be overkill.
[0062] It may be possible to build low-latency systems in
CH#, but the language may make it difficult. C# is a difficult
collected language: memory allocations are automatic, and
the process may occasionally traverse a graph of allocated
objects to determine which can be deallocated and memory
freed. This means that C# is completely memory-safe, and
the programmer seldom needs to worry about memory
management. However, this procedure is not without a cost,
and can cause latency spikes when it runs at the same time
as a request is pending. Furthermore, garbage collected
languages may use more memory on average in order to
keep track of object liveness. Finally, compiled C# code runs
on a virtual machine, which takes its own performance and
memory usage toll. On a personal machine, the development
version of the server may take a full minute and allocate up
to 700 MB of memory before it can start answering HTTP
requests. Both of these numbers may be significantly
reduced with a different implementation and backing tech-
nology.

[0063] FIGS. 4 and 5 provide a quick overview of the
timing and control flow of a tile request from a user’s
perspective. The control flow of the tile request is a simpli-
fied version of the underlying algorithms

[0064] As shown in FIG. 4, a timeline metric may com-
prise the relative times that may be taken for a request 41,

Mar. 17, 2022

a Time To First Byte (I'TFB) 42, a download 43, a decoding
44, and a drawing 45. Slow paths, such as a download 43 are
represented in a striped pattern, and slow operations, such as
TTFB, are represented in another pattern with thicker
stripes. The request 41 may comprise a relatively short time
within the control flow of a tile request, whereas the TTFB
may take a comparatively much longer time. The Time To
First Byte (TTFB) 42 metric represents the latency of the
server, and is a metric that may be focused on the most in
regards to the rest of the present disclosure. The download
43 may also take a comparatively long time within the
control flow, while the decoding 44 and the drawing 45 steps
may be completed relatively quickly.

[0065] FIG. 5 is a flowchart illustrating an overview
method 50 of the timing and control flow of a tile request
from a user’s perspective.

[0066] In step 51, the method may include a viewer
requesting a tile at coordinates (X, y, z). This request may be
sent via HTTP protocol.

[0067] In step 52, a server, such as tile server or backend
30 as shown in FIG. 3, may receive the request and may
determine whether the server already has a requested tile
ready.

[0068] In step 53a, if the server has determined that the
slide is not ready, the server may load the slide from a
storage device.

[0069] Instep 535, if the server instead determines that the
slide is already ready, the method may include the server
may then determining whether the server already has a tile
at the requested coordinates ready.

[0070] In step 54, if the slide has been loaded from storage
or if the server does not already have the tile ready, the
method may include the server generating the requested tile
and storing it.

[0071] In step 55, the method may include the viewer
receiving the tile from the server, either as generated in step
54 or as already processed by the server in step 536.
[0072] An exemplary embodiment of the slide viewer has
two goals. First, the slide viewer should be fast. Users may
not have to wait long before FOVs load in, and the viewer
should maintain a constant 60 FPS when panning and
zooming. Pathologists are used to the microscope, where
latency is bounded only by the speed of light. With an
exemplary viewer, it may be preferable to strive to replicate
this experience as close as possible. The end goal is to have
no perceivable latency. For reference, a response time of 100
ms is considered as the upper limit for giving users a feeling
of instantaneous feedback.

[0073] Secondly, the slide viewer has a need to be mea-
surable. It may be important to be able to provide precise
metrics as to how the exemplary viewer performs under use.
For comparison to existing slide viewers, a benchmark suite
representative of a realistic load is needed.

[0074] Generally, there is one constant to a web applica-
tion such as a slide viewer. JavaScript has predominately
been the language of the web, and was previously the only
language browsers will natively run.

[0075] Recently, browsers have started to implement a
virtual machine to run WebAssembly (Wasm), which is a
type of assembly code targeting the web platform. As
security is of paramount importance in a browser, it is
designed to be fully sandboxed. It is undesirable to visit a
website only for it to have complete access over the
machine. Aside from that advantage of Wasm: it is also
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much faster to execute than JavaScript. In order for a
browser to execute JavaScript, the following steps may be
executed:

[0076] a. Downloading the original JavaScript source.

[0077] b. Parsing the JavaScript into an Abstract Syntax
Tree (AST).

[0078] c. Compiling the JavaScript into machine code,
which may vary between implementations. Histori-
cally, JavaScript was an entirely interpreted language.
With the advent of Just In Time (JIT) compilation, it is
now common to refer to it as a compiled language.

[0079] d. Executing the JavaScript.

[0080] The above steps illustrate an overview of the
process. In practice, some of the steps may be partially
skipped. For example, the browser’s JavaScript engine does
not need to parse the entire JavaScript source in order to start
executing it. In fact, it can use its lexer to quickly jump over
whole sections of code that might not be necessary for first
execution. This may be referred to as lazy compilation.
[0081] However, some steps cannot be completely opti-
mized away. Even though modern JavaScript code is mini-
fied and compressed before being sent to the client, it weighs
more than raw bytecode would. Similarly, while parsing can
be skipped in some cases, it will need to happen at some
point. JIT compilation may have impressive performance,
but it involves an additional step at runtime.

[0082] As a byte code, Wasm provides an elegant solution
to most of these issues. But more importantly, Wasm is a
compilation target. This means that any language that imple-
ments a Wasm backend may be able to run in a browser2,
which is an extremely exciting development in the history of
the web.

[0083] Rust is a new, modern language that has a lot of
interesting properties: like C and C++, the language features
manual memory management, which allows for precise
control over the patterns of memory consumption of a
pro-gram.

[0084] However, unlike both C and C++, Rust is memory-
safe. Thanks to the inclusion of a new concept called
lifetimes and built-in Resource Acquisition Is Initialization
(RAIID), much of the complexity and volatility of manual
memory management is taken care of by the compiler itself.
This is considered the defining feature of Rust: it eliminates
a whole class of programmer errors by forbidding provably
unsafe operations by default.

[0085] Rust defers to the LLVM (low level virtual
machine) backend for compilation. Thus, Rust may take
advantage of the many optimizations provided by the LLVM
compiler, which may result in code that is as fast, and
sometimes faster, than its C/C++ counterpart. Further, all
LLVM targets may be natively supported, including Linux,
Windows, macOS, etc. This list may also include Wasm.
[0086] Rust also includes a slew of others features to be
expected in a modern programming language, such as but
not limited to: an advanced type system; zero-cost abstrac-
tions; pattern matching; functional primitives; asynchronous
programming; built-in package manager and compilation
toolchain; built-in automatic code formatting and linting;
and automatic C and C++ bindings generation. Rust is still
evolving rapidly and may offer even more improvements,
while maintaining a strict backwards-compatibility policy.
Rust has risen in popularity due to its raw performance and
iteration speed. The combination of manual memory man-
agement and native targets means that there may not be any

Mar. 17, 2022

artificial boundary to how fast Rust can run. Furthermore,
since Rust is not garbage collected, performance is predict-
able: there is no “lag spike” effect. Importantly, Rust is
safe—it has been shown that 70% of all serious security
bugs were caused by memory safety issues. Rust may also
be run in the browser, meaning that a user may leverage all
of the advantages of a Rust codebase and Wasm perfor-
mance with none of the historical drawbacks associated with
web applications. This also makes it possible to share code
between browser and native targets. Notwithstanding the
foregoing, it is contemplated that any desired language or
code base, currently existing or future developed, may be
used to run the web server and/or slide viewer consistent
with the embodiments of this disclosure.

[0087] FIG. 6A is an exemplary schema of an exemplary
embodiment of a slide viewer 100. On the frontend 60, the
core viewer 61 and rendering logic may be written in Rust,
while the higher-level user interface logic 62 may be written
in TypeScript6 with React7. For the tile server or backend
70, a web server 71, such as an Actix Web web server,
currently considered one of the most performant web serv-
ers, may be used. A routing logic 72, an image decoding or
slide reader logic 73, and a file system logic 74, may all be
written in Rust. However, within the scope of this exemplary
embodiment, support may also be implemented for Aperio
SVS slides. Implementing support for other slide formats
may require writing bindings to C++ libraries (e.g. for
Philips iSyntax) or re-implementing the decoding logic
manually. The viewer core logic may be written in Rust,
unlocking new possibilities such as native rendering. By
mixing the frontend and tile server codebases, a native
version of the viewer may run in a window on Linux,
Windows and macOS.

