
(12) United States Patent
Sugawara

US0085.33567B2

US 8,533,567 B2
Sep. 10, 2013

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

(56)

2009, OO37781 A1
2009,00856O1 A1
2009/0309627 A1

LOW DELAY AND AREA EFFICIENT SOFT
ERROR CORRECTION IN ARBTRATION
LOGIC

Inventor: Yutaka Sugawara, White Plains, NY
(US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 398 days.

Appl. No.: 12/852,801

Filed: Aug. 9, 2010

Prior Publication Data

US 2012/OO36412 A1 Feb. 9, 2012

Int. C.
G06F II/00 (2006.01)
U.S. C.
USPC ... 714/764; 714/758
Field of Classification Search
USPC .. 714/758, 764
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,199,124 B1* 3/2001 Ramakrishnan et al. T10/40
6,792,567 B2 9, 2004 Laurent
6,879,504 B1 * 4/2005 Lien et al. 365,49.1
6,948,113 B1* 9/2005 Shaver T14f769
7,539,931 B2 5/2009 Thayer
7,565,593 B2 * 7/2009 Dixon et al. 714/754
7,644,311 B2 1/2010 Lien et al.
7,676,728 B2*
7,734,970 B2 *

3/2010 Resnicket al. 714,764
6/2010 Drake et al. T14,726
2/2009 Abella et al.
4/2009 Nintunze et al.
12/2009 Ranganathan et al.

FOREIGN PATENT DOCUMENTS

JP 2005223.668 A 8, 2005

OTHER PUBLICATIONS

Fiedler, J., “Hamming Codes', 2004, http://orion.mathiastate.edu/
linglong/Mathó90F04/HammingCodes.pdf.
Gao, J., “Reed Solomon Code.” SUNY Stony Brook, Feb. 2007,
http://www.cs. Sunysb.edu/~jgao/CSE370-spring 10/reed-Solomon.
pdf.
Oliveira, R., et al., “A TMR. Scheme for SEU Mitigation in Scan
Flip-Flops', 2007, 8th International Symposium on Quality Elec
tronic Design (ISQED'07), IEEE, Computer Society.
Rao, T. R. N. “Use of Error Correcting Codes on Memory Words for
Improved Reliability”. Jun. 1968, IEEE Transactions on Reliability,
pp. 91-96, vol. R-17, No. 2.
Nicolaidis, M.. “Time Redundancy Based Soft-Error Tolerance to
Rescue Nanometer Technologies', 1999, Proceedings of the 1999
17THIEEEVLSI Test Symposium, pp. 86-94, IEEE Computer Soci
ety, Washington, DC.

(Continued)

Primary Examiner — Bryce Bonzo
Assistant Examiner — Elmira Mehrmanesh
(74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
Presser, P.C.; Daniel P. Morris, Esq.

(57) ABSTRACT

There is provided an arbitration logic device for controlling
an access to a shared resource. The arbitration logic device
comprises at least one storage element, a winner selection
logic device, and an error detection logic device. The storage
element stores a plurality of requestors information. The
winner selection logic device selects a winner requestor
among the requestors based on the requestors information
received from a plurality of requestors. The winner selection
logic device selects the winner requestor without checking
whether there is the soft error in the winner requestors infor
mation.

14 Claims, 4 Drawing Sheets

The M-to-1 arbiter checks if there are any active reguests -200 in the MECC words (e.g. checking request valid flags)

The M-to-1 arbiter selects one of the ECC Words that
contain at least one active request. The M-to-1 selector
forwards the selected ECC word to the ECC Corrector
and N-io arbiter, Warious selection algorithm can

be used (e.g. round robin, random, ...)

--210

The N-to-1 arbiter selects one of the active
requests in the selected ECC word. Again various

selection algorithm can be used
-/-220

in parallel with step 220, the ECC corrector checks
the selected ECC word

230

No ECC error
Grant the request selected in step 220. The N-to-1 arbiter

- Outputs the arbitration result (e.g. assert grant flag with the
granted requestor ID)

240

250 Correctable ECC error

Corrected data (output bu the ECC corrector) is write back to
the ECC word. The request selected in step 220 is NOT granted --

260 Uncorrectable ECC error

The system can't continue correct operation
(e.g. raise fatal error signal and stop operating) e

US 8,533,567 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Wang, N.J., et al., “ReStore: Symptom-Based Soft Error Detection in
Microprocessors”, Jul.-Sep. 2006, IEEE Trans. Dependable and
Secure Computing, pp. 188-201, vol. 3, No. 3.
Wilson, R. A., “The Golay code.” Jan. 2008, QMUL, PureMathemat
ics Seminar.
Conway, J. H., et al. “Self-Dual Codes over the Integers Modulo 4.”
1993, J. Combinational Theory, Series A. vol. 62, pp. 30-45.
Dhillon, Y. S., et al., "Load and Logic Co-Optimization for Design of
Soft-Error Resistant Nanometer CMOS Circuits' 2005, Proceedings
of the 11th IEEE International On-Line Testing Symposium, pp.
35-40, IEEE Computer Society Washington, DC.
Karnik, T., et al., “Characterization of Soft Errors Caused by Single
Event Upsets in CMOS Processes”, Apr.-Jun. 2004, IEEE Transac
tions on Dependable and Secure Computing, pp. 128-143, vol. 1, No.
2.

Novac, O., et al., “Implementation of a Sec-ded Code with FPGA
Xilinx Circuits to the Cache Level of a Memory Hierarchy,” 2008,
http://electroinfuoradea.ro/reviste%20CSCS/documente/JCSCS
2008/JCSCS 2008 12 Novac 1.pdf.
Raaphorst, S., “Reed-Muller Codes.” Carleton University, May 2003.
Langton, C., “Tutorial 12 Coding and decoding with Convolutional
Codes.” Jul. 1999, www.complextoreal.com.
Hamming, R. W. "Error Detecting and Error Correcting Codes'. The
Bell System Technical Journal, Apr. 1950, pp. 147-160, vol. XXVI,
No. 2.

Wallace, H., "Error Detection and Correction Using the BCH Code.”
2001, Atlantic Quality Design, Inc. http://www.aqdi.com/bch.pdf.
Ruan, S., et al., “Soft Error Hardened FF Capable of Detecting Wide
Error Pulse'. Proc. 2008 IEEE International Symposium on Defect
and Fault Tolerance of VLSI Systems, pp. 272-280.

* cited by examiner

US 8,533,567 B2

JOSS0001)

U.S. Patent

?Z? | 0.10M O OE

?T | JOSS000]);

US 8,533,567 B2 Sheet 2 of 4 Sep. 10, 2013 U.S. Patent

|------------------}= = = = = = = = = = = = = = = = =

*

W pJOM OOIE · Z puOM OOE y| pJOM OOIE

0Z|

U.S. Patent Sep. 10, 2013 Sheet 3 of 4 US 8,533,567 B2

The M-to-1 arbiter checks if there are any active requests
in the MECC Words (e.g. checking request valid flags) 200

The M-to-1 arbiter Selects One of the ECC WOrds that
contain at least one active request. The M-to-1 selector
forwards the Selected ECC WOrd to the ECC COrrector 210
and N-to 1 arbiter. Various selection algorithm can

be used (e.g. round robin, random,...)

