US 20160070761A1

a9 United States

a2y Patent Application Publication (o) Pub. No.: US 2016/0070761 A1l

Viel et al.

43) Pub. Date: Mar. 10, 2016

(54)

(71)
(72)

(73)

@

(22)

(63)

PARALLEL DATA STREAM PROCESSING
METHOD, PARALLEL DATA STREAM
PROCESSING SYSTEM, AND STORAGE
MEDIUM

Applicant: FUJITSU LIMITED, Kawasaki-shi (JP)

Emeric Viel, Yokohama (JP); Haruyasu
Ueda, Ichikawa (JP)

Inventors:

Assignee: FUJITSU LIMITED, Kawasaki-shi (JP)

Appl. No.: 14/943,454

Filed: Nov. 17, 2015

Related U.S. Application Data

Continuation of application No. PCT/JP2013/063983,
filed on May 20, 2013.

Publication Classification

(51) Int.CL
GOGF 17/30 (2006.01)
(52) US.CL
CPC ... GOG6F 17/30516 (2013.01); GOGF 17/30486
(2013.01); GOGF 17/30445 (2013.01)
(57) ABSTRACT

A non-transitory computer-readable storage medium stores a
data stream processing program that causes a computer to
execute a process. The process includes extracting a relation-
ship between properties included in events in a data stream
from the data stream itself, definitions of queries for process-
ing the data stream, or both of the data stream and the defi-
nitions of the queries; specifying a common partitioning key
common to a subset of the queries to be grouped into a
partitioning group based on partitioning keys in the defini-
tions of the queries, the relationship between the properties,
and a probability of the relationship; and assigning the subset
of the queries belonging to the partitioning group to each of
parallel nodes provided for parallel distributed processing
based on the specified common partitioning key.

112
13) 111 140
142 152
151
146 150
144
120 i
148 149 160
130 \f I ‘

Patent Application Publication = Mar. 10,2016 Sheet 1 of 28 US 2016/0070761 A1

FIG.1

112
13) 111
MDA f140

1o 142 152
151
146 150
144
120 i

148 149 160

US 2016/0070761 Al

Mar. 10,2016 Sheet 2 of 28

Patent Application Publication

0L¢

¢9¢

g1z oz *81Z,
¢o O_ENN LAKZ S U ¢|v|g| (%9
Yilele Nllele
yaz) T 47/ T2
avie e A 2 4%4 H
zle|t 212}z
743 HH b — 1O WM, L]l
e
i az1z’ i 122 ez’
r4:74 rd:¥4

O 'd ‘A3 ONINOLLILHYd

WY3IHLS
1Ndino

0L¢

ove

™ 81¢

™—-91¢

N | M|

VY1

™—¢l¢

0l¢

g 'V ‘A3 DNINOLLILHV

WNY3YLS
L1NdNI

d¢'ol

V¢ Ol

US 2016/0070761 Al

Mar. 10, 2016 Sheet 3 of 28

Patent Application Publication

¢ M—8lL¢

¢ M™—91L¢

H [ovie geol14

YA

81¢
20 — 1D
9LE] zD « 1D
ple
0iz o — 1O
20 « 1D
NpmR

O ‘9 ‘A3X DNINOILLILYVd

WYJH1S
1Nd1ino

dNOydO ONINOILILHYd

cFmH

g -A3M ONINOILLLYHVd

g 'V ‘A2 DNINOILILYYd

WV3IHLS

NNt - VYeDIA

0l¢

US 2016/0070761 Al

Mar. 10,2016 Sheet 4 of 28

Patent Application Publication

ocy
, 20 «— 1D 4
| 26y
1z
- 20 < 1O
1y SNOLLYNLLS3d
Loy ANIWYILIA Ol
. 9/V=(V)H Ag QIHSYH
A 4
(w4
'OI4 dv Ol
70 1) oLy
ml\ T T HIN_ME % {oH{™1} {e} {'e} {"v} {a} {0} -~
vop 20p
1" v} 13 3ONINO3S INIAI LNdNI
70)
eop’ Loy’
SNOLLYNLLS3Q (z0¥ 3AON ‘L0¥ JAON)

ININY31L30 0L
€/V=(V)O A9 NIVOV Q3HSVH

SNOILYNILS3A INIWYTL3a
Ol ¢/V=(V)4 A9 Q3HSVH <._V0HH_

Patent Application Publication = Mar. 10, 2016 Sheet 5 of 28 US 2016/0070761 A1

511
/
o FR= | G | HAE
A/2 A/3 A/6
o| o 0 o |
SO M 1| o 0 0 ||_—so1
2 | 1 0 0
4 2 1 o |[—912
503711 5 2 1 0o |
9 ﬁ <
6| 3 2 1
71 3 2 1
1

US 2016/0070761 Al

Mar. 10, 2016 Sheet 6 of 28

Patent Application Publication

4 N
4 4 ¥ 6
oz f oz | ¥ 8
4 N P
Lz | s L
N G B> 9
-
| | Z g
Sy | A ¥
7 S
0 . | 4 L)
0 0 . I A
0 0 0 |
0 J o | o 0
Y RO | Ty v
=W)H | =)D)} =(W)d