[0088] FIG. 6B illustrates an example architecture of such
a program. In FIG. 6B, the native application 400 is written
in Rust, and comprises a viewer 401, a user interface 402, a
slide reader 403, and a generic file system 404.

Anatomy of a Tile Request

[0089] When a user makes a request for a tile at coordi-
nates (X, y) and magnification level z—referred to as coor-
dinates (z, x, y) —the tile server starts the procedure
illustrated by FIGS. 7A and 7B. The procedure goes through
multiple steps and branches and ends with the user being
served an image corresponding to the requested tile.

[0090] FIG. 7A s a flow diagram illustrating an exemplary
tile request procedure 700 from a user (e.g., steps 702-710),
as described above. All steps of the exemplary tile request
procedure 700 may be optional and may be completed in any
order. The occurrence of each step may also vary, as
indicated by the difference in a line pattern between steps.
One pattern of dashes in a line may represent that the step
always, often or rarely occurs, while a continuous, unbroken
line may represent that the step very rarely occurs (i.e.,
usually only occurs once, such as the occurrence of steps
705, 706, and 707).

[0091] Inexemplary tile request procedure 700, a user 701
may request a tile from a server. The specific tile request
may include more than one tile of a digital image associated
with a pathology specimen image, or may be a singular tile
of the digital image.

[0092] In step 702, the procedure may include routing the
tile request to a server.
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[0093] In step 703, the server may determine whether the
tile has been generated by the server. If the tile has been
generated by the server, the procedure may advance to step
709, as described below.

[0094] If the tile has not been generated by the server yet,
the server may then determine, in step 704, whether a slide
associated with the requested tile is in a cache. In one case,
where the tile requested has not been generated but the WSI
is in cache, the server may read the region corresponding to
the tile and serves the resulting image file to the user as
described in step 708. This file is saved in case the client
requests the same tile again, as described in step 710, in
which case the procedure may be able to bypass the region
decoding step entirely.

[0095] If the slide associated with the requested tile is not
in cache, then the server may then determine, in step 705,
whether the slide is on the local File System (FS). If the slide
is on the local file system, then the procedure may advance
to step 707, as described below.

[0096] If the slide is not on the local file system, then the
server may then download the slide to the local file system
in step 706. Once the slide is downloaded into the local file
system, the server may open the slide in step 707.

[0097] In step 708, the server may read the tile region, and
may either proceed to save the tile file in a step 710, or may
serve the file back to the user 701 in step 709.

[0098] When the user requests a slide for the first time, or
long enough a time has elapsed since their last request that
the slide has left the cache and been cleared from the local
FS, the server may need to retrieve the slide from the remote
FS (e.g. such as an Amazon Web Services (AWS) S3 bucket)
to the local FS and open it. This operation may only happen
once, when the client first retrieves the metadata related to
a WSL

[0099] The steps described in FIG. 7B, which illustrate the
same exemplary tile request procedure 700, may further
illustrate a time cost associated to each step, which is
referred to as latency incurred. This latency adds up to form
the overall latency of the whole request, which the user will
experience as the TTFB metric.

[0100] The latency incurred by each step may be illus-
trated by the patterned line around each step. For example,
a line with a dotted pattern may indicate that the step has a
latency incurred of less than one millisecond, whereas a
thinner line may indicate a latency incurred of between one
and ten milliseconds, etc.

[0101] FIG. 8 complements FIG. 7 by illustrating the
incurred latency at every step. The fastest path may be when
the tile has already been generated (determined by the server
in step 703) by the server and need only be served. In this
case, the tile is present on the FS, and can be streamed
directly to the user.

[0102] However, the most frequent case is when the tile is
not present on the FS and must be generated from the WSI,
but the slide is available in cache. Compared to the fastest
path, this case entails two additional steps:

[0103] a. Decoding the tile region from the WSI, which
is blocking.

[0104] b. Saving the file to the FS, which is non-
blocking: the operation happens in parallel to serving
the file.

[0105] Finally, in the rare case when the slide is not
present in cache (as determined by the server in step 704)
and possibly not present on the local FS, the server may need
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to retrieve the WSI file from the FS (as in step 706). As the
files are very large, this can take up to a few seconds.
Beneficially, this case is usually only hit once when the slide
is first requested by the user, which may make its high
latency acceptable.

[0106] This algorithm may be similar to the one illustrated
in FIG. 5. Thanks to the lower overhead of one exemplary
embodiment implementation, its average latency may be
lower, as demonstrated below.

Region Decoding

[0107] The procedure of decoding a region of a WSI may
depend entirely on the format of the image.

[0108] One such format of the WSI may be in the form of
a ScanScope Virtual Slide (SVS) images, which use the
TIFF image container format. These images are composed
of the following parts:

[0109] a. A header that points to a registry of image
headers;

[0110] b. Image headers that point to registries of image
metadata;

[0111] c. Image metadata, which includes such detail as
width, height, description, colorimetry information,
etc.; and

[0112] d. Image data, which may be in two different
formats:

[0113] i. Contiguous rows of pixels. Vertically stack-
ing up these rows together will reassemble the
image. This format may be used for smaller images.
In SVS, these are the label, thumbnail and macro
images.

[0114] ii. Tiles, which are listed from top to bottom,
left to right. In this case, the image is cut into a
regular grid of rectangular tiles, which may be
encoded separately. This format may be used for the
different magnification levels of the image, in order
to allow for partial decoding of these large images.
This principle is illustrated by FIG. 1.

[0115] The image data in SVS files may be encoded in
three different ways. The label image may be encoded using
the LZW compression algorithm, while the thumbnail and
macro images may be encoded with JPEG. The baseline
image and different magnification levels may be encoded in
either JPEG or JPEG2000.

[0116] Since the magnification levels and tile dimensions
exposed by the tile server and those stored in the WSI may
differ, decoding a region of the image for the purpose of
generating a tile is more complex than simply indexing the
right tile at the right magnification level:

[0117] a. First, the procedure may select the WSI level
whose magnification power is closest to that requested
by the user AND, if possible, of a higher magnification
power: selecting a lower magnification power may
result in loss of information.

[0118] b. Then, all of the WSI tiles that cover the
requested region are blitted to a buffer of dimensions
equal to that of the requested region projected to the
magnification power of the selected WSI level.

[0119] c. This buffer is then linearly resampled to the
dimensions of the requested region. This step may not
be necessary if the magnification power of the level
requested by the client is equivalent to that of the
selected WSI level.
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[0120] Finally, once a region is decoded and before it can
be served to the client, it may need to be encoded back to an
image format that the browser will understand. More detail
about image formats may be found below. In an exemplary
tile server, images are encoded to JPEG with a quality
setting of 75.

[0121] This series of operations may involve decoding one
too many images, potentially resizing an image, and encod-
ing the final result. This can take anywhere between 10 and
100 ms, and sometimes more in pathological cases. The
performance of these steps also depends on the encoding,
decoding, and resizing algorithms used. In an exemplary
embodiment of the tile server, the MozJPEGS image
decoder and encoder may be used, due to its being at least
twice as fast as the current best Rust implementation.

Image Formats

[0122] There exists a multitude of WSI formats, which use
different container formats and compression techniques:
SVS (.sys); Philips iSyntax (.isyntax); Hamamatsu (.vms,
vmu, .ndpi); Leica (.sen); MIRAX (.mrxs); Sakura (.sys-
lide); and Other TIFF variants. These formats may be the
output of the corresponding manufacturers’ scanners. Some
slide viewers may store the originals and use vendor frame-
works and the OpenSlide open-source library to open and
read images whenever the user opens and views a slide.
However, this process may have a number of drawbacks.

