
US 20220084332A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0084332 A1

ARECHIGA GONZALEZ et al . (43) Pub . Date : Mar. 17 , 2022

(54) SYSTEMS AND METHODS FOR
MONITORING SPECIFICATIONS OVER
SIMULATION AND TEST DATA

(52) U.S. CI .
CPC G07C 5/0808 (2013.01) ; G06F 30/20

(2020.01)

(71) Applicant : TOYOTA RESEARCH INSTITUTE ,
INC . , Los Altos , CA (US) (57) ABSTRACT

(72) Inventors : NIKOS ARECHIGA GONZALEZ ,
Los Altos , CA (US) ; Evangelos
Kokkevis , Mountain View , CA (US) ;
Richard Poyner , Acton , MA (US) ;
Daniel Stonier , Lexington , MA (US)

(21) Appl . No .: 17 / 020,701

Systems and methods are provided for requirements engi
neering , and may include : receiving as input , time series
data from at least one of a simulation of a vehicle run on a
simulation system , or from the vehicle in operation ; a
requirements monitoring system checking to determine
whether a plurality of requirements for operation of the
vehicle are met , wherein the requirements are expressed in
signal temporal logic form and a requirement includes at
least an associated minimal sampling rate and a filtering
policy applicable to the requirement ; determining a quanti
tative conformance for each of selected requirements of the
plurality of requirements ; and add requirements to a verified
requirements set based on the qualitative conformance of the requirements

(22) Filed : Sep. 14 , 2020
Publication Classification

(51) Int . Ci .
GO7C 5/08
G06F 30/20

(2006.01)
(2006.01)

200

1

REQUIREMENTS MONITORING CIRCUIT 210
DATA SOURCES 252

MEMORY
208 201

205 TEST DATA
212 PROCESSOR

206 VEHICLE DATA
214 63 WIRELESS

TRANSCEIVER
CIRCUIT

202
203

OTHER
216 WIRED I / O

INTERFACE 204

SIMULATION SYSTEM
240

REQUIREMENTS
DATABASE 245

100

COMPUTING SYSTEM 110

LIDAR / RADAR 111

PROCESSOR 106
INSTRUCTIO NS 108

STEERING 121

Patent Application Publication

RADAR 112

|

DATA STORAGE 1 103

THROTTLE 122

w

CAMERAVISION 113 THROTTLE / BRAKE 114

BRAKES 123

ROLL / PITCH / YAW 115

STEERING UNIT 136

THROTTLE / BRAKE 135

TRANSMISSION 124
Mar. 17 , 2022 Sheet 1 of 8

STEERING 116

SENSOR FUSION 131

COMPUTER VISION 134

ECU 125

GPS / VEH POS SYSTEM 117

PATHING 138

OBSTACLE AVOIDANCE 138

SENSORS 120

AV CONTROL SYSTEMS 130

VEHICLE SYSTEMS 140

US 2022/0084332 A1

Fig . 1

Patent Application Publication Mar. 17 , 2022 Sheet 2 of 8 US 2022/0084332 A1

160

161
162

163

164 pecifications &

165

168

JO10

Fig . 2

200

REQUIREMENTS MONITORING CIRCUIT 210

DATA SOURCES 252

1

MEMORY 208

Patent Application Publication

201

205

TEST DATA 212

1 1

U

PROCESSOR 206

VEHICLE DATA 214

WIRELESS TRANSCEIVER CIRCUIT 202

203
WW

OTHER 216

WIRED I / O INTERFACE 204

1

J

Mar. 17 , 2022 Sheet 3 of 8

SIMULATION SYSTEM 240

REQUIREMENTS DATABASE 245

US 2022/0084332 A1

3
Fig . 3

Patent Application Publication Mar. 17 , 2022 Sheet 4 of 8 US 2022/0084332 A1

RECEIVE TIME SERIES DATA 322

DETERMINE IF REQUIREMENTS
WITHIN RANGE 324

TRIGGER
CORRECTIVE OR

EVASIVE BEHAVIOR
326

DETERMINE CONTRADICTIONS 328

RETAIN OR DELETE REQUIREMENT
330

UPDATE REQUIREMENT SET 332

Fig . 4

Yes ?

DATA SOURCES 432

REQUIREMENTS MONITORING MODULE 435

ROBUSTNESS 440

Patent Application Publication

SOURCES 252

raming

1

24444

REQUIREMENT 436

SIMULATOR 240

hu

Mar. 17 , 2022 Sheet 5 of 8 US 2022/0084332 A1

Fig . 5

Patent Application Publication Mar. 17 , 2022 Sheet 6 of 8 US 2022/0084332 A1

520

REQUIREMENTS 522
- -

SYSTEM REQUIREMENT 524

SUBSYSTEM
REQUIREMENT

526

SUBSYSTEM
REQUIREMENT

526

? LE ===

SOLVER 532

CONTRADICTION 535

Fig . 6

Patent Application Publication Mar. 17 , 2022 Sheet 7 of 8 US 2022/0084332 A1

RQ 626 RQ 626 RQ 626

Wun

OPERATING ENVIRONMENT 632

SIMULATOR
634

FIELD TEST
636

PRODUCTION
VEHICLE 638

TIME SERIES DATA 642

REQUIREMENT MONITORING MODULE 652

REQUIREMENT
SET 654

QUANTITATIVE
CONFORMANCE

656

CONFLICTS
CONFORMANCE

658

654

PASS ?

ADD TO REQUIREMENTS SET 656

Fig . 7

Patent Application Publication Mar. 17 , 2022 Sheet 8 of 8 US 2022/0084332 A1

700

PROCESSOR 704

MEMORY
708

STORAGE DEVICES
710

MEDIA DRIVE
712

MEDIA
714

BUS
702 STORAGE

UNIT VE
720

STORAGE
UNIT
722

COMM VE 724 CHANNEL 728

Fig . 8

US 2022/0084332 Al Mar. 17 , 2022
1

SYSTEMS AND METHODS FOR
MONITORING SPECIFICATIONS OVER

SIMULATION AND TEST DATA

noted above , an engineer writing the executable form of the
requirement may choose to filter noisy data coming in from
a sensor , which may erroneously also filter out (e.g. smooth
away) violations of the requirement . As yet another
example , general programming errors may occur . Accord
ingly , the original requirements might not be implemented in
a way that carries out the full intention of such requirements .

TECHNICAL FIELD

[0001] The present disclosure relates generally to require
ments monitoring , and in particular , some implementations
may relate to evaluating simulated or actual vehicle perfor
mance in view of specifications .

BRIEF SUMMARY OF THE DISCLOSURE

DESCRIPTION OF RELATED ART

[0002] Autonomous vehicle technology is becoming more
commonplace with the introduction of new vehicles each
model year . While widespread adoption of fully autonomous
vehicles is only now becoming visible on the horizon ,
autonomous vehicle technology is gaining increasing popu
larity for assisted driving and other semi - autonomous
vehicle operation . Developers within organizations such as
major original equipment manufacturers , tier 1 suppliers ,
startup companies and others , are racing to develop autono
mous vehicle and advanced driver assistance systems
(ADAS) technologies . Such technologies are not limited to
autonomous vehicles , but can also be used in robotics and
other like applications .
[0003] Requirements engineering for autonomous opera
tions is often considered one of the most difficult parts of
creating autonomous vehicles . Safe operation of autono
mous vehicles at SAE Automation Category Levels 1-5
requires a robust set of requirements to control autonomous
operation . Requirements can dictate the behavior of autono
mous vehicle systems , and hence the autonomous vehicle ,
and its interaction with other objects . Requirements can
dictate operational characteristics such as , for example , safe
following distances from a lead vehicle at various opera
tional states (e.g. , remain X meters away from lead vehicle
if traveling at speed Y in weather conditions Z) , stay within
lane markings except when changing lanes or merging (e.g. ,
maintain a distance of X from lane markings) , avoid pedes
trians , stop for yellow lights , and so on .
[0004] During vehicle operation or simulation) , sensor
data is used in conjunction with requirements to control the
vehicle . Because sensors tend to be noisy , engineers filter out
the noise (e.g. , by averaging or other signal filtering tech
niques) to provide a cleaner signal . However , filtering pro
vides a layer of disconnect between the specification in the
requirement and the actual data . Too much filtering , for
example , can defeat the metric . Consider for example a
sensor measuring lateral distance to a lane marking . If the
ego vehicle is weaving and as a result moving too close to
the lane markings (e.g. , violating the specification) this
violation might not be detected due to over filtering .
[0005] Additionally , these points of manual intervention
(e.g. , by engineering) can introduce the possibility of error .
An engineer is typically required to interpret the requirement
drafted in a natural language and to construct a software
implementation to implement the requirement . This is often
repeated for a full set of requirements , which can be bundled
together as a test suite . However , this disconnect between
the requirement description and its executable form can
introduce points of weakness . For example , this can result in
the introduction of error in computed data . As another
example , if the input data stream is not sampled frequently
enough , this may compromise the evaluation process . As

