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An automated segmentation and identification system / 
method for identifying geographic atrophy ( GA ) phenotypic 
patterns in fundus autofluorescence images . A hybrid pro 
cess combines a supervised pixel classifier with an active 
contour algorithm . A trained , machine learning model ( e.g. , 
SVM or U - Net ) provides initial GA segmentation / classifi 
cation , and this is followed by Chan - Vese active contour 
algorithm . The junctional zones of the GA segmented area 
are then analyzed for geometric regularity and light intensity 
regularity . A determination of GA phenotype is made , at 
least in part , from these parameters . 
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SEGMENTATION AND CLASSIFICATION OF 
GEOGRAPHIC ATROPHY PATTERNS IN 

PATIENTS WITH AGE RELATED MACULAR 
DEGENERATION IN WIDEFIELD 
AUTOFLUORESCENCE IMAGES 

FIELD OF INVENTION 

[ 0001 ] The present invention is generally directed to the 
field of ophthalmic autofluorescence images . More specifi 
cally , it is directed toward the classification of geographic 
atrophy regions found in fundus autofluorescence images . 

BACKGROUND 
[ 0002 ] Age - related macular degeneration ( AMD ) is the 
most frequent cause of blindness in older population in 
industrialized countries . Geographic atrophy ( GA ) is an 
advanced form of AMD characterized by loss of photore 
ceptors , retinal pigment epithelium ( RPE ) , and choriocapil 
laris . Five million people are estimated to be affected by 
geographic atrophy globally . GA can result in irreversible 
visual functional loss and is responsible for approximately 
20 % of the severe vision impairment from AMD . There are 
no approved treatments to date to counteract the progression 
of GA . In recent years , however , progress in understanding 
the pathogenesis of GA has led to several potential therapies 
in clinical trials . Nonetheless , early identification of GA 
progression is vital to slowing its effects . 
[ 0003 ] Different phenotypic patterns of abnormal fundus 
autofluorescence ( FAF ) images have been shown to be 
helpful in identifying GA progression . Identification of GA 
lesions and their phenotypes can therefore be important 
factors in determining disease progression and clinical diag 
nosis of AMD . Use of medical personnel to visually inspect 
FAF images for GA lesions and their phenotypes is effective , 
but time consuming . A few segmentation algorithms have 
been developed to aid in assessing GA lesions , but many of 
these algorithms are semi - automated and require manual 
input for segmentation of GA lesions . 
[ 0004 ] It is an object of the present invention to provide a 
fully automated method for quantification of GA lesions and 
their phenotype patterns in medical images . 
[ 0005 ] It is another object of the present invention to 
augment GA lesion segmentation algorithms with the ability 
to identify and classify different phenotypic patterns . 
[ 0006 ] It is a further object of the present invention to 
provide a framework for automated segmentation and iden 
tification of GÀ phenotypic patterns in widefield FAF 
images . 

ophthalmic diagnostic device is used to acquire an image of 
the fundus of the eye . Preferably , the image is a fundus 
autofluorescence ( FAF ) image since GA lesions are typically 
more easily discernable in such images . 
[ 0008 ] The acquired image is then submitted to an auto 
mated GA identification process to identify ( e.g. , segment ) 
a GA region in the image . The present GA segmentation 
process is fully automated , and may be based on a deep 
learning neural network . GA segmentation may further be 
based on a two - stage segmentation process , e.g. , a hybrid 
process that combines a supervised classifier ( or pixel / 
image - segment segmentation ) with an active contour algo 
rithm . The supervised classifier is preferably a machine 
learning ( ML ) model , and may be implemented as a support 
vector machine ( SVM ) or a deep learning neural network , 
preferably a U - Net type convolutional neural network . This 
first stage classifier / segmentation ML model identifies initial 
GA regions ( lesions ) in the image , and the results are fed to 
the active counter algorithm for a second stage segmenta 
tion . The active contour algorithm may be implemented as 
a modified Chase - Vese segmentation algorithm , where the 
initial GA regions identified in the first stage are used as 
starting points ( e.g. , initial contours ) in the Chase - Vese 
segmentation . The result is a robust GA segmentation of the 
acquired image . 
[ 0009 ] The identified GA regions are then submitted for 
analysis to identify their specific phenotype . For example , 
the system / method may use a contour - non - uniformity mea 
sure of the GA region ( s ) to identify a ' diffused phenotype , 
and use an intensity - uniformity measure to identify a 
' banded ' phenotype . Either of these two phenotypes indi 
cates a high progression rate GA region . This analysis may 
be made in a two - step process , where a first of two measures 
is calculated , and if the first measure is higher than a first 
threshold , then the GA region may be classified as high 
progression - rate , and there is no need to calculate the second 
of the two measurements . However , if the first measure is 
not higher than the first threshold , then the second measure 
may be calculated and compared with a second threshold to 
determine if it indicates high - progression - rate GA . For 
example , if the contour - non - uniformity measure is greater 
than a first predefined threshold ( e.g. , the non - uniformity of 
the perimeter contour of the GA region is greater than the 
predefined threshold ) , then the GA region may be classified 
as ‘ diffused ' phenotype , and if the intensity - uniformity mea 
sure is greater than a second threshold , then the GA region 
may be classified as ' banded ' phenotype . 
[ 0010 ] Other objects and attainments together with a fuller 
understanding of the invention will become apparent and 
appreciated by referring to the following description and 
claims taken in conjunction with the accompanying draw 
ings . 
[ 0011 ] The embodiments disclosed herein are only 
examples , and the scope of this disclosure is not limited to 
them . Any embodiment feature mentioned in one claim 
category , e.g. system , can be claimed in another claim 
category , e.g. method , as well . The dependencies or refer 
ences back in the attached claims are chosen for formal 
reasons only . However , any subject matter resulting from a 
deliberate reference back to any previous claims can be 
claimed as well , so that any combination of claims and the 
features thereof are disclosed and can be claimed regardless 
of the dependencies chosen in the attached claims . 

a 

SUMMARY OF INVENTION 

[ 0007 ] The above objects are met in a system / method for 
classifying ( e.g. , identifying ) geographic atrophy ( GA ) in an 
eye . For example , a GA region ( e.g. , GA segmentation in a 
fundus or en face image ) may be identified as “ diffused ' 
phenotype or ‘ banded ' phenotype . Both of these phenotypes 
have been empirically determined to be indicative of high 
progression rate geographic atrophy . The system may 
include an ophthalmic diagnostic device , such as a fundus 
imager or optical coherence tomography ( OCT ) device used 
to generate / capture an ophthalmic image . Alternatively , the 
ophthalmic diagnostic device may embody a computer sys 
tem that accesses a pre - existing ophthalmic image from a 
data store using a computer network , e.g. , the Internet . The 
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BRIEF DESCRIPTION OF THE DRAWINGS 
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[ 0012 ] In the drawings wherein like reference symbols / 
characters refer to like parts : 
[ 0013 ] FIG . 1 provides three gray - scale images of true 
color images next to three corresponding autofluorescence 
image of a similar region of an eye . 
[ 0014 ] FIG . 2 provides an example FAF image of a GA 
region . 
[ 0015 ] FIG . 3A provides some FAF image examples of 
GA lesions of diffused ' phenotype . 
[ 0016 ] FIG . 3B provides an FAF example of a GA lesion 
of “ banded ' phenotype . 
[ 0017 ] FIG . 4 provides a summary framework for auto 
mated segmentation and identification of GA phenotypic 
patterns . 
[ 0018 ] FIG . 5 illustrates a more detailed process for auto 
mated segmentation and identification of GA phenotypic 
patterns in accord with the present invention . 
[ 0019 ] FIG . 6 shows four GA regions delineated by human 
experts . 
[ 0020 ] FIG . 7 shows GA delineation provided by a support 
vector machine and corresponding to the GA regions of FIG . 
6 . 
[ 0021 ] FIG . 8 shows five GA regions delineated by human 
experts . 
[ 0022 ] FIG . 9 shows GA delineation provided by a deep 
learning , neural network and corresponding to GA regions 
of FIG . 8 . 
[ 0023 ] FIG . 10 illustrates a ' diffused ' phenotype GA 
region with its centroid indicated by a circle . 
[ 0024 ] FIG . 11 illustrates a ' banded phenotype GA region 
with a centroid and a set of thirteen random points equally 
spaced along the perimeter of the GA segmentation . 
[ 0025 ] FIG . 12 illustrates an example method for auto 
matically classifying geographic atrophy in an eye . 
[ 0026 ] FIG . 13 illustrates an example of a slit scanning 
ophthalmic system for imaging a fundus . 
[ 0027 ] FIG . 14 illustrates a generalized frequency domain 
optical coherence tomography system used to collect 3 - D 
image data of the eye suitable for use with the present 
invention . 
[ 0028 ] FIG . 15 shows an example of an en face vascula 
ture image . 
[ 0029 ] FIG . 16 illustrates an example of a multilayer 
perceptron ( MLP ) neural network . 
[ 0030 ] FIG . 17 shows a simplified neural network con 
sisting of an input layer , a hidden layer , and an output layer . 
[ 0031 ] FIG . 18 illustrates an example convolutional neural 
network architecture . 
[ 0032 ] FIG . 19 illustrates an example U - Net architecture . 
[ 0033 ] FIG . 20 illustrates an example computer system ( or 
computing device or computer device ) . 

a 

nostic tools to help detect and monitor pathological varia 
tions at a pre - clinical stage of disease . 
[ 0035 ] Multiple ophthalmic imaging systems are known 
the art , such as fundus imaging systems and optical coher 
ence tomography systems , any which may be used with the 
present invention . Examples of ophthalmic imaging modali 
ties are provided below , see for example , FIGS . 13 and 14 . 
Any of these devices may be used to provide an image of the 
fundus of an eye , which is the interior surface of the eye 
opposite the eye lens ( or crystalline lens ) and may include 
the retina , optic disc , macula , fovea , and posterior pole . 
[ 0036 ] Ophthalmic imaging systems may generate full 
color images . Other imaging techniques , such as fluorescein 
angiography or indocyanine green angiography ( ICG ) , may 
be used to capture high contrast images of specific ophthal 
mic features , such as blood vessels or lesions . High contrast 
images are obtained by collecting images after a fluorescent 
dye is injected into a subject's bloodstream and capturing 
the images using specific light frequencies ( e.g. , colors ) 
selected to excite the fluorescent dye . 
[ 0037 ] Alternatively , high contrast images may be 
obtained without the use of fluorescent dye . For example , 
individual light sources that provide light at specific fre 
quencies ( e.g. , colored LEDs or lasers ) can be used to excite 
different , naturally occurring fluorophores in the eye in a 
technique known as autofluorescence . The resulting fluores 
cence can be detected by filtering out the excitation wave 
length . This can make some features / tissues of the eye more 
easily discernable than is possible in a true color image . For 
example , fundus autofluorescence ( FAF ) imaging can be 
carried out with green or blue excitation which stimulates 
the natural fluorescence of lipofuscin , generating a mono 
chrome image . For illustration purposes , FIG . 1 provides 
three gray - scale images 11A , 13A , and 15A of true color 
images next to three corresponding autofluorescence image 
11B , 13B , and 15B of the same region of an eye . As is 
evident , some tissue features ( e.g. , in the central area of each 
image ) that are not well defined in gray - scale images 11A , 
13A , and 15A are easily identifiable in the corresponding 
autofluorescence images 11B , 13B , and 15B . 
[ 0038 ] AMD generally starts as dry ( atrophic ) AMD and 
advances to wet ( neovascular ) AMD . Dry AMD is charac 
terized by drusen ( e.g. , small white or yellowish deposits ) 
that form on the retina ( e.g. , beneath the macula ) causing it 
to deteriorate or degenerate over time . Early stage dry AMD 
may be treated by nutritional therapy or supplements , and 
wet AMD may be treated by injection ( e.g. injections of 
Lucentis , Avastin , and Eylea ) , but there is currently no 
approved treatment for later stage dry AMD , although 
clinical trials are ongoing . Geographic atrophy ( GA ) is a late 
stage form of dry AMD , and is characterized by patches of 
cells in the retina that have degenerated or died off . GA may 
be defined as any sharply delineated round or oval region of 
hypopigmentation , or apparent absence of the retinal pig 
ment epithelium ( RPE ) , in which choroidal vessels are more 
visible than in surrounding areas , and is of a minimum size , 
such as 175 um in diameter . Historically , color fundus 
images were used for imaging and identifying GA , however 
color fundus imaging cannot visualize lesion characteristics 
associated with GA progression . Due to the loss of RPE cells 
containing lipofuscin , an autofluorescent pigment , atrophic 
areas appears dark in fundus autofluorescence ( FAF ) imag 
ing . This creates a high contrast between atrophic and 
non - atrophic areas , which can define areas of GA more 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