The N-to-1 arbiter Selects One of the active
requests in the selected ECC Word. Again various

Selection algorithm can be used

In parallel with step 220, the ECC corrector checks
the Selected ECC Word

Grant the request selected in step 220. The N-to-1 arbiter
outputs the arbitration result (e.g. assert grant flag with the

granted requestor ID)

220

Correctable ECC error

Corrected data (Output bu the ECC corrector) is Write back to
the ECC Word. The request selected in step 220 is NOT granted

260 Uncorrectable ECC error

The system can't continue Correct operation
(e.g. raise fatal error signal and stop operating)

FIG. 3

U.S. Patent Sep. 10, 2013 Sheet 4 of 4 US 8,533,567 B2

S.

sis
s

s

3.

CD
Cs
O
CD

CD
CD

US 8,533,567 B2
1.

LOW DELAY AND AREA EFFICIENT SOFT
ERROR CORRECTION IN ARBTRATION

LOGIC

GOVERNMENT CONTRACT

This invention was Government support under Contract
No. B554331 awarded by Department of Energy. The Gov
ernment has certain rights in this invention.

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present invention is related to the following com
monly-owned, co-pending United States Patent Applications,
the entire contents and disclosure of each of which is
expressly incorporated by reference hereinas if fully set forth
herein: U.S. patent application Ser. No. 12/684,367, filed Jan.
8, 2010, for “USING DMA FOR COPYING PERFOR
MANCE COUNTER DATA TO MEMORY”; U.S. patent
application Ser. No. 12/684,172, filed Jan. 8, 2010 for
HARDWARE SUPPORT FOR COLLECTING PERFOR
MANCE COUNTERS DIRECTLY TO MEMORY”; U.S.
patent application Ser. No. 12/684,190, filed Jan. 8, 2010 for
HARDWARE ENABLED PERFORMANCE COUNTERS
WITHSUPPORT FOR OPERATING SYSTEM CONTEXT
SWITCHING”; U.S. patent application Ser. No. 12/684,496,
filed Jan. 8, 2010 for “HARDWARE SUPPORT FOR SOFT
WARE CONTROLLED FAST RECONFIGURATION OF
PERFORMANCE COUNTERS”; U.S. patent application
Ser. No. 12/684,429, filed Jan. 8, 2010, for “HARDWARE
SUPPORT FOR SOFTWARE CONTROLLED FAST MUL
TIPLEXING OF PERFORMANCE COUNTERS”; U.S.
patent application Ser. No. 12/697,799, for "CONDI
TIONAL LOAD AND STORE IN A SHARED CACHE”:
U.S. patent application Ser. No. 12/684,738, filed Jan. 8,
2010, for “DISTRIBUTED PERFORMANCE
COUNTERS: 61/261,269, filed Nov. 13, 2009 for “LOCAL
ROLLBACK FOR FAULTTOLERANCE IN PARALLEL
COMPUTING SYSTEMS”; U.S. patent application Ser. No.
12/684,860, filed Jan. 8, 2010, for “PAUSE PROCESSOR
HARDWARE THREAD ON PIN”; U.S. patent application
Ser. No. 12/684, 174, filed Jan. 8, 2010, for “PRECAST
THERMAL INTERFACE ADHESIVE FOR EASY AND
REPEATED, SEPARATION AND REMATING”; U.S.
patent application Ser. No. 12/684,184, filed Jan. 8, 2010, for
“ZONE ROUTING IN A TORUS NETWORK"; U.S. patent
application Ser. No. 12/684.852, filed Jan. 8, 2010, for “PRO
CESSOR RESUME UNIT'; U.S. patent application Ser. No.
12/684,642, filed Jan. 8, 2010, for “TLB EXCLUSION
RANGE”; U.S. patent application Ser. No. 12/684,804, filed
Jan. 8, 2010, for “DISTRIBUTED TRACE USING CEN
TRAL PERFORMANCE COUNTER MEMORY”; U.S.
patent application Ser. No. 61/295,669, filed Jan. 15, 2010,
for “PARTIAL CACHE LINE SPECULATION SUPPORT:
U.S. patent application Ser. No. 61/293.237, filed Jan. 8,
2010, for “ORDERING OF GUARDED AND
UNGUARDED STORES FOR NO-SYNC I/O”; U.S. patent
application Ser. No. 12/693,972, filed Jan. 26, 2010, for “DIS
TRIBUTED PARALLEL MESSAGING FOR MULTIPRO
CESSOR SYSTEMS”; U.S. patent application Ser. No.
12/688,747, filed Jan. 15, 2010, for “Support for non-locking
parallel reception of packets belonging to the same reception
FIFO: U.S. patent application Ser. No. 12/688,773, filed Jan.
15, 2010, for “OPCODE COUNTING FOR PERFOR
MANCE MEASUREMENT: 61/293,611, filed Jan. 8, 2010
for A MULTI-PETASCALE HIGHLY EFFICIENT PAR