[0123] Inorder for the frameworks to read a slide, the slide
may need to be present on the local FS. Downloading a tile
or mounting a remote FS will add latency to the process.
Furthermore, since these files are very large, the cost of
keeping them in hot storage is uneconomical.

[0124] Secondly, these frameworks may each have their
own implementations, behaviors, and APIs. This may result
in different performance profiles between them. Conse-
quently, the user experience may be different between slide
formats, as some will take longer to load than others. It also
greatly increases the complexity of the tile server, which
may need to call into them all.

[0125] Lastly, there is less control over the compression
techniques used by the WSI formats. Some file formats use
older compression techniques that are likely non-optimal
today, therefore taking up more space or using more pro-
cessing time to decode than is necessary.

Compression Methods

[0126] The main compression techniques used by SVS
and Philips iSyntax are the Discrete Cosine Transform
(DCT) (JPEG) and the Discrete Wavelet Transform (DWT)
(JPEG2000). Even though they both support lossless com-
pression (JPEG through the JPEG Lossless extension), they
are used in their lossy form.

[0127] JPEG2000 is a more recent technique than JPEG,
and results in better compression ratios than JPEG at the
same image quality level. However, it is more computation-
ally expensive, which makes it less suitable in scenarios that
involve repeated encoding and decoding. Furthermore, since
its appearance 20 years ago, JPEG2000 has failed to gain
widespread adoption, and is only used in rare cases such
histopathology slide storage. Finally, JPEG2000 is not sup-
ported natively in browsers, while JPEG is.
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Compression Methods

[0128] More recent image compression techniques
include:
[0129] a. WebP, which uses the VP8 codec. While it is

not the most performant format todayi, it is supported by
all major browsers except Safari, which may support it
in version 14.

[0130] b. HEIF, which uses the HEVC codec. Not
currently supported in any browser.

[0131] c. AVIF, which uses the AV1 codec. Not cur-
rently supported in any browser, but with intent to
support in Chrome and Firefox.

[0132] d. FLIF. Not supported in any browser.

[0133] e. JPEG XL. Not finalized, and not supported in
any browser.

[0134] All of the aforementioned formats may outperform
JPEG in the general case, and often may outperform JPEG
2000 as well.

[0135] For the present disclosure, JPEG XL may be the
most promising image format. Backed by the Joint Photo-
graphic Experts Group (JPEG), it promises the following
properties:

[0136] a. Best-in-class image compression ratios and
image quality;

[0137] b. Fast encoding and decoding performance
thanks to a design adapted for multithreading and
Single Instruction Multiple Data (SIMD);

[0138] c. Some backwards compatibility with JPEG
decoders; and

[0139] d. Lossless transcoding of legacy JPEG files.

[0140] Furthermore, JPEG XL also may include the
Brunsli13 JPEG repacker, which may allow for a decrease in
file size while allowing the original JPEG to be recovered
byte-by-byte. Considering the amount of legacy JPEG
image streams that an exemplary embodiment of the present
disclosure stores, adopting such a format may result in
significant savings.

[0141] As mentioned above, except for WebP and with the
exclusion of Safari, currently none of these newer formats
are supported natively in browsers. However, this does not
necessarily eliminate their use: thanks to Wasm, it may be
still possible to decode some of these formats in the browser.
Notably, the reference JPEG XL implementation ships with
support for WebAssembly.

[0142] Contrary to the browser’s native JPEG decoder,
Wasm implementations may not be capable of taking advan-
tage of multithreading or SIMD, as these features are
currently only partially available in browsers. Hence, it is
unclear whether these implementations may be able to
provide the necessary performance for fast client-side
decoding. Nonetheless, since some of these formats are
generally faster than the best JPEG decoder available today,
it is likely that this may be possible.

Pre-Tiling

[0143] The anatomy of a tile request is described above,
and it is explained that the faster path occurs when the
requested tile had already been generated. If this idea is
taken further, and a user expects all tiles to already be
generated, the architecture of the tile server may be simpli-
fied. In fact, the architecture may be simplified to a point
where it becomes a static file server, i.e. a server whose
purpose may be to serve content that never changes. Such a
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server may be highly optimized so that requests are very
fast. The architecture of such a server is illustrated in FIG.
8.

[0144] FIG. 8 is a workflow illustrating an exemplary
embodiment of the server architecture. The workflow may
start with a user 801, who may request a file from a server.
In step 802, the workflow may include a server determining
whether the file exists on the server. When the user requests
a tile that does not exist, no corresponding file is found on
the server and an error 803 is sent to the client. However, if
the file does exist, the server may serve the file in a step 804.
[0145] The hot path (e.g., the process between steps 802
and 804) is serving the file directly. However, this case may
be undesirable under normal use of the tile server since the
client knows exactly which tiles are available.

[0146] Such an architecture would still involve the tiles
being generated at some point. This may be the responsi-
bility of the slide ingestion pipeline, and would likely occur
as soon as the slide becomes available on associated servers.
In so doing, it would become available to the user as soon
as possible.

[0147] While pre-tiling may seem like a suitable solution,
it still presents a couple of drawbacks:

[0148] a. Pre-tiling implies some added latency between
the time the slide arrives on associated servers and the
time it is available to the user. However, this may not
be an issue in practice since such a process may be
continuous and automated, and users might not need
the results instantly. Furthermore, it could in theory be
mitigated by falling back to the original tile server
architecture when tiles are not available yet. Finally, if
the process of generating tiles is fast enough, this might
only incur a delay of a few dozen seconds.

[0149] b. Contrary to on-demand tiling, pre-tiling may
imply storing all the generated tiles of a slide, at all
times. In practice, this doubles the amount of space that
is necessary to store slides, with in turn increases
storage costs. A corollary of this is that it also maxi-
mizes the processing time necessary to generate tiles.

Viewer Architecture

[0150] In some embodiments, the viewer may run in two
main loops. One loop is the background loop, which handles
image requests, decoding, and loading in graphics memory,
as well as cache pruning, or cache sorting, operations. The
second loop is the render loop, which might only handle
rendering to the display.

[0151] During their execution, these two loops may call
different components of the viewer. The core computes tile
visibility and the draw calls that may be necessary to draw
them on the display. The renderer acts as bindings to the
underlying graphics implementation, which can be 2D Can-
vas, WebGL, or any native graphics API. The loader asyn-
chronously loads tiles, either from a remote source (web) or
from a local file system (native).

[0152] The cache stores tile images and GPU textures, and
occasionally prunes, or sorts, itself when its maximum
occupancy is reached. A tile stored in the cache may be
stored in one of two states: (1) tile request state, or (2) fully
loaded state. In the tile request state, the tile may be in the
process of being loaded, such as from a tile server or other
storage device. In the fully loaded state, the tile image may
have been fully loaded. Additionally, for example, if a tile
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from a previous group has not yet been fully loaded, the
viewer may not store tiles from the next group.

[0153] Additionally, there may be a third loop that is
dependent upon the platform on which the viewer runs: the
event loop, which processes user events such as mouse
events and keyboard events. In the browser, it may be
automatically handled by the JavaScript engine. The event
loop is where FOV changes are applied: when the user clicks
and drags the display, events are fired, and the application
logic updates the FOV accordingly.

[0154] FIG. 9 is a summary 900 of the flowcharts of both
these loops.

Background Loop 901

[0155] The background loop 901 may be where most of
the background processing happens. It may be scheduled to
run any time the process has time to spare before the next
frame starts. It may even be scheduled in a background
thread. The background loop 901 may proceed as follows:
[0156] Given a FOV 903, the background loop 901 may
compute the tiles currently visible within it. This may be
accomplished by a core processor of the viewer determining,
in a step 905, which tiles are visible.