[ 0034 ] Early diagnosis is critical for the successful treat 
ment of various eye diseases . Optical imaging is a preferred 
method for non - invasive examination of the retina . Although 
age - related macular degeneration ( AMD ) is known to be a 
major causes of vision loss , diagnosis is often not made until 
after damage has manifested itself . Therefore , a goal of 
advanced ophthalmic imaging devices is to provide diag 
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easily than color fundus images . Use of autofluorescence has 
been found to be a more effective imaging modality for 
assessment of GA lesions , and monitoring changes in lesion 
structures . In particular , FAF with an excitation wavelength 
of 488 nm is a current , industry - preferred technology for 
morphological assessment of GA lesions . For illustration 
purposes , FIG . 2 provides an example FAF image of a GA 
region . 
[ 0039 ] FAF images of GA may be characterized by abnor 
mal patterns of hyper - autofluorescence surrounding atrophic 
regions . This has led to the classification , or identification , of 
specific phenotypes of GA . The classification of this char 
acteristic hyper - autofluorescence into distinct patterns was 
first presented by Bindewald et al . , in “ Classification of 
Fundus Autofluorescence Patterns in Early Age - Related 
Macular Disease , " Invest Ophthalmol Vis Sci . , 2005 , 
46 : 3309-14 . Later , multiple studies were published docu 
menting the impact of distinct phenotypic patterns on dis 
ease progression and their ability to serve as prognostic 
determinants , as discussed in : Holz F. G. et al . , “ Progression 
of Geographic Atrophy and Impact of Fundus Autofluores 
cence Patterns in Age - Related Macular Degeneration , ” Am 
J. Ophthalmol , 2007 ; 143 : 463-472 ; Fleckenstein M. et al . , 
“ The ‘ Diffuse - Trickling ' Fundus Autofluorescence Pheno 
type in Geographic Atrophy . " Invest Ophthalmol Vis Sci . , 
2014 , 55 : 2911-20 ; and Jeong , Y. J. et al . , “ Predictors for the 
Progression of Geographic Atrophy in Patients with Age 
Related Macular Degeneration : Fundus Autofluorescence 
Study with Modified Fundus Camera , ” Eye , 2014 online , 
28 ( 2 ) , 209-218 , DOI 10.1038 / eye.2013.275 . The above ref 
erences are herein incorporated in their entirety by reference . 
[ 0040 ] Of particular interest are diffused ' ( or “ diffuse 
trickling ' ) GA phenotype and banded ' GA phenotypes , both 
of which have been empirically determined to be indicative 
of higher progression rate GA . Thus , in addition to identi 
fying a GA region , proper phenotype classification of the 
identified GA region is likewise important . A ‘ diffused ' GA 
region may be characterized by a degree of non - uniformity 
of its perimeter contour ( e.g. a contour - non - uniformity mea 
sure above a predefined non - uniformity threshold ) . Conse 
quently , it can be determined that the GA region of FIG . 2 
is not of Diffused ' phenotype since its contour is relatively 
uniform . By contrast , FIG . 3A provides some FAF image 
examples of GA lesions of diffused ’ phenotype , all of which 
demonstrate a high degree of contour non - uniformity . Since 
GA region may also have a high concentration of hyper 
autofluorescence surrounding an atrophic region , a ' banded ' 
GA region may be characterized by the amount of intensity 
variation in the hyper - autofluorescence along its perimeter . 
More specifically , if the variation in nsity of contour 
hyper - autofluorescence of a GA region is relatively uniform 
( e.g. , an intensity - uniformity measure above a predefined 
intensity threshold ) , then the GA region may be character 
ized as “ banded ' phenotype . For instance , it can be deter 
mined that the GA region of FIG . 2 is not of the ' banded ' 
phenotype since it lacks uniformity of hyper - autofluores 
cence along its contour . By comparison , FIG . 3B provides an 
FAF example of a GA lesion of ‘ banded ' phenotype with 
uniform hyper - autofluorescence along its contour . 
[ 0041 ] Automatic quantification of GA lesion and its phe 
notype patterns could greatly aid in determining disease 
progression and clinical diagnosis of AMD . As mentioned 
above , there are currently a few segmentation algorithms for 
GA lesion assessment , but none of these address identifying 

and classifying different phenotypic patterns . That is , here 
tofore all segmentation methods available for GA lesions 
have lacked the ability to automatically classify distinct GA 
phenotypic patterns . Most of the segmentation methods 
reported in literature are semi - automated and require a 
manual input for segmentation of GA lesions . Moreover , all 
the previously reported segmentation methods were devel 
oped for use with standard field of view ( FOV ) images ( e.g. , 
a FOV of 450 to 60 ° ) , wherein the location of a GA lesion 
was generally limited to a predefined region of the standard 
FOV image . However , the recent increased interest in wide 
field images ( e.g. , having a FOV 60 ° to 120 ° , or more ) has 
underscored a need for an automated GA assessment method 
suitable for use with widefield images . Use of widefield 
images complicates the use of typical GA segmentation 
algorithms since the location of a GA lesion cannot be 
limited to a predefined region of a widefield image , and 
some ( physical ) landmarks in diseased eyes may not be well 
defined . 
[ 0042 ] FIG . 4 provides a summary framework for auto 
mated segmentation and identification of GA phenotypic 
patterns . First , a measure of image quality ( IQ ) is deter 
mined ( block B1 ) . This may include applying an image 
quality algorithm to the FAF image in order to reject images 
with non - gradable quality ( an IQ measure below a pre 
defined value ) . If the image is rejected , the process may skip 
directly to B9 . If the IQ measure is sufficient to proceed with 
grading , the process continues to block B3 . 
[ 0043 ] Block B3 provides optional preprocessing to the 
FAF image . This may include optic disc and / or vessel 
detection , region of interest ( ROI ) selection , and histogram 
correction . Automatic ROI selection , which may be based on 
detection of the optic disc , limits the amount of pixels that 
need to be processed ( e.g. , classified ) and thereby reduces 
the implementation time of the segmentation process . 
[ 0044 ] Block B5 provides GA lesion segmentation . This 
may combine pixel - by - pixel classification and a modified 
Chan - Vese active contour . For example , classification may 
be provided by a machine learning ( ML ) model ( e.g. , 
support vector machine ( SVM ) and / or deep learning neural 
network ) that provides initial GA segmentation . The GA 
segmentations are then submitted as starting points to a 
Chan - Vese active contour algorithm that further refines the 
GA segmentation . This hybrid process uses a novel combi 
nation of the supervised pixel classifier with active contour . 
[ 0045 ] The GA segmentation ( s ) of block B5 may then be 
submitted to phenotype classification block B7 , which iden 
tifies and classifies junctional zones near a GA segmented 
area ( e.g. , along the perimeter junction of a GA segmenta 
tion ) . For example , a set of random points equidistant from 
each other and distributed along the perimeter of a GA 
segmentation may be chosen . The distance of each chosen 
point to the centroid of the GA segmentation may then be 
calculated . These distances may then be used to determine a 
measure of perimeter contour smoothness of the GA seg 
mentation ( e.g. contour smoothness of the GA delineation ) . 
Intensity ridges and valleys may be calculated along a 
direction normal to the GA segmentation perimeter contour , 
outward , using , for example , Hessian filtered gradient 
derivatives and / or directional Gaussian filter . This may 
provide a measure of light intensity regularity along the 
perimeter of the GA segmentation . Both of these parameters 
may be used to classify the junctional zone phenotypes . For 
example , the measure of contour smoothness of the GA 

a 

a 
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segmentation may be used to identify a ‘ diffused ' phenotype , 
and the measure of intensity regularity of the GA segmen 
tation may be used to identify a “ banded ' phenotype . 
[ 0046 ] Alternatively a ( e.g. , deep learning ) neural network 
may be implemented as block B7 . In this case , the neural 
network may be trained to receive the GA segmentation ( s ) 
of block B5 and classify the specific phenotype ( e.g. , dif 
fused or banded ) of each GA segmentation . Further alter 
natively , a neural network may be trained to do the function 
of GA lesion segmentation block B5 and phenotype classi 
fication block B7 . For example , a set of images showing GA 
regions delineated by experts and their respective pheno 
types , as identified by experts , may be used as a training 
output set for the neural network , and the original not 
delineated images may be used as a training input set for the 
neural network . The neural network may thereby be trained 
to not only segment ( or delineate ) GA lesion regions , but 
also to identify their respective phenotypes ( e.g. , " diffused ' 
or ' banded ' ) . 
[ 0047 ] Additionally , it has been found that retinal vessels 
may lead to incorrectly identifying some fundus regions as 
GA segmentation . This may be avoided by removing retinal 
vessels ( e.g. , the retinal vessels identified in preprocessing 
block B3 ) from the FAF image prior to application of GA 
segmentation , e.g. prior to block B5 . In this case , the retinal 
vessels may optionally be removed from the training images 
used to train the learning model ( SVM or neural network ) . 
[ 0048 ] Final block B9 generates a report summarizing the 
results of the present framework . For example , the report 
may state whether the image quality was too low for 
grading , specify if the identified GA lesions are of the ' high ' 
progression rate type , specify the phenotype of the GA 
lesion , and / or recommend a follow - up examination date . 
Both the ‘ diffused ' and ' banded phenotypes have been 
empirically determined to be indicative of high progression 
rate GA ; although the ‘ diffused ' phenotype may have higher 
progression rate than the ‘ banded phenotype . The follow - up 
examination date recommendation may be based on the 
determination of GA lesion type . For example , a higher 
progression type GA lesion may warrant an earlier follow - up 
examination date than a lower progression or ' low ' ( or 
non - high ) progression type GA lesion . 
[ 0049 ] FIG . 5 illustrates a more detailed process for auto 
mated segmentation and identification of GA phenotypic 
patterns in accord with the present invention . For illustration 
purposes , the present invention is described as applied to 
widefield FAF images , but may equally be applied to other 
types of ophthalmic imaging modalities , such as OCT / 
OCTA that can generate images that provide visualization of 
GA . For example , it may be applied to an en face OCT / 
OCTA image . The present imaging system and / or method 
may begin by capturing , or otherwise acquiring ( e.g. , by 
accessing a data store of ) , fundus autofluorescence images 
( step S1 ) . An assessment ( e.g. , measure ) of image quality of 
the acquired fundus autofluorescence images is then made 
using any suitable image quality ( IQ ) algorithm known in 
the art . For example , the measure of image quality may be 
based on one , or a combination , of quantifiable factors , such 
as sharpness , noise , dynamic range , contrast , vignetting , etc. 
If the measure of image quality is less than a predefined 
image quality threshold ( step S3 = Yes ) , then it is determined 
that the FAF image is not suitable for further analysis and the 
process proceeds to step S29 , where a report is generated 
stating that no GA segmentation or quantification can be 

made on the current FAF image . In essence , the image 
quality IQ algorithm is applied to reject images with non 
gradable quality . If the image quality is not less than the 
minimum threshold ( step S3 = No ) , then the process may 
proceed to an optional preprocessing step S5 , or may alter 
natively proceed directly to a GA image segmentation step 
S7 . 