10

15

25

30

35

40

45

50

55

60

65

2
ALLEL SUPERCOMPUTER”; U.S. patent application Ser.
No. 12/984,252, filed Jan. 4, 2011, “CACHE WITHINA
CACHE”; U.S. patent application Ser. No. 13/008.502, for
MEMORY SPECULATION IN A MULTI LEVEL CACHE
SYSTEM”; U.S. patent application Ser. No. 13/008,583, for
READER SET ENCODING FOR DIRECTORY OF
SHARED CACHE MEMORY IN MULTIPROCESSOR
SYSTEM”; U.S. patent application Ser. No. 12/984,308, for
MINIMAL FIRST LEVEL CACHE SUPPORT FOR
MEMORY SPECULATION MANAGED BY LOWER
LEVEL CACHE”; U.S. patent application Ser. No. 12/984,
329, for “PHYSICAL ADDRESSALIASING TO SUPPORT
MULTI-VERSIONING IN A SPECULATION-UNAWARE
CACHE”; U.S. patent application Ser. No. 61/293,552, filed
Jan. 8, 2010, for “LIST BASED PREFETCH”; U.S. patent
application Ser. No. 12/684,.693, filed Jan. 8, 2010, for “PRO
GRAMMABLE STREAM PREFETCH WITH RESOURCE
OPTIMIZATION”; U.S. patent application Ser. No. 61/293,
494, filed Jan. 8, 2010, for “FLASH MEMORY FOR
CHECKPOINT STORAGE”; U.S. patent application Ser.
No. 61/293,476, filed Jan. 8, 2010, for “NETWORKSUP
PORT FOR SYSTEM INITIATED CHECKPOINTS”; U.S.
patent application Ser. No. 61/293,554, filed Jan. 8, 2010, for
TWO DIFFERENT PREFETCHING COMPLEMEN
TARY ENGINES OPERATING SIMULTANEOUSLY:
U.S. patent application Ser. No. 12/697,015, for “DEAD
LOCK-FREE CLASS ROUTES FOR COLLECTIVECOM
MUNICATIONS EMBEDDED IN A MULTI-DIMEN
SIONAL TORUS NETWORK"; U.S. patent application Ser.
No. 61/293,559, filed Jan. 8, 2010, for “IMPROVING RELI
ABILITY AND PERFORMANCE OF A SYSTEM-ON-A-
CHIP BY PREDICTIVE WEAR-OUT BASED ACTIVA
TION OF FUNCTIONAL COMPONENTS”; U.S. patent
application Ser. No. 61/293,569, filed Jan. 8, 2010, for
“IMPROVING THE EFFICIENCY OF STATIC CORE
TURNOFF IN A SYSTEM-ON-A-CHIP WITH VARIA
TION”; U.S. patent application Ser. No. 12/697,043, for
IMPLEMENTING ASYNCHRONOUS COLLECTIVE
OPERATIONS IN A MULTI-NODE PROCESSING SYS
TEM: U.S. patent application Ser. No. 13/008,546, for
“MULTIFUNCTIONING CACHE”; U.S. patent application
Ser. No. 12/697,175 for “I/O ROUTING IN A MULTIDI
MENSIONAL TORUS NETWORK"; U.S. patent applica
tion Ser. No. 12/684,287, filed Jan. 8, 2010 for ARBITRA
TION IN CROSSBAR INTERCONNECT FOR LOW
LATENCY”; U.S. patent application Ser. No. 12/684,630,
filed Jan. 8, 2010 for “EAGER PROTOCOL ON A CACHE
PIPELINE DATAFLOW'; U.S. patent application Ser. No.
12/723,277 for “EMBEDDING GLOBAL BARRIER AND
COLLECTIVE IN A TORUS NETWORK"; U.S. patent
application Ser. No. 61/293,499, filed Jan. 8, 2010 for “GLO
BAL SYNCHRONIZATION OF PARALLEL PROCES
SORS USING CLOCK PULSE WIDTH MODULATION:
U.S. patent application Ser. No. 61/293.266, filed Jan. 8, 2010
for “IMPLEMENTATION OF MSYNC: U.S. patent appli
cation Ser. No. 12/796,389 for “NON-STANDARD FLA
VORS OF MSYNC: U.S. patent application Ser. No.
12/696,817 for “HEAP/STACK GUARD PAGES USINGA
WAKEUP UNIT'; U.S. patent application Ser. No. 61/293,
603, filed Jan. 8, 2010 for “MECHANISM OF SUPPORT
ING SUB-COMMUNICATOR COLLECTIVES WITH
O(64) COUNTERS AS OPPOSED TO ONE COUNTER
FOR EACH SUB-COMMUNICATOR'; and U.S. patent
application Ser. No. 12/774,475 for “REPRODUCIBILITY
IN A MULTIPROCESSORSYSTEM.

BACKGROUND

The present application generally relates to arbitrating a
shared resource in a computing environment. More particu

US 8,533,567 B2
3

larly, the present application relates to detecting and/or cor
recting soft error(s) in an arbitration logic device in a digital
circuit while the arbitration logic device continues to work
correctly under the soft error(s).

In a digital circuit, it is common that multiple modules
compete for a single shared resource (e.g. bus, cache memory,
etc.). Thus, an arbitration logic device is often used to resolve
shared resource conflicts. An arbitration logic device selects
one of a winner requestor among the multiple requestors (i.e.,
the competing multiple modules). Then, the winning
requestor accesses the shared resource. In very large scale
integrated (VLSI) circuits, a large number of requestors are
Subject to competing each other. For example, there are hun
dreds or even thousands of candidate requestors for Such
competition.
An arbitration logic device memorizes the state of each

requestor (e.g. whether each requestor has a pending request),
e.g., by storing the state of each requestorin storage elements,
e.g., latches, registers, flip-flops, etc. However, these storage
elements can flip their values due to soft errors. Soft error
refers to an error on data stored in a computing system that
does not damage hardware of the computing system but cor
rupts the data. Because of a trend of high-density and low
power consumption in semiconductor designing/manufactur
ing technology (e.g., 20-nm CMOS technology), a Soft error
may occur more frequently in recent VLSI circuits. A soft
error occurs not only in a memory device (e.g., SRAM,
DRAM, SDRAM, etc.), but also in a register, for example, in
a processor (core). Therefore, a soft error becomes more
significant problem as the digital circuits are designed based
on nanotechnology (e.g., 30-nm CMOS technology).

Traditionally, a duplication method has been used to detect
and correct Soft errors in a digital circuit. Duplication method
uses multiple instances of storage elements to store same
data. Using two copies of data, it is possible for the digital
circuit to detect a single bit error. For example, if the two
copies have different values, there exists a soft error on the
data. Similarly, using three copies of data, the digital circuit
can correct a single bit error, e.g., considering two copies that
store same data as valid copies. Although this duplication
method is simple and easy to implement, it increases the
number of storage elements in the digital circuits unaccept
ably in terms of hardware size and power consumption.
ECC (Error Correcting Code) has also been a popular

method to correct Soft errors in digital circuits. Adding a small
number of extra information (e.g., additional 10% data) to
original information, hardware logic implementing an ECC
scheme (e.g., multiple parity bits) can correct soft errors as
long as the number of flipped bits is Small enough (e.g., the
number of bits being corrupted is one).

Protecting memory cells (i.e., cells in a memory device)
using ECC is widely used in current digital systems. How
ever, a naive ECC method is not efficient for the arbitration
logic device. For example, because the arbitration logic
device needs to know the states of all the requestors, the
arbitration logic device looks up all the memorized informa
tion at once. Therefore, all the memorized information has to
be corrected at the same time. As a result, significant amount
of ECC correction logic device is necessary: traditionally, one
ECC correction logic device is required per one ECC word.
The number of ECC correction logic devices increases as the
number of ECC words increases. However, this increase
becomes not acceptable both in hardware size and in power
consumption as digital circuits become dense and operate in
a low-power environment (e.g., V-1.6V). Furthermore, an
ECC correction delay (i.e., the time that an ECC correction
logic device takes to fix a soft error) is added to the critical

10

15

25

30

35

40

45

50

55

60

65

4
pathin the arbitration logic device, thus increasing latency for
the arbitration. A critical path in a digital circuit refers to a
path that takes the longest time to operate in the digital circuit.