09'0I4

4 Y
1) ¥ 6
U & b 8
Lz e]
1 £ 9
< s
0o |) Z G
o [1 L z ¥
0 | | £
o | &) z
o [o 0 |
0 0 0 0
oYy | e/ | 2/ v
=¥V)H \ =(V)D } =(¥)d

V9'OI4

US 2016/0070761 Al

Mar. 10, 2016 Sheet 7 of 28

Patent Application Publication

(el {1'el {2yl {2s) - (e} {e} W} {a} -
(o)
{9 v} 73 JON3INDIS INIAAT

{v] 13 IONINOIS INIAT

10 40 AT
m >w% q,_www 13 WOYA |ONINOI L] Ldvd
0 SV (V)DAY ‘g 19313S g sv z/v ‘v 19313s
€3 OLNI 1H3SNI Z3 OLNI LY3SNI
2oL ozt
LOl4

US 2016/0070761 Al

Mar. 10, 2016 Sheet 8 of 28

Patent Application Publication

£28
zo 10 R[S
7 ¥ g
€8 v v
€ [~—128
(43) 10 j £ 7
4
v
1eg’ v 3
228
JON3IND3S
IN3AZ

¢d
JON3IND3S
LNIAL

)

E)
ONINOILI1dVd

G ¢ | S

118 ¥ AU 208z | ¥
¢ I 1 €

A 11 ¢
A\ a|Vv

[¢4

JON3INOIS JON3NDIS

LINIAT (a) LNIAL

LO8

[V]]:A3M

ONINO{ L1 Ldvd

Ll |l |o)

=

A0N3ND3S

IN3IAT

(v)