[ 0050 ] Preprocessing step S5 may include multiple pre 
processing sub - steps . For example , it may include an optic 
disc and / or vessel detection ( e.g. , a finding mask ) , as well as 
identifying the image as being from a patient's left or right 
eye . As explained above , physical landmarks may be diffi 
cult to identify in diseased eyes , but the optic disc may be 
identified by the concentration of vessel structures emanat 
ing from it . For example , a machine learning model ( e.g. , 
deep learning neural network , such as discussed below ) may 
be trained to identify an optic disc in a widefield image . 
Alternatively , another type of machine learning model ( e.g. , 
a support vector machine ) may be trained to identify the 
optic disc , such as by correlating the location of the optic 
disc to a location with an origin of a concentration of 
vascular structures . In either case , additional information , 
external to the image , may be used in training , such as 
information provided by an electronic medical record 
( EMR ) or by the Digital Imaging and Communications in 
Medicine ( DICOM ) standard . 
[ 0051 ] As stated above , it has been found that retinal 
vessels may lead to false positives in GA segmentation . 
Therefore , preprocessing may further include identification 
and removal of retinal vessels prior to application of GA 
segmentation so as to mitigate the number of false positives , 
e.g. , reduce the identification of false GA regions . As stated 
above , GA segmentation may be based on a machine learn 
ing model , and retinal vessels may be removed from its 
training set of images . For example , a neural network may 
be trained using a training output set of eye fundus images 
( e.g. , FAF images ) with manually delineated GA regions and 
manually identified phenotypes , and using a training input 
set of the same eye fundus images without the manually 
delineated GA regions and without the identified pheno 
types . If in an operational phase ( or test phase ) the neural 
network is to accept an input test image whose retinal 
vessels have been removed , then the neural network may be 
trained with training images whose retinal vessels have also 
been removed . That is , retinal vessels may be removed from 
the fundus images in training input set and training output 
set prior to training the neural network . 
[ 0052 ] Preprocessing step S5 may also include region of 
interest ( ROI ) selection to limit processing ( including GA 
segmentation ) to the identified ROI within the FAF image . 
Preferably , the identified ROI would include the macula . 
ROI selection may be automated based on the landmark 
detection ( optic disc and retinal vessels ) , image size , image 
entropy and fundus scan information extracted from 
DICOM , etc. For example , depending upon whether the 
image is of a left or right eye , the macula would be to the 
right or left of the optic disc location within the image . As 
it would be understood , ROI selection limits the amount of 
pixels that need to be classified ( e.g. , for GA segmentation ) 
and thereby reduces the implementation time of the present 
process / method . 
[ 0053 ] Preprocessing step S5 may further include illumi 
nation correction and contrast adjustment . For example , 
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uneven image illumination may be corrected by using back 
ground subtraction , and image contrast may be adjusted by 
using histogram equalization . 
[ 0054 ] The preprocessed images are then submitted to a 
two - stage lesion segmentation ( e.g. , block B5 of FIG . 4 ) that 
includes GA segmentation and active contour analysis . The 
first stage in block B5 is a GA segmentation / classifier stage 
( S7 ) that is preferably based on machine learning and 
identifies one or more GÀ regions , and the second stage in 
block B5 is an active contour algorithm applied to the 
identified GA regions . The GA segmentation stage S7 may 
provide GA classification on a sub - image sector by sub 
image sector basis , where each sub - image sector may be one 
pixel ( e.g. on a pixel - by - pixel basis ) or each sub - image 
sector may be a group ( e.g. , window ) of multiple pixels . In 
this manner , each sub - image sector may be individually 
classified as a GA - sub - image or a non - GA - sub - image . The 
active contour analysis stage S9 may be based on the known 
Chan - Vere algorithm . In the present case , the Chan - Vese 
algorithm is modified to change energy and movement 
direction of contour growth . For example , region based 
image characteristics are used to dictate the contour move 
ment . Essentially , segmentation block B5 for GA lesions 
uses a hybrid process that combines ( for example , pixel - by 
pixel ) classification and Chan - Vese active contour . Option 
ally , this proposed hybrid algorithm uses a novel combina 
tion of the supervised ( e.g. , pixel ) classifier ( 87 ) with a 
geometric active contour model ( S9 ) . As it would be under 
stood by one versed in the art , a geometric active contour 
model typically begins with a contour ( e.g. , a starting point ) 
in an image plane defining an initial segmentation , and then 
evolves the contour according to some evolution equation so 
as to stop on the boundaries of a foreground region . In the 
present case , the geometric active contour model is based on 
a modified Chan - Vese algorithm . 
[ 0055 ] GA segmentation / classifier stage ( S7 ) is preferably 
based on machine learning , and may be implemented , for 
example , by use of a support vector machine or by a ( deep 
learning ) neural network . Each implementation is separately 
described herein . 
[ 0056 ] Generally , a support Vector Machine , SVM , is a 
machine learning , linear model for classification and regres 
sion problems , and may be used to solve linear and non 
linear problems . The idea of an SVM is to create a line or 
hyperplane that separates data into classes . More formally , 
an SVM defines one or more hyperplanes in a multi 
dimensional space , where the hyperplanes are used for 
classification , regression , outlier detection , etc. Essentially , 
an SVM model is a representation of labeled training 
examples as points in multi - dimensional space , mapped so 
that the labeled training examples of different categories are 
divided by hyperplanes , which may be thought of as deci 
sion boundaries separating the different categories . When a 
new test input sample is submitted to the SVM model , the 
test input is mapped into the same space and a prediction is 
made regarding what category it belongs to based on which 
side of a decision boundary ( hyperplane ) the test input lies . 
[ 0057 ] In a preferred embodiment , an SVM is used for 
image segmentation . Image segmentation aims to divide an 
image into different sub - images with different characteristics 
and extract objects of interest . More specifically in the 
present invention , an SVM is trained to segment GA regions 
in FAF images ( e.g. , trained to clearly define the contours of 
GA regions in an FAF image ) . Various SVM architectures 

for image segmentation are known in the art , and the specific 
SVM architecture ( s ) used for this task is not critical to the 
invention . For example , a least squares SVM may be used 
for image segmentation based on pixel - by - pixel ( or sub 
image sector by sub - image sector ) classification . Both pixel 
level features ( e.g. , color , intensity , etc. ) and texture features 
may be used as inputs to the SVM . Optionally , an ensemble 
of SVMs , each providing specialized classification , may be 
linked to achieve better results . 
[ 0058 ] Thus , initial contour selection may be made using 
an SVM classifier ( e.g. , by SVM model - based segmenta 
tion ) . Preferably , Haralick texture features , mean intensity 
and variance parameters obtained from gray - level co - occur 
rence matrices ( e.g. , an 11x11 window moving within a 
region of interest ) are used to train a SVM classifier . As 
explained above , retinal vessels may optionally be removed 
from the training images . Irrespective , feature extraction is 
limited to a specific ROI ( e.g. , the ROI selected in step S5 ) , 
which results in better time performance than applying GA 
segmentation / classification to the whole image . In this man 
ner , the SVM provides an initial contour selection ( e.g. , 
provides an initial GA segmentation as a starting point ) for 
submission to the active contour algorithm of step S9 for 
better performance . Evolution time of the active contour 
algorithm is heavily dependent on the initial contour selec 
tion , as is explained , for example , in “ Semi - automatic geo 
graphic atrophy segmentation for SD - OCT images " by 
Chen , Q. et al . , Biomedical Optics Express , 4 ( 12 ) , 2729 
2750 , herein incorporated by reference in its entirety . 
[ 0059 ] The SVM classifier was tested and compared for 
performance . Expert graders manually delineated GA 
regions in FAF images not used in training , and the results 
were compared with segmentation results by the SVM 
model . FIG . 6 shows four GA regions delineated by human 
experts , and FIG . 7 shows corresponding GA delineation 
( e.g. , the perimeter of GA segmentation ) provided by the 
present SVM . As shown , the SVM model agrees well with 
the manual GA segmentation provided by the expert graders . 
[ 0060 ] GA segmentation classifier stage ( S7 ) may also be 
implemented by of a neural network ( NN ) machine 
learning ( LM ) model . Various examples of neural networks 
are discussed below with reference to FIGS . 16 to 19 , any , 
or a combination , of which may be used with the present 
invention . An exemplary implementation of a GA segmen 
tation / classifier using a deep learning neural network was 
constructed based on the U - Net architecture ( see FIG . 19 ) . 
In this case , the NN was trained using manually segmented 
images ( e.g. , images with GA regions segmented by human 
experts ) as training outputs and corresponding non - seg 
mented images as training inputs . 
[ 0061 ] In an example implementation , 79 FAF - Green 
images were obtained from 62 patients with GA using the 
CLARUSTM 500 fundus camera ( ZEISS , Dublin , Calif . ) . 
These 79 FAF images were divided into 55 FAF images for 
training and 24 FAF images for testing . Optionally , retinal 
vessels may be removed from the training and / or testing 
images . Data augmentation methods were used to increase 
the size of the training data and generated 880 ( image ) 
patches of size 128x128 pixels for training . In the present 
U - Net , the contracting path consisted of four convolutional 
neural network ( CNN ) blocks , and each CNN block con 
sisted of 2 CNN layers followed by one max pooling layer . 
The bottleneck ( e.g. the block between the contracting path 
and the expanding path ) consisted of 2 CNN layers with 
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optional 0.5 inverse dropout to avoid overfitting issues . The 
expanding path of a U - net is typically symmetric to the 
contracting path , and herein consisted of four CNN blocks 
following the bottleneck . Each CNN block in the expanding 
path consisted of a deconvolution layer and a concatenation 
layer followed by 2 CNN layers . The last CNN block ( e.g. , 
the fourth CNN block ) in this expanding path provides a 
segmentation output , which may be fed to an optional 
classification layer for labeling . This final classifier formed 
the last layer . The present implementation used a custom 
dice coefficient loss function for training the machine learn 
ing model , but other loss functions , such as the cross 
entropy loss function may also be used . The segmentation 
performance of the DL ML model may be fine - tuned by 
using post - learning optimization . For example , a method 
named ' Icing on the Cake ' may be used , which trains only 
the final classifier ( i.e. , the last layer ) again after the initial 
( ordinary ) training is complete . 
[ 0062 ] The DL approach was compared with manually 
segmented GA regions . FIG . 8 shows five GA regions 
manually delineated by expert graders , and FIG.9 shows the 
corresponding GA delineation provided by the present DL 
machine model . For evaluation purposes , fractional area 
difference , overlap ratio , and Pearson's correlation between 
measured areas were determined . The fractional area differ 
ence between GA regions generated by the DL machine 
model and the manual segmentation was 4.40 % + 3.88 % . 
Overlap ratio between manual and DL automatic segmen 
tation was 92.7615.62 , and correlation of GA areas gener 
ated by the DL algorithm and the manual grading was 0.995 
( p - value < 0.001 ) . Thus , quantitative and qualitative evalua 
tions demonstrate that the proposed DL model for segment 
ing GA in FAF images shows very strong agreement with 
expert manual grading . 
[ 0063 ] Thus , as is evident from FIGS . 6-9 , both SVM 
based and DL - based classification provide good , initial GA 
delineation , or segmentation . 
[ 0064 ] The GA segmentation results from step S7 may be 
submitted as an initial contour selection ( s ) to the active 
contour algorithm ( step S9 ) . The present embodiment uses a 
modified Chan - Vese ( C - V ) active contour segmentation 
algorithm . In general , an active contour algorithm has been 
used for GA segmentation in optical coherence tomography 
( OCT ) images , as described in “ Automated geographic 
atrophy segmentation for SD - OCT images using region 
based C - V model via local similarity factor ” by Niu , S. et al . , 
Biomedical Optics Express , 2016 Feb. 1 , 7 ( 2 ) , 581-600 , 
herein incorporated in its entirety by reference . In the 
present case , however , Chan - Vese active contour segmen 
tation is used as a second phase in a two - part segmentation 
process . The initial contours provided by the SVM or DL 
learning model classifier ( s ) are close to the expert annotated 
GA boundaries . This reduces the execution time for the 
Chan - Vese active contour segmentation and improves its 
performance . 
[ 0065 ] The final GA segmentation results , provided by 
two - stage segmentation block B5 , may optionally be sub 
mitted to additional , morphological operations ( step S11 ) to 
further refine the segmentation . Morphological operations 
( e.g. , erosion , dilation , opening and closing ) are applied to 
the output of Chan - Vese active contour to refine the contour 
boundaries and to remove small isolated regions . 
[ 0066 ] Next , the size of the segmented GA is determined . 
Since the GA segmentation is from a 2D image , but the eye 