[0157] For example, when the viewer’s FOV changes, the
viewer may load tiles from the cache in groups in the
following order of priority:

[0158] a. Tiles within the FOV at a magnification level,
which may be equal to or greater than the FOV’s
magnification factor;

[0159] ©b. Tiles bordering the FOV at a magnification
level, which may be equal or larger than the FOV’s
magnification factor;

[0160] c. Tiles within the FOV at a higher magnification
level; and

[0161] d. Tiles within the FOV at a lower magnification
level.

[0162] Additionally, when the viewer loads a tile from the
cache, if the tile was not previously stored in the cache, the
tile may be automatically stored in the cache.

[0163] For example, the tile retrieved from the cache may
have a magnification level equal to or greater than the FOV’s
magnification level. However, in some embodiments, this is
not always possible because tiles may not be computed for
an infinity of arbitrarily large magnification levels. In such
situations, for example, when the FOV’s magnification
factor may be past the largest tile magnification level avail-
able, a tile from the largest tile magnification level available
may be retrieved from the cache.

[0164] The FOV’s magnification factor may be a continu-
ous value. For example, the FOV magnification factor may
be 0.1, 2.0, orit could be 0.123456 . . ., etc. Atile’s or WSI’s
magnification level may be a set of tiles, where the set of
tiles may correspond to a discrete and bounded magnifica-
tion factor, for example, 1, 2, 4, 8, etc. For example, when
the FOV’s magnification factor is 2, tiles with magnification
levels greater than or equal to 2 may be loaded. However, if
no such tiles exist, tiles with the magnification level with the
largest magnification factor available may be loaded. Such a
process may occur on the tile server and/or the viewer.
[0165] If any of the tiles 907 are not found in the cache of
the viewer, as may be determined in a step 909, the cache
may start asynchronously loading their images. Images may
be loaded by a loader of the viewer, which may request
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images 910 in step 912. The images 910 may be sent back
to the cache after the request is made.

[0166] If any of these tiles 907 has an image 910 loaded
in cache but no associated texture 911, it may start asyn-
chronously uploading the texture 911 to the GPU of the
viewer, as shown in step 913.

[0167] Once all requests have been made, if necessary, the
cache may be pruned to free graphics and system memory of
unused tile images and GPU textures in step 914.

Render Loop

[0168] The render loop 912 may be responsible for updat-
ing the display to reflect the changes to the FOV 903. The
render loop 912 may be scheduled to run once per display
frame, which would be 60 times per second (60 FPS) on
most monitors. The render loop 912 may have a process as
follows:

[0169] Given a FOV 903, the render loop 912 may com-
pute the tiles currently visible within the FOV 903. The
process may include a step 915, where the rendered of the
viewer may determine which tiles are visible. If any tiles are
not found in the cache, the render loop 912 may instead look
for tiles from different magnification levels that cover the
tile’s surface area.

[0170] The renderer may then retrieve textures as needed,
as shown in step 916. The render loop may then generate
draw calls 917 that describe where to draw the tiles’ textures
on the display and sends them to the renderer, whose
responsibility it is to actually execute them, as shown in step
918.

Rendering Technics

[0171] Using generics, the viewer may delegate some or
all rendering logic to an external implementation. This may
make it possible to quickly add a new graphics implemen-
tation, e.g. to support a new platform, without changing any
of the existing code.

[0172] Historically, the 2D canvas was the first JavaScript
graphics API to be supported across all major browsers. This
makes it the most portable. However, as its name suggests,
it might only support 2D contexts. As such, may not be
suitable for a large number of applications. Furthermore, as
a high level abstraction, it may hide much of the complexity
of graphics rendering at the cost of performance and cus-
tomizability. Since the viewer is, in some embodiments, a
2D application, the canvas may be particularly well-suited to
render it.

[0173] WebGL is an implementation of the OpenGL ES
2.0 standard, designed to run in a browser context. It exposes
a JavaScript APl for rendering 3D graphics, which also
makes it suitable for 2D graphics. It is a lower level API than
the canvas, with better control over how operations are
composed and how memory is managed. As a thin layer over
OpenGL, WebGL has the advantage of being hardware
accelerated on most platforms, which makes it generally
more performant than the canvas API.

[0174] Similarly to OpenGL, WebGL programs are a
composition of JavaScript code that schedules operations,
and shaders written in OpenGL ES Shading [Language
(GLSL ES), which are executed directly on the user’s GPU.
The WebGL backend is comparatively much more complex
than the canvas implementation. However, the many advan-
tages WebGL offers over the canvas alternative make it a

Mar. 17, 2022

better choice for certain circumstances. As previously men-
tioned, WebGL is more performant and more memory-
efficient than the canvas API. WebGL supports sub-pixel
rendering out-of-the-box, while canvas implementations’
support differs across browsers. Because of floating point
precision issues, this may cause visible tile seams when
compositing tiles next to each other, and may require some
more logic on the part of the renderer to handle these special
cases. The WebGL API maps almost 1:1 to OpenGL APIs,
which means that implementations can be shared between a
native context and a browser context. Further, shaders
provide a very performant way to add post-processing and
advanced compositing to images, which is a fundamental
feature of an image viewer.

[0175] Inorderto support the largest browser version area,
a frequent pattern in the web development world may
default to a WebGL implementation, and fallback to a
canvas implementation if WebGL is not supported by the
current browser. However, this may involve using only the
subset of features from WebGL that canvas supports, which
may not work if a program features complex shader code.
[0176] WebGL 2.0 is a new specification based on the
OpenGL ES 3.0 standard. However, it is not supported by all
major browsers, with Safari as a notable holdout.

[0177] WebGPU is an upcoming API that exposes even
lower-level graphics capabilities to web applications. It is
based in parts on the Vulkan specification, with the goal of
efficiently mapping to the Direct3D (Windows) and Metal
APIs as well.

[0178] While WebGPU is not available out-of-the-box on
most browsers today, it is still possible to enable it in the
experimental settings of the latest browsers. WebGPU rep-
resents a promising development in the graphics program-
ming world: the promise of a unified API that can target any
graphics backend and thus work seamlessly across different
platforms.

[0179] The present disclosure includes an embodiment
with implementation of a WebGPU backend using the
wgpuS Rust crate. For now, this backend only powers the
native version of the viewer. With one implementation, the
native viewer may be able to run on Linux, Windows, and
macOS, with the promise of being able to target OpenGL,
WebGL, and future WebGPU implementations in the
browser.

[0180] As it targets an even lower-level API, the disclosed
WebGPU implementation is more complex than either the
canvas or WebGL implementations. However, the WebGPU
API is well designed, and the abstractions provided by the
wgpu crate may make it relatively easy to use. In the coming
years, WebGPU development may likely become even
easier, with better tooling and support becoming available.

Optimization Techniques

[0181] Performance may be a key component and serves
to guide technological choices in an exemplary embodiment
of a slide viewer. However, because of product constraints,
some of these choices are already made. Perhaps the most
important of them is that the viewer may be a web appli-
cation.

[0182] If the viewer is a web application, the number of
technologies available for use with the viewer may be
restricted. However, in part due to WebAssembly, WebGL,
and potentially WebGPU, it remains possible to write very
performant graphical web applications. Nonetheless, some
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parts of these applications must still communicate over the
network, and are thus constrained by both the browser’s
network stack and the client’s internet connection. Web
applications may be further constrained by the need to fit in
the allocated browser’s memory, with access possibly only
to Web APIs.

Cache Heuristics

[0183] A browser, and in a wider sense a user’s computer,
may have a limited amount of memory available. As such,
it may not be possible to keep all images that will be loaded
as part of a user’s session in memory, as it would be akin to
storing the whole slide image on the user’s device. These
images may be gigabytes-large encoded, and dozens of
gigabytes-large decoded. As such, as mentioned above, it
may be necessary to implement cache-pruning, or cache
sorting, heuristics in order to keep the occupancy of the
cache at a manageable size.