[0006] Embodiments disclosed herein provide systems
and methods for modeling and working with system require
ments . In various embodiments , requirements may be con
figured as first - class software artifacts that are executable
and maintainable .
[0007] In various embodiments , a method for require
ments engineering may include : receiving as input , time
series data from at least one of a simulation of a vehicle run
on a simulation system , or from the vehicle in operation ; a
requirements monitoring system checking to determine
whether a plurality of requirements for operation of the
vehicle are met , wherein the requirements are expressed in
signal temporal logic form and a requirement includes at
least an associated minimal sampling rate and a filtering
policy applicable to the requirement ; determining a quanti
tative conformance for each of selected requirements of the
plurality of requirements ; and adding requirements to a
verified requirements set based on the qualitative confor
mance of the requirements .
[0008] A system for requirements engineering may
include : a processor ; and a memory coupled to the processor
to store instructions , which when executed by the processor ,
cause the processor to perform operations , the operations
comprising : receiving as input , time series data from at least
one of a simulation of a vehicle run on a simulation system ,
or from the vehicle in operation ; a requirements monitoring
system checking to determine whether a plurality of require
ments for operation of the vehicle are met , wherein the
requirements are expressed in signal temporal logic form
and a requirement includes at least an associated minimal
sampling rate and a filtering policy applicable to the require
ment ; determining a quantitative conformance for each of
selected requirements of the plurality of requirements ; and
adding requirements to a verified requirements set based on
the qualitative conformance of the requirements .
[0009] The time - series data may include a sequence of
values associated with one or more signals generated and
monitored over a period of time .
[0010] The requirements may be specified in the form of
a requirements model , and wherein a requirement of the
plurality of requirements may further include a system
requirement and a subsystem requirement .
[0011] The quantitative conformance may quantify a
degree to which performance is met for the selected require
ment , a degree to which there is conflict between two or
more of the requirements and a degree to which there is
conflict between a system requirement and a subsystem
requirement .
[0012] The method and operations may further include
monitoring the quantitative conformance across a plurality
of iterations for the selected requirement to optimize the
selected requirement based on the quantitative conformance .
[0013] The quantitative conformance may quantify a
degree to which there is conflict between two or more of the
requirements , and wherein determining a quantitative con

a

US 2022/0084332 A1 Mar. 17 , 2022
2

[0024] FIG . 7 illustrates an example system for require
ments monitoring in accordance with various embodiments
of the systems and methods described herein .
[0025) FIG . 8 illustrates an example computing compo
nent that may be used to implement various features of
embodiments described in the present disclosure .
[0026] The figures are not exhaustive and do not limit the
present disclosure to the precise form disclosed .

a

DETAILED DESCRIPTION

formance for selected requirements of the plurality of
requirements may include applying the requirements over
time to a symbolic trace and evaluating to determine
whether there may be values that satisfy the requirements .
[0014] A system for requirements engineering may
include : an operating environment , comprising at least one
of a simulation system to simulate operation of a vehicle , a
prototype vehicle or a production vehicle to generate time
series data regarding actual or simulated vehicle perfor
mance ; a requirements monitoring module comprising an
input to receive time series data from at least one of the
simulation system , the prototype vehicle or the actual
vehicle ; the requirements monitoring module being config
ured to determine whether a plurality of requirements for
operation of the vehicle are met , wherein the requirements
are expressed in signal temporal logic form and a require
ment includes at least an associated minimal sampling rate
and a filtering policy applicable to the requirement ; and a
solver module to determine a quantitative conformance for
each of selected requirements of the plurality of require
ments .
[0015] A requirement for vehicle performance may
include trace specifications and an executable version of a
performance requirement , wherein the executable version of
the performance requirement is automatically generated
from a natural language description of the requirement . The
trace specifications may include at least one of a required
minimum sampling rate and a filtering specification . The
trace specifications and the requirements may be both imple
mented as first - class objects . The requirement may be imple
mented as a software entity expressed in a source file that is
executable by an interpreter .
[0016] Other features and aspects of the disclosed tech
nology will become apparent from the following detailed
description , taken in conjunction with the accompanying
drawings , which illustrate , by way of example , the features
in accordance with embodiments of the disclosed technol
ogy . The summary is not intended to limit the scope of any
inventions described herein , which are defined solely by the
claims attached hereto .

[0027] Embodiments disclosed herein provide systems
and methods for modeling and working with system require
ments . In various embodiments , requirements may be con
figured as first - class software objects that are executable and
maintainable . Embodiments may be configured to bundle
together several key pieces of information that may be
important to fully specifying system requirements , including
units , required sampling rates , and filtering procedures .
Requirements can be designed , tested , maintained and
executed similar to other software entities (i.e. , as a first
class software object) . Embodiments may be implemented
to provide techniques to automatically execute the require
ments in the form of monitors over time series data . Because
requirements can be executed , they can be tested against
various test cases .
[0028] An interpreter may be provided to interpret signal
temporal logic formulas to automatically monitor require
ments without the need for hand - crafted code . This can
eliminate what is otherwise a point of manual intervention in
conventional solutions . Requirements can be configured to
be automatically analyzed by logical analysis tools and can
be deployed in simulation and test environments similar to
a software update , either on the simulator or on the error
detection and handling code of the vehicle .
[0029] In contrast , in conventional solutions hierarchical
modeling of requirements is carried out in the requirements
management software using natural language . In order to
evaluate these requirements over test data , an engineer is
typically required to interpret the requirements in natural
language and write a software implementation of the
requirements . This software implementation generally
accepts time series data as an input , which may come from
a field test or from a simulation . Finally , the implementation
of a set of requirements is typically bundled together as a test
suite . Thus , there is a requirements description that is
disparate from its executable form . This introduces the
possibility of error or other issues such as , errors in com
puted units , improper sampling rate of incoming data , poor
choices of filters or sensors that may erroneously smooth
away violations of the requirement , and general program
ming errors . Embodiments may be configured to eliminate
the possibility of general programming errors by using an
interpreter of signal temporal logic formulas to automati
cally monitor requirements , without the need for hand
crafted code .
[0030] FIG . 1 illustrates an example autonomous or semi
autonomous vehicle with which embodiments of the dis
closed technology may be implemented . In this example ,
vehicle 100 includes a computing system 110 , sensors 120 ,
AV control systems , 130 and vehicle systems 140. Vehicle
100 may include a greater or fewer quantity of systems and
subsystems and each could include multiple elements .
Accordingly , one or more of the functions of the technology
disclosed herein may be divided into additional functional or

BRIEF DESCRIPTION OF THE DRAWINGS

a [0017] The present disclosure , in accordance with one or
more various embodiments , is described in detail with
reference to the following figures . The figures are provided
for purposes of illustration only and merely depict typical or
example embodiments .
[0018] FIG . 1 illustrates an example autonomous or semi
autonomous vehicle with which embodiments of the dis
closed technology may be implemented .
[0019] FIG . 2 illustrates an example of a requirement in
accordance with various embodiments .
[0020] FIG . 3 illustrates an example architecture for
requirements monitoring in accordance with embodiments
of the systems and methods described herein .
[0021] FIG . 4 illustrates an example process for require
ments monitoring in accordance with embodiments of the
systems and methods disclosed herein .
[0022] FIG . 5 illustrates an example of using a require
ments set to monitor system performance or behavior based
on conformance .
[0023] FIG . 6 illustrates an example system for determin
ing requirements contradictions in accordance with various
embodiments of the systems and methods described herein .