fundus is curved , the 2D GA segmentation may be mapped 
to a 3D space ( step S13 ) and the measurement may be made 
in the 3D space to account for distortions and obtain a more 
accurate area measure . Any suitable method of mapping 
from 2D pixels to 3D coordinates based on known imaging 
geometry may be used . For example , a method well - known 
in the art for mapping pixels in a 2D image plane onto points 
on a sphere ( e.g. , a 3D space ) is stereographic projection . 
Other examples of 3D reconstruction from 2D fundus 
images are provide in “ 3D Reconstruction of Human Retina 
from Fundus Image — A Survey ” , by Cheriyan , J. et al . , 
international Journal of Modern Engineering Research , Vol . 
2 , Issue . 5 , September - October 2012 pp - 3089-3092 , herein 
incorporated in its entirety by reference . 
[ 0067 ] Determining a GA size measurement in a 3D space 
may make use of additional information provided by an 
ophthalmic imaging system , if available . For example , some 
ophthalmic imaging systems store 3D positions in an array 
along with the 2D coordinates of each pixel position in the 
2D image . This methodology may be included with the 
Digital Imaging and Communications in Medicine ( DI 
COM ) standard Wide Field Ophthalmic Photography Image 
Module . Alternatively or in combination , some systems may 
store a model that can be run on an arbitrary set of 2D 
positions to generate the relevant 3D position . 
[ 0068 ] If the determined area in 3D space is smaller than 
a predefined threshold ( step S15 = Yes ) , then the GA seg 
mentation is determined to be too small to be a true GA 
lesion and processing proceeds to step S29 to generate a 
report . If the determined area is not smaller than the pre 
defined threshold , e.g. 96K um ?, ( step S15 = No ) , then the 
GA segmentation is accepted as true GA lesion and the 
process attempts to identify the phenotype of the identified 
GA segmentation . 
[ 0069 ] A first step in identifying the phenotype may be to 
analyze contour smoothness of the GA segmentation ( step 
S17 ) . This may include several sub - steps . To identify and 
classify junctional zones near GA segmented area ( e.g. , 
along the edge of a GA segmented area ) , one may begin by 
determining the centroid of the GA segi ted region . This 
centroid calculation may be applied to the 2D image repre 
sentation of the GA segmented region . FIG . 10 illustrates a 
diffused phenotype GA region 21 with its centroid indicated 
by a circle 23. A next step may be to identify a set of random 
points , equally spaced along the perimeter of the GA seg 
mentation . FIG . 11 illustrates a banded phenotype GA region 
25 with a centroid 27 and a set of thirteen random points 29 
( each identified as the center of white crosshairs ) equally 
spaced along the perimeter of the GA segmentation . It is to 
be understood that thirteen is an exemplary value and any 
number of points sufficient to circumnavigate the perimeter 
of GA region may be used . The distances from each point 29 
to the centroid 27 are then calculated ( e.g. , linear distances 
31 ) . The variation in the distances 31 is used to differentiate 
‘ diffuse ' phenotype from others , such as ' banded ' pheno 
type . 
[ 0070 ] In step S19 , if the variation in distances is greater 
than a distance - variation threshold , ( step S19 = Yes ) , then the 
GA region is identified as being a diffused phenotype ' ( step 
S21 ) , and the process proceeds to step S29 where a report is 
generated . This variation in distance , or contour - non - unifor 
mity measure , may be determined as the average distance 
variation for a current GA segmentation , and the distance 
variation threshold may be defined as 20 % of a standardized 
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mean variation of ( e.g. , diffused ) GA segments . the stan 
dardized mean variation may be determined from a library 
of GA segments , e.g. , a ( standardize ) library of FAF images 
of GA lesions . However , if the variation in distance is not 
greater than the distance - variation threshold ( step S19 = No ) , 
then processing proceeds to step S23 ) . 
[ 0071 ] In step S23 , intensity ridges and valleys are deter 
mined for ( at least a fraction of ) the set of random points 29 
along a direction perpendicular to the GA contour . This may 
be done using Hessian filtered gradient derivatives and / or a 
directional Gaussian filter . If ridges and valleys ( light inten 
sity regularity - hypoflourences ) above a preset intensity 
variation threshold are present for more than a predefined 
percentage ( e.g. , 60 % ) of chosen points 29 , ( step S25 = Yes ) , 
the image ( e.g. , the GA segmentation ) is classified as 
“ banded ' phenotype ( step 27 ) , and the process proceeds to 
step S29 where a report is generated . The intensity ridges 
and valleys may define an intensity variability measure , and 
the intensity - variation threshold may be defined as 33 % of 
a standardized mean intensity - variation of ( e.g. , banded ) GA 
segments . This standardized mean intensity - variation may 
be determined from a library of GA segments , e.g. , a 
( standardize ) library of FAF images of GA lesions . If the 
light intensity regularity - hypoflourences is not greater than 
the present intensity - variation threshold ( step S25 = No ) , then 
no determination of phenotype can be made and processing 
proceeds to step S29 . 
[ 0072 ] As stated above , a neural network may be trained 
to provide GA segmentation , as described above in reference 
to step S7 . However , a neural network , such as the U - Net of 
FIG . 19 , may also be trained to provide phenotype classi 
fication . For example , by providing expert labeling of the 
specific phenotype of each expert delineated GA lesion 
segmentation in a training image set , the neural network may 
be trained to provide phenotype classification along with , or 
in addition to , GA legion segmentation identification . In this 
case , the phenotype identification / classification steps asso 
ciated with step S17 to S25 may be omitted and provided by 
the neural network . Alternatively , the phenotype classifica 
tion provided by the neural network may be combined with 
the phenotype identification results of steps S17 to S25 , such 
as by a weighted average . 
[ 0073 ] Step S29 generates a report summarizing the 
results of the present process . For images with non - gradable 
IQ ( step S3 = Yes ) , image quality alone is reported , and for 
other images the report generated will have one or more of 
the following : 
[ 0074 ] a . GA segmented area measurement of the current 
visit . 
[ 0075 ] b . Junctional zone phenotype of the current GA ( if 
available ) 
[ 0076 ] c . Risk of progression ( e.g. , risk of progression 
reported as high for ' banded ' and ' diffuse ' phenotypes ) . 
[ 0077 ] d . Suggested follow - up visit time . 
[ 0078 ] FIG . 12 illustrates another example method for 
automatically classifying geographic atrophy ( GA ) in an 
eye . In the present example , rather than checking for every 
specific GA phenotype in a library of phenotypes ( e.g. , 
‘ diffused ' phenotype and ‘ banded ' phenotype ) , the present 
method may stop classifying a current GA region as soon the 
current GA region is identifying as any phenotype associated 
with a high progression rate ( e.g. , an empirical association ) . 
The current GA region may then simply be classified as a 
“ high - progression - rate ” GA without specifying its specific 

GA phenotype . Optionally if desired , such as by use of a user 
input via a graphical user interface ( GUI ) , the process may 
proceed to classify the current GA segmentation as one or 
more specific phenotype . In this case , the method may 
further identify a " high - progression - rate " GA as being a 
* diffused ' phenotype or ' banded ' phenotype . Optionally , the 
method may order the search for GA phenotypes according 
to which phenotypes are more prevalent in a particular 
population ( e.g. , to which a patient may belong ) , or ordered 
the search based on which phenotypes have been ( e.g. 
empirically ) determined be associated with higher progres 
sion rate GA than others . For example , " diffused ' phenotype 
GA may be considered to have a higher progression rate than 
' banded ' phenotype GA based on empirical observations , 
and so the method may check if a current GA segmentation 
is of the ‘ diffused phenotype first , and check for “ banded ' 
phenotype second only if the current GA segmentation is 
determined to not be of diffused ' phenotype . 
[ 0079 ] The method may begin at method step Ml by using 
an ophthalmic diagnostic device to acquire an image of the 
fundus of the eye . The image ( e.g. , an autofluorescence 
image or en face image ) may be generated by a fundus 
imager or an OCT . The ophthalmic diagnostic device may be 
the device that generates the image , or may alternatively be 
a computing device that accesses the image from a data store 
of such image over a computer network ( e.g. , the Internet ) . 
[ 0080 ] In method step M3 , the acquired image is submit 
ted to an automated GA identification process that identifies 
a GA region in the image . The automated GA identification 
process may include a GA segmentation process , as is 
known in the art . The preferred segmentation process , how 
ever , is a two - step segmentation that combines GA classi 
fication ( e.g. , pixel - by - pixel ) with active contour segmenta 
tion . The first of this two - step process may be a trained , 
machine model , such as a SVM or a ( e.g. , deep learning ) 
neural network that segments / classifies / identifies GA 
regions within the image . For example , a neural network 
based on the U - Net architecture may be used , where its 
training set may include a training output set of expertly 
demarcated fluorescence images and a training input set of 
corresponding , non - demarcated fluorescence images . Irre 
spective of the type of GA segmentation / classification used 
in this initial stage , the identified GA segmentations may be 
submitted as starting points to an active contour algorithm 
( e.g. , Chan - Vese segmentation ) to further refine the GA 
segmentation . Optionally , the results may be submitted to 
Morphological operations ( e.g. , erosion , dilation , opening 
and closing ) to further clean the segmentation before pro 
ceeding to the next method step M5 . 
[ 0081 ] Optionally , before proceeding with step M5 , the 
final GA segmentation ( s ) from step M3 may be mapped to 
a three - dimensional space representative of the shape of the 
eye's fundus , and the area of the mapped GA determined . If 
the area is smaller than a predefined threshold , then the GA 
segmentation may be re - classified as non - GA and removed 
from further processing . Assuming that the identified GA 
segmentation is large enough to qualify as a true GA region , 
processing may proceed to step M5 . 
[ 0082 ] Method step M5 analyzes the identified GA regions 
by determining one or two different measures , each designed 
to identify one of two different GA phenotypes associated 
with high - progression - rate GA . More specifically , a contour 
non - uniformity measure may be used to identify ' diffused ' 
phenotype GA and an intensity - uniformity measure may be 
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used to identify “ banded ' phenotype GA . If a first deter 
mined measure confirms either “ diffused ” phenotype GA or 
“ banded ' phenotype GA ( e.g. , the measure is higher than a 
predefined threshold ) , then method step M7 classifies the 
identified GA region as “ high - progression - rate ” GA . If the 
first determined measure does not confirm one of diffused ' 
or ' banded ' phenotype , then the second measure may be 
determined to check if the other of the two phenotypes is 
present . If the other phenotype is present , then the identified 
GA region may again be classified as “ high - progression 
rate ” GA . Optionally , or alternatively , method step M7 may 
specify the specific phenotype classification ( “ diffused ' or 
' banded ' ) identified for the GA region . 
[ 0083 ] Fundus Imaging System 
[ 0084 ] Two categories of imaging systems used to image 
the fundus are flood illumination imaging systems ( or flood 
illumination imagers ) and scan illumination imaging sys 
tems ( or scan imagers ) . Flood illumination imagers flood 
with light an entire field of view ( FOV ) of interest of a 
specimen at the same time , such as by use of a flash lamp , 
and capture a full - frame image of the specimen ( e.g. , the 
fundus ) with a full - frame camera ( e.g. , a camera having a 
two - dimensional ( 2D ) photo sensor array of sufficient size to 
capture the desired FOV , as a whole ) . For example , a flood 
illumination fundus imager would flood the fundus of an eye 
with light , and capture a full - frame image of the fundus in 
a single image capture sequence of the camera . A scan 
imager provides a scan beam that is scanned across a 
subject , e.g. , an eye , and the scan beam is imaged at different 
scan positions as it is scanned across the subject creating a 
series of image - segments that may be reconstructed , e.g. , 
montaged , to create a composite image of the desired FOV . 
The scan beam could be a point , a line , or a two dimensional 
area such a slit or broad line . 
[ 0085 ] FIG . 13 illustrates an example of a slit scanning 
ophthalmic system SLO - 1 for imaging a fundus F , which is 
the interior surface of an eye E opposite the eye lens ( or 
crystalline lens ) CL and may include the retina , optic disc , 
macula , fovea , and posterior pole . In the present example , 
the imaging system is in a so - called “ scan - descan ” configu 
ration , wherein a scanning line beam SB traverses the optical 
components of the eye E ( including the cornea Cm , iris Irs , 
pupil Ppl , and crystalline lens CL ) to be scanned across the 
fundus F. In the case of a flood fundus imager , no scanner is 
needed and the light is applied across the entire , desired field 
of view ( FOV ) at once . Other scanning configurations are 
known in the art , and the specific scanning configuration is 
not critical to the present invention . As depicted , the imaging 
system includes one or more light sources LtSrc , preferably 
a multi - color LED system or a laser system in which the 
etendue has been suitably adjusted . An optional slit Sit 
( adjustable or static ) is positioned in front of the light source 
LtSrc and may be used to adjust the width of the scanning 
line beam SB . Additionally , slit Sit may remain static during 
imaging or may be adjusted to different widths to allow for 
different confocality levels and different applications either 
for a particular scan or during the scan for use in suppressing 
reflexes . An optional objective lens ObjL may be placed in 
front of the slit Slt . The objective lens Objl can be any one 
of state of the art lenses including but not limited to 
refractive , diffractive , reflective , or hybrid lenses / systems . 
The light from slit Slt passes through a pupil splitting mirror 
SM and is directed towards a scanner LnScn . It is desirable 
to bring the scanning plane and the pupil plane as near 