[0184] Pruning or sorting the cache may refers to an
operation of determining the priority of each tile currently
stored in the cache and pruning the cache, if necessary. The
sorting of the cache may be triggered when the cache is over
maximum occupancy. For example, the viewer may deter-
mine that maximum capacity is reached when the cache is
completely full. Alternatively, the viewer may determine
that the maximum occupancy is a particular level of capacity
of the cache. When the cache is at and/or over maximum
occupancy, the contents of the cache may be examined to
determine which tiles have the lowest priority. The tiles that
have the lowest priority may be removed from the cache
until the cache is at or below the maximum occupancy.

[0185] In one embodiment, the order of tile priority in the
cache may include:

[0186] a. Tiles within the FOV at a magnification level,
which may be equal to or greater than the FOV’s
magnification factor;

[0187] b. Tiles bordering the FOV at a magnification
level, which may be equal or larger than the FOV’s
magnification factor;

[0188]
level,

[0189] d. Tiles within the FOV at a lower magnification
level; and

[0190]

[0191] In another embodiment, during each cache cycle,
tiles may be sorted in three categories:

[0192] a. Tiles that are currently directly needed for
display. Looking back at FIG. 2, these are the tiles 11
marked as “active”. These active tiles 11 may also be
seen in FIG. 11.

[0193] b. As shown in FIG. 10A, when a slide image is
first loaded, it may be displayed in its entirety. During
this first display, a set of tiles may be loaded at a low
magnification level. These tiles may be used for inter-
polation purposes, when tiles at the correct magnifica-
tion level are being loaded and there may be a need to
display something in their stead. FIG. 10B showcases
such an example, where a low magnification tile is
interpolated to display instead of a high magnification
tile while the latter is loading.

c. Tiles within the FOV at a higher magnification

e. all other tiles.
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[0194] c. Other tiles are sorted into four subcategories,

by decreasing order of importance:

[0195] 1. Tiles that are directly bordering the FOV;

[0196] ii. Tiles that are within the FOV, but at greater

magnification levels;
[0197] iii. Tiles that are within the FOV, but at lower
magnification levels;

[0198] iv. All other tiles.
[0199] Tiles that belong in categories 1 and 2 may be
always kept in memory, since they are either needed
instantly, or always may be needed eventually for interpo-
lation purposes. Tiles that belong in category 3 may only be
kept up to a maximum occupancy, after which tiles that are
considered to be low-priority start to be pruned.
[0200] Furthermore, these heuristics apply to more than
just decoded images. Indeed, image requests will follow the
same heuristics, with the added constraint that no request
from category 3 can run at the same time than requests from
categories 1 and 2. Pending requests for low-priority tiles are
cancelled when requests for high-priority tiles come in. This
ensures that requests for necessary tiles might be always
prioritized.

Tile Preloading

[0201] FIG. 2 demonstrates the active tiles 11 the viewer
may load in order to render a specific FOV 12. However, an
exemplary embodiment may start loading tiles that the
viewer predicts the user might visit next.

[0202] FIG. 11 showcases an example of this behavior in
action. Since the slide viewer may expect the user to pan the
FOV 12 at some point, it may increase the size of it to form
a “preload area”, such as preload area 112. Tiles 111 in
preload area 112 may be loaded in the background so that
they may become instantly available when the user needs
them.

[0203] As described above, these tiles 111 may be con-
sidered a part of subcategory (c)(i). As such, requesting
these tiles 111 may not slow down other tile requests, and
may not come at the cost of pruning other more important
tiles.

[0204] Despite the potential gains in user experience, this
approach may also have drawbacks. One such drawback
may be preemptively loading a larger region of the image,
meaning that more requests are made to the tile server, and
some of these requests will be wasted. As such the data
transfer costs with preloading tiles are higher than without.
Another drawback is that preloading too large an area may
put a strain on both the user and the server. In practice, this
may cause stutter on the frontend, and increased latency on
the backend. However, this may be alleviated through the
use of a Content Delivery Network (CDN) on the server-
side, and proper request scheduling on the client-side.

Parallel Tile Loading and Decoding

[0205] In modern browsers, while resource loading hap-
pens asynchronously in the background, image decoding
may happen in a main thread. As such, decoding a large
number of images may lead to increased latency, delay the
render loop, and, consequently, cause a drop in FPS. FIG. 12
shows an exemplary timeline of requesting, loading, and
decoding tiles in a sequential manner with sequential
requests 121,122, and 123 in the top half 120, and sequential
requests 126, 127, and 128 in the bottom half 125. If image
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decoding only happens in the main thread, it may be purely
sequential, and it may become necessary to wait for decod-
ing to complete before the render loop is able to be executed.
[0206] In the top half 120 of FIG. 12, sequential requests
121, 122, and 123 may be within a main thread or another
threads. The sequential requests 121, 122, and 123 may be
decoded and stored sequentially, or may be decoded in
another order and stored sequentially as a part of the main
thread. The parallel loading of the sequential requests 121,
122, and 123 may involve varying amounts of time, but may
start with the sequential order.

[0207] This is similar to the bottom half 125 of FIG. 12,
wherein sequential requests 126, 127, and 128 may exist in
the main thread or within other threads. The spacing
between the sequential requests 126, 127, and 128 may vary
within the main thread. Within the other thread, parallel
loading and decoding times for the sequential requests may
also vary, and may be completed within the same step of the
thread. Additional detail regarding sequential requests is
provided below.

[0208] WebWorkers are a recent addition to the web APIs
family. WebWorkers may leverage the multi-threading capa-
bilities of modern processors to execute JavaScript and
Wasm code in parallel to the main thread. JavaScript is, by
nature, single-threaded, which means that it might only run
on a single thread. In order to allow for parallel computing
in JavaScript, it may be necessary to use multi-processing
and message-passing. This is the basic concept of a Web-
Worker: it may run in an independent JavaScript context,
and may pass data back and forth to the main thread through
channels.

[0209] Using WebWorkers, it may become possible to
decode images off the main thread. Offloading work to
different threads may ensure that the main thread is free to
execute its more important responsibilities, including event
processing and rendering. FIG. 12 shows that by deferring
decoding to different threads, faster rendering with higher
frequency is achieved.

[0210] This technique can also be used for rendering
thanks to the recent addition of the OffscreenCanvas API.
However, rendering currently may not be a bottleneck for
the viewer, so it was not implemented.

[0211] Finally, it must be noted that while JavaScript
cannot have threads, it may still be possible in the future to
share memory directly thanks to the Shared ArrayBuffer API.
Furthermore, the Wasm specification supports a threading
model, and Wasm threads may already be available in
Chrome and Firefox.

Example Embodiment

[0212] An example embodiment may include a user
adjusting the FOV so that the FOV covers 4 tiles that are
indexed by their coordinates in a grid, such as (4, 4), (5, 4),
(4, 5), (5, 5). The viewer may then load tiles (4, 4), (5, 4),
(4, 5), (5, 5), which may all be located within the FOV. Tiles
(4, 4) and (5, 4) may already be stored by the cache in the
fully loaded state. Tiles (4, 5) and (5, 5) may not be stored
in the cache, which may result in such tiles being stored in
the tile request state. The tile request state may be stored in
the viewer or in the tile server. For example, the viewer may
send a tile request to the tile server to load tiles (4, 5) and
(5, 5). The tile request may include a tile identifier, such as
the specific FOV coordinates or a different unique identifier.
The tile server may transfer data to the viewer. Such data
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may include complete tile information in order for the tiles
to be fully loaded. The viewer may move tiles (4, 5) and (5,
5) to the fully loaded state. Now that all of the tiles are in the
fully loaded state, the viewer may proceed to load bordering
tiles (3, 4), (4, 3), etc, where the previously described
method may repeat for the bordering tiles and subsequent
groups of tiles. Additionally, the user may adjust the FOV
again and the viewer may load tiles from the cache for the
new FOV.