US 2022/0084332 A1 Mar. 17 , 2022
3

physical components , or combined into fewer functional or
physical components . Additionally , although the systems
and subsystems illustrated in FIG . 1 are shown as being
partitioned in a particular way , the functions of vehicle 100
can be partitioned in other ways . For example , various
vehicle systems and subsystems can be combined in differ
ent ways to share functionality .
[0031] Sensors 120 may include a plurality of different
sensors to gather data regarding vehicle 100 , its operator , its
operation and its surrounding environment . In this example ,
sensors 120 include lidar 111 , radar 112 , or other like the
distance measurement sensors , image sensors 113 , throttle
and brake sensors 114 , 3D accelerometers 115 , steering
sensors 116 , and a GPS or other vehicle positioning system
117. One or more of the sensors 120 may gather data and
send that data to the vehicle ECU or other processing unit .
Sensors 120 (and other vehicle components) may be dupli
cated for redundancy .
[0032] Distance measuring sensors such as lidar 111 , radar
112 , IR sensors and other like sensors can be used to gather
data to measure distances and closing rates to various
external objects such as other vehicles , traffic signs , pedes
trians , light poles and other objects . Image sensors 113 can
include one or more cameras or other image sensors to
capture images of the environment around the vehicle as
well as internal to the vehicle . Information from image
sensors 113 can be used to determine information about the
environment surrounding the vehicle 100 including , for
example , information regarding other objects surrounding
vehicle 100. For example , image sensors 113 may be able to
recognize landmarks or other features (including , e.g. , street
signs , traffic lights , etc.) , slope of the road , lines on the road ,
curbs , objects to be avoided (e.g. , other vehicles , pedestri
ans , bicyclists , etc.) and other landmarks or features . Infor
mation from image sensors 113 can be used in conjunction
with other information such as map data or information from
positioning system 117 to determine , refine or verify vehicle
location .
[0033] Throttle and brake sensors 114 can be used to
gather data regarding throttle and brake application by a
human or autonomous operator . Accelerometers 115 may
include a 3D accelerometer to measure roll , pitch and yaw
of the vehicle . Accelerometers 115 may include any com
bination of accelerometers and gyroscopes for the vehicle or
any of a number of systems or subsystems within the vehicle
to sense position and orientation changes based on inertia .
[0034] Steering sensors 116 (e.g. , such as a steering angle
sensor) can be included to gather data regarding steering
input for the vehicle by a human or autonomous operator . A
steering sensor may include a position encoder monitor the
angle of the steering input in degrees . Analog sensors may
collect voltage differences that can be used to determine
information about the angle and turn direction , while digital
sensors may use an LED or other light source to detect the
angle of the steering input . A steering sensor may also
provide information on how rapidly the steering wheel is
being turned . A steering wheel being turned quickly is
generally normal during low - vehicle - speed operation and
generally unusual at highway speeds . If the driver is turning
the wheel at a fast rate while driving at highway speeds the
vehicle computing system may interpret that as an indication
that the vehicle is out of control . Steering sensor 116 may
also include a steering torque sensor to detect an amount of
force the driver is applying to the steering wheel .

[0035] Vehicle positioning system 117 (e.g. , GPS or other
positioning system) can be used to gather position informa
tion about a current location of the vehicle as well as other
positioning or navigation information .
[0036] Although not illustrated , other sensors 120 may be
provided as well . Various sensors 120 may be used to
provide input to computing system 110 and other systems of
vehicle 100 so that the systems have information useful to
operate in an autonomous , semi - autonomous or manual
mode .
[0037] AV control systems 130 may include a plurality of
different systems / subsystems to control operation of vehicle
100. In this example , AV control systems 130 include
steering unit 136 , throttle and brake control unit 135 , sensor
fusion module 131 , computer vision module 134 , pathing
module 138 , and obstacle avoidance module 139. Sensor
fusion module 131 can be included to evaluate data from a
plurality of sensors , including sensors 120. Sensor fusion
module 131 may use computing system 110 or its own
computing system to execute algorithms to assess inputs
from the various sensors .
[0038] Throttle and brake control unit 135 can be used to
control actuation of throttle and braking mechanisms of the
vehicle to accelerate , slow down , stop or otherwise adjust
the speed of the vehicle . For example , the throttle unit can
control the operating speed of the engine or motor used to
provide motive power for the vehicle . Likewise , the brake
unit can be used to actuate brakes (e.g , disk , drum , etc.) or
engage regenerative braking (e.g. , such as in a hybrid or
electric vehicle) to slow or stop the vehicle .
[0039] Steering unit 136 may include any of a number of
different mechanisms to control or alter the heading of the
vehicle . For example , steering unit 136 may include the
appropriate control mechanisms to adjust the orientation of
the front or rear wheels of the vehicle to accomplish changes
in direction of the vehicle during operation . Electronic ,
hydraulic , mechanical or other steering mechanisms may be
controlled by steering unit 136 .
[0040) Computer vision module 134 may be included to
process image data (e.g. , image data captured from image
sensors 113 , or other image data) to evaluate the environ
ment within or surrounding the vehicle . For example , algo
rithms operating as part of computer vision module 134 can
evaluate still or moving images to determine features and
landmarks (e.g. , road signs , traffic lights , lane markings and
other road boundaries , etc.) , obstacles (e.g. , pedestrians ,
bicyclists , other vehicles , other obstructions in the path of
the subject vehicle) and other objects . The system can
include video tracking and other algorithms to recognize
bjects such as the foregoing , estimate their speed , map the
surroundings , and so on .
[0041] Pathing module 138 may be included to compute a
desired path for vehicle 100 based on input from various
other sensors and systems . For example , pathing module 138
can use information from positioning system 117 , sensor
fusion module 131 , computer vision module 134 , obstacle
avoidance module 139 (described below) and other systems
to determine a safe path to navigate the vehicle along a
segment of a desired route . Pathing module 138 may also be
configured to dynamically update the vehicle path as real
time information is received from sensors 120 and other
control systems 130 .
[0042] Obstacle avoidance module 139 can be included to
determine control inputs necessary to avoid obstacles

a

US 2022/0084332 A1 Mar. 17 , 2022
4

a

detected by sensors 120 or AV control systems 130. Obstacle
avoidance module 139 can work in conjunction with pathing
module 138 to determine an appropriate path to avoid a
detected obstacle .
[0043] Vehicle systems 140 may include a plurality of
different systems / subsystems to control operation of vehicle
100. In this example , AV control systems 130 include
steering system 121 , throttle system 122 , brakes 123 , trans
mission went 24 , electronic control unit (ECU) 125 and
propulsion system 126. These vehicle systems 140 may be
controlled by AV control systems 130 in autonomous , semi
autonomous or manual mode . For example , in autonomous
or semi - autonomous mode , AV control systems 130 , alone or
in conjunction with other systems , can control vehicle
systems 140 to operate the vehicle in a fully or semi
autonomous fashion . This may also include an assist mode
in which the vehicle takes over partial control or activates
ADAS controls to assist the driver with vehicle operation .
[0044] Computing system 110 in the illustrated example
includes a processor 106 , and memory 103. Some or all of
the functions of vehicle 100 may be controlled by computing
system 110. Processor 106 can include one or more GPUs ,
CPUs , microprocessors or any other suitable processing
system . Processor 106 may include one or more single core
or multicore processors . Processor 106 executes instructions
108 stored in a non - transitory computer readable medium ,
such as memory 103 .
[0045] Memory 103 may contain instructions (e.g. , pro
gram logic) executable by processor 106 to execute various
functions of vehicle 100 , including those of vehicle systems
and subsystems . Memory 103 may contain additional
instructions as well , including instructions to transmit data
to , receive data from , interact with , and / or control one or
more of the sensors 120 , AV control systems , 130 and
vehicle systems 140. In addition to the instructions , memory
103 may store data and other information used by the vehicle
and its systems and subsystems for operation , including
operation of vehicle 100 in the autonomous , semi - autono
mous or manual modes .
[0046] Although one computing system 110 is illustrated
in FIG . 1 , in various embodiments multiple computing
systems 110 can be included . Additionally , one or more
systems and subsystems of vehicle 100 can include its own
dedicated or shared computing system 110 , or a variant
thereof . Accordingly , although computing system 110 is
illustrated as a discrete computing system , this is for ease of
illustration only , and computing system 110 can be distrib
uted among various vehicle systems or components .
[0047] Vehicle 100 may also include a wireless commu
nication system (not illustrated) to communicate with other
vehicles , infrastructure elements , cloud components and
other external entities using any of a number of communi
cation protocols including , for example , V2V , V21 and V2X
protocols . Such a wireless communication system may
allow vehicle 100 to receive information from other objects
including , for example , map data , data regarding infrastruc
ture elements , data regarding operation and intention of
surrounding vehicles , and so on . A wireless communication
system may also allow vehicle 100 to transmit information
to other objects . In some applications , computing functions
for various embodiments disclosed herein may be performed
entirely on computing system 110 , distributed among two or
more computing systems 110 of vehicle 100 , performed on