together as possible to reduce vignetting in the system . 
Optional optics DL may be included to manipulate the 
optical distance between the images of the two components . 
Pupil splitting mirror SM may pass an illumination beam 
from light source LtSrc to scanner LnScn , and reflect a 
detection beam from scanner LnScn ( e.g. , reflected light 
returning from eye E ) toward a camera Cmr . A task of the 
pupil splitting mirror SM is to split the illumination and 
detection beams and to aid in the suppression of system 
reflexes . The scanner LnScn could be a rotating galvo 
scanner or other types of scanners ( e.g. , piezo or voice coil , 
micro - electromechanical system ( MEMS ) scanners , electro 
optical deflectors , and / or rotating polygon scanners ) . 
Depending on whether the pupil splitting is done before or 
after the scanner LnScn , the scanning could be broken into 
two steps wherein one scanner is in an illumination path and 
a separate scanner is in a detection path . Specific pupil 
splitting arrangements are described in detail in U.S. Pat . 
No. 9,456,746 , which is herein incorporated in its entirety by 
reference . 
[ 0086 ] From the scanner LnScn , the illumination beam 
passes through one or more optics , in this case a scanning 
lens SL and an ophthalmic or ocular lens OL , that allow for 
the pupil of the eye E to be imaged to an image pupil of the 
system . Generally , the scan lens SL receives a scanning 
illumination beam from the scanner LnScn at any of mul 
tiple scan angles ( incident angles ) , and produces scanning 
line beam SB with a substantially flat surface focal plane 
( e.g. , a collimated light path ) . Ophthalmic lens OL may 
focus the scanning line beam SB onto the fundus F ( or 
retina ) of eye E and image the fundus . In this manner , 
scanning line beam SB creates a traversing scan line that 
travels across the fundus F. One possible configuration for 
these optics is a Kepler type telescope wherein the distance 
between the two lenses is selected to create an approxi 
mately telecentric intermediate fundus image ( 4 - f configu 
ration ) . The ophthalmic lens OL could be a single lens , an 
achromatic lens , or an arrangement of different lenses . All 
lenses could be refractive , diffractive , reflective or hybrid as 
known to one skilled in the art . The focal length ( s ) of the 
ophthalmic lens OL , scan lens SL and the size and / or form 
of the pupil splitting mirror SM and scanner LnScn could be 
different depending on the desired field of view ( FOV ) , and 
so an arrangement in which multiple components can be 
switched in and out of the beam path , for example by using 
a flip in optic , a motorized wheel , or a detachable optical 
element , depending on the field of view can be envisioned . 
Since the field of view change results in a different beam size 
on the pupil , the pupil splitting can also be changed in 
conjunction with the change to the FOV . For example , a 45 ° 
to 60 ° field of view is a typical , or standard , FOV for fundus 
cameras . Higher fields of view , e.g. , a widefield FOV , of 
60 ° -120 ° , or more , may also be feasible . A widefield FOV 
may be desired for a combination of the Broad - Line Fundus 
Imager ( BLFI ) with another imaging modalities such as 
optical coherence tomography ( OCT ) . The upper limit for 
the field of view may be determined by the accessible 
working distance in combination with the physiological 
conditions around the human eye . Because a typical human 
retina has a FOV of 140 ° horizontal and 80 ° -100 ° vertical , 
it may be desirable to have an asymmetrical field of view for 
the highest possible FOV on the system . 
[ 0087 ] The scanning line beam SB passes through the 
pupil Ppl of the eye E and is directed towards the retinal , or 
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fundus , surface F. The scanner LnScnl adjusts the location 
of the light on the retina , or fundus , F such that a range of 
transverse locations on the eye E are illuminated . Reflected 
or scattered light ( or emitted light in the case of fluorescence 
imaging ) is directed back along as similar path as the 
illumination to define a collection beam CB on a detection 
path to camera Cmr . 
[ 0088 ] In the “ scan - descan ” configuration of the present , 
exemplary slit scanning ophthalmic system SLO - 1 , light 
returning from the eye E is “ descanned ” by scanner LnScn 
on its way to pupil splitting mirror SM . That is , scanner 
LnScn scans the illumination beam from pupil splitting 
mirror SM to define the scanning illumination beam SB 
across eye E , but since scanner LnScn also receives return 
ing light from eye E at the same scan position , scanner 
LnScn has the effect of descanning the returning light ( e.g. , 
cancelling the scanning action ) to define a non - scanning 
( e.g. , steady or stationary ) collection beam from scanner 
LnSen to pupil splitting mirror SM , which folds the collec 
tion beam toward camera Cmr . At the pupil splitting mirror 
SM , the reflected light ( or emitted light in the case of 
fluorescence imaging ) is separated from the illumination 
light onto the detection path directed towards camera Cmr , 
which may be a digital camera having a photo sensor to 
capture an image . An imaging ( e.g. , objective ) lens ImgL 
may be positioned in the detection path to image the fundus 
to the camera Cmr . As is the case for objective lens ObjL , 
imaging lens ImgL may be any type of lens known in the art 
( e.g. , refractive , diffractive , reflective or hybrid lens ) . Addi 
tional operational details , in particular , ways to reduce 
artifacts in images , are described in PCT Publication No. 
WO2016 / 124644 , the contents of which are herein incorpo 
rated in their entirety by reference . The camera Cmr captures 
the received image , e.g. , it creates an image file , which can 
be further processed by one or more ( electronic ) processors 
or computing devices ( e.g. , the computer system shown in 
FIG . 20 ) . Thus , the collection beam ( returning from all scan 
positions of the scanning line beam SB ) is collected by the 
camera Cmr , and a full - frame image Img may be constructed 
from a composite of the individually captured collection 
beams , such as by montaging . However , other scanning 
configuration are also contemplated , including ones where 
the illumination beam is scanned across the eye E and the 
collection beam is scanned across a photo sensor array of the 
camera . PCT Publication WO 2012/059236 and US Patent 
Publication No. 2015/0131050 , herein incorporated by ref 
erence , describe several embodiments of slit scanning oph thalmoscopes including various designs where the returning 
light is swept across the camera's photo sensor array and 
where the returning light is not swept across the camera's 
photo sensor array . 
[ 0089 ] In the present example , the camera Cmr is con 
nected to a processor ( e.g. , processing module ) Proc and a 
display ( e.g. , displaying module , computer screen , elec 
tronic screen , etc. ) Dspl , both of which can be part of the 
image system itself , or may be part of separate , dedicated 
processing and / or displaying unit ( s ) , such as a computer 
system wherein data is passed from the camera Cmr to the 
computer system over a cable or computer network includ 
ing wireless networks . The display and processor can be an 
all in one unit . The display can be a traditional electronic 
display / screen or of the touch screen type and can include a 
user interface for displaying information to and receiving 
information from an instrument operator , or user . The user 

can interact with the display using any type of user input 
device as known in the art including , but not limited to , 
mouse , knobs , buttons , pointer , and touch screen . 
[ 0090 ] It may be desirable for a patient's gaze to remain 
fixed while imaging is carried out . One way to achieve this 
is to provide a fixation target that the patient can be directed 
to stare at . Fixation targets can be internal or external to the 
instrument depending on what area of the eye is to be 
imaged . One embodiment of an internal fixation target is 
shown in FIG . 13. In addition to the primary light source 
LtSrc used for imaging , a second optional light source 
FxLtSrc , such as one or more LEDs , can be positioned such 
that a light pattern is imaged to the retina using lens FxL , 
scanning element FxScn and reflector / mirror FxM . Fixation 
scanner FxScn can move the position of the light pattern and 
reflector FxM directs the light pattern from fixation scanner 
FxScn to the fundus F of eye E. Preferably , fixation scanner 
FxScn is position such that it is located at the pupil plane of 
the system so that the light pattern on the retina / fundus can 
be moved depending on the desired fixation location . 
[ 0091 ] Slit - scanning ophthalmoscope systems are capable 
of operating in different imaging modes depending on the 
light source and wavelength selective filtering elements 
employed . True color reflectance imaging ( imaging similar 
to that observed by the clinician when examining the eye 
using a hand - held or slit lamp ophthalmoscope ) can be 
achieved when imaging the eye with a sequence of colored 
LEDs ( red , blue , and green ) . Images of each color can be 
built up in steps with each LED turned on at each scanning 
position or each color image can be taken in its entirety 
separately . The three color images can be combined to 
display the true color image or they can be displayed 
individually to highlight different features of the retina . The 
red channel best highlights the choroid , the green channel 
highlights the retina , and the blue channel highlights the 
anterior retinal layers . Additionally , light at specific frequen 
cies ( e.g. , individual colored LEDs or lasers ) can be used to 
excite different fluorophores in the eye ( e.g. , autofluores 
cence ) and the resulting fluorescence can be detected by 
filtering out the excitation wavelength . 
[ 0092 ] The fundus imaging system can also provide an 
infrared ( IR ) reflectance image , such as by using an infrared 
laser ( or other infrared light source ) . The infrared ( IR ) mode 
is advantageous in that the eye is not sensitive to the IR 
wavelengths . This may permit a user to continuously take 
images without disturbing the eye ( e.g. , in a preview / 
alignment mode ) to aid the user during alignment of the 
instrument . Also , the IR wavelengths have increased pen 
etration through tissue and may provide improved visual 
ization of choroidal structures . In addition , fluorescein 
angiography ( FA ) and indocyanine green angiography 
( ICG ) imaging can be accomplished by collecting images 
after a fluorescent dye has been injected into the subject's 
bloodstream . 
[ 0093 ] Optical Coherence Tomography Imaging System 
[ 0094 ] In addition to fundus photography , fundus auto 
fluorescence ( FAF ) , fluorescein angiography ( FA ) , ophthal 
mic images may also be created by other imaging modali 
ties , such as , optical coherence tomography ( OCT ) , OCT 
angiography ( OCTA ) , and / or ocular ultrasonography . The 
present invention , or at least portions of the present inven 
tion with minor modification ( s ) as it would be understood in 
the art , may be applied to these other ophthalmic imaging 
modalities . More specifically , the present invention may also 
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be applied to ophthalmic images produces by an OCT / 
OCTA system producing OCT and / or OCTA images . For 
instance , the present invention may be applied to en face 
OCT / OCTA images . Examples of fundus imagers are pro 
vided in U.S. Pat . Nos . 8,967,806 and 8,998,411 , examples 
of OCT systems are provided in U.S. Pat . Nos . 6,741,359 
and 9,706,915 , and examples of an OCTA imaging system 
may be found in U.S. Pat . Nos . 9,700,206 and 9,759,544 , all 
of which are herein incorporated in their entirety by refer 
ence . For the sake of completeness , an exemplary OCT / 
OCTA system is provided herein . 
[ 0095 ] FIG . 14 illustrates a generalized frequency domain 
optical coherence tomography ( FD - OCT ) system used to 
collect 3 - D image data of the eye suitable for use with the 
present invention . An FD - OCT system OCT_1 includes a 
light source , LtSrc1 . Typical light sources include , but are 
not limited to , broadband light sources with short temporal 
coherence lengths or swept laser sources . A beam of light 
from light source LtSrc1 is routed , typically by optical fiber 
Fbr1 , to illuminate a sample , e.g. , eye E ; a typical sample 
being tissues in the human eye . The light source LrSrc1 can 
be either a broadband light source with short temporal 
coherence length in the case of spectral domain OCT 
( SD - OCT ) or a wavelength tunable laser source in the case 
of swept source OCT ( SS - OCT ) . The light may be scanned , 
typically with a scanner Send between the output of the 
optical fiber Fbr1 and the sample E , so that the beam of light 
( dashed line Bm ) is scanned laterally in x and y ) over the 
region of the sample to be imaged . In the case of a full - field 
CT , no scanner is needed and the light is applied across the 

entire , desired field of view ( FOV ) at once . Light scattered 
from the sample is collected , typically into the same optical 
fiber Fbrl used to route the light for illumination . Reference 
light derived from the same light source LtSrc1 travels a 
separate path , in this case involving optical fiber Fbr2 and 
retro - reflector RR1 with an adjustable optical delay . Those 
skilled in the art will recognize that a transmissive reference 
path can also be used and that the adjustable delay could be 
placed in the sample or reference arm of the interferometer . 
Collected sample light is combined with reference light , 
typically in a fiber coupler Cplr1 , to form light interference 
in an OCT light detector Dtctrl ( e.g. , photodetector array , 
digital camera , etc. ) . Although a single fiber port is shown 
going to the detector Dtctr1 , those skilled in the art will 
recognize that various designs of interferometers can be 
used for balanced or unbalanced detection of the interfer 
ence signal . The output from the detector Dtctrl is supplied 
to a processor Cmpl ( e.g. , computing device ) that converts 
the observed interference into depth information of the 
sample . The depth information may be stored in a memory 
associated with the processor Cmp1 and / or displayed on a 
display ( e.g. , computer / electronic display / screen ) Scnl . The 
processing and storing functions may be localized within the 
OCT instrument or functions may be performed on an 
external processing unit ( e.g. , the computer system shown in 
FIG . 20 ) to which the collected data is transferred . This unit 
could be dedicated to data processing or perform other tasks 
which are quite general and not dedicated to the OCT device . 
The processor Cmp1 may contain , for example , a field 
programmable gate array ( FPGA ) , a digital signal processor 
( DSP ) , an application specific integrated circuit ( ASIC ) , a 
graphics processing unit ( GPU ) , a system on chip ( SOC ) , a 
central processing unit ( CPU ) , a general purpose graphics 
processing unit ( GPGPU ) , or a combination thereof , that 