There have been other methods proposed to solve soft
errors that include, but are not limited to: 1. Exploiting time
redundancy to tolerate soft errors, 2. Using a known Delay
Assignment-Variation (DAV) methodology to mitigate soft
errors, 3. Optimizing internal structures of latches to make
them tolerant to soft errors, etc. Though these methods have
Some effect on reducing the impact of soft errors, they depend
on semiconductor devices or development tools. Thus, they
are lack of generality because these proposed methods rely on
semiconductor device technologies (e.g., 40 nm CMOS tech
nology) and synthesis tools (e.g., synthesis tools from
Cadence(R), etc.) through which these method are imple
mented on semiconductor devices. Sometimes, they are dif
ficult or even impossible to be implemented.

There has been a method for fixing soft errors at a system
level. For example, there is a method for microprocessors to
recover from soft errors by an additional system-level logic or
process for Soft error handling, e.g., adding check points.
However, depending on a design of a digital circuit, it may not
be easy to add such mechanism in the digital circuit.

SUMMARY OF THE INVENTION

The present disclosure describes a method and computer
program product for operating an arbitration logic device that
controls a shared resource. The present disclosure also
describes the arbitration logic device that detects and/or cor
rects Soft error(s) after speculatively computing an arbitration
result.

In one embodiment, there is provided an arbitration logic
device for controlling an access to a shared resource. The
arbitration logic device comprises at least one storage ele
ment, a winner selection logic device, and an error detection
logic device. The storage element stores a plurality of request
ors information received from a plurality of requestors. The
winner selection logic device selects a winner requestor
among the requestors based on the requestors information.
The winner selection logic device selects the winner
requestor without checking whether there is the soft error in
the winner requestors information.

In a further embodiment, the arbitration logic device
includes a result cancellation logic device and an error detec
tion logic device. The result cancellation logic device cancels
the selection of the winner requestor in response to determin
ing that there is the soft error on the winner's requestors
information. The error detection logic device detects a soft
error on the winner requestors information.

In a further embodiment, the error detection logic device
resides outside of a critical pathin the arbitration logic device.

In a further embodiment, the requestors information is
encoded with an error correcting code (ECC) that includes
one or more of: Hamming code, Golay code, Reed-Muller
code, BCH (Bose and Ray-Chaudhuri) code, Reed-Solomon
code, self-dual code, convolutional code, SEC-DED code.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
further understanding of the present invention, and are incor
porated in and constitute a part of this specification.

FIG. 1 illustrates a computing environment where arbitra
tion logic can be employed in one embodiment.

FIG. 2 illustrates a system diagram of an arbitration logic
device in one embodiment.

US 8,533,567 B2
5

FIG.3 is a flow chart illustrating method steps for operating
an arbitration logic device in a digital circuit/system accord
ing to one embodiment.

FIG. 4 illustrates exemplary requestor status information in
one embodiment.

DETAILED DESCRIPTION

In one embodiment, FIG. 1 illustrates a computing envi
ronment 70 where an arbitration logic device can be
employed in one embodiment. This computing environment
70 includes, but is not limited to: a plurality of processors
(e.g., processor 1 (10), processor N (20), etc.), a Switching
device 60, a shared resource 50 (e.g., a shared memory
device, a shared bus, etc.). To access the shared resource 50.
a requestor (e.g., a processor, etc.) which wants to access the
shared resource issues an (access) request including requestor
status information to the arbitration logic device 100. In one
embodiment, multiple requests are combined into an ECC
word. In other words, “N’ piece of requestor status informa
tion is combined to forman ECC word. For example, an ECC
word 1 (120) includes, but is not limited to: status information
of processor 1 (10), status information of processor 2 (not
shown), status information of processor 3 (not shown), status
information of processor N (20), and ECC code (e.g., ECC
code 110 in FIG. 2) computed based on data corresponding to
these status information.

Requestor status information includes, but is not limited to:
one or more bits representing a requestor ID associated with
a particular requestor, one or more bits indicating whether the
particular requestor has a pending request to a shared
resource controlled by the arbitration logic device 100, one or
more bits indicating when the particular resource issued the
pending request, one or more bits indicating how many
requests the particular requestor issued so far or within a
pre-determined time period, one or more bits indicating the
number of total pending requests, one or more bits indicating
how many requestors are waiting an access to the shared
resource 50, etc.

FIG. 4 illustrates an exemplary ECC word 120 including
status information of “N number of processors. In FIG.4, for
example, the first bit field “O'” (400) corresponds to the
requestor ID of the processor 1. (A bit field includes one or
more bits.) The second bit field (410) corresponds to a bit
representing whether the processor 1 wants to access the
shared resource 50. For example, “1” in the second bit field
(410) represents that the processor 1 wants to accesses the
shared resource 50. The third bit field (420) represents the
requestor ID of the processor 2. The fourth bit field (430)
corresponds to a bit representing whether the processor 2
wants to access the shared resource 50. For example, “O'” in
the fourth bit field (430) represents that the processor 2 does
not want to accesses the shared resource 50 at this time. The
fifth bit field (450) represents the requestor ID of the proces
sor 3. The sixth bit field (460) corresponds to a bit represent
ing whether the processor 3 wants to access the shared
resource 50. For example, “1” in the sixth bit field (460)
represents that the processor 3 wants to accesses the shared
resource 50. Similarly, the ECC word 120 includes bits to
represent each requestor ID and whether each processor
wants to access the shared resource 50. The ECC word 120
also includes ECC code 110 that is used to correct a potential
Soft error in the ECC word 120.

Returning to FIG. 1, the arbitration logic device 100
receives M number of ECC words, and selects a winner
requestor 30. For example, the arbitration logic device 100
may select one requestor among requestors whose status

5

10

15

25

30

35

40

45

50

55

60

65

6
information indicate that these requestors want to access the
shared resource, e.g., randomly, by seniority, etc. In one
embodiment, the arbitration logic device 100 sends one or
more bits 30 that represent the selected winner requestor to
the switching device 60. The switching device 60, which may
be implemented by a selector, multiplexor or other equivalent
device, allows the winner requestor (e.g., a winner processor)
to access the shared resource 50.