8'oI4

US 2016/0070761 Al

Mar. 10, 2016 Sheet 9 of 28

Patent Application Publication

cll|¢ 1 ¢
¢|0|} 01
blC|V [N
LILIE I | €
¢06~"11|1|¢ 10611 | ¢
L0 01
o[g|Vv a|v

{rouyirrg el {1y 2o’} 2’1 'gy -+ a fo't} {12} {1'e} {2'v} {O'1} {L'T} -
|

10 '8 v} 23 3ON3IND3S IN3IAT {4 v} 13 JON3INDIS LNIAT

¢0 40 A3
a A9 dNOYD c.z.zo:_._.m,qn_

(Ui |)sunuimzgs WOou4
ad SV (V)DAV 'd 1LD313S
€3 OLNI 1H3SNI

10 40 AIM
ONINOILILYvd

V A9 dNOYO
(Ui Pawiniume i3 NOYd
O SV (¥)LNNOD ‘g 'Y LO313S

¢3 OLNI LH3SNI

NSH :mH

6 OI4

US 2016/0070761 Al

Mar. 10, 2016 Sheet 10 of 28

Patent Application Publication

€001~

Q||

<Ll | N

0:0

oNo—R

100}

DiC

J
olol 2001

Mmo|No

<[~ ||~

(g=) L :AZM ONINOLLLLYVd
v 'NOWWOD

d01"9I4

606~

Q=i ||
MO |—i—|N|O|™
<L|— |||

106~

MNMIO||— N[O |—

LN | |—]|cN

(@)—(o)—

g -AIA

V A
ONINOILIIHYd ONINOLLILIYYd

V01Ol

US 2016/0070761 Al

Mar. 10, 2016 Sheet 11 of 28

Patent Application Publication

3dON HOVd Ol
JINDISSY FdV SI™HIND

t

d49VHOLS 19V.L

A

HINDISSY
Ad3IND

chR

4
o:_H

0

A 4

(QT1OHS3YHL ANOD3S)
JOL1VINJ1VvO
AOVHNOOV NOLLONNA

om:H

HO1VHINTD
NOLLONNL QHIHL

G411 S
HOLVHIANTD AIM
ONINOILILHYd NOWWNOO

H3HIINTIAI NOILONNA

*\m:H

¢m:H

d010vYl1X3
dIHSNOILY 134
AlH3d0dd DILVIS

H3HILNIA]
dIHSNOILLV 13

@N:H

(ANOHS3IYHL 1SYId)
dO0.LY1NJ1VO
ALTNIgvyaodd

dIHSNOLLYTdd

¢N:H

LINN DNIHOLS
IN3AT LNdNI

2z’ HOL1OVY1X3
dIHSNOLLV 13y

HO1LOVH1X3
AT ONINOILILYVd

H A
0ELL HOLOVYLX3

dIHSNOILLY134 Alddd0dd

ALd3d04dd DINVNAQ
A
0ct} J

A

¢Gll J
d3EHIINTAL ADM

ONINOILILHYd NOWWOD

I

I

7
OLLLE-

om:H

(SNOLLINI4IQ AH3AND
FTdILTINA ONIANTOND
AVYHO0dd

WV3H1S vivd

| 17014

US 2016/0070761 Al

ovel

Mar. 10, 2016 Sheet 12 of 28

Patent Application Publication

/N v 13 1D {2010} 19
NOIL A dnogo AU3AND dnouo
~ONN4 |DNINOILLLEYd| +NIAT LNANT | pyiNoTL I Yd HONIDNOTAE | DNINOLLLLYVd
wﬁwl evzL) evzl) war) meul 1ez1/
dc¢li ™ I4d oecl SrANIIE
%001 o 2| {g) Z3 g £3
%001 o g+v {av} 13 9 Z3
%001 NI /v {Vv] 13 g Z3
Mo [AL (v 1ONYOD |) 35 A143dodd | INIAT | | INJAT | ALYIAONd Z LNIAT | Z LNIAT
tzz1) ozzt) ezzt/ 2zl ezz1’ zzz’ 12z’
ONNL« d¢1 Dl
{a} Z3 r49)
{v] 13 1O
135 A
ONINOLILYG | ANJAI LNdNI AHIAND
Hmal 21z’ Lz .
01Z1 \VARIE

US 2016/0070761 Al

Mar. 10, 2016 Sheet 13 of 28

Patent Application Publication

%56 N-1 -

{v]

| g =

-v804d | -LLU1NA

ALTE ALIDLI oy ionpd| 138 ALYIHOUd | INIAT

I INJAT | ALHd3d0Hd ¢ LN3IAT | ¢ INJA

hmm—H mwm—R mom—H ._uem_'R mom.rH Ncme _.ompR
00sL) ¢ 1'DI4
A NYHNL3IY)
A
319V L dIHSNOLLY 134 A1d3d0dd an3

NI 8§ ANV V S311Hd3d04dd FHO1S

S3A

2
L0 JTOHSTYHL
< g dNV V S31LY3d0Hd NIIMLAE
dIHSNOLLY13Y |-O1-N 40
ALTI8vaoud

«
8¢el”

9ctl

g ANV V S311H3d0dHd ONIHYdJNOD
d04 J189V.L NOSIHVdWOD 31vddn

A

*\Nm—H

(LYY DNINdAVS MO HO HOIH 1Y)

S3ILYAd0Hd FHOLS ANV NIV1d0

JONINDIS INJAT LNdNI 40 9 ANV V

NN@T«

d3.1VHINIO SI 1dNYY3ILNI
ANY SIAIHYY LD AHIND HOA
IN3IAT LNdNI NIHM d3LHVLS

d¢1 ol

S3dON 40 HOV3
Ol dNOoYO DNINOLLILYVd OL
ONIONQOT38 S3IND NDISSV

h
wom—H

A3 ONINOILILHYd NOWWNOD ALILNAAL

4

ﬁom:

S3LH3d0dd NIamidd
SdIHSNOILLV13d LOVd.1Xd

Now—%

VELDIA

US 2016/0070761 Al

Mar. 10, 2016 Sheet 14 of 28

Patent Application Publication

%G8 =

C+e+l+e

¢+e+¢

| /4 4
1 4 ¢
0 | ¢
| [4 p
Y 40 JNTVA 40
V 40 INVA
Y14 STONSLUNOI0 | DN | ANOJSTHYH09

owiH

71 OI4

™M | N | ™

N | (TN

US 2016/0070761 Al

Mar. 10, 2016 Sheet 15 of 28

Patent Application Publication

%001 N1 744 {v} E d ¢3
A AL | (W INAMOD |) 35 A1yadodd | INJAT |1 INIAT| ALY3dONd 2 IN3AT |2 IN3AT

ommL«

‘d A9 dNOYD

¢ WOuA

O SV (V)DAV ‘9 10373S

€3 OLNI LHISNI

ﬂ

0zs1-

¢0

‘13 WOu4

g SV ¢/V 'Y L0313S

¢3 OLNI 1H3SNI

o—mLA

‘10

a619l4

VG| Old

US 2016/0070761 Al

Mar. 10, 2016 Sheet 16 of 28

Patent Application Publication

wg_/}ﬂ

%

S\@w/\/ﬁ

A
>

{M} 13 o
13S AT
HNINOLLI1LHVYd IN3IAT LNdANI{AH3IND

owo—%

(SL1NS3H NOILLYYLSIDTY)

Euwwﬂ

F18V.L A3M ONINOILIIHYd
NI M ALd3d0dd
IVNLYIA 4318193

*

379VL JdIHSNOI1VT13Y
ALd3d0dd Ni AL1T119vVE0dd
ANV ‘ALIOITdILINN ‘NOITLONNS
‘AIM ONINOILILYYd DNIL1VOIGNI
() ALY3doYd TVNLYIA ¥31SI93Y

318V.L AdX ONINOLLLLHVd
NI A3X ONINOILLILYVd
SY d3.10vd.LXd
Ald3d0dd H31S1D3d

o¢©:

S3A

¢d414S 11
Ald3d0dd

N_rfH t

1N3JAT ST A3M
ONINOILLLLYVd

8¢€91

mmfﬁ

ON
%001 NiL | 2V (V] 13 5 13
ALIIE | ALIOTd | NOIL | 135 AL¥3d0dd AL¥3dodd
-vgoud| -LLINW [-ONN4|l 1 IN3A3 PANIAD | T ngag | ¢ LN3AS

o—@_H

91Old

¢/V A8 dNOoYd

13 NOYd4d

(#*)ANNOD 1O0373S
¢3 OLNI LH3SNI

‘10

AdX ONINOILLLYVd
ﬁ HOV3 404 4001 ¥

%

rE91

1O AHIND 40 SATM
ONINOILLLLYHVYd 11V 1OVdLXd

*

Nmfggov AY3ND HOVI HO4 aoo&

US 2016/0070761 Al

Mar. 10, 2016 Sheet 17 of 28

Patent Application Publication

and

PLLL

QINAdNL1EY ST Y 138 A3
DNINOLLLLYVd DNILINS3Y

*

N—:/\)_\ J

A
»
»

d 13S A3 ONINOLLLLHVd
Ol LNS3Y SISATVNY
aqayv aNV dIHSNOILLVTIY
ANNO4d IZATYNY

%

J
kLl =

L1DId

A

A ONINOILLILYVYd ST Z'¢3 ANV
1D dNOYD DNINOILLLYVd 40 SAIM
DNINOLLILYVd 40 13849NS

80LL~

4
¢D Ad3aND 40

SI{ g3 v13
INIWNOYY

S3A

ON

&
1SIX3
g3 vIR4=2723
dIHSNOILV13d

90LL

vo\.—i

20 AY3ND 40 €3 3ONANDIS LNIAT INdNI ANV
1D dNOY¥D DNINOILI1¥Vd 40 {3 JONIND3S
INFAT INdNI N1 S311¥3d0dd NIIML3d
SdIHSNO{1v13d 40 HOVI H04 4007

*

[AUN S

(d) L3S A3M ONINOILLILYVd FZNVILINI

BR= AR

|

US 2016/0070761 Al

Mar. 10, 2016 Sheet 18 of 28

Patent Application Publication

Caa

A

t

%

L

H 138 A3M ONINOCILLILYVd
Ol H NOILONNH ANV
{~'a'13 'v'13] INFJWNDYY aav

¢1NO ANNO4 SI
H NOILONNA

d 13S AdX ONINOILILEVd
Ol 4 NOILLONNd
anNy { 'g'13 'v'13}
ININNDHY ddVv

(349318193 1ON
SI 4 NOILONN4)
d L3S AdX ONINOILILHVYd OL

9 NOILONN4 40 H1DNF1 dO-b3d
ANV 4 NOILONNH 40 HLODNA1
aold3d 40 F1dIL1NWN NOWWOD
1Sv31 SI LVHL HLONT1 dOlddd
DNIAVH H NOLLONNH 3LVINO1VO

o_m—% ﬂ

S3A

810ld

wom—H

9081

ONINOILILYVd 40
A3M ONINOILLILHVd SY

A

ON

A
1D dNoYO

a3isn s1 o
NOILONN4

[~ 'g'13 V' 13) INTJNNDHY aay
h
7081 J

y

S3dA

2
(1-01-1) NOILONNA

(N1 ‘NOILONNA
NOILOAMNI-NON)

NOILO3MNI SI
4 NOILLONN4

ON zosl

US 2016/0070761 Al

Mar. 10, 2016 Sheet 19 of 28

Patent Application Publication

and
_ 47149v.L n_:.ﬂwzo:&:_mx + _
J19vV.L dIHSNOLLV 1Y
ALH3d0dd NI INJWND|IYSIN
anNnod 40" INNONY NO_Q3Sve H R 319V.L dIHSNOLLY 13
SIH (3LYINDVO ALIT1€vE0Ud ANV HIDNIT do3d AlH3d0OHd NI S=HLDONI1
NOLLONNA i NOLLONILY 138 ONY _ HIENGT ONIAYH aoriad 43IA00 ATLNVLSNOD
ON Q01¥3d ¥IONOT ONIAVH D any | | © ANV 4 SNOLLONNA NVO 1VHL H NOILONN4 138
4 SNOIIONNd 40 3NO 1931438 40 INO 13S .
b A
0z61 8161/ L S3A 161’ o161/
o8V N GNV N_SHIDNT1 dOad 40
T1GYMOTIV NIHLIM ON (N ‘NYINDT=S F1dILTNI

9161

kZmEZ%m.EﬂE

S3A

ZOSEOO LSV 4LVINITVO
8061 -

2
W ANV
N SAOIH3d Nd3m13d
LININWNDITVSIN
JYIHL SI

¢i6l

Y NOILONNA 40 W H19DN31 AOId3d
ANV 4 NOILONNAS 40
N HI1ONIT dOid3d J1VYINOTIVO

v061 7 [S3A
>.5059mm_n_ JAVH

61Ol

O NOILLONMA ANV 4 NOILLONNA

ON 40 HLo4d
¢061

Patent Application Publication

2014 —
2016

2012 ™~

Mar. 10, 2016 Sheet 20 of 28

US 2016/0070761 Al

FIG.20
4)
(2001 2002 (2008 (2004
NECIEAR
A/2 | (A+1)/3 | (A+4)/6
0 0 0 0
| 0 0 o V
[2 R)
I 1 i 1
4 |2] 1 1
5 2 2 1
6 3 2 1
_ 7 3 2 1y
[8 4 3 2 N
9 4 3 2