performs some , or the entire data processing steps , prior to 
passing on to the host processor or in a parallelized fashion . 
[ 0096 ] The sample and reference arms in the interferom 
eter could consist of bulk - optics , fiber - optics , or hybrid 
bulk - optic systems and could have different architectures 
such as Michelson , Mach - Zehnder or common - path based 
designs as would be known by those skilled in the art . Light 
beam as used herein should be interpreted as any carefully 
directed light path . Instead of mechanically scanning the 
beam , a field of light can illuminate a one or two - dimen 
sional area of the retina to generate the OCT data ( see for 
example , U.S. Pat . No. 9,332,902 ; D. Hillmann et al , 
“ Holoscopy - holographic optical coherence tomography " 
Optics Letters 36 ( 13 ) : 2390 2011 ; Y. Nakamura , et al , 
“ High - Speed three dimensional human retinal imaging by 
line field spectral domain optical coherence tomography ” 
Optics Express 15 ( 12 ) : 7103 2007 ; Blazkiewicz et al , “ Sig 
nal - to - noise ratio study of full - field Fourier - domain optical 
coherence tomography ” Applied Optics 44 ( 36 ) : 7722 
( 2005 ) ) . In time - domain systems , the reference arm needs to 
have a tunable optical delay to generate interference . Bal 
anced detection systems are typically used in TD - OCT and 
SS - OCT systems , while spectrometers are used at the detec 
tion port for SD - OCT systems . The invention described 
herein could be applied to any type of OCT system . Various 
aspects of the invention could apply to any type of OCT 
system or other types of ophthalmic diagnostic systems 
and / or multiple ophthalmic diagnostic systems including but 
not limited to fundus imaging systems , visual field test 
devices , and scanning laser polarimeters . 
[ 0097 ] In Fourier Domain optical coherence tomography 
( FD - OCT ) , each measurement is the real - valued spectral 
interferogram ( Sj ( k ) ) . The real - valued spectral data typically 
goes through several post - processing steps including back 
ground subtraction , dispersion correction , etc. The Fourier 
transform of the processed interferogram , results in a com 
plex valued OCT signal output Aj ( z ) = 1Ajleiq . The absolute 
value of this complex OCT signal , | Ajl , reveals the profile of 
scattering intensities at different path lengths , and therefore 
scattering as a function of depth ( z - direction ) in the sample . 
Similarly , the phase , dj can also be extracted from the 
complex valued OCT signal . The profile of scattering as a 
function of depth is called an axial scan ( A - scan ) . A set of 
A - scans measured at neighboring locations in the sample 
produces a cross - sectional image ( tomogram or B - scan ) of 
the sample . A collection of B - scans collected at different 
transverse locations on the sample makes up a data volume 
or cube . For a particular volume of data , the term fast axis 
refers to the scan direction along a single B - scan whereas 
slow axis refers to the axis along which multiple B - scans are 
collected . The term “ cluster scan ” may refer to a single unit 
or block of data generated by repeated acquisitions at the 
same ( or substantially the same ) location ( or region ) for the 
purposes of analyzing motion contrast , which may be used 
to identify blood flow . A cluster scan can consist of multiple 
A - scans or B - scans collected with relatively short time 
separations at approximately the same location ( s ) on the 
sample . Since the scans in a cluster scan are of the same 
region , static structures remain relatively unchanged from 
scan to scan within the cluster scan , whereas motion contrast 
between the scans that meets predefined criteria may be 
identified as blood flow . A variety of ways to create B - scans 
are known in the art including but not limited to : along the 
horizontal or x - direction , along the vertical or y - direction , 
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along the diagonal of x and y , or in a circular or spiral 
pattern . B - scans may be in the x - z dimensions but may be 
any cross sectional image that includes the z - dimension . 
[ 0098 ] In OCT Angiography , or Functional OCT , analysis 
algorithms may be applied to OCT data collected at the 
same , or approximately the same , sample locations on a 
sample at different times ( e.g. , a cluster scan ) to analyze 
motion or flow ( see for example US Patent Publication Nos . 
2005/0171438 , 2012/0307014 , 2010/0027857 , 2012 / 
0277579 and U.S. Pat . No. 6,549,801 , all of which are herein 
incorporated in their entirety by reference ) . An OCT system 
may use any one of a number of OCT angiography process 
ing algorithms ( e.g. , motion contrast algorithms ) to identify 
blood flow . For example , motion contrast algorithms can be 
applied to the intensity information derived from the image 
data ( intensity - based algorithm ) , the phase information from 
the image data ( phase - based algorithm ) , or the complex 
image data ( complex - based algorithm ) . An en face image is 
a 2D projection of 3D OCT data ( e.g. , by averaging the 
intensity of each individual A - scan , such that each A - scan 
defines a pixel in the 2D projection ) . Similarly , an en face 
vasculature image is an image displaying motion contrast 
signal in which the data dimension corresponding to depth 
( e.g. , Z - direction along an A - scan ) is displayed as a single 
representative value ( e.g. , a pixel in a 2D projection image ) , 
typically by summing or integrating all or an isolated portion 
of the data ( see for example U.S. Pat . No. 7,301,644 herein 
incorporated in its entirety by reference ) . OCT systems that 
provide an angiography imaging functionality may be 
termed OCT angiography ( OCTA ) systems . 
[ 0099 ] FIG . 15 shows an example of an en face vascula 
ture image . After processing the data to highlight motion 
contrast using any of the motion contrast techniques known 
in the art , a range of pixels corresponding to a given tissue 
depth from the surface of internal limiting membrane ( ILM ) 
in retina , may be summed to generate the en face ( e.g. , 
frontal view ) image of the vasculature . 
[ 0100 ] Neural Networks 
[ 0101 ] As discussed above , the present invention may use 
a neural network ( NN ) machine learning ( ML ) model . For 
the sake of completeness , a general discussion of neural 
networks is provided herein . The present invention may use 
any , singularly or in combination , of the below described 
neural network architecture ( s ) . A neural network , or neural 
net , is a ( nodal ) network of interconnected neurons , where 
each neuron represents a node in the network . Groups of 
neurons may be arranged in layers , with the outputs of one 
layer feeding forward to a next layer in a multilayer per 
ceptron ( MLP ) arrangement . MLP may be understood to be 
a feedforward neural network model that maps a set of input 
data onto a set of output data . 
[ 0102 ] FIG . 16 illustrates an example of a multilayer 
perceptron ( MLP ) neural network . Its structure may include 
multiple hidden ( e.g. , internal ) layers HL1 to HLn that map 
an input layer InL ( that receives a set of inputs ( or vector 
input ) in_1 to in_3 ) to an output layer OutL that produces a 
set of outputs ( or vector output ) , e.g. , out_1 and out_2 . Each 
layer may have any given number of nodes , which are herein 
illustratively shown as circles within each layer . In the 
present example , the first hidden layer HL1 has two nodes , 
while hidden layers HL2 , HL3 , and HLn each have three 
nodes . Generally , the deeper the MLP ( e.g. , the greater the 
number of hidden layers in the MLP ) , the greater its capacity 
to learn . The input layer InL receives a vector input ( illus 

tratively shown as a three - dimensional vector consisting of 
in_1 , in_2 and in_3 ) , and may apply the received vector 
input to the first hidden layer HL1 in the sequence of hidden 
layers . An output layer OutL receives the output from the 
last hidden layer , e.g. , HLn , in the multilayer model , pro 
cesses its inputs , and produces a vector output result ( illus 
tratively shown as a two - dimensional vector consisting of 
out_1 and out_2 ) . 
[ 0103 ] Typically , each neuron ( or node ) produces a single 
output that is fed forward to neurons in the layer immedi 
ately following it . But each neuron in a hidden layer may 
receive multiple inputs , either from the input layer or from 
the outputs of neurons in an immediately preceding hidden 
layer . In general , each node may apply a function to its 
inputs to produce an output for that node . Nodes in hidden 
layers ( e.g. , learning layers ) may apply the same function to 
their respective input ( s ) to produce their respective output 
( s ) . Some nodes , however , such as the nodes in the input 
layer InL receive only one input and may be passive , 
meaning that they simply relay the values of their single 
input to their output ( s ) , e.g. , they provide a copy of their 
input to their output ( s ) , as illustratively shown by dotted 
arrows within the nodes of input layer InL . 
[ 0104 ] For illustration purposes , FIG . 17 shows a simpli 
fied neural network consisting of an input layer InL ' , a 
hidden layer HL1 , and an output layer OutL ' . Input layer 
InL ' is shown having two input nodes il and i2 that respec 
tively receive inputs Input_1 and Input_2 ( e.g. the input 
nodes of layer InL ' receive an input vector of two dimen 
sions ) . The input layer InL ' feeds forward to one hidden 
layer HL1 ' having two nodes h1 and h2 , which in turn feeds 
forward to an output layer OutL ' of two nodes ol and 02 . 
Interconnections , or links , between neurons ( illustrative 
shown as solid arrows ) have weights w1 to w8 . Typically , 
except for the input layer , a node ( neuron ) may receive as 
input the outputs of nodes in its immediately preceding 
layer . Each node may calculate its output by multiplying 
each of its inputs by each input's corresponding intercon 
nection weight , summing the products of it inputs , adding 
( or multiplying by ) a constant defined by another weight or 
bias that may be associated with that particular node ( e.g. , 
node weights w9 , w10 , w11 , w12 respectively correspond 
ing to nodes h1 , h2 , ol , and o2 ) , and then applying a 
non - linear function or logarithmic function to the result . The 
non - linear function may be termed an activation function or 
transfer function . Multiple activation functions are known 
the art , and selection of a specific activation function is not 
critical to the present discussion . It is noted , however , that 
operation of the ML model , or behavior of the neural net , is 
dependent upon eight values , which may be learned so that 
the neural network provides a desired output for a given 
input . 
[ 0105 ] The neural net learns ( e.g. , is trained to determine ) 
appropriate weight values to achieve a desired output for a 
given input during a training , or learning , stage . Before the 
neural net is trained , each weight may be individually 
assigned an initial ( e.g. , random and optionally non - zero ) 
value , e.g. a random - number seed . Various methods of 
assigning initial weights are known in the art . The weights 
are then trained ( optimized ) so that for a given training 
vector input , the neural network produces an output close to 
a desired ( predetermined ) training vector output . For 
example , the weights may be incrementally adjusted in 
thousands of iterative cycles by a technique termed back 
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propagation . In each cycle of back - propagation , a training 
input ( e.g. , vector input or training input image / sample ) is 
fed forward through the neural network to determine its 
actual output ( e.g. , vector output ) . An error for each output 
neuron , or output node , is then calculated based on the actual 
neuron output and a target training output for that neuron 
( e.g. , a training output image / sample corresponding to the 
present training input image / sample ) . One then propagates 
back through the neural network ( in a direction from the 
output layer back to the input layer ) updating the weights 
based on how much effect each weight has on the overall 
error so that the output of the neural network moves closer 
to the desired training output . This cycle is then repeated 
until the actual output of the neural network is within an 
acceptable error range of the desired training output for the 
given training input . As it would be understood , each 
training input may require many back - propagation iterations 
before achieving a desired error range . Typically an epoch 
refers to one back - propagation iteration ( e.g. , one forward 
pass and one backward pass ) of all the training samples , 
such that training a neural network may require many 
epochs . Generally , the larger the training set , the better the 
performance of the trained ML model , so various data 
augmentation methods may be used to increase the size of 
the training set . For example , when the training set includes 
pairs of corresponding training input images and training 
output images , the training images may be divided into 
multiple corresponding image segments ( or patches ) . Cor 
responding patches from a training input image and training 
output image may be paired to define multiple training patch 
pairs from one input / output image pair , which enlarges the 
training set . Training on large training sets , however , places 
high demands on computing resources , e.g. memory and 
data processing resources . Computing demands may be 
reduced by dividing a large training set into multiple mini 
batches , where the mini - batch size defines the number of 
training samples in one forward / backward pass . In this case , 
and one epoch may include multiple mini - batches . Another 
issue is the possibility of a NN overfitting a training set such 
that its capacity to generalize from a specific input to a 
different input is reduced . Issues of overfitting may be 
mitigated by creating an ensemble of neural networks or by 
randomly dropping out nodes within a neural network 
during training , which effectively removes the dropped 
nodes from the neural network . Various dropout regulation 
methods , such as inverse dropout , are known in the art . 
[ 0106 ] It is noted that the operation of a trained NN 
machine model is not a straight - forward algorithm of opera 
tional / analyzing steps . Indeed , when a trained NN machine 
model receives an input , the input is not analyzed in the 
traditional sense . Rather , irrespective of the subject or nature 
of the input ( e.g. , a vector defining a live image / scan or a 
vector defining some other entity , such as a demographic 
description or a record of activity ) the input will be subjected 
to the same predefined architectural construct of the trained 
neural network ( e.g. , the same nodal / layer arrangement , 
trained weight and bias values , predefined convolution / 
deconvolution operations , activation functions , pooling 
operations , etc. ) , and it may not be clear how the trained 
network's architectural construct produces its output . Fur 
thermore , the values of the trained weights and biases are not 
deterministic and depend upon many factors , such as the 
amount of time the neural network is given for training ( e.g. , 
the number of epochs in training ) , the random starting values 