FIG. 2 illustrates in detail the arbitration logic device 100,
in one embodiment, that can store at least one ECC (Error
Correcting Code) to protect requestor state information from
soft errors, and that can recover from soft errors in the
requestor status information. ECC includes, but is not limited
to: Hamming code, Golay code, Reed-Muller code, BCH
(Bose and Ray-Chaudhuri) code, Reed-Solomon code, self
dual code, Convolutional code, SEC-DED code. James
Fiedler, “Hamming Codes. 2004, wholly incorporated by
reference as if set forth herein, http://orion.math.iastate.edu/
linglong/Mathó90F04/HammingCodes.pdf, describes the
Hamming code in detail. Robert A. Wilson, “The Golay
code, QMUL, Pure Mathematics Seminar, January, 2008,
wholly incorporated by reference as if set forth herein,
describes the Golay code in detail. Sebastian Raaphorst,
“Reed-Muller Codes.” Carleton University, May, 2003,
wholly incorporated by reference as if set forth herein,
describes the Reed-Muller code in detail. Hank Wallace,
“Error Detection and Correction Using the BCH Code.”
2001, Atlantic Quality Design, Inc. http://www.aqdi.com/
bch.pdf, wholly incorporated by reference as if set forth
herein, describes the BCH code in detail. Jie Gao, “Reed
Solomon Code.” SUNY Stony Brook, February, 2007, http://
www.cs. Sunysb.edu/~jgao/CSE370-spring 10/reed-Solomon
.pdf, wholly incorporated by reference as if set forth herein,
describes the Reed Solomon code in detail. J. H. Conway, et
al. “Self-Dual Codes over the Integers Modulo 4*. J. Com
binational Theory, Series A. Vol. 62, pp. 30-45, 1993, wholly
incorporated by reference as if set forth herein, describes the
Self-Dual code in detail. Charan Langton, “Tutorial 12 Cod
ing and decoding with Convolutional Codes. July, 1999,
www.complextoreal.com, wholly incorporated by reference
as if set forth herein, describes the Convolutional code in
detail. Ovidiu Novac, et al., “Implementation of a Sec-ded
Code with FPGA Xilinx Circuits to the Cache Level of a
Memory Hierarchy.” 2008, wholly incorporated by reference
as if set forth herein, http://electroinfluoradea.ro/reviste
%20CSCS/documente/JCSCS 2008/JCSCS 2008
12 Novac 1.pdf, describes the SEC-DED code in detail.

Traditional systems that use ECC method(s) correct data
before processing. In contrast, according to one embodiment,
the arbitration logic device 100 processes data (e.g., requestor
status information) before correcting the data, and Subse
quently checks the correctness (e.g., right before outputting a
result of arbitration). The arbitration logic device 100 specu
latively performs arbitration (i.e., selecting a pending request
among a plurality of requests) using uncorrected requestor
status information, and cancels it afterwardifa corresponding
arbitration result is incorrect because of a soft error. The
arbitration logic device 100 concurrently checks whether the
used requestor status information is corrector not, e.g., based
on the ECC method(s) described above, while processing the
information for arbitration. Accordingly, based on a result of
the checking, the arbitration logic device 100 determines
whether the arbitration result obtained from the requestor
status information is correct or not. For example, if the
requestor status information is determined to be incorrect due
to a soft error in it according to the ECC method(s), the
corresponding arbitration result is incorrect. Because of the

US 8,533,567 B2
7

speculative arbitration (i.e., processing the requestor status
information while detecting correctness of the information),
ECC correction delay does not impact on an arbitration delay.
ECC correction delay refers to a certain time required to fix a
Soft error on the requestor status information. Arbitration
delay refers to a certain time to make an arbitration decision
in an arbitration logic device. The arbitration logic device 100
requires a small amount of hardware (e.g., only one ECC
correction logic device in an entire digital system/circuit) that
is necessary to check the correctness of the arbitration result.

In one embodiment, the arbitration logic device 100 does
not check correctness of all the requestor status information,
i.e., there is no need to have numerous ECC correction logic
devices corresponding to numerous ECC words. The arbitra
tion logic device 100 has only one ECC correction logic
device to arbitrate pending requests that are included in
numerous ECC words.

Thus, this arbitration logic device 100 provides an efficient
way to detect and/or correct soft errors with small impact on
hardware size, power consumption, and arbitration delay:
there is needed only one ECC correction logic device for
correcting soft error(s) on a particular ECC word (i.e., a word
(64-bit/128-bit data) encoded with ECC); the power con
Sumption is also reduced since only one ECC correction logic
device (e.g., an error detection logic device 175 in FIG. 2) is
used rather than numerous ECC correction logic devices in a
traditional arbitration logic device; the arbitration delay is
also reduced because the ECC correction logic device resides
outside of the critical path (e.g., a critical path 103 in FIG. 2)
of the arbitration logic device 100 and ECC correction logic
device is operated concurrently with other modules that gen
erates the arbitration result. This arbitration logic device 100
can be generally available independent of semiconductor
design tools, e.g., by designing the logic device 100 through
a hardware description language (e.g., VHDL. Verilog, etc.)
and implementing the design on a semiconductor device
through a semi-custom design or configurable hardware (e.g.,
Xilinx Virtex, etc.).
The arbitration logic device 100 performs one or more of:

(a) Speculative arbitration with cancellation ability due to a
Soft error: Instead of correcting requestor status information
before processing the requestor status information, the arbi
tration logic device 100 selects a requestor among a plurality
of requestors based on uncorrected requestor state informa
tion, e.g., in round-robin fashion, randomly, in first come first
served, etc. If the concurrently running ECC correction logic
device finds that there was a soft error on the information of
the selected requestor, the arbitration logic device 100 cancels
the selection, e.g., setting an “invalid flag bit associated with
the selection.
(b) Status information correctness check is performed outside
the critical path of the arbitration logic device 100: The arbi
tration logic device 100 checks whether requestor status
information of the selected requestor has a Soft error, e.g., by
running an ECC method operated in the ECC correction logic
device. If that requestor status information has a Soft error, the
ECC correction logic device sends a signal to the arbitration
logic device 100 to cancel the selection. This correctness
check is performed outside of the critical path of the arbitra
tion logic device 100. For example, in FIG. 2, the critical path
of the arbitration logic device 100 is a path 103 that includes
ECC words 120-130, an ECC word selector 155, a final
selection logic device (e.g., N-to-1 arbiter 170 in FIG. 2), and
a result cancellation logic device 195. As shown in FIG. 2, the
error detection logic device 175 resides outside of the critical
path 103 of the arbitration logic device 100. The check is also

10

15

25

30

35

40

45

50

55

60

65

8
performed only on a Subset of all requestors that are selected
by the arbitration logic device 100.
(c) Periodic scan and correction on requestor status informa
tion: Traditionally, if a requestor has a pending request but a
Soft error occurs on corresponding requestor status informa
tion associated with the requestor and/or pending request, a
resulting bit pattern (e.g., a request cancellation signal 190 in
FIG. 2) may indicate that the request is invalid (e.g. a request
valid flag was originally 1, but it flipped to 0 due to a soft
error). As a result, the arbitration logic device 100 ignores the
pending request from the requestor. As a result, traditional
arbitration devices never select a requestor whose status
information has become invalid. Thus, a requestor whose
status information has been corrupted due to a soft error is
disregarded by the traditional arbitration devices, and thus
cannot access shared resources that are controlled by the
traditional arbitration devices. To resolve this problem (i.e.,
being never selected) in traditional arbitration devices, the
arbitration logic device 100 scans each of requestors’ status
information periodically, e.g., in an ascending or descending
order. If the arbitration logic device 100 discovers a soft error
in requestor status information, the arbitration logic device
100 corrects the soft error, e.g., by using the ECC correction
logic device (e.g., error detection logic device 175 in FIG. 2)
and writes the corrected requestor status information back to
its corresponding storage element (not shown), e.g., registers,
flip-flops, latches, etc. The arbitration logic device 100 per
forms this correction outside the critical path 103 of the
arbitration logic device 100.