a cloud - based platform , performed on an edge - based plat
form , or performed on a combination of the foregoing .
[0048] The example of FIG . 1 is provided for illustration
purposes only as one example of vehicle systems with which
embodiments of the disclosed technology may be imple
mented . One of ordinary skill in the art reading this descrip
tion will understand how the disclosed embodiments can be
implemented with this and other vehicle or platforms and
with other robots .
[0049] The example of FIG . 1 is are provided for illustra
tion purposes only as examples of vehicle systems with
which embodiments of the disclosed technology may be
implemented . One of ordinary skill in the art reading this
description will understand how the disclosed embodiments
can be implemented with vehicle platforms .
[0050] FIG . 2 illustrates an example of a requirement in
accordance with various embodiments . In this example , the
requirement 160 may be identified by an ID 161 and a name
162 , it may further include a description 163 of the require
ment 160. In various embodiments , a requirement 160 may
further include a trace specification 164 , a required mini
mum sampling rate , units for signals , filtering specifications ,
and sub requirements 168. A plurality of requirements 160
may be grouped together to form a suite of requirements . In
the case of a simulation , testing or prototype operations , this
may be referred to as a test suite . These requirements can be
used throughout all stages of vehicle life , including from
prototyping and testing through actual operation of the
vehicle .
[0051] A requirement may be configured to express prop
erties or behavior of the system , which might be imple
mented as a mixed combination of hardware and software .
These properties may relate to a software state for the system
(e.g. , stop at a stop sign , stop at yellow lights) or continuous
items (e.g. , maintaining a desired speed or a desired follow
ing distance) . Information can be gathered using signal
temporal logic (STL) , which supports mixed signals and
enables a robust this metric that indicates how far an ego
vehicle is from satisfying the specified requirement .
[0052] Trace specifications 164 may be included for the
requirement 160 as well . Trace specifications can specify ,
for example , requirement specification such as a minimal
sampling rate and filtering policy for each time series in the
trace or log data . This example further includes an execut
able version of the requirement 165 , which may be
expressed in STL with units . Embodiments may be imple
mented in which the executable is automatically generated
from a natural language description of the requirement . For
example , the natural language specification might state
“ Always stay in your lane and provide updates every 20
Hz , ” from which an executable is automatically generated to
implement the rule . The executable may be configured to
implement the requirement in accordance with trace speci
fications .
[0053] To check the units , when the data is received (e.g. ,
from a test or simulation) , the system checks to determine
whether the signals have the same units as the requirement .
For example , consider a situation in which the requirement
specifies that the vehicle must keep within 0.1 meters of the
lane boundary . At this stage , the system can be configured to
check whether the distance from the lane boundary from the
data is given in meters . To check the sampling rate , the
system checks the timestamps between the different mea
surements of each signal . Consider the above example in

a

US 2022/0084332 A1 Mar. 17 , 2022
5

a

a

which the requirement specifies that updates must be pro
vided every 20 Hz . At this stage the system checks to
determine whether the distance to the lane boundary has
timestamps that happen at 20 Hz or more frequently .
[0054] Before checking the STL formulas (e.g. , trace
specifications) , the system may be configured to apply the
filters specified by the requirement to the incoming data .
However , if the filters are implemented such that they are too
aggressive , the system may miss an event in which the
vehicle violated its requirement (i.e. , briefly crossed the lane
boundary) . On the other hand , if the filters are not aggressive
enough , the noise in the system (e.g. , from the sensors or
other sources) may create spurious violations (false posi
tives) because noise on the vehicle position may make it
appear that the car oscillates across lane boundaries very
quickly
[0055] The system can now be configured to check the
STL formulas that make up trace specifications . STL for
mulas may be provided in two different types , static and
temporal . Because in some embodiments the STL formulas
are provided as a_formal_language , similar to a very simple
programming language , the system can be configured to
interpret them in a similar way that a system would interpret
any other machine - understandable language .
[0056] Static formulas may be evaluated at each snapshot
of time , and they do not specify behavior in terms of the
future or the past . For example , “ stay within 0.1 meters from
the lane boundary ” would be expressed as an STL formula
as “ (left_boundary < car_positition - 0.1) AND (car_position +
0.1 > right_boundary) " . To evaluate this formula , the inter
preter may be configured to step through each data point in
the log data , plug in the values of left_boundary , car_
position , and right_boundary , and check to determine
whether the result is “ TRUE ” . At each time step , the
interpreter produces a value of TRUE or FALSE . The
interpreter may be implemented to support basic arithmetic
operators (addition , subtraction , multiplication , division) ,
functions in the python standard library (exponent , sine ,
cosine , tangent , log , etc) , inequalities (less than , greater
than , less or equal , greater or equal , equal , not equal) and
logical connectives (AND , OR , NOT , IMPLIES) .
[0057] Temporal formulas may also be concerned with the
aspect of time . For example , requirements such as “ Always
stay in your lane ” (in contrast with “ stay in your lane at this
moment ”) , or “ Eventually stop at the upcoming stop sign ” ,
or " maintain a constant velocity until the driver issues a
brake signal ” have a temporal component to them . Static
formulas may provide a value of true or false at each time
step , but the temporal formulas produce a single value of
true or false for the entire trace over which they apply .
[0058] The example of the ALWAYS construct , above
may be written in STL as “ ALWAYS ((left_boundary < car_
positition - 0.1) AND (car_position + 0.1 > right_boundary)) ” .
To check this formula , the interpreter first evaluates the
internal requirement without the temporal operator , and
produces a sequences of TRUE - FALSE values at each time
step . Then , the ALWAYS portion returns TRUE if and only
if all of the values it sees are TRUE , otherwise returns false .
Similarly , the EVENTUALLY operator returns true if it sees
a TRUE at some point , otherwise FALSE . The UNTIL
operator takes two arguments , one that is true at first , and
then another that becomes true when the first becomes false ,
and so it looks for that pattern in the trace it is given .