of the weights before training starts , the computer architec 
ture of the machine on which the NN is trained , selection of 
training samples , distribution of the training samples among 
multiple mini - batches , choice of activation function ( s ) , 
choice of error function ( s ) that modify the weights , and even 
if training is interrupted on one machine ( e.g. , having a first 
computer architecture ) and completed on another machine 
( e.g. , having a different computer architecture ) . The point is 
that the reasons why a trained ML model reaches certain 
outputs is not clear , and much research is currently ongoing 
to attempt to determine the factors on which a ML model 
bases its outputs . Therefore , the processing of a neural 
network on live data cannot be reduced to a simple algorithm 
of steps . Rather , its operation is dependent upon its training 
architecture , training sample sets , training sequence , and 
various circumstances in the training of the ML model . 
[ 0107 ] In summary , construction of a NN machine learn 
ing model may include a learning ( or training ) stage and a 
classification ( or operational ) stage . In the learning stage , the 
neural network may be trained for a specific purpose and 
may be provided with a set of training examples , including 
training ( sample ) inputs and training ( sample ) outputs , and 
optionally including a set of validation examples to test the 
progress of the training . During this learning process , vari 
ous weights associated with nodes and node - interconnec 
tions in the neural network are incrementally adjusted in 
order to reduce an error between an actual output of the 
neural network and the desired training output . In this 
manner , a multi - layer feed - forward neural network ( such as 
discussed above ) may be made capable of approximating 
any measurable function to any desired degree of accuracy . 
The result of the learning stage is a ( neural network ) 
machine learning ( ML ) model that has been learned ( e.g. , 
trained ) . In the operational stage , a set of test inputs ( or live 
inputs ) may be submitted to the learned ( trained ) ML model , 
which may apply what it has learned to produce an output 
prediction based on the test inputs . 
[ 0108 ] Like the regular neural networks of FIGS . 15 and 
16 , convolutional neural networks ( CNN ) are also made up 
of neurons that have learnable weights and biases . Each 
neuron receives inputs , performs an operation ( e.g. , dot 
product ) , and is optionally followed by a non - linearity . The 
CNN , however , may receive raw image pixels at one end 
( e.g. , the input end ) and provide classification ( or class ) 
scores at the other end ( e.g. , the output end ) . Because CNNs 
expect an image as input , they are optimized for working 
with volumes ( e.g. , pixel height and width of an image , plus 
the depth of the image , e.g. , color depth such as an RGB 
depth defined of three colors : red , green , and blue ) . For 
example , the layers of a CNN may be optimized for neurons 
arranged in 3 dimensions . The neurons in a CNN layer may 
also be connected to a small region of the layer before it , 
instead of all of the neurons in a fully - connected NN . The 
final output layer of a CNN may reduce a full image into a 
single vector ( classification ) arranged along the depth 
dimension . 
[ 0109 ] FIG . 18 provides an example convolutional neural 
network architecture . A convolutional neural network may 
be defined as a sequence of two or more layers ( e.g. , Layer 
1 to Layer N ) , where a layer may include a ( image ) 
convolution step , a weighted sum ( of results ) step , and a 
non - linear function step . The convolution may be performed 
on its input data by applying a filter ( or kernel ) , e.g. on a 
moving window across the input data , to produce a feature 
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map . Each layer and component of a layer may have 
different pre - determined filters ( from a filter bank ) , weights 
( or weighting parameters ) , and / or function parameters . In 
the present example , the input data is an image , which may 
be raw pixel values of the image , of a given pixel height and 
width . In the present example , the input image is illustrated 
as having a depth of three color channels RGB ( Red , Green , 
and Blue ) . Optionally , the input image may undergo various 
preprocessing , and the preprocessing results may be input in 
place of , or in addition to , the raw input image . Some 
examples of image preprocessing may include : retina blood 
vessel map segmentation , color space conversion , adaptive 
histogram equalization , connected components generation , 
etc. Within a layer , a dot product may be computed between 
the given weights and a small region they are connected to 
in the input volume . Many ways of configuring a CNN are 
known in the art , but as an example , a layer may be 
configured to apply an elementwise activation function , such 
as max ( 0 , x ) thresholding at zero . A pooling function may be 
performed ( e.g. , along the x - y directions ) to down - sample a 
volume . A fully - connected layer may be used to determine 
the classification output and produce a one - dimensional 
output vector , which has been found useful for image 
recognition and classification . However , for image segmen 
tation , the CNN would need to classify each pixel . Since 
each CNN layers tends to reduce the resolution of the input 
image , another stage is needed to up - sample the image back 
to its original resolution . This may be achieved by applica 
tion of a transpose convolution ( or deconvolution ) stage TC , 
which typically does not use any predefine interpolation 
method , and instead has learnable parameters . 
[ 0110 ] Convolutional Neural Networks have been suc 
cessfully applied to many computer vision problems . As 
explained above , training a CNN generally requires a large 
training dataset . The U - Net architecture is based on CNNs 
and can generally can be trained on a smaller training dataset 
than conventional CNNs . 
[ 0111 ] FIG . 19 illustrates an example U - Net architecture . 
The present exemplary U - Net includes an input module ( or 
input layer or stage ) that receives an input U - in ( e.g. , input 
image or image patch ) of any given size ( e.g. , 128 by 128 
pixels in size ) . The input image may be a fundus image , an 
OCT / OCTA en face , B - scan image , etc. It is to be under 
stood , however , that the input may be of any size and 
dimension . For example , the input image may be an RGB 
color image , monochrome image , volume image , etc. The 
input image undergoes a series of processing layers , each of 
which is illustrated with exemplary sizes , but these sizes are 
illustration purposes only and would depend , for example , 
upon the size of the image , convolution filter , and / or pooling 
stages . The present architecture consists of a contracting 
path ( comprised of four encoding modules ) followed by an 
expanding path ( comprised of four decoding modules ) , and 
four copy - and - crop links ( e.g. , CC1 to CC4 ) between cor 
responding modules / stages that copy the output of one 
encoding modules in the contracting path and concatenates 
it to the input of a correspond decoding module in the 
expanding path . This results in a characteristic U - shape , 
from which the architecture draws its name . The contracting 
path is similar to an encoder , and its basic function is to 
capture context via compact feature maps . In the present 
example , each encoding modules in the contracting path 
includes two convolutional neural network layers , which 
may be followed by one max pooling layer ( e.g. , Down 

Sampling layer ) . For example , input image U_in undergoes 
two convolution layers , each with 32 feature maps . The 
number of feature maps may double at each pooling , starting 
with 32 feature maps in the first block , 64 in the second , and 
so on . The contracting path thus forms a convolutional 
network consisting of a plurality of encoding modules ( or 
stages ) , each providing a convolution stage , followed by an 
activation function ( e.g. , a rectified linear unit , ReLU or 
sigmoid layer ) and a max pooling operation . The expanding 
path is similar to a decoder , and its function is to provide 
localization and to retain spatial information despite the 
down sampling and any max - pooling performed in the 
contracting stage . In the contracting path , spatial informa 
tion is reduced while feature information is increased . The 
expanding path includes a plurality of decoding modules , 
where each decoding module concatenates its current value 
with the output of a corresponding encoding module . That is , 
the feature and spatial information are combined in the 
expanding path through a sequence of up - convolutions ( e.g. , 
UpSampling or transpose convolutions or deconvolutions ) 
and concatenations with high - resolution features from the 
contracting path ( e.g. , via CC1 to CC4 ) . Thus , the output of 
a deconvolution layer is concatenated with the correspond 
ing ( optionally cropped ) feature map from the contracting 
path , followed by two convolutional layers and activation 
function ( with optional batch normalization ) . The output 
from the last module in the expanding path may be fed to 
another processing / training block or layer , such as a classi 
fier block , that may be trained along with the U - Net archi 
tecture . 
[ 0112 ] The module / stage ( BN ) between the contracting 
path and the expanding path may be termed the “ bottle 
neck . ” The bottleneck BN may consist of two convolutional 
layers ( with batch normalization and optional dropout ) . 
[ 0113 ] Computing Device / System 
[ 0114 ] FIG . 20 illustrates an example computer system ( or 
computing device or computer device ) . In some embodi 
ments , one or more computer systems may provide the 
functionality described or illustrated herein and / or perform 
one or more steps of one or more methods described or 
illustrated herein . The computer system may take any suit 
able physical form . For example , the computer system may 
be an embedded computer system , a system - on - chip ( SOC ) , 
a single - board computer system ( SBC ) ( such as , for 
example , a computer - on - module ( COM ) or system - on - mod 
ule ( SOM ) ) , a desktop computer system , a laptop or note 
book computer system , a mesh of computer systems , a 
mobile telephone , a personal digital assistant ( PDA ) , a 
server , a tablet computer system , an augmented / virtual real 
ity device , or a combination of two or more of these . Where 
appropriate , the computer system may reside in a cloud , 
which may include one or more cloud components in one or 
more networks . 
[ 0115 ] In some embodiments , the computer system may 
include a processor Cont1 , memory Cpnt2 , storage Cont3 , 
an input / output ( 1/0 ) interface Cpnt4 , a communication 
interface Cpnt5 , and a bus Cpnto . The computer system may 
optionally also include a display Cpnt7 , such as a computer 
monitor or screen . 
[ 0116 ] Processor Cont1 includes hardware for executing 
instructions , such as those making up a computer program . 
For example , processor Cont1 may be a central processing 
unit ( CPU ) or a general - purpose computing on graphics 
processing unit ( GPGPU ) . Processor Cont1 may retrieve ( or 
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fetch ) the instructions from an internal register , an internal 
cache , memory Cpnt2 , or storage Cpnt3 , decode and execute 
the instructions , and write one or more results to an internal 
register , an internal cache , memory Cpnt2 , or storage Cont3 . 
In particular embodiments , processor Cont1 may include 
one or more internal caches for data , instructions , or 
addresses . Processor Cpntl may include one or more 
instruction caches , one or more data caches , such as to hold 
data tables . Instructions in the instruction caches may be 
copies of instructions in memory Cpnt2 or storage Cont3 , 
and the instruction caches may speed up retrieval of those 
instructions by processor Cpntl . Processor Cpnt1 may 
include any suitable number internal registers , and may 
include one or more arithmetic logic units ( ALUs ) . Proces 
sor Cpnt1 may be a multi - core processor ; or include one or 
more processors Cpnt ) . Although this disclosure describes 
and illustrates a particular processor , this disclosure con 
templates any suitable processor . 
[ 0117 ] Memory Cpnt2 may include main memory for 
storing instructions for processor Cont1 to execute or to hold 
interim data during processing . For example , the computer 
system may load instructions or data ( e.g. , data tables ) from 
storage Cont3 or from another source ( such as another 
computer system ) to memory Cont2 . Processor Cont1 may 
load the instructions and data from memory Cpnt2 to one or 
more internal register or internal cache . To execute the 
instructions , processor Cont1 may retrieve and decode the 
instructions from the internal register or internal cache . 
During or after execution of the instructions , processor 
Cpnt1 may write one or more results ( which may be inter 
mediate or final results ) to the internal register , internal 
cache , memory Cont2 or storage Cont3 . Bus Cpnth may 
include one or more memory buses ( which may each include 
an address bus and a data bus ) and may couple processor 
Cont1 to memory Cpnt2 and / or storage Cont3 . Optionally , 
one or more memory management unit ( MMU ) facilitate 
data transfers between processor Cont1 and memory Cpnt2 . 
Memory Cpnt2 ( which may be fast , volatile memory ) may 
include random access memory ( RAM ) , such as dynamic 
RAM ( DRAM ) or static RAM ( SRAM ) . Storage Cont3 may 
include long - term or mass storage for data or instructions . 
Storage Cont3 may be internal or external to computer 
system , and include one or more of a disk drive ( e.g. , hard 
disk drive , HDD , or solid state drive , SSD ) , flash memory , 
ROM , EPROM , optical disc , a magneto - optical disc , mag 
netic tape , Universal Serial Bus ( USB ) -accessible drive , or 
other type of non - volatile memory . 
[ 0118 ] I / O interface Cont4 may be software , hardware , or 
a combination of both , and include one or more interfaces 
( e.g. , serial or parallel communication ports ) for communi 
cation with I / O devices , which may enable communication 
with a person ( e.g. , user ) . For example , I / O devices may 
include a keyboard , keypad , microphone , monitor , mouse , 
printer , scanner , speaker , still camera , stylus , tablet , touch 
screen , trackball , video camera , another suitable I / O device , 
or a combination of two or more of these . 
[ 0119 ] Communication interface Cont5 may provide net 
work interfaces for communication with other systems or 
networks . Communication interface Cont5 may include a 
Bluetooth interface or other type of packet - based commu 
nication . For example , communication interface Cont5 may 
include a network interface controller ( NIC ) and / or a wire 
less NIC or a wireless adapter for communicating with a 
wireless network . Communication interface Cont5 may pro 