In one embodiment, requestor status information is
encoded by one or more of ECC methods. For example, an
ECC word includes 72 bit original data (requestor status
information) and 8 bit ECC (e.g., parity bits). The present
invention is not limited to any particular ECC encoding
scheme.

FIG. 2 illustrates a system diagram of the arbitration logic
device 100 in one embodiment. In this embodiment, the arbi
tration logic device 100 receives, as inputs, “M” number of
ECC words (ECC words 120-130), each of which includes
status (or state) information of “N' number of requestors 115
and corresponding ECC 110 (e.g., corresponding parity bits).
“N may be selected so that the requestor information of “N”
requestors fits in a single ECC word. “N' number of request
ors provides the status information of the “N' requestors as
shown in FIGS. 1 and 4. The arbitration logic device 100
memorizes requestor status information, e.g., by using Stor
age elements. In one embodiment, each requestor has only 1
bit flag to indicate whether it has a pending request. In another
embodiment, each requestor has multiple bits of information
to represent some attributes, e.g., when the requestor issued
the pending request, how many requests the requestor issued
so far, etc. The arbitration logic device 100 stores requestors
status information in the 'M' number of ECC words.
The arbitration logic device 100 performs arbitration (i.e.,

selecting one requestor among MXN requestors) in a winner
selection logic device 105 that includes an M-to-1 selector
(e.g., ECC word selector logic device 155 in FIG. 2) and an
N-to-1 arbiter (e.g., a final selection logic device 170 in FIG.
2). The winner selection logic device 105 including devices
155 and 170 cooperates to selects a winner requestor (e.g., a
hardware module in a digital circuit that receives a grant to
access a shared resource controlled by the arbitration logic
device 100) among requestors that want to access the shared
resources based on the requestors’ status information. For
example, the winner selection logic device 105 selects a
requestor which issued a pending request at the earliest time
which is recorded in the corresponding requestor status infor

US 8,533,567 B2

mation. The winner selection logic device 105 operates inde
pendently and separately from the ECC correction logic
device. The winner selection logic device 105 selects the
winner requestor regardless of whether there is a soft error in
status information of the winner requestor. The winner selec
tion logic device 105 selects the winner requestor without
checking whether there is a Soft error on the winner requestor
status information.

In one embodiment, the winner selection logic device 105
is pipelined into two stages, e.g., the arbitration is performed
in two processor clock cycles. In the first stage, the M-to-1
selector (e.g., ECC word selector logic device 155 in FIG. 2)
selects one ECC word among the “M” number of ECC words.
In one embodiment, the M-to-1 selector is implemented, e.g.,
by an M-to-1 multiplexer. The M-to-1 selector is controlled
by a control logic device 145 that includes an M-to-1 arbiter
135 and a scan and correct logic device 140. In one embodi
ment, the M-to-1 arbiter 135 makes a decision 150 of which
ECC word is selected by the M-to-1 selector (e.g., ECC word
selector logic device 155 in FIG. 2) according to a known
selection method that includes, but is not limited to: randomly
selecting, selecting by seniority (first come first served),
selecting in round-robin fashion, etc. The present application

10

15

10
N-to-1 arbiter, ECC correction logic device (e.g., an error
detection logic device 175 in FIG. 2) checks whether there
exists a soft error on the selected ECC word in parallel with
the N-to-1 arbiter. In other words, the ECC correction logic
device and N-to-1 arbiter operate concurrently. Alternatively,
the ECC correction logic device and N-to-1 arbiter may oper
ate sequentially. If the ECC correction logic device detects
185 a soft error on the selected ECC word, e.g., there are an
odd number of Zeroes though the ECC word is encoded with
even parity scheme, the arbitration logic device 100 cancels
the arbitration result, i.e., cancels the selection of the winner
requestor, and restarts the M-to-1 arbiter and the N-to-1 arbi
ter. If the soft error is correctable, e.g., only one bit in the
selected ECC word is corrupted, the ECC correction logic
device corrects the soft error on the selected ECC word
according to the encoded ECC method, and then writes back
the corrected ECC word 180 into its corresponding storage
element.

Table 1 illustrates an exemplary Hamming code. This
exemplary Hamming code is obtained from http://www.hack
ersdelight.org/ecc.pdf, whose whole content is incorporated
by reference as if set forth herein.

TABLE 1

Exemplary Hanning code

Original Data

is not limited to a particular selection method. Then, the
M-to-1 selector 155 forwards the selected ECC word to both
the N-to-1 arbiter (e.g., a final selection logic device 170 in
FIG. 2) and ECC correction logic device (e.g., an error detec
tion logic device 175 in FIG. 2). In one embodiment, the
M-to-1 selector forwards the Selected ECC word 165 to ECC
correction logic device, and forwards only information of
“N' number of requestors 115 included in the selected ECC
word after detaching the ECC 110. In the second stage, the
N-to-1 arbiter (e.g., a final selection logic device 170 in FIG.
2) receives the selected ECC word that includes information
of “N number of requestors and selects a winner requestor
among the 'N' number of requestors according to a known
selection method that includes, but is not limited to: randomly
selecting, selecting by or according to seniority (first come
first served), selecting in round-robin fashion, etc. The
present application is not limited to a particular selection
method. In one embodiment, the N-to-1 arbiter is imple
mented, e.g., by an N-to-1 multiplexer.

After receiving the selected ECC word that includes status
information of the winner requestor to be selected by the

45

50

55

60

65

First Second Fourth Third Third Second First
parity bit parity bit data bit parity bit data bit data bit data bit

1 2 3 4 5 6 7

02 O2 O2 O2 02 O2 02
2 2 02 2 0. 02 12

02 2 O2 2 02 12 02
2 O2 O2 O2 02 12 12
2 O2 O2 2 12 O2 02

O2 2 O2 O2 12 O2 12
2 2 O2 O2 12 12 02

02 O2 O2 2 12 12 12
2 2 12 O2 02 O2 02

O2 O2 12 2 O2 O2 12
2 O2 12 2 02 12 02

02 2 12 O2 02 12 12
02 2 12 2 12 O2 02

2 O2 12 O2 12 O2 12
02 O2 12 O2 12 12 02

2 2 12 2 12 12 12

For example, if the selected ECC word is 1000011
encoded with Hamming code shown in Table 1, this 1000011
represents 3. If a soft error occurs in this selected word and
thus the selected word becomes 1000111, upon receiving
this 1000111, the ECC correction logic device may first
count the number of zeroes in 1,3',5', and 7' bit positions
and determines that there is a soft error in the first parity bit
(1 bit position), the fourth data bit (3"bit position), the third
data bit (5' bit position) or the first data bit (7 bit position)
since the number of Zeroes is odd: (1,0, 1, 1). Then, the ECC
correction logic device counts the number of zeros in 2", 3",
6", and 7" bit positions and determines that there is no error
on the second parity bit (2" bit position), the fourth data bit
(3"bit position), the second data bit (6" bit position) and the
first data bit (7" bit position) since the number of Zeros is
even: (0, 0, 1, 1). The arbitration logic device 100 counts the
number of zeros in 4, 5", 6" and 7' bit positions and deter
mines that there is a soft error in third parity bit (4" bit
position), the third data bit (5' bit position), the second data
bit (6" bit position) or the first data bit (7" bit position) since
the number of Zeros odd: (0, 1, 1, 1). According to the first