US 2016/0070761 Al

Mar. 10, 2016 Sheet 21 of 28

Patent Application Publication

.j
.
/ Z ¥ 6
Z ¢ ¥ 8
-
\
z Z) £ L
YIASNVAL
JA0N-¥3IN] N 9
>
| | g G
|] Z ¥
N,
y
! | | £
EES YlA
EIYEITTR o | ! ¢
>
0 0 0 1
0 0 0 0
A /
/(1) || 7/(1+Y) ¢/vY v
=V)H \|_=¥)D) =(V)d
pz’ ez) ned

z z y 6
2 z y 8
7 ! £ R
| ! £ 9
! 1 z g
L | z v
T o 0 ! e N
0 0 1 z
0 0 0 1
0 0 0 0
b/ Y/ oY y
=(V)H =(V)D =(V)d
b1z’ eoiz) zoir 1017/
LAY =

US 2016/0070761 Al

Mar. 10, 2016 Sheet 22 of 28

Patent Application Publication

%001 51 g {a} 23 g E|
%001 B o) {0} 13 0 23
%001 N1 N (v} 13 g 23
A | ALQTID INOILONNA| 138 ALY3dOYd | INJAT| | INIAT |ALYIdOHd T INIAI| T INIAZ
CNNL. 0¢¢ Ol
{ga} £l €0
{a} Z3 r49)
{0V} 13 1O
OFNNVA 135S AT DNINOILILIYVd| 1NIAT 1LNdNI A43ND
£3 WOuH 23 WouA
g A9 dNOYD g A8 dNOYD oq Sy N\<_wo_\%w_m_
0 SY ()LINNOD 1DT13S || O SV (O)DAV ‘g LOT13S o GO
3 OLNI LYISNI £3 OLNI LH3SNI S
o) 70
g0z’ } 2022’ \/ 1oz’)
£0 » ¢ . o ; \F4AL)E
(a} v3) {0 ‘gl e3 N [‘gl e3 __/ fovi3

US 2016/0070761 Al

Mar. 10, 2016 Sheet 23 of 28

Patent Application Publication

e >Mv_ = %_%mo J€¢ Ol

NOLLONNA |5 \inOT Lyyd| INFAT LNAND | piNori T Tyvd

{2010} 1D .

EN0 dnoun dg€¢old

DNIONO 13 DNINOLLLLYVd

..... 1D

(o) N 1 vezo

{a} 3 N [0 'g} €3 _,Cﬁ [0 ‘al 23 _J oV _m@

US 2016/0070761 Al

Mar. 10, 2016 Sheet 24 of 28

Patent Application Publication

{a} v3

2N v 23
NOLLONNA| sniNOiTiave | ANFAI LndNI
................ 19
(o) L) oo
I
“ @ [0 gl e3 r@ [0'glz3 G 0 v} mg

a¥¢ Old

V¥¢ Old

US 2016/0070761 Al

Mar. 10, 2016 Sheet 25 of 28

Patent Application Publication

AN

ONINOI111dvd

ommNH

AN
ONINOILI1dvd

[49]

M|~ idN|N

g
174
€
[4
A4

ommuH

G¢' Ol

i
ozgg” o

¢3
ON3IND3S
AN3IAL

N M| <TI0

M~ || NN

v

13
OvSe Hm_OZm:Om_w

1IN3AL

016¢

A

ONINOIL11dvd

MN|(—]|—|N|N
LN |0

14
3ONIN03S
1N3IAT

V A9 dNOYS

(Ul awniuim' |3 NOYH
O SV (*)LNNOD ‘9 'V 1L0313S

23 OLNI 1H3SNI
0

mENH

US 2016/0070761 Al

Mar. 10, 2016 Sheet 26 of 28

Patent Application Publication

—

I1SUl WOYHA
M SV ¢/V * 10313S
Aigdwse] OLINI LHISNI

o_wNH

M A9 dNOYH
Hgdwe] NOYA
(*)LNNOD 1LO313S
ASINO OLNI LHASNI

3@NH

VINWHOA m“Te Ag dNOYD
ATY ONINOLLLLAVd nSU WO

(*)LNNOD 10313S
ASINO OLNI LH3SNI

N.ENw

—_

9¢Ol4

ALddd0dd SV
INIS3Hd SI AdM ONINOILLLHYd
dINIVLg0 LvHL OS 3SNV10
1097148 OL ALH3d0dd TVNLLHIA
ONIAAV A9 SWVHDOHd AHIND
OML OLNI 1O AHIND F1IHMIH