vide communication with a WI - FI network , an ad hoc 
network , a personal area network ( PAN ) , a wireless PAN 
( e.g. , a Bluetooth WPAN ) , a local area network ( LAN ) , a 
wide area network ( WAN ) , a metropolitan area network 
( MAN ) , a cellular telephone network ( such as , for example , 
a Global System for Mobile Communications ( GSM ) net 
work ) , the Internet , or a combination of two or more of 
these . 
[ 0120 ) Bus Cpnt may provide a communication link 
between the above mentioned components of the computing 
system . For example , bus Cpntó may include an Accelerated 
Graphics Port ( AGP ) or other graphics bus , an Enhanced 
Industry Standard Architecture ( EISA ) bus , a front - side bus 
( FSB ) , a Hyper Transport ( HT ) interconnect , an Industry 
Standard Architecture ( ISA ) bus , an InfiniBand bus , a low 
pin - count ( LPC ) bus , a memory bus , a Micro Channel 
Architecture ( MCA ) bus , a Peripheral Component Intercon 
nect ( PCI ) bus , a PCI - Express ( PCIe ) bus , a serial advanced 
technology attachment ( SATA ) bus , a Video Electronics 
Standards Association local ( VLB ) bus , or other suitable bus 
or a combination of two or more of these . 
[ 0121 ] Although this disclosure describes and illustrates a 
particular computer system having a particular number of 
particular components in a particular arrangement , this dis 
closure contemplates any suitable computer system having 
any suitable number of any suitable components in any 
suitable arrangement . 
[ 0122 ] Herein , a computer - readable non - transitory storage 
medium or media may include one or more semiconductor 
based or other integrated circuits ( ICs ) ( such , as for 
example , field - programmable gate arrays ( FPGAs ) or appli 
cation - specific ICs ( ASICs ) ) , hard disk drives ( HDDs ) , 
hybrid hard drives ( HHDs ) , optical discs , optical disc drives 
( ODDs ) , magneto - optical discs , magneto - optical drives , 
floppy diskettes , floppy disk drives ( FDDs ) , magnetic tapes , 
solid - state drives ( SSDs ) , RAM - drives , SECURE DIGITAL 
cards or drives , any other suitable computer - readable non 
transitory storage media , or any suitable combination of two 
or more of these , where appropriate . A computer - readable 
non - transitory storage medium may be volatile , non - vola 
tile , or a combination of volatile and non - volatile , where 
appropriate . 
[ 0123 ] While the invention has been described in conjunc 
tion with several specific embodiments , it is evident to those 
skilled in the art that many further alternatives , modifica 
tions , and variations will be apparent in light of the forego 
ing description . Thus , the invention described herein is 
intended to embrace all such alternatives , modifications , 
applications and variations as may fall within the spirit and 
scope of the appended claims . 

1. Amethod for classifying geographic atrophy ( GA ) in an 
eye , comprising : 

using an ophthalmic diagnostic device to acquire an 
image of the fundus of the eye ; 
using a computer processor : 
submitting the acquired image to a phenotype classifier 

that is based on a machine learning model , wherein 
the phenotype classifier identifies GA regions , and 
then classifies the identified GA regions as a banded 
phenotype or a diffused phenotype ; and 

displaying the result of the phenotype classifier on an 
electronic display or storing the result for further 
processing 
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2. The method of claim 1 , wherein the phenotype classi 
fier is a neural network trained using a training output set of 
eye fundus images with manually delineated GA regions 
with their phenotypes identified , and using a training input 
set of the same eye fundus images without the delineated GA 
regions and without the identified phenotypes ; and 

wherein retinal vessels are removed from the fundus 
images in the training input set and the training output 
set prior to training the neural network . 

3. The method of claim 1 , further comprising : 
determining a region of interest ( ROI ) within the acquired 

image , the ROI including the macula of the eye ; 
wherein the phenotype classifier limits the processing to 

the ROI . 
4. The method of claim 1 , further comprising : 
determining an image quality ( IQ ) measure of the 

acquired image ; 
wherein the acquired image is submitted to the phenotype 

classifier in response to the determined image quality 
measured being higher than a predefined IQ threshold . 

5. The method of claim 1 , wherein the automated GA 
region identification process is a two - stage GA region iden 
tification process , including a first stage based on a super 
vised pixel classifier that applies a pixel - by - pixel classifi 
cation to the acquired image to identify first GA regions , and 
a second stage that uses the first GA regions as starting 
points in an active contour segmentation process that defines 
second GA regions , the defined second GA regions being 
identified as banded phenotype or diffused phenotype . 

6. The method of claim 5 , wherein the supervised pixel 
classifier is one of a trained neural network or a support 
vector machine . 

7. The method of claim 5 , wherein the active contour 
segmentation process applies Chan - Vese active contour seg 
mentation . 

8. The method of claim 1 , wherein phenotype classifica 
tion is based on the junctional zones of the identified GA 
regions . 

9. The method of claim 1 , wherein for ea identified G. 
region : 

the phenotype classifier maps a currently identified GA 
region to a 3D space and determines the surface area of 
the 3D mapped GA region ; and 

in response to surface area of the 3D mapped GA region 
being smaller than a predefined minimum area thresh 
old , reclassifying the currently identified GA region as 
a non - GA region . 

10. The method of claim 1 , wherein for each identified 
GA region , the phenotype classifier : 

determines a first measure , the first measure being one of 
a contour - non - uniformity measure or intensity - unifor 
mity measure in a vicinity adjacent to , and along , the 
perimeter of a currently identified GA region ; and 

in response to the determined first measure being higher 
than a first threshold , classifies the currently identified 
GA region as high - progression - rate GA . 

11. The method of claim 10 , wherein the phenotype 
classifier : 

in response to the first measure not being higher than the 
first threshold , determines a second measure , the sec 
ond measure being the other of the contour - non - uni 
formity measure or intensity - uniformity measure ; and 

in response to the second measure being higher than a 
second threshold , classifies the currently identified GA 
region as high - progression - rate GA . 

12. The method of claim 1 , wherein for a currently 
identified GA region , the phenotype classifier : 

determines a contour - non - uniformity measure in a vicin 
ity adjacent to , and along , the perimeter of the currently 
identified GA region ; and 

in response to the determined contour - non - uniformity 
measure being greater than a predefined non - unifor 
mity threshold , classifies the currently identified GA 
region as ' diffused ' phenotype . 

13. The method of claim 12 , wherein the non - uniformity 
threshold is based on a standardized mean contour variation 
of a library of sample GA regions . 

14. The method of claim 1 , wherein for a currently 
identified GA region , the phenotype classifier : 

determines an intensity - uniformity measure in a vicinity 
adjacent to , and along , the perimeter of the currently 
identified GA region ; and 

in response to the determined intensity - uniformity mea 
sure being greater than a predefined intensity - unifor 
mity threshold , classifies the currently identified GA 
region as ' banded ' phenotype . 

15. The method of claim 14 , wherein : 
determining the intensity - uniformity measure includes 

selecting a set of random points along the perimeter of 
the currently identified GA region and determining 
ridges and valleys of pixel intensities along directions 
normal to the contour of the perimeter extending from 
the random points ; and 

the intensity - uniformity threshold is based on a standard 
ize mean of ridges and values of pixel intensities along 
the junctional zones of sample GA regions . 

16. The method of claim 1 , wherein retinal vessels are 
removed from the acquired image prior to identifying GA 
regions . 

17. A method for classifying geographic atrophy ( GA ) in 
an eye , comprising using an ophthalmic diagnostic device to 
acquire an image of the fundus of the eye ; 

using a computer processor : 
submitting the image to an automated GA identification 

process that identifies a GA region in the image ; 
determining a first measure , the first measure being one of 

a contour - non - uniformity measure or intensity - unifor 
mity measure in a region of the image adjacent to , and 
along , the perimeter of the identified GA region ; and 

in response to the determined first measure being higher 
than a first threshold , classifying the GA region as 
high - progression - rate GA ; and 

displaying the determined classification of the GA region 
on an electronic display or storing the determined 
classification for further processing . 

18. The method of claim 17 , wherein the computer 
processor : 

in response to the first measure not being higher than the 
first threshold , determines a second measure , the sec 
ond measure being the other of the contour - non - uni 
formity measure or intensity - uniformity measure ; and 

in response to the second measure being higher than a 
second threshold , identifies the current identified GA 
region as high - progression - rate GA . 

19. The method of claim 17 , wherein the computer 
processor : 
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uses an automatic region - of - interest ( ROI ) identification 
process to identify a ROI within the image of the 
fundus based at least on a predefined anatomical land 
mark , the ROI including the macula of the eye ; and 

the automated GA identification process is limited to an 
image area within the ROI . 

20. The method of claim 19 , wherein the automatic 
region - of - interest ( ROI ) identification process includes : 

identifying a location of a dominant concentration of 
vessels within the image ; 

identifying the optic disc based at least in part on the 
identified location ; 

using the identified optic disc and a determination of 
whether the image is of a left eye or right eye as a 
reference to search for the fovea ; and 

defining the ROI based on the location of the fovea . 
21. The method of claim 19 , wherein the ROI is com 

prised of a plurality of sub - image sectors , and automated GA 
identification process classifies each sub - image sector of the 
ROI as a GA - sub - image or a non - GA - sub - image on a 
sub - image sector by sub - image sector basis . 

22. The method of claim 21 , wherein each sub - image 
sector is comprised of one pixel . 

23. The method of claim 17 , wherein retinal vessels are 
removed from the image prior to submission to the auto 
mated GA identification process . 

24. The method of claim 17 , wherein the automated GA 
identification process includes submitting the image to a 
trained machine learning ( ML ) model that provides an initial 
GA segmentation . 

25. The method of claim 24 , wherein the ML model is a 
support vector machine . 

26. The method of claim 24 , wherein the ML model is a 
trained neural network based on the U - Net architecture . 

27. The method of claim 24 , wherein automated GA 
identification process further includes : 

submitting the results of the ML model to an active 
contour algorithm that uses the initial GA segmentation 
as a starting point , the result of the active contour 
algorithm at least partially identifying a GA lesion in 
the image . 

28. The method of claim 27 wherein the active contour 
algorithm is based on Chan - Vese segmentation modified to 
change energy and movement direction of contour growth . 

29. The method of claim 17 , wherein the image is a planar 
image comprised of two - dimensional ( 2D ) pixels , and the 
automated GA identification process includes : 
mapping the identified GA region to a three - dimensional 

( 3D ) space to define a 3D - mapped GA region ; 
determining an area of the 3D - mapped GA region ; 
re - identifying the GA region as a non - GA region in 

response to the determined area of the 3D - mapped GA 
region being smaller than a predefined area - threshold . 

30. The method of claim 17 , wherein determining the 
contour - non - uniformity measure includes : 

selecting a set of random points along the perimeter of the 
identified GA region ; 

determining a distance from each random point to a 
centroid of the identified GA region ; and 

the contour - non - uniformity measure is based on the vari 
ability of the determined distances . 

31. The method of claim 30 , wherein the set of random 
points are distributed equidistant around the perimeter of the 
GA region . 

32. The method of claim 30 , wherein the identified GA 
region is classified as “ diffused ” phenotype based on the 
contour - non - uniformity measure . 

33. The method of claim 17 , wherein determining the 
intensity - uniformity measure includes : 

selecting a set of random points along the perimeter of the 
of the identified GA region ; 

determining an intensity variability measure for each 
random point based on ridges and valleys of pixel 
intensities along directions normal to the contour of the 
perimeter extending from each random point ; and 

the intensity - uniformity measure is based on the intensity 
variability measures . 

34. The method of claim 33 , wherein the identified GA 
region is classified as “ banded ” phenotype in response to at 
least a predefined percentage of the intensity variability 
measures being greater than a predefine variability thresh 
old . 

35. The method of claim 33 , wherein determining the 
intensity variability measure includes using at least one of 
Hessian filter gradient derivatives or a directional Gaussian 
filter . 

36. A system for classifying geographic atrophy ( GA ) in 
an eye , comprising : 

an ophthalmic diagnostic device to acquire an image of 
the fundus of the eye ; 

a computer processor : 
a phenotype classifier that is based on a machine learning 
model 

a display and / or a storage means ; 
which is configured to execute a method according to claim 
1 . 

37. A system for classifying geographic atrophy ( GA ) in 
an eye , comprising : 

an ophthalmic diagnostic device to acquire an image of 
the fundus of the eye ; 

a computer processor : 
an automated GA identification processor that identifies a 
GA region in the image , 

a display and / or a storage means ; 
which is configured to execute a method according to claim 
17 . 