[0213] The cache may be at maximum occupancy from the
previous method. For example, all of the tiles that were
loaded from the method may have filled the cache to
maximum occupancy. Using the new (or current) FOV, the
cache may sort the stored tiles and remove low-priority tiles
until the cache is no longer at maximum capacity. Such a
sorting process may also occur at any time in the process.

[0214] Furthermore, the viewer may render the tiles at any
point during the above-described process. The viewer may
render the tiles in the fully loaded state to a display or a
storage device. This may be the rendering loop, where the
execution of the rendering loop may be independent to the
background loop method.

Work Scheduling

[0215] As mentioned above, the background loop may
need to be executed whenever the current process has time
to spare. On the web viewer, it may be scheduled to run just
before the render loop. While this works, it may not be
optimal, as it may cause the render loop to miss a frame if
the background loop takes too long.

[0216] An early example of work scheduling is the experi-
mental requestldleCallback API. Using this API, the back-
ground loop may be called whenever the browser has an idle
period. Furthermore, since it executes multiple small units of
work, the background loop is by nature pausable. Its execu-
tion may be temporarily paused if a timeout is reached, then
resumed on the next frame. Hence, in the near future, its
model may be able to take advantage of the new browser
scheduling APIs.

Performance Metrics

[0217] The tracer component of the instrumentation
framework is responsible for timing the duration between
the instant the first request is made for a tile, the instant the
tile is loaded from the server, and the instant it is finally
rendered on screen. These events are illustrated in FIG. 9.
Since loading and rendering may happen in different com-
ponents of the viewer, the tracer is wide-reaching across the
application. The tracer may achieve this by wrapping the
different components it needs to measure, which all expose
a generic APL. As such, to disable the tracer, the user may
need only to remove these wrappers.

[0218] An important metric gathered by the instrumenta-
tion framework is the FOV completion time. The FOV
completion time may measure the time elapsed between the
instant a user interaction causes a change in FOV, and the
instant the new FOV is fully rendered on screen.

[0219] Some interactions may result in instant FOV
completion, since the tiles necessary to display the FOV may
already be in cache. As such, the framework may only
consider FOV completion events when an incomplete FOV
was presented to the user for at least one frame. An incom-
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plete FOV is one where a tile texture has yet to load, and
may be replaced with an interpolated version of a lower
magnification tile in cache.

[0220] The FOV completion time is also called the turn-
around time. The Food and Drug Administration (FDA) has
specific guidelines regarding the turnaround time allowance
of a viewer application for different user interactions. The
exemplary embodiment only uses a fraction of the FDA
turnaround timeline guideline.

[0221] While the FOV completion time is a purely quan-
titative metric, a more qualitative metric of user experience
is measuring the average percentage of completion of the
FOV over a user’s session. The purpose of this metric is to
quantify the amount of time the user spent on an incomplete
FOV, and the amount of partial information displayed on the
screen at any time.

[0222] For every frame rendered on screen, the tracer may
look at the tile draw calls to see which draw calls refer to
textures that are at a lower magnification level than the
current FOV magnification level. Since a complete FOV
may only display textures at a magnification level equal or
higher than its own, a frame containing a lower magnifica-
tion texture will necessarily be incomplete. The area covered
by these draw calls may be measured and divided by the area
of the FOV, indicating the percentage of incompletion (and,
reversely, completion) of the FOV. The algorithm may be
slightly more complex, since it is possible for a higher
magnification texture to be overlaid upon a lower magnifi-
cation texture: while the exact texture necessary to render a
tile might not yet be available, it is possible that a higher
magnification subtile and a lower magnification supertile are
available in cache.

[0223] Finally, the simplest metric to measure is the time
it takes to load and render a single tile. This metric may be
mostly indicative of the performance of the tile server, but
may also reveal issues with the tile loading and rendering
pipeline.

[0224] For instance, using the HTTP/1.1 protocol, most
browsers will limit the number of requests that can be made
in parallel to a specific host. In Chrome, that number may be
6. Even with a fast tile server, such a limitation may
artificially inflate the tile loading time when loading more
than 6 tiles in parallel, as later requests will be queued by the
browser. In an exemplary embodiment described herein, tile
servers use the HTTP/2.0 protocol exclusively, which may
not suffer from these limitations.

Recording and Replaying User Sessions

[0225] Gathering enough data to compile meaningful
comparison benchmarks is always a challenge. As such, a
need exists for a way to quickly and efficiently generate
realistic usage data.

[0226] One approach to comparing one solution to another
may be to manually replay the steps of a normal user session
with tracing enabled, to see which solution appeared to have
the best performance after looking at samples. This approach
may have several drawbacks, including additional time
taken by a user as it is completely manual. Further, the
method may not be scientific and may not gather enough
samples to show any significant difference.

[0227] In order to avoid these drawbacks, a session
recorder and player may be used. User interactions may be
recorded alongside the instant they occurred, so they may be
replayed later at the same speed. One major difference
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between the original user session and the replayed session
may be that the session player does not wait any further
between user interactions once it notices that the FOV has
fully resolved. This may mean that replayed sessions may
generally be faster than the original. It also may mean that
they will be more taxing on the part of the viewer, since the
events will occur at a faster rate on average. As such, it is not
representative of a completely realistic usage scenario, but,
at the worst, of one more stressing to the system.

Benchmarks

[0228] The following benchmarks were captured on a
computer with the following specifications:

[0229] Model:MacBook Pro, 13-inch, 2019

[0230] CPU 2.8 GHz Quad-Core Intel Core i7

[0231] Graphics Intel Iris Plus Graphics 655 (inte-
grated)

[0232] Graphics Memory 1536 MB

[0233] Memory 16 GB 2133 MHz LPDDR3

[0234] Internet Bandwidth 300 Mbps

[0235] On the server-side, instances are running on

AWS EC2 instances of type mS5a.4xlarge with the
following specifications:

[0236] CPU 2.5 GHz AMD EPYC 7571, 16 threads
[0237] Memory 64 GB
[0238] The benchmarks were captured on a set of 10 SVS

slides from different tissues. All of the slides were scanned
with 40x magnification power. The below chart details tissue
types, slide size and resolution.

Tissue Type Size (GB) Width Height
Adrenal 2.1 129 480 95 624
Bladder 2.4 141 432 78 605
Brain, cerebellum 3.1 129 480 82 966
Brain, cortex 3.0 99 600 92 207
Colon 2.6 111 552 96 671
Heart 2.3 123 504 81 983
Kidney 2.8 141 432 67 614
Liver 3.1 113 544 82 680
Lung 1.2 131 472 71 639
Lymph Node 1.4 89 640 79 414

[0239] For benchmarking the exemplary viewer/tile server
combo, the process is divided into two parts. First, a series
of user actions is recorded, which are saved as a user session
for later playback. Then, once user sessions are generated for
all slides in the dataset, the user sessions are replayed.
[0240] The process for recording a user session may
include the following steps:
[0241] a. Clicking on a slide on the slide tray to open it
and start recording.
[0242] b. Navigating the slide using a series of zooms
and pans for 3 minutes.

[0243] c. Saving the user session.
[0244] d. Repeating the process for the next slide.
[0245] The process for generating benchmarks may

include the following steps:

[0246] a. Clear all previously generated tiles.

[0247] b. Configure the viewer to the desired settings to
benchmark.

[0248] c. Select the user sessions to replay.

[0249] d. The viewer may automatically replay the
selected sessions a number of times and save the result
to disk.
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FOV Completion

[0250] Zoom actions may be on average slower to com-
plete than panning actions because they may cause a full
invalidation of the FOV: since the viewer is transitioning
from one magnification level to another, it cannot reuse tiles
that were previously displayed. This contrasts with pan
actions, which may still be able to reuse some of these tiles
at the periphery of the new FOV.