[0059] Embodiments may be implemented that do not
generate an executable for each separate requirement , but
use a general - purpose interpreter that is able to execute any
given requirement . This is a similar distinction to the dif
ference between “ interpreted ” and “ compiled ” programming
languages . For example , compiled languages like C ++ pro
duce a standalone executable for each program , interpreted
languages have a single interpreter executable that interprets
and runs any given program . Embodiments may be imple
mented to generate an executable .
[0060] In this example , the trace specifications and the
requirements are both implemented as first - class objects .
Because the executables can be generated from the natural
language requirements , this requirement system can be
configured to manage sampling rates and filtering require
ments explicitly . This can be used to avoid a situation in
which aggressive noise filters might be added that would
otherwise dampen out information needed to evaluate
behavior .
[0061] As noted above , conventional testing and valida
tion processes include requirements in a natural language for
which a human designer manually writes tests that they
believe will exercise those requirements . This can create a
very broad range of items a designer needs to test for , from
data integrity (e.g. , units , appropriate sampling) to timing
and functional capabilities . The requirement itself does not
exist as an actual software entity that can be run , the designer
needs to imagine different tests that could be run , and may
forget . In contrast , embodiments implement the requirement
itself as a software entity . As such , it is executable by an
appropriate interpreter , and it may be expressed in its
entirety in a source file , so it can be managed by a version
control system such as a git . This enables tracking of
requirements and changes to the requirements with the same
tools that are used to keep track of software . Executable ,
first - class requirements can also be given unit tests :
examples of executions traces that they should flag as
erroneous , as well as examples of cases that they should
deem correct .
[0062] With continued reference to FIG . 2 , this example
includes a plurality of sub requirements 168 that exist as part
of the main requirement 160. The sub requirements may also
include the same features as main requirement 160 , includ
ing their own ID , name , natural language description , trace
specifications and executable instructions . Sub requirements
168 may be related to their respective parent requirement
160 and can be thought of in some embodiments as a
top - level requirement and corresponding low - level require
ments . For example , a requirement might state that the
vehicle should never come to a complete stop on a freeway .
Sub requirements relating to this main requirement might
specify ranges of speed (e.g. , stop - and - go - traffic speeds) or
special circumstances (e.g. , accident or Lane blockage) in
which it is acceptable to come to a complete stop on a
freeway .
[0063] Embodiments may further include systems and
methods for testing to evaluate whether a system under test
is performing according to specification .
[0064] FIG . 3 illustrates an example architecture for
requirements monitoring in accordance with embodiments
of the systems and methods described herein . Referring now
to FIG . 3 , in this example , requirements monitoring system
200 includes a requirements monitoring circuit 210 , a plu
rality of data sources 252 a simulation system 240 and a

>

9

US 2022/0084332 A1 Mar. 17 , 2022
6

2

a

9

requirements database 245. Data sources 252 simulation
system 240 and requirements database 245 can communi
cate with requirements monitoring circuit 210 via a wired or
wireless communication interface . Although data sources
252 simulation system 240 and requirements database 245
are depicted as communicating with requirements monitor
ing circuit 210 , they can also communicate with each other
as well as with other vehicle systems . Despite the depiction
of arrows , communications may be two - way .
[0065] Requirements monitoring circuit 210 in this
example includes a communication circuit 201 , a processing
circuit 203 (including a processor 206 and memory 208 in
this example) and a power supply 212. Components of
requirements monitoring circuit 210 are illustrated as com
municating with each other via a data bus , although other
communication in interfaces can be included .
[0066] Processor 206 can include one or more GPUs ,
CPUs , microprocessors , or any other suitable processing
system . Processor 206 may include a single core or multi
core processors . The memory 208 may include one or more
various forms of memory or data storage (e.g. , flash , RAM ,
etc.) that may be used to store the calibration parameters ,
images (analysis or historic) , point parameters , instructions
and variables for processor 206 as well as any other suitable
information . Memory 208 , can be made up of one or more
modules of one or more different types of memory , and may
be configured to store data and other information as well as
operational instructions that may be used by the processor
206 to requirements monitoring circuit 210 .
[0067] Although the example of FIG . 2 is illustrated using
processor and memory circuitry , as described below with
reference to circuits disclosed herein , decision circuit 203
can be implemented utilizing any form of circuitry includ
ing , for example , hardware , software , or a combination
thereof . By way of further example , one or more processors ,
controllers , ASICS , PLAs , PALS , CPLDs , FPGAs , logical
components , software routines or other mechanisms might
be implemented to make up a requirements monitoring
circuit 210 .
[0068] Communication circuit 201 either both a wire
less transceiver circuit 202 with an associated antenna 214
and a wired I / O interface 204 with an associated hardwired
data port (not illustrated) . As this example illustrates , com
munications with requirements monitoring circuit 210 can
include either or both wired and wireless communications
circuits 201. Wireless transceiver circuit 202 can include a
transmitter and a receiver (not shown) to allow wireless
communications via any of a number of communication
protocols such as , for example , WiFi , Bluetooth , near field
communications (NFC) , Zigbee , and any of a number of
other wireless communication protocols whether standard
ized , proprietary , open , point - to - point , networked or other
wise . Antenna 214 is coupled to wireless transceiver circuit
202 and is used by wireless transceiver circuit 202 to
transmit radio signals wirelessly to wireless equipment with
which it is connected and to receive radio signals as well .
These RF signals can include information of almost any sort
that is sent or received by requirements monitoring circuit
210 to / from other entities such as data sources 252 and
vehicle systems 158 .
[0069] Wired I / O interface 204 can include a transmitter
and a receiver (not shown) for hardwired communications
with other devices . For example , wired I / O interface 204 can
provide a hardwired interface to other components , includ

ing data sources 252 and vehicle systems 158. Wired I / O
interface 204 can communicate with other devices using
Ethernet or any of a number of other wired communication
protocols whether standardized , proprietary , open , point - to
point , networked or otherwise .
[0070] Power supply 210 can include one or more of a
battery or batteries (such as , e.g. , Li - ion , Li - Polymer , NiMH ,
NiCd , NiZn , and NiH? , to name a few , whether rechargeable
or primary batteries) , a power connector (e.g. , to connect to
vehicle supplied power , etc.) , an energy harvester (e.g. , solar
cells , piezoelectric system , etc.) , or it can include any other
suitable power supply .
[0071) Data sources 252 can include , for example , test
data 212 , vehicle data 214 and other data 216. Test data 212
can be data collected , for example , during testing of a
vehicle such as , for example , during a simulation , during
prototyping , or during test runs . Vehicle data 214 may also
be collected during testing / simulation , prototyping or test
runs . Vehicle data 214 can include additional vehicle param
eters that may be useful for interpreting test data to 12 or
otherwise monitoring the performance of one or more
requirements of a set of requirements .
[0072] Requirements may be stored in a requirements
database 245 for access by requirements monitoring circuit
210. Requirements database 245 may also be accessed by
other entities such as , for example , simulation system 240 as
well as vehicles under test . Requirements database 245 may
be a part of memory 208 or may be a separate data storage
environment .
[0073] Simulation system 240 may be implemented as a
conventional simulator to simulate performance of an ego
vehicle in a simulated operational environment . This can
include , for example , simulating , evaluating and testing the
performance of the ego vehicle in the presence of active
agents (e.g. , other vehicles , bicycles , pedestrians , etc.) fixed
objects (e.g. , trees , polls , buildings , lane markings or other
objects in the environment , etc) , and infrastructure elements
(e.g. , traffic lights , stop signs , access points etc.) . The
simulation system 240 may also serve as a data source to the
extent that it may provide test data to requirements moni
toring circuit 210 , which can be used , for example , to
monitor requirements .
[0074] During operation , requirements monitoring circuit
210 can receive information from the data sources and use
this information to determine requirements performance
parameters such as , for example , the robustness of require
ments and requirements contradictions . Requirements moni
toring circuit 210 can use this information to , for example ,
update the requirements set . Updating requirements that
may include , for example , deleting undesirable require
ments , adding new requirements , or modifying existing
requirements .
[0075] FIG . 4 illustrates an example process for require
ments monitoring in accordance with embodiments of the
systems and methods disclosed herein . Referring now to
FIG . 4 , at operation 322 the requirements monitoring system
(e.g. , requirements monitoring system 200) receives data
from the various data sources . In some embodiments , the
data can be time series data provided as a series of data
points indexed or listed in chronological order . The time
series data can represent a sequence of events or measure
ments captured by data points temporally spaced (regularly
or irregularly) over a given period of time . For example ,
timeseries data can represent snapshots of data captured at