US 8,533,567 B2
11

counting (i.e., counting the number of zeroes in 1, 3", 5",
and 7" bit positions) and the second counting (i.e., counting
the number of zeroes in 2", 3", 6", and 7" bit positions), the
first parity bit or the third data bit has the soft error. According
to the third counting (i.e., counting the number of Zeroes in
4". 5", 6" and 7" bit positions) and the second counting, it is
determined in this example that the third data bit or the third
parity bit has soft error. In other words, a first analysis based
on the first counting and second counting concludes that the
first parity bit or the third data bit has the soft error. A second
analysis based on the second counting and the third counting
concludes that the third data bit or the third parity bit has soft
error. A common factor between the two analyses is the third
data bit (5' bit position). Thus, the ECC correction logic
device detects the soft error on the third data bit and fixes the
error, e.g., by converting “1” in the third data bit to “0”.

If the ECC correction logic device (e.g., the error detection
logic 175 in FIG. 1) detects a soft error in the selected ECC
word 165, the ECC correction logic device sends a cancella
tion signal 190 (e.g., Obit(s)) to a result cancellation logic
device 195. The result cancellation logic device 195 cancels
the selection of the winner requestor upon receiving the can
cellation signal 190. In one embodiment, the result cancella
tion logic device 195 is implemented as an AND gate. For
example, after the N-to-1 arbiter chooses the winner
requestor, the N-to-1 arbiter sets a request grant flag bit 193
associated with the winner requestor. The result cancellation
logic device 195 performs a logical AND operation on the
request grant flag bit 193 and a logical NOT operation of the
cancellation signal 190. Thus, if there is a soft error on the
selected ECC word that includes the winner requestor status
information, the set request grant flag bit 193 is de-asserted,
i.e., the selection of the winner requestor is void. The arbitra
tion logic device 100 does not grant access permission to any
requestors (including the winner requestor) and waits the
ECC correction logic device fixes the soft error if the soft
error is correctable error, e.g., a single bit error within the
selected ECC word. If the soft error is correctable, after ECC
correction logic device fixes the soft error on the selected
ECC word and writes back the corrected ECC word to its
corresponding storage element(s), the arbitration logic device
performs again the arbitration. For example, a single bit error
within an ECC word can be corrected as described above.
However, a double bit error within an ECC word may be
detected but not corrected. If there is no soft error on the
selected ECC word, the arbitration logic device 100 grants the
access permission 197 to the winner requestor. As shown in
FIG. 1, the access permission 197 is used as a selection signal
(e.g., a signal 30 in FIG. 1) to allow the winner requestor to
access the shared resource 50. If the soft error is uncorrect
able, the ECC correction logic device stops the arbitration
logic device 100, e.g., by setting a critical error flag bit (not
shown).
The control logic device 145 includes the scan and correct

logic device 140 as well as the M-to-1 arbiter 135. The scan
correct logic periodically reads each ECC word and corrects
it if a soft error is detected. The scan and correct logic device
145 periodically reads requestors status information stored
in storage element(s), checks whether there is a soft error in
the requestors information, and corrects the soft error in the
requestors information, e.g., by using ECC correction logic
device and the M-to-1 selector. Specifically, the scan and
correct logic device 145 drives a select line 150 of the M-to-1
selector to select a desired ECC word (e.g., ECC word 1120,
ECC word 2 125, ..., or ECC word M130 in FIG. 2). Then,
the ECC correction logic device checks whether the selected
ECC word has a soft error. If the ECC correction logic device

5

10

15

25

30

35

40

45

50

55

60

65

12
detects a soft error on the selected ECC word according to an
ECC method adopted in a digital circuit where the arbitration
logic device 100 is implemented and/or used, the ECC cor
rection logic device corrects the soft error on the selected
ECC word (if correctable) and writes back the corrected ECC
word to its corresponding storage element. Since the scan and
correct logic device 140 uses the M-to-1 selector and the ECC
correction logic device, it operates only when the N-to-1
arbiter is idle. The scan and correct logic device 140 may
operate when the winner selection logic device 105 is idle.
There can be many possible ways to decide a priority between
the N-to-1 arbiter and the scan and correct logic device 140.
There can be many choices to decide a frequency of reading
each ECC word and an order (e.g., a cyclic order) to read each
ECC word. The frequency is trade-off between power con
Sumption and recovery time from a soft error. By scanning
frequently, the arbitration logic device 100 can quickly find
and recover from Soft errors at the cost of power consumption.
If the arbitration logic device 100 finds that there is no pend
ing request (e.g., no ECC word inputs), it can stop scan and
correct logic device 140 to save power.

FIG. 3 illustrates a flow chart that describes method steps
for operating the arbitration logic device 100 in one embodi
ment. At step 200, after the arbitration logic device 100
receives ECC words 120-130 as inputs, the M-to-1 arbiter 135
checks whether there is any pending request in the “M” num
ber of ECC words 120-130, e.g., by checking a request valid
flag bit(s) in each ECC word. At step 210, the M-to-1 arbiter
135 selects 150 one of the ECC words that includes at least
one pending request according to a known selection method
(e.g., round-robin, randomly, first come first served, etc.). The
M-to-1 selector (e.g., ECC word selector logic 155 in FIG.2)
forwards the selected ECC word to the ECC correction logic
device (e.g., error detection logic device 175 in FIG. 2) and
the N-to-1 arbiter (e.g., final selection logic device 170 in
FIG. 2).
At step 220, the N-to-1 arbiter selects one of the pending

requests in the selected ECC word according to a known
selection method (e.g., round-robin, randomly, first come first
served, etc.). At step 230, while the N-to-1 arbiter selects one
of the pending requests in the selected ECC word, the ECC
correction logic device simultaneously detects whether the
selected ECC word includes a soft error according to an ECC
method adopted by the arbitration logic device 100.

If there is no soft error detected in the selected ECC word,
at step 240, the arbitration logic device 100 grants the request
(e.g., access permission to a shared resource controlled by the
arbitration logic device 100). Specifically, the N-to-1 arbiter
outputs the arbitration result 197 (the selection of the winner
requestor), e.g., by asserting the request grant flag bit 193
with the winner requestor ID for enabling the winner request
or's access to the shared resource 50. Then, the control returns
to the step 200.