N

L0 AY3IND 40 SATY ONINOLLLLYYd

1 NOdd VINIAHOA A8 3 1LNISTH43

A ONINOILLLYVd NIV1490

A

ﬁ (1D) AY3ND HOVH "O4 dO0T ¥

US 2016/0070761 Al

Mar. 10, 2016 Sheet 27 of 28

Patent Application Publication

‘dnoJ§ 3unlsixe ayj o1 peppe sI P Auenb oyl pue ‘pajelsuss Amau joU s|
25 dnous ay3 ‘sisixe Apeadje § 108 Aoy Suluoniied syl Sulney dnoas e usyp

0GLe

1k

ONNNH

5 dNOYD Y04 F18vSN

| 135 AT DNINOLLLLHVd DNIAVH

(d) 1SI1 AHINO DNINIVATY NI
A¥3nd "D dnoyo OL ‘aay

¢9O dNOHHD OL
D dNOYD NI S33IND
TV ANV O AH3ND aav

yirz’ .

A

m:NR

9 dNOHH 0L D AHAND VIA
Q3LO3INNOD SIHIND 40 (M) LSI1
AH3ND ONINIVINEY NIV180

211z’ 1

(1*)
S 13S A3 HNINOLLILYV
d31lviNo1vOo HBNISN
2D dNOYD FLVYHINID

D dNoYD O1 D AY3AND aav

A

OKNR

(NOLLNO3X3 JAISHNOTIY)

S3A

SALdNG
L1ON SIS L3S AdX
ONINOLLILHVd

80L¢

¥0L¢

O AHIANO ANV D dNOYD
40 H108 404 d3SN 39 NVO 1VYHL

S 13S AdM ONINOLLLIHYd 3LVINDTIVO

¢0Le

%

r

L¢OlH

(d) LSTT AHIND DNINIVINTY NI
(D) AH3IND HOVI 404 4001

US 2016/0070761 Al

Mar. 10, 2016 Sheet 28 of 28

Patent Application Publication

098¢~ MYYOMLIN

AWNIGIN 4OVHO1S
318v1d0d

a¥8¢

JOV4d3LNI

AHOMLAN

dAINd

0v8¢

WNIAIN dOVHOLS
319V.140d

6887 —

49VdOlS

IVNY31X3

0882
0ggz”

8¢ Old

[ndino |~ %
30IA3A LNdNI |— 0282
AHOWAW | ——§182
ndo o182

US 2016/0070761 Al

PARALLEL DATA STREAM PROCESSING
METHOD, PARALLEL DATA STREAM
PROCESSING SYSTEM, AND STORAGE
MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The present application is a continuation applica-
tion filed under 35 U.S.C. 111(a) claiming benefit under 35
U.S.C. 120 and 365(c) of PCT International Application No.
PCT/IP2013/063983, filed on May 20, 2013, the entire con-
tents of which are incorporated herein by reference.

FIELD

[0002] An aspect of this disclosure relates to a parallel data
stream processing method, a parallel data stream processing
system, and a storage medium.

BACKGROUND

[0003] There is an increasing demand for a service for
collecting and using big data, i.e., a large amount of data
provided from, for example, various information sources,
apparatuses, and sensors connected to a network. If a large
amount of data generated in the real world can be sequentially
processed, it is possible to obtain information in almost real
time. For example, there is a demand for a technology that
sequentially process a large number of data streams that are
constantly provided from various sensors.

[0004] An example of such a technology is complex event
processing for processing big data. However, the recent
spread of smartphones and tablet terminals has drastically
increased communication traffic. Also, as more and more
people and apparatuses become connected to networks, the
communication traffic is expected to increase further.
Accordingly, it is necessary to further develop such technolo-
gies.

[0005] Data (a sequence of events) obtained from a data
stream may be stored in a database before extracting infor-
mation from or processing the data. However, this approach
may not always satisfy the need to easily obtain desired
information in real time. Accordingly, there is a demand for a
technology that can process and analyze a large number of
data streams (or a large data stream) in real time (or in almost
real time). Also, to meet this demand, a technology for pro-
cessing data streams in parallel is necessary.

[0006] A data stream includes multiple events. Therefore,
in the present application, a data stream may also be referred
to as an “event sequence’.

[0007] FIG.1illustrates an example of data stream process-
ing. In the example of FIG. 1, a stream processing system 140
sequentially processes three input streams 110, 120, and 130,
and outputs two output streams 150 and 160. For example, in
the input stream 110, multiple events 111, 112, and 113 are
sequentially input to the stream processing system 140.
[0008] The stream processing system 140 includes mul-
tiple queries 142, 144, 146, 148, and 149. These queries are
similar to queries used for processing of a static database.
However, queries for a stream processing system are different
from queries for a database in that they continuously process
input information and output desired information. Also in a
stream processing system, an output of a query is used as an
input to another query. This is another difference of queries
for a stream processing system from queries for a database.

Mar. 10, 2016

Accordingly, a “query” in the present application may addi-
tionally include a function that is different from a query for a
database.