US 2022/0084332 A1 Mar. 17 , 2022
7

a

given time intervals such as vehicle speed , following dis
tance , distances from lane markings , acceleration , braking ,
roll / pitch / yaw , steering angle , and so on . As noted above , the
data received may come from a simulation system , a test
vehicle , an operational vehicle or other data sources .
[0076] At operation 324 a requirement monitoring module
evaluates performance based on requirements . This can be
characterized , for example , as a robustness of the system
based on performance against the various requirements . For
example , the robustness can be measured as a percentage of
performance against the specified requirement . Consider , for
example , following distance behind a lead vehicle . In this
scenario a requirement may specify that the ego vehicle
remain a certain distance behind a lead vehicle , and this
distance may vary based on factors such as vehicle speed ,
vehicle braking capabilities , traffic conditions , weather con
ditions , etc. The robustness may measure the extent to which
the ego vehicle was able to maintain this specified vehicle
separation . For example , a robustness measure may indicate
that the ego vehicle was able to maintain separation within
a certain percentage of the specified separation requirement .
In another scenario , a requirement might specify a particular
vehicle speed based on various factors such as speed limit ,
traffic conditions , weather conditions , etc. The extent to
which the subject vehicle was able to meet this vehicle
speed requirement (e.g. , it was within x % of the speed
requirement) is indicative of the robustness .
[0077] Accordingly , the system can be configured to
execute the various requirements in the form of monitors
that monitor the system based on the received data . The
system can be configured in this way to evaluate data (e.g.
time series data) to determine whether the requirements are
being met , and to what extent each requirement is being met
over time . Accordingly , the system can provide a quantita
tive metric of the degree of safety of a given situation and ,
as illustrated at step 326 , trigger corrective or evasive
behaviors if necessary . The requirements can be run off - line
using off - line traces from test or simulation data to detect
violations or failures in robustness . Robustness semantics of
STL can be used to quantify how well the requirement was
satisfied .
[0078] FIG . 5 illustrates an example of using a require
ments set to monitor system performance or behavior based
on conformance . In this example , data is received from a
variety of data sources 432 which might include , for
example , data sources such as data sources 252 and simu
lation system 240 from FIG . 3. As noted above , this can be
time series data logged with timestamps or other temporal
information , and it can include vehicle performance as well
as external factors such as , for example , agent behavior ,
environmental conditions , infrastructure states , and so on .
The data can also include vehicle capabilities such as , for
example , vehicle steering , braking and acceleration capa
bilities , and vehicle performance envelopes . Embodiments
may also include capability to process real - time vehicle
settings such as , for example , drive modes (e.g. , Sport + ,
Sport , Comfort , Eco - mode , etc) , suspension settings (for
vehicles equipped with adjustable suspension) , and so on .
[0079] A requirements monitor module 435 includes a
plurality of requirements monitors 436 corresponding to the
set of requirements for the subject vehicle . Embodiments
may include monitors corresponding to requirements 160 or
in other forms . Requirement monitors can measure perfor
mance against behaviors specified in requirements (e.g. ,

trace specifications 164) and sub requirements (e.g. , sub
requirements 168) . As noted above with reference to opera
tion 324 , a requirement monitoring module may evaluate
performance of the vehicle relative to the specified set of
requirements . As also noted above , this can include checking
conformance to the corresponding requirements to deter
mine whether and to what extent the subject vehicle is able
to perform in accordance with each of the included require
ments . This can be computed in the form of a robustness
440. In the example illustrated in FIG . 5 , the robustness is
illustrated as score that varies temporally .
[0080] Returning now to FIG . 4 , if the subject vehicle fails
in terms of robustness with respect to one or more of the
applicable requirements , refinements can be made to miti
gate the issue . Particularly , in various applications robust
ness reports can be generated and provided to engineering so
that engineering can refine or otherwise redesign one or
more vehicle systems to improve performance relative to
their relevant requirements . In some instances , it may be
appropriate to refine the requirements because they may be ,
for example , too stringent or they have not fully contem
plated all of the possible circumstances .
[0081] Continuing with FIG . 4 , at operation 328 the
requirement monitoring module may determine whether
there are contradictions among requirements . For example ,
a requirement to never change lanes might contradict with a
requirement not to strike a pedestrian if that pedestrian
happens to be in the subject vehicle's lane . This can be
accomplished by using the same requirements module
throughout the overall autonomous stack so that the system
can check for contradictions between requirements of dif
ferent modules as well as conformance between higher - level
and lower - level requirements .
[0082] FIG . 6 illustrates an example system for determin
ing requirements contradictions in accordance with various
embodiments of the systems and methods described herein .
This example includes a conflict conformance module 520 ,
which includes a solver module 532 to determine conflicts
among a plurality of requirements 522. Requirements may
include system - level requirements 524 and subsystem - level
requirements 526. In this example , conflict conformance
module 520 can be configured to output one or more
contradictions 535. Contradictions may exist , for example ,
where a requirement cannot be satisfied without conflicting
with another requirement or sub requirement . For example ,
assume a requirement exists requiring the vehicle to turn on
its turn signal if it is going to make a right turn ; and another
requirement that says if the vehicle just completed a merge
to the right or a right turn , the vehicle should wait a
determine period of time before actuating the right turn
signal again . Such a series of requirements may be a way to
prevent the vehicle from weaving or making too many lane
changes and the dwell time before the turn signal can be
re - enabled can be set accordingly . However , situations may
arise in which the vehicle merged into the right lane and now
needs to turn right to follow its route , but cannot turn right
because the turn signal can't be enabled due to the built - in
dwell time . This is an example of a contradiction . Accord
ingly a solver module 532 can be used to discover contra
dictions automatically .
[0083] Because STL is a form of logic , embodiments may
implement logical tools to automatically find conflicts . To
illustrate , consider an example in which a designer acciden

a

a

a

US 2022/0084332 A1 Mar. 17 , 2022
8

2

a

tally creates the following two conflicting requirements ,
given first in natural language and then in STL .
[0084] Requirement 1 , in natural language : “ If the vehicle
is within 1 meter of an intersection where it intends to turn
right , then eventually in the next 2 seconds it will enable the
right turn signal ” , and this requirement needs to see mea
surements every 1 Hz .
[0085] Requirement 2 , in natural language : “ If the vehicle
has recently turned off its turn signal (for example , because
it just completed a turn or a lane change) , then for the next
three seconds , it should keep its turn signal off " . The
intention of this requirement is that the vehicle should not
weave in and out of lanes very frequently .
[0086] Conflict , in natural language : Suppose that the
vehicle has recently merged into the right lane , and at the
end of this merge to the right , it has disabled its turn signal .
Right at the end of this merge into the right lane , the vehicle
arrived within one meter of the intersection where it will turn
right , and now it must enable the turn signal within 2
seconds (in accordance with requirement 1) , but it may not
enable its blinker until 3 seconds have passed , in accordance
with requirement 2. Accordingly , these two requirements are
in conflict at least in this circumstance .
[0087] Requirement 1 in STL : (distance_to_intersec
tion < 1 meter IMPLIES EVENTUALLY_ [0,2] (blinker = 1))
@ 1 Hz
[0088] Requirement 2 in STL : ((blinker = 1 UNTIL
blinker = 0) IMPLIES ALWAYS_ [0,3] (blinker = 0)) @ 1 Hz
[0089] Assume that the system intends to check to deter
mine whether there is a conflict between (EVENTUALLY_
[0,2] (blinker = 1) @ 1 Hz) and (ALWAYS_ [0,3] (blinker = 0))
@ 1 Hz . Because the sampling rate is 1 Hz , embodiments
may construct a “ symbolic ” signal at every second , with
unknown values at each second , blinker (time = 0 seconds) ,
blinker (time = 1 second) , blinker (time = 2 seconds) , blinker
(time = 3 seconds) . (They are indexed by the time at which
they are “ triggered ” , i.e. , the time at which the left of the
implies became true) .
[0090] Requirement 1 can be translated into conventional
logic as saying that either the zeroth , the first , or the second
value must be true , i.e .: (blinker (time = 0 seconds) == 1) OR
(blinker (time = 1 second) == 1) OR (blinker (time = 2 seconds)