If there is a soft error on the selected ECC word, at step 250,
the ECC correction logic device evaluates whether the soft
erroris correctable or not. Thus, if the soft erroris correctable,
e.g., a single bit error within the selected ECC word, the ECC
correction logic device corrects the soft error on the selected
ECC word and writes back the corrected ECC word into its
corresponding storage elements. While correcting the soft
error, the ECC correction logic device sends the cancellation
signal 190 to void the request selected at step 220. The arbi
tration logic device does not grant access permission to the
shared resource to any requestor (including the winner
requestor). Then, the control returns to step 200 to redo the
Selection process (i.e., selecting a pending request among a
plurality of pending requests).

US 8,533,567 B2
13

Otherwise, if there is a detected soft error on the selected
ECC word but the soft error is uncorrectable (e.g., double bit
error within the selected ECC word), at step 260, the ECC
correction logic device does not attempt to fix the error and
stops the operation of the arbitration logic device 100, e.g., by
setting a critical error flag bit.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read
able program code embodied thereon.
Any combination of one or more computer readable medi

um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any Suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with a system,
apparatus, or device running an instruction.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with a system, apparatus, or device
running an instruction.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
run entirely on the users computer, partly on the user's com
puter, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made

5

10

15

25

30

35

40

45

50

55

60

65

14
to an external computer (for example, through the Internet
using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which run via the proces
sor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara
tus or other devices to produce a computer implemented
process Such that the instructions which run on the computer
or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more operable instructions for
implementing the specified logical function(s). It should also
be noted that, in some alternative implementations, the func
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in Succession may, in
fact, be run Substantially concurrently, or the blocks may
Sometimes be run in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi
nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com
puter instructions.

What is claimed is:
1. An arbitration logic device for controlling an access to a

shared resource, the arbitration logic device comprising:
a selection logic device for receiving a plurality of ECC

(Error Correction Code) words, each ECC word includ
ing a first plurality of bits representing a plurality of
requestors, a second plurality of bits indicating whether
each requestor is requesting to access to the shared
resource, and an ECC code corresponding to the first
plurality of bits and the second plurality of bits:

US 8,533,567 B2
15

the selection logic device for selecting one ECC word
among the plurality of ECC words without checking
whether there exists a soft error in the selected ECC
word;

an error detection logic device for detecting a soft error in
the selected ECC word after the selection of the selected
ECC word;

a first logic device for receiving the selected ECC word and
selecting, based on the selected ECC word, a winner
requestor among the plurality of requestors; and

a logic gate for invalidating the selection of the winner
requestor if the error detection logic device detects a soft
error in the selected ECC word,

wherein the error detection logic device and the first logic
device run concurrently.

2. The arbitration logic device according to claim 1,
wherein the error detection logic device resides outside of a
critical path in the arbitration logic device.

3. The arbitration logic device according to claim 1,
wherein requestors information is encoded with the error
correcting code (ECC) that includes one or more of Ham
ming code, Golay code, Reed-Muller code, BCH (Bose and
Ray-Chaudhuri) code, Reed-Solomon code, self-dual code,
convolutional code, SEC-DED code, the error detection logic
device detecting and correcting the Soft error based on the
error correcting code (ECC).

4. The arbitration logic device according to claim 1,
wherein the error detection logic device detects and corrects
a soft error only on the selected ECC word.

5. The arbitration logic device according to claim 1, further
comprising:

a storage element for storing the plurality of ECC words:
a scan and correct logic device for periodically reading
ECC words stored in the storage element, checking
whether there is a soft error in the ECC words, and
correcting the soft error in the ECC words by using the
error detection logic device and the selection logic
device.

6. The arbitration logic device according to claim 5,
wherein the scan and correct logic operates only when the
selection logic device is idle.

7. A method for operating an arbitration logic device that
controls a shared resource, the method comprising:

receiving a plurality of ECC (Error Correction Code)
words, each ECC word including a first plurality of bits
representing a plurality of requestors, a second plurality
of bits indicating whether each requestoris requesting to
access to the shared resource, and an ECC code corre
sponding to the first plurality of bits and the second
plurality of bits:

selecting one ECC word among the plurality of ECC words
without checking whether there exists a soft error in the
selected ECC word;

detecting a soft error in the selected ECC word after the
selection of the selected ECC word;

receiving the selected ECC word and selecting, based on
the selected ECC word, a winner requestor among the
plurality of requestors; and

10

15

25

30

35

40

45

50

55

16
invalidating the selection of the winner requestor if the

error detection logic device detects a soft error in the
selected ECC word,

wherein the detecting of the soft error in the selected ECC
word and the selecting the winner requestor are per
formed concurrently.

8. The method according to claim 7, wherein the error
detection logic device resides outside of a critical path in the
arbitration logic device.

9. The method according to claim 7, wherein requestors
information is encoded with the error correcting code (ECC)
that includes one or more of Hamming code, Golay code,
Reed-Muller code, BCH (Bose and Ray-Chaudhuri) code,
Reed-Solomon code, self-dual code, convolutional code,
SEC-DED code, the error detection logic device detecting
and correcting the soft error based on the error correcting
code (ECC).

10. The method according to claim 7, wherein the error
detection logic device detects and corrects a soft error only on
the Selected ECC word.

11. The method according to claim 7, further comprising:
storing the plurality of ECC words:
periodically reading the ECC words, checking whether

there is a soft error in the requestors information, and
correcting the soft error in the ECC words by the detecting

the soft error and the choosing one of the ECC words.
12. The method according to claim 11, wherein the read

ing, the checking and the correcting are performed when the
selecting the winner requestor is not performed.

13. A computer program product for operating an arbitra
tion logic device that controls an access to a shared resource,
the computer program product comprising a non-transitory
Storage medium readable by a processing circuit and storing
instructions run by the processing circuit for performing a
method, the method comprising:

receiving a plurality of ECC (Error Correction Code)
words, each ECC word including a first plurality of bits
representing a plurality of requestors, a second plurality
of bits indicating whether each requestoris requesting to
access to the shared resource, and an ECC code corre
sponding to the first plurality of bits and the second
plurality of bits:

selecting one ECC word among the plurality of ECC words
without checking whether there exists a soft error in the
selected ECC word;

detecting a soft error in the selected ECC word after the
selection of the selected ECC word;

receiving the selected ECC word and selecting, based on
the selected ECC word, a winner requestor among the
plurality of requestors; and

invalidating the selection of the winner requestor if the
error detection logic device detects a soft error in the
selected ECC word,

wherein the detecting of the soft error in the selected ECC
word and the selecting the winner requestor are per
formed concurrently.

14. The computer program product according to claim 13,
wherein the error detection logic device resides outside of a
critical path in the arbitration logic device.

k k k k k