[0251] Even though the following configurations may
follow the exact same series of actions, the number of
collected samples may vary greatly between them. Ulti-
mately, the number of samples indicates the number of
actions that resulted in the user being presented with an
incomplete FOV. As such, a smaller number of samples may
indicate that a smaller percentage of actions did so. This
effect may be particularly visible for the tile preloading
configurations as described above, and can be explained in
a number of ways. When FOV completion times are very
fast, completion events may happen multiple times as the
user is panning or zooming. When they are slower, they may
only happen once the user is done with these actions.
Configurations that require displaying fewer incomplete
FOVs may in turn have fewer samples of FOV completion
events.

[0252] As shown in FIG. 13A, an exemplary viewer may
be configured to never use a tile cache, and instead always
generate tiles on-demand. This may be the case for a
dynamic tiling benchmark.

[0253] An exemplary viewer configured for a static tiling
benchmark is illustrated in FIG. 13B. For the static tiling
benchmark, all of the tiles needed by the viewer were
generated ahead of time and streamed from S3 through the
tile server. All of the following benchmarks will also use
static tiling, as it may be considered to be the most realistic
approach moving forward.

[0254] The preloading benchmark adds tile preloading to
the mix, with four different configurations for the preload
offset. The preload offset may be expressed as a factor of the
configured tile size. For instance, if the tile size is 512x512
and the preload offset is configured to 0.5, the actual preload
offset in pixels may be 512x0.5=256 pixels.

Configuration Preload Offset

Preload, 1 0.5
Preload, 2 1.0
Preload, 3 1.5
Preload, 4 2.0

[0255] FIG. 14 shows that the value of the preload offset
may directly affect the FOV completion latency. Further-
more, the preload offset may invalidate the intuition that a
greater preload offset necessarily involves faster completion
times. This may be explained in a number of ways. A larger
preload offset may ultimately require loading more tiles. The
number of tiles to load may increase quadratically with the
preload offset, which can result in performance issues with
large numbers. Furthermore, loading a large number of tiles
at the same time may cause strain on the tile server and add
to the latency of requests. In the exemplary embodiment, all
preload tiles may have the same priority. This may mean that
for greater preload offset values, some tiles that are farther
from the FOV and thus less likely to be needed may resolve
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before closer tiles. Finally, the actions in the benchmarks
may be run in very quick succession without waiting
between FOV completion events. This is a pathological case
for tile preloading, which may expect the user to wait at least
half a second between actions. During this time, most if not
all preload tiles should be properly loaded.

[0256] The slow internet connection benchmark may arti-
ficially restrict the internet bandwidth to 10 Mbps to simu-
late slower connections.

[0257] FIG. 15A is a comparison of the performance of a
known slide viewer vs. the exemplary embodiment with
dynamic tiling. The results may show that the exemplary
embodiment is almost always, if not always, faster than the
known side viewer in the loading of FOVs.

[0258] FIG. 15B is a comparison of the performance of an
embodiment with dynamic tiling vs. static tiling. The dif-
ference may be noticeable in events that require a full
invalidation of the display (e.g., initial load and zooming).
On the other hand, events that require a partial invalidation
of the display (panning) may have little to no discernible
difference. This may be explained by the difference in strain
these events put on the server: fully invalidating the display
may require loading more tiles in parallel than a partial
invalidation, and in turn may cause latency spikes.

[0259] The current static tiling implementation may not be
perfect, as it may require the tile server to act as a proxy
between the backing store (AWS S3), and the client
(browser). This may add some latency to all requests. Ways
of eliminating this latency may include serving tiles directly
from the backing store; and/or serving tiles through the AWS
Content Delivery Network (CDN), CloudFront. CDNs may
be optimized for serving static content, and may greatly
improve latency for content that is frequently queried by
physically moving the corresponding data to a server that is
closer to the client.

[0260] These approaches may require partially moving the
authentication logic from the tile server (which, at this point,
is more of an authentication provider) to the service with
which the client will ultimately communicate (e.g., S3 or
CloudFront).

[0261] FIG. 15C is a comparison of the performance of an
exemplary embodiment with preloading disabled and
enabled with a preloading offset of 1, where benchmarks
from the above explanation have been shown to strike a
compromise between latency and number of tiles loaded. In
this configuration, a preloading offset of 1 means adding a
preload border of 512x512 around FOVs.

[0262] As expected, since the current implementation of
preloading may only operate on bordering tiles at the same
magnification level, the performance of zoom actions is
almost unchanged. However, it may be seen that preloading
considerably speeds up panning operations. The difference
in latency for the initial loads may only be explained by the
small number of samples for these events.

[0263] Finally, to further illustrate that the exemplary
embodiment may be considerably faster than a known slide
viewer, FIG. 15E shows a comparison between a known
slide viewer running on a 300 Mbps connection and the
exemplary embodiment running on a 10 Mbps connection.
The exemplary embodiment is faster on both the initial load
and panning actions, but does just as well as the known slide
viewer on zooming actions. As explained before, these
actions may require loading in many more tiles, which
saturates the limited bandwidth.
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[0264] The time it takes to load tiles is an important factor
for the perceived performance of a viewer. As demonstrated
in FIG. 15F, the exemplary embodiment tile server imple-
mentation may be capable of serving tiles much faster than
the known tile server, which may result in a lesser loading
time for the user. The difference is not so stark between the
dynamic tile server, which generates tiles on-demand, and
the static tile server, for which all tiles have already been
pre-generated.

[0265] When deciding on which configuration to adopt,
the main compromise that arises is that of quality of user
experience vs. cost of maintenance.

[0266] While the quality of user experience may be depen-
dent upon more quantitative metrics such as the average tile
loading time, such metrics do not tell the whole story. In
order to obtain a more representative metric, the exemplary
embodiment may use the percentage of time that the user is
presented with an incomplete FOV during a user session.
This metric is the Average FOV Completion and is further
described above. On the other hand, the principal factor of
maintenance cost on the part of the viewer is the average
number of tiles loaded during a session. Loading a tile has
both a cost in processing power and data egress.

[0267] The table below is a breakdown of these two
metrics for the different tested configurations.

Configuration FOV Completion Tiles Requested  Tiles Loaded
FullFocus 0.7909 707.1 707.1
Dynamic 0.9952 2706.9 22229
Static 0.9953 2704.0 2247.8
Preload, 1 0.9963 2849.3 2514.2
Preload, 2 0.9961 3262.2 2834.5
Preload, 3 0.9963 3739.8 3186.5
Preload, 4 0.9961 4044.1 3338.2
10 Mbps 0.9943 2717.9 21614
[0268] Intuition would have that the higher the preload

offset setting, the more tiles would eventually be loaded.
This is not necessarily the case, since the viewer may
automatically cancel pending tile requests when they prove
not necessary any longer. This may be why the Tiles
Requested and Tiles Leaded values differ for the exemplary
embodiment of the slide viewer. This effect may be particu-
larly visible when preloading tiles.

[0269] Similarly, since the played user sessions are the
same, and no tiles are loaded other than absolutely neces-
sary, it may be expected that the Tiles Requested value
would be equal between the dynamic, static, and 10 Mbps
configurations of the exemplary embodiment. However,
since the browser’s scheduling APIs may not be fully
deterministic, slight variations occur between different runs
of the same session. The background loop, which is respon-
sible for making tile requests, may run at different times, and
capture different FOVs. This effect is small enough that it
may be ignored. With these points in mind, the exemplary
embodiment may offer a much smoother user experience,
even at seemingly comparable data egress cost.

Streaming Viewer

[0270] Instead of having a user render a slide viewer
directly, in a streaming viewer that responsibility is trans-
ferred to the service, which sends back a video stream for a
user to display. The implementation may make extensive use
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of a streamer library, such as GStreamer and its WebRTC
support, to enable live video encoding and streaming to a
user with minimal latency (<100 ms). This may be in part
thanks to the support of new video codecs such as VP8 and
VP9.

[0271] The architecture of an exemplary embodiment of a
streaming slide viewer is illustrated in FIG. 16. Different
pieces, indicated as “bins” refer to streamer library compo-
nents.