a a

[0094] In various embodiments , these operations can be
performed across multiple runs and even across test and
simulation runs . The system can quantify different levels of
satisfaction of requirements between these various runs .
This information can be further used to , for example ,
identify issues with the requirements , issues with the simu
lation system or test vehicle , and so on .
[0095] FIG . 7 illustrates an example system for require
ments monitoring in accordance with various embodiments
of the systems and methods described herein . As illustrated
in the example of FIG . 7 , the system includes a plurality of
requirements 626 such as a requirement set for a vehicle or
platform . These requirements are fed to the subject vehicle
or its instantiation within the appropriate component of the
operating environment 632. In this example , the operating
environment may include one or more of a simulator 634 to
simulate operation of the subject vehicle operating in accor
dance with the set of requirements ; a field test 636 to test
operation of the vehicle in a test environment ; or a produc
tion vehicle 638 to allow the production vehicle to operate
in accordance with its corresponding set of requirements
such as in real - world situations .
[0096] Each of these environments is capable of output
ting data 642 indicative of performance of the subject
vehicle , whether in simulation , testing or real - world situa
tions . As noted above , the output data can be in the form of
time series data 642 indicative of vehicle performance . As
also noted above , this data can include other information
such as , for example , vehicle settings , environmental con
ditions , behavior of other vehicles in the environment
(whether agents in a simulator or actual vehicles in a live test
real - world situation) , and so on .
[0097] This data 642 can be provided to a requirements
monitoring module 652. Requirements monitoring module
652 can include a plurality of requirement monitors 654 they
can be used to measure vehicle performance against the
corresponding requirements . This can be quantified , for
example , in terms of robustness or quantitative conformance
656. Likewise , requirements monitoring module 652 can
monitor conflict conformance 658 to determine whether
there are any conflicts among the various requirements
(whether system - level or subsystem - level) .
[0098] If the requirements pass (operation 654) they can
be added to the requirements set at operation 656. If the
requirements fail , they can be corrected to resolve the issues
that caused the failure . Because the requirements are akin to
software objects , new requirements can be pushed out to the
appropriate environment such as , for example , the testing
environment or the vehicle stack .
[0099] As used herein , the terms circuit and component
might describe a given unit of functionality that can be
performed in accordance with one or more embodiments of
the present application . As used herein , a component might
be implemented utilizing any form of hardware , software , or
a combination thereof . For example , one or more processors ,
controllers , ASICS , PLAs , PALS , CPLDs , FPGAs , logical
components , software routines or other mechanisms might
be implemented to make up a component . Various compo
nents described herein may be implemented as discrete
components or described functions and features can be
shared in part or in total among one or more components . In
other words , as would be apparent to one of ordinary skill in
the art after reading this description , the various features and
functionality described herein may be implemented in any

= 1)
[0091] Requirement 2 can be translated into conventional
logic as saying that all of the values , from the zeroth to the
third , must be zero , i.e .: (blinker (time = 0 seconds) == 0) AND
(blinker (time = 1 second) == 0) AND (blinker (time = 2 sec
onds) 0) AND (blinker (time = 3 seconds) 0)
[0092] This conflict in this situation may be apparent to a
human observer . A logic engine may be provided with any
of a variety of algorithms that it could use to check for a
contradiction , such as , for example , Resolution , Microsoft's
z3 and Toyota's dReal . Regardless of the algorithm , embodi
ments may be configured to unroll the logical formulas
across time over symbolic values of the traces , at the
sampling rate prescribed by the requirement itself , and apply
the requirement to this symbolic trace . Then , the system may
use an off - the - shelf logic solver to see if it is possible to have
values that satisfy the constraints . If it is not possible , the
logic engine will find a contradiction .
[0093] Returning now to FIG . 4 , at operation 330 , the
system can determine whether to retain or delete a require
ment based , for example , on contradictions . Then , at opera
tion 332 , the requirements that can be updated .

a

US 2022/0084332 A1 Mar. 17 , 2022
9

a

given application . They can be implemented in one or more
separate or shared components in various combinations and
permutations . Although various features or functional ele
ments may be individually described or claimed as separate
components , it should be understood that these features /
functionality can be shared among one or more common
software and hardware elements . Such a description shall
not require or imply that separate hardware or software
components are used to implement such features or func
tionality .
[0100] Where components are implemented in whole or in
part using software , these software elements can be imple
mented to operate with a computing or processing compo
nent capable of carrying out the functionality described with
respect thereto . One such example computing component is
shown in FIG . 7. Various embodiments are described in
terms of this example computing component 700. After
reading this description , it will become apparent to a person
skilled in the relevant art how to implement the application
using other computing components or architectures .
[0101] Referring now to FIG . 7 , computing component
700 may represent , for example , computing or processing
capabilities found within a self - adjusting display , desktop ,
laptop , notebook , and tablet computers . They may be found
in hand - held computing devices (tablets , PDA's , smart
phones , cell phones , palmtops , etc.) . They may be found in
workstations or other devices with displays , servers , or any
other type of special - purpose or general - purpose computing
devices as may be desirable or appropriate for a given
application or environment . Computing component 700
might also represent computing capabilities embedded
within or otherwise available to a given device . For
example , a computing component might be found in other
electronic devices such as , for example , portable computing
devices , and other electronic devices that might include
some form of processing capability .
[0102] Computing component 700 might include , for
example , one or more processors , controllers , control com
ponents , or other processing devices . Processor 704 might
be implemented using a general - purpose or special - purpose
processing engine such as , for example , a microprocessor ,
controller , or other control logic . Processor 704 may be
connected to a bus 702. However , any communication
medium can be used to facilitate interaction with other
components of computing component 700 or to communi
cate externally .
[0103] Computing component 700 might also include one
or more memory components , simply referred to herein as
main memory 708. For example , random access memory
(RAM) or other dynamic memory , might be used for storing
information and instructions to be executed by processor
704. Main memory 708 might also be used for storing
temporary variables or other intermediate information dur
ing execution of instructions to be executed by processor
704. Computing component 700 might likewise include a
read only memory (“ ROM ”) or other static storage device
coupled to bus 702 for storing static information and instruc
tions for processor 704 .
[0104] The computing component 700 might also include
one or more various forms of information storage mecha
nism 710 , which might include , for example , a media drive
712 and a storage unit interface 720. The media drive 712
might include a drive or other mechanism to support fixed or
removable storage media 714. For example , a hard disk

drive , a solid - state drive , a magnetic tape drive , an optical
drive , a compact disc (CD) or digital video disc (DVD) drive
(R or RW) , or other removable or fixed media drive might
be provided . Storage media 714 might include , for example ,
a hard disk , an integrated circuit assembly , magnetic tape ,
cartridge , optical disk , a CD or DVD . Storage media 714
may be any other fixed or removable medium that is read by ,
written to or accessed by media drive 712. As these
examples illustrate , the storage media 714 can include a
computer usable storage medium having stored therein
computer software or data .
[0105] In alternative embodiments , information storage
mechanism 710 might include other similar instrumentali
ties for allowing computer programs or other instructions or
data to be loaded into computing component 700. Such
instrumentalities might include , for example , a fixed or
removable storage unit 722 and an interface 720. Examples
of such storage units 722 and interfaces 720 can include a
program cartridge and cartridge interface , a removable
memory (for example , a flash memory or other removable
memory component) and memory slot . Other examples may
include a PCMCIA slot and card , and other fixed or remov
able storage units 722 and interfaces 720 that allow software
and data to be transferred from storage unit 722 to comput
ing component 700 .
[0106] Computing component 700 might also include a
communications interface 724. Communications interface
724 might be used to allow software and data to be trans
ferred between computing component 700 and external
devices . Examples of communications interface 724 might
include a modem or softmodem , a network interface (such
as Ethernet , network interface card , IEEE 802.XX or other
interface) . Other examples include a communications port
(such as for example , a USB port , IR port , RS232 port
Bluetooth® interface , or other port) , or other communica
tions interface . Software / data transferred via communica
tions interface 724 may be carried on signals , which can be
electronic , electromagnetic (which includes optical) or other
signals capable of being exchanged by a given communi
cations interface 724. These signals might be provided to
communications interface 724 via a channel 728. Channel
728 might carry signals and might be implemented using a
wired or wireless communication medium . Some examples
of a channel might include a phone line , a cellular link , an
RF link , an optical link , a network interface , a local or wide
area network , and other wired or wireless communications
channels .
[0107] In this document , the terms " computer program
medium ” and “ computer usable medium ” are used to gen
erally refer to transitory or non - transitory media . Such media
may be , e.g. , memory 708 , storage unit 720 , media 714 , and
channel 728. These and other various forms of computer
program media or computer usable media may be involved
in carrying one or more sequences of one or more instruc
tions to a processing device for execution . Such instructions
embodied on the medium , are generally referred to as
" computer program code ” or a “ computer program product ”
(which may be grouped in the form of computer programs
or other groupings) . When executed , such instructions might
enable the computing component 700 to perform features or
functions of the present application as discussed herein .
[0108] It should be understood that the various features ,
aspects and functionality described in one or more of the
individual embodiments are not limited in their applicability