[0009] In FIG. 1, queries are connected by arrows. These
arrows indicate data flows (data streams). For example, the
output stream 150 output from the stream processing system
140 includes multiple processing results 151 and 152. In the
present application, a graph indicating connections among
the queries in the stream processing system 140 is referred to
as a “query graph”. Also in the present application, a program
including a group of queries and a relationship among the
queries indicated by a query graph is referred to as a “data
stream program”.

[0010] A data stream program is written in a query lan-
guage similar to a Structured Query Language (SQL) used for
static databases. Examples of data stream program languages
include a Continuous Query Language (CQL) (see, for
example, Arasu, Arvind, Shivnath Babu, and Jennifer Widom.
“CQL: A language for continuous queries over streams and
relations” Database Programming [anguages. Springer Ber-
lin Heidelberg, 2004; http://link.springer.com/chapter/10.
1007/978-3-540-24607-7__1) and a Complex Event Process-
ing (CEP) Language (see, for example, Interstage Big Data
Complex Event Processing Server V1.0.0 Developer’s Ret-
erence; http://software.fujitsu.com/jp/manual/manualfiles/
m120021/j2ul1668/01enz200/2ul-1668-01enz0-00.pdf). In
the present application, the Complex Event Processing (CEP)
Language is used for descriptions.

[0011] InFIG.2A,two queries Q1 and Q2 are connected by
an intermediate stream 240. The queries Q1 and Q2 process
an input stream 210, and the query Q2 outputs an output
stream 270. The query Q1 includes partitioning keys A and B,
and the query Q2 includes partitioning keys B and C.

[0012] Here, a partitioning key is a key to be applied to a
hash function used to determine destination nodes of data
when an input stream is partitioned for parallel distributed
processing. For example, in a query with a group by operator,
the key used for the group by operator may be used as the
partitioning key for that query. When, for example, a program
of'the query Q1 includes a clause “group by A,B”, event fields
A and B are recognized as the partitioning keys of the query
Q1. When multiple fields are recognized as partitioning keys,
a set of partitioning keys is referred to as a “partitioning key
set”. Similarly, in a query with a join operator, the join key(s)
used for the join operator may be used as the partitioning
key(s) of that query.

[0013] Further, in the present application, a function indi-
cating a relationship between properties of an input event and
an output event of a query is also treated as a partitioning key.
Here, a property indicates an attribute of data belonging to an
event. An event has one or more properties. Also, a property
may be used as a partitioning key.

[0014] FIG. 2B illustrates an example where the data
stream program of FIG. 2A is executed in a parallel distrib-
uted manner to process the input stream 210.

[0015] The input stream 210 is expressed in a format simi-
lar to a table used for a database. The input stream 210 has
multiple properties {A,B,C}. Also, the input stream 210
includes multiple events 212, 214, 216, and 218 that are
arranged in time series. The query Q1 is assigned to each of a
node 232 and a node 234. Here, a node may indicate, for
example, a physical machine or a virtual machine. In this
example, distributed processing of the query Q1 is performed
by two nodes 232 and 234. At a point 220, to distribute the

US 2016/0070761 Al

input stream 210 to the node 232 and the node 234, the input
stream 210 is partitioned into a stream 221 and a stream 222
by applying a partitioning key set {A, B} to an appropriate
hash function. The stream 221 includes an event 212q and an
event 214a that sequentially arrive at the node 232 and are
processed. The stream 222 includes an event 2164 and an
event 218a that sequentially arrive at the node 234 and are
processed. As the hash function, a technology for a static
database may be used. For example, a hash table may be used.
In this case, various hash functions for partitioning the input
stream 210 into two streams 221 and 222 using the partition-
ing key set {A, B} may be used.

[0016] AlsoinFIG. 2B, the query Q2 is assigned to each of
a node 252 and a node 254. The query Q2 has a partitioning
key set {B, C} and is different from the query Q1. Therefore,
an event 2125 from the node 232 and an event 2165 from the
node 234 are processed by the query Q2 of the node 252.
Similarly, an event 2145 from the node 232 and an event 2186
from the node 234 are processed by the query Q2 of the node
254.

[0017] For this purpose, an output of the node 232 needs to
be partitioned into a stream 242 and a stream 244 by using the
partitioning key set {B, C} of the query Q2 and an appropriate
hash function to send the corresponding events to the node
252 and the node 254. Similarly, an output of the node 234
needs to be partitioned into a stream 246 and a stream 248 by
using the partitioning key set {B, C} of the query Q2 and an
appropriate hash function to send the corresponding events to
the node 252 and the node 254.

[0018] Thus, in the example of FIG. 2B, even though the
queries Q1 and Q2 are executed in parallel using four nodes
232, 234, 252, and 254, communications via four streams
242,244, 246, and 248 occur among the four nodes 232, 234,
252, and 254. These communications consume network
resources of the nodes.