[0272] In the exemplary embodiment, the user’s browser
may receive a video feed through WebRTC, and sends back
events corresponding to user interactions with the viewer
163 for the server to update the FOV accordingly.

[0273] The WebRTCBin 161 may send packets to a Web
Player 162 through WebRTC. The Web Player 162 in turn
may send events through WebSockets to the Viewer 163.
The Viewer 163 may draw calls from a WebGPU Renderer
164. Frames may be sent from the WebGPU Renderer 164
to a video bin 165, which FFGImay include a source 166, an
encoder 167, and a payloader 168.

[0274] The exemplary embodiment may be easy to imple-
ment, based on the ecosystem of plugins for GStreamer, as
well as the quality of integration of GStreamer with Rust.
Running the same code natively and in the browser ensures
that the behavior of the viewer remains the same between all
its rendering backends.

[0275] It should be appreciated that in the above descrip-
tion of exemplary embodiments of the invention, various
features of the invention are sometimes grouped together in
a single embodiment, figure, or description thereof for the
purpose of streamlining the disclosure and aiding in the
understanding of one or more of the various inventive
aspects. This method of disclosure, however, is not to be
interpreted as reflecting an intention that the claimed inven-
tion requires more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive
aspects lie in less than all features of a single foregoing
disclosed embodiment. Thus, the claims following the
Detailed Description are hereby expressly incorporated into
this Detailed Description, with each claim standing on its
own as a separate embodiment of this invention.

[0276] Furthermore, while some embodiments described
herein include some but not other features included in other
embodiments, combinations of features of different embodi-
ments are meant to be within the scope of the invention, and
form different embodiments, as would be understood by
those skilled in the art. For example, in the following claims,
any of the claimed embodiments can be used in any com-
bination.

[0277] Thus, while certain embodiments have been
described, those skilled in the art will recognize that other
and further modifications may be made thereto without
departing from the spirit of the invention, and it is intended
to claim all such changes and modifications as falling within
the scope of the invention. For example, functionality may
be added or deleted from the block diagrams and operations
may be interchanged among functional blocks. Steps may be
added or deleted to methods described within the scope of
the present invention.

[0278] The above disclosed subject matter is to be con-
sidered illustrative, and not restrictive, and the appended
claims are intended to cover all such modifications,
enhancements, and other implementations, which fall within
the true spirit and scope of the present disclosure. Thus, to
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the maximum extent allowed by law, the scope of the present
disclosure is to be determined by the broadest permissible
interpretation of the following claims and their equivalents,
and shall not be restricted or limited by the foregoing
detailed description. While various implementations of the
disclosure have been described, it will be apparent to those
of ordinary skill in the art that many more implementations
are possible within the scope of the disclosure. Accordingly,
the disclosure is not to be restricted except in light of the
attached claims and their equivalents.

1.-20. (canceled)

21. A computer-implemented method for processing an
electronic image, the method comprising:

receiving, by a viewer, the electronic image and a field of

view (FOV), wherein the FOV includes at least one
coordinate, at least one dimension, and a magnification
factor;
loading, by the viewer and from a cache, one or more first
tiles of a plurality of tiles within the FOV;

determining, by the viewer, that one or more second tiles
of the plurality of tiles within the FOV are not in the
cache;

requesting one or more images of the one or more second

tiles based on the determining; and

rendering, by the viewer, the plurality of tiles to a display

after requesting the one or more images.

22. The computer-implemented method of claim 21,
wherein the loading of the one or more first tiles further
comprises:

loading the one or more first tiles from the cache in one

or more groups in an order of priority based on the
magnification factor of the FOV or based on a magni-
fication level of the one or more first tiles.

23. The computer-implemented method of claim 21, fur-
ther comprising:

loading the one or more images of the one or more second

tiles based on requesting the one or more images.

24. The computer-implemented method of claim 23,
wherein the loading of the one or more images further
comprises:

loading the one or more images into the cache.

25. The computer-implemented method of claim 21, fur-
ther comprising:

determining, after requesting the one or more images, that

the one or more second tiles have the one or more
images and do not have one or more textures in the
cache.

26. The computer-implemented method of claim 25, fur-
ther comprising:

loading the one or more textures for the one or more

second tiles to a graphics processing unit (GPU) of the
viewer based on determining that the one or more
second tiles have the one or more images and do not
have the one or more textures in the cache.

27. The computer-implemented method of claim 21, fur-
ther comprising:

pruning the cache of one or more unused images or

textures for the one or more second tiles prior to
rendering the plurality of tiles.

28. The computer-implemented method of claim 21,
wherein the viewer comprises at least one of:

the cache,

a core,

a renderer, or

a loader.
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29. A computer system for processing an electronic
image, the computer system comprising:

at least one memory storing instructions; and

at least one processor configured to execute the instruc-

tions to perform operations comprising:

receiving, by a viewer, the electronic image and a field
of view (FOV), wherein the FOV includes at least
one coordinate, at least one dimension, and a mag-
nification factor;

loading, by the viewer and from a cache, one or more
first tiles of a plurality of tiles within the FOV;

determining, by the viewer, that one or more second
tiles of the plurality of tiles within the FOV are not
in the cache;

requesting one or more images of the one or more
second tiles based on the determining; and

rendering, by the viewer, the plurality of tiles to a
display after requesting the one or more images.

30. The computer system of claim 29, wherein the loading
of the one or more first tiles further comprises:

loading the one or more first tiles from the cache in one

or more groups in an order of priority based on the
magnification factor of the FOV or based on a magni-
fication level of the one or more first tiles.

31. The computer system of claim 29, wherein the opera-
tions further comprise:

loading the one or more images of the one or more second

tiles based on requesting the one or more images.

32. The computer system of claim 31, wherein the loading
of the one or more images further comprises:

loading the one or more images into the cache.

33. The computer system of claim 29, wherein the opera-
tions further comprise:

determining, after requesting the one or more images, that

the one or more second tiles have the one or more
images and do not have one or more textures in the
cache.

34. The computer system of claim 33, wherein the opera-
tions further comprise:

loading the one or more textures for the one or more

second tiles to a graphics processing unit (GPU) of the
viewer based on determining that the one or more
second tiles have the one or more images and do not
have the one or more textures in the cache.

35. A non-transitory computer-readable medium storing
instructions that, when executed by a processor, cause the
processor to perform operations for processing an electronic
image, the operations comprising:

receiving, by a viewer, the electronic image and a field of

view (FOV), wherein the FOV includes at least one
coordinate, at least one dimension, and a magnification
factor;
loading, by the viewer and from a cache, one or more first
tiles of a plurality of tiles within the FOV;

determining, by the viewer, that one or more second tiles
of the plurality of tiles within the FOV are not in the
cache;

requesting one or more images of the one or more second

tiles based on the determining; and

rendering, by the viewer, the plurality of tiles to a display

after requesting the one or more images.

36. The non-transitory computer-readable medium of
claim 35, wherein the loading of the one or more first tiles
further comprises:
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loading the one or more first tiles from the cache in one
or more groups in an order of priority based on the
magnification factor of the FOV or based on a magni-
fication level of the one or more first tiles.
37. The non-transitory computer-readable medium of
claim 35, wherein the operations further comprise:
determining, after requesting the one or more images, that
the one or more second tiles have the one or more
images and do not have one or more textures in the
cache.
38. The non-transitory computer-readable medium of
claim 37, wherein the operations further comprise:
loading the one or more textures for the one or more
second tiles to a graphics processing unit (GPU) of the
viewer based on determining that the one or more
second tiles have the one or more images and do not
have the one or more textures in the cache.
39. The non-transitory computer-readable medium of
claim 35, wherein the operations further comprise:
pruning the cache of one or more unused images or
textures for the one or more second tiles prior to
rendering the plurality of tiles.
40. The non-transitory computer-readable medium of
claim 35, wherein the viewer comprises at least one of:
the cache,
a core,
a renderer, or
a loader.