a

US 2022/0084332 A1 Mar. 17 , 2022
10

9

to the particular embodiment with which they are described .
Instead , they can be applied , alone or in various combina
tions , to one or more other embodiments , whether or not
such embodiments are described and whether or not such
features are presented as being a part of a described embodi
ment . Thus , the breadth and scope of the present application
should not be limited by any of the above - described exem
plary embodiments .
[0109] Terms and phrases used in this document , and
variations thereof , unless otherwise expressly stated , should
be construed as open ended as opposed to limiting . As
examples of the foregoing , the term " including " should be
read as meaning “ including , without limitation ” or the like .
The term " example ” is used to provide exemplary instances
of the item in discussion , not an exhaustive or limiting list
thereof . The terms “ a ” or “ an ” should be read as meaning " at
least one , ” “ one or more ” or the like ; and adjectives such as
" conventional , " “ traditional , ” “ normal , ” “ standard , "
“ known . ” Terms of similar meaning should not be construed
as limiting the item described to a given time period or to an
item available as of a given time . Instead , they should be
read to encompass conventional , traditional , normal , or
standard technologies that may be available or known now
or at any time in the future . Where this document refers to
technologies that would be apparent or known to one of
ordinary skill in the art , such technologies encompass those
apparent or known to the skilled artisan now or at any time
in the future .
[0110] The presence of broadening words and phrases
such as “ one or more , " " at least , " " but not limited to " or
other like phrases in some instances shall not be read to
mean that the narrower case is intended or required in
instances where such broadening phrases may be absent .
The use of the term " component ” does not imply that the
aspects or functionality described or claimed as part of the
component are all configured in a common package . Indeed ,
any or all of the various aspects of a component , whether
control logic or other components , can be combined in a
single package or separately maintained and can further be
distributed in multiple groupings or packages or across
multiple locations .
[0111] Additionally , the various embodiments set forth
herein are described in terms of exemplary block diagrams ,
flow charts and other illustrations . As will become apparent
to one of ordinary skill in the art after reading this document ,
the illustrated embodiments and their various alternatives
can be implemented without confinement to the illustrated
examples . For example , block diagrams and their accompa
nying description should not be construed as mandating a
particular architecture or configuration .
What is claimed is :
1. A method for requirements engineering , comprising :
receiving as input , time series data from at least one of a

simulation of a vehicle run on simulation system , or
from the vehicle in operation ;

a requirements monitoring system checking to determine
whether a plurality of requirements for operation of the
vehicle are met , wherein the requirements are
expressed in signal temporal logic form and a require
ment includes at least an associated minimal sampling
rate and a filtering policy applicable to the requirement ;

determining a quantitative conformance for each of
selected requirements of the plurality of requirements ;
and

adding requirements to a verified requirements set based
on the qualitative conformance of the requirements .

2. The method of claim 1 , wherein the time - series data
comprises a sequence of values associated with one or more
signals generated and monitored over a period of time .

3. The method of claim 1 , wherein the requirements are
specified in the form of a requirements model , and wherein
a requirement of the plurality of requirements further com
prises a system requirement and a subsystem requirement .

4. The method of claim 1 , wherein the quantitative
conformance quantifies a degree to which performance is
met for the selected requirement .

5. The method of claim 4 , further comprising monitoring
the quantitative conformance across a plurality of iterations
for the selected requirement to optimize the selected require
ment based on the quantitative conformance .

6. The method of claim 1 , wherein the quantitative
conformance quantifies a degree to which there is conflict
between two or more of the requirements .

7. The method of claim 1 , wherein the quantitative
conformance quantifies a degree to which there is conflict
between a system requirement and a subsystem requirement .

8. The method of claim 1 , the quantitative conformance
quantifies a degree to which there is conflict between two or
more of the requirements , and wherein determining a quan
titative conformance for selected requirements of the plu rality of requirements comprises applying the requirements
over time to a symbolic trace and evaluating to determine
whether there are values that satisfy the requirements .

9. A system for requirements engineering , comprising :
a processor ; and
a memory coupled to the processor to store instructions ,

which when executed by the processor , cause the
processor to perform operations , the operations com
prising :
receiving as input , time series data from at least one of

a simulation of a vehicle run on a simulation system ,
or from the vehicle in operation ;

a requirements monitoring system checking to deter
mine whether a plurality of requirements for opera
tion of the vehicle are met , wherein the requirements
are expressed in signal temporal logic form and a
requirement includes at least an associated minimal
sampling rate and a filtering policy applicable to the
requirement ;

determining a quantitative conformance for each of
selected requirements of the plurality of require
ments ; and

adding requirements to a verified requirements set
based on the qualitative conformance of the require
ments .

10. The system of claim 9 , wherein the time - series data
comprises a sequence of values associated with one or more
signals generated and monitored over a period of time .

11. The system of claim 9 , wherein the requirements are
specified in the form of a requirements model , and wherein
a requirement of the plurality of requirements further com
prises a system requirement and a subsystem requirement .

12. The system of claim 9 , wherein the quantitative
conformance quantifies a degree to which performance is
met for the selected requirement .

13. The system of claim 9 , wherein the operations further
comprise monitoring the quantitative conformance across a

a

9

US 2022/0084332 A1 Mar. 17 , 2022
11

plurality of iterations for the selected requirement to opti
mize the selected requirement based on the quantitative
conformance .

14. The system of claim 9 , wherein the quantitative
conformance quantifies a degree to which there is conflict
between two or more of the requirements .

15. The system of claim 9 , wherein the quantitative
conformance quantifies a degree to which there is conflict
between a system requirement and a subsystem requirement .

16. The system of claim 9 , the quantitative conformance
quantifies a degree to which there is conflict between two or
more of the requirements , and wherein determining a quan
titative conformance for selected requirements of the plu
rality of requirements comprises applying the requirements
over time to a symbolic trace and evaluating to determine
whether there are values that satisfy the requirements .

17. A system for requirements engineering , comprising :
an operating environment , comprising at least one of a

simulation system to simulate operation of a vehicle , a
prototype vehicle or a production vehicle to generate
time series data regarding actual or simulated vehicle
performance ;

a requirements monitoring module comprising an input to
receive time series data from at least one of the simu
lation system , the prototype vehicle or the actual
vehicle ; the requirements monitoring module being

configured to determine whether a plurality of require
ments for operation of the vehicle are met , wherein the
requirements are expressed in signal temporal logic
form and a requirement includes at least an associated
minimal sampling rate and a filtering policy applicable
to the requirement ; and

a solver module to determine a quantitative conformance
for each of selected requirements of the plurality of
requirements .

18. A requirement for vehicle performance , the require
ment comprising trace specifications and an executable
version of a performance requirement , wherein the execut
able version of the performance requirement is automati
cally generated from a natural language description of the
requirement

19. The requirement of claim 18 , wherein the trace
specifications comprise at least one of a required minimum
sampling rate and a filtering specification .

20. The requirement of claim 18 , wherein the trace
specifications and the requirements are both implemented as
first - class objects .

21. The requirement of claim 18 , wherein the requirement
is implemented as a software entity expressed in a source file
that is executable by an interpreter .

a