[0019] US Patent Application Publication No. 2010/
0030741, for example, discloses a method that receives a
query plan including multiple queries, classifies the queries,
computes an optimal partition set for each of the queries, and
reconciles the optimal partition set of each of the queries with
at least one subset of queries. The method also selects at least
one reconciled optimal partition set to be used by each of the
queries, and stores the selected at least one reconciled optimal
partition set in a computer readable medium.

[0020] Japanese Patent No. 4925143, for example, dis-
closes a technology for analyzing a cause of a result of a
stream data processing system taking into account a process
performed by a unique window operator used in the stream
data processing system.

[0021] Also, Japanese Laid-Open Patent Publication No.
2011-76153, for example, discloses a technology for auto-
matically generating a query for complex event processing
based on an event log. In this technology, patterns of combi-
nations of attribute values frequently appearing in the event
log are obtained, and frequently-occurring events are auto-
matically generated based on the obtained patterns. Next, a
frequently-occurring event sequence where labeled fre-
quently-occurring events are arranged in the order of occur-
rence is generated. Then, a query for detecting the occurrence
of'an incident is generated based on the frequently-occurring
event sequence.

Mar. 10, 2016

SUMMARY

[0022] According to an aspect of this disclosure, there is
provided a non-transitory computer-readable storage
medium storing a data stream processing program that causes
acomputer to execute a process. The process includes extract-
ing a relationship between properties included in events in a
data stream from the data stream itself, definitions of queries
for processing the data stream, or both of the data stream and
the definitions of the queries; specifying a common partition-
ing key common to a subset of the queries to be grouped into
a partitioning group based on partitioning keys in the defini-
tions of the queries, the relationship between the properties,
and a probability of the relationship; and assigning the subset
of the queries belonging to the partitioning group to each of
parallel nodes provided for parallel distributed processing
based on the specified common partitioning key.

[0023] The object and advantages of the invention will be
realized and attained by means of the elements and combina-
tions particularly pointed out in the claims.

[0024] Itisto be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention.

BRIEF DESCRIPTION OF DRAWINGS

[0025] FIG. 1 is a drawing illustrating an outline of exem-
plary data stream processing using queries;

[0026] FIGS. 2A and 2B are drawings illustrating an
example of parallel distributed execution of queries;

[0027] FIGS. 3A and 3B are drawings illustrating an
example where queries are grouped into a partitioning group
using a partitioning key;

[0028] FIGS. 4A through 4C are drawings illustrating
examples where a function is used as a partitioning key;
[0029] FIG. 5 is a drawing illustrating a function having the
least common multiple of period lengths of two functions;
[0030] FIGS. 6A through 6D are drawings illustrating
examples where inter-node communications occur when a
function is used as a common partitioning key;

[0031] FIG. 7 is a drawing illustrating an example where a
partitioning key common to two queries cannot be easily
found out;

[0032] FIG. 8 is a drawing illustrating an example where a
relationship between properties is written in a query program;
[0033] FIG. 9 is a drawing illustrating an example where a
dynamic relationship is found out between properties of an
input event sequence of a query;

[0034] FIGS. 10A and 10B are drawings illustrating an
example where a partitioning group including multiple que-
ries is formed taking into account a dynamic relationship
between properties included in an event sequence;

[0035] FIG. 11isablock diagram illustrating an exemplary
functional configuration of a parallel data stream processing
system,

[0036] FIGS. 12A through 12D are exemplary tables stored
in a table storage;

[0037] FIGS. 13A and 13B are flowcharts illustrating
exemplary processes performed by a parallel data stream
processing system;

[0038] FIG. 13C is a drawing illustrating an exemplary
entry of a property relationship table;

[0039] FIG. 14 is a drawing used to describe an exemplary
process of calculating a probability of a relationship between
properties;

US 2016/0070761 Al

[0040] FIG. 15A is a drawing illustrating exemplary pro-
grams defining queries;

[0041] FIG. 15B is an exemplary property relationship
table;
[0042] FIG. 16 is a flowchart illustrating an exemplary

process of extracting a partitioning key set from a query;
[0043] FIG. 17 is a flowchart illustrating an exemplary
process of calculating a partitioning key set that is common to
a partitioning group and a subsequent query;

[0044] FIG. 18 is a flowchart illustrating an exemplary
process of analyzing an extracted function;

[0045] FIG. 19 is a flowchart illustrating an exemplary
process of obtaining a function that is usable as a partitioning
key for reducing inter-node communications;

[0046] FIG.201is adrawing illustrating an example where a
function usable as a partitioning key for reducing inter-node
communications is obtained when a period length of none of
two functions is divisible by a period length of the other one
of the two functions;

[0047] FIGS. 21A and 21B are drawings illustrating
examples where a period length of one of two functions is
divisible by a period length of the other one of the two func-
tions;

[0048] FIGS. 22A through 22C are drawings used to
describe an example where queries are grouped into a parti-
tioning group;

[0049] FIGS. 23A through 23C are drawings used to
describe an example where another query is added to a par-
titioning group;

[0050] FIGS. 24A and 24B are drawings used to describe
an example where still another query is added to a partitioning
group;

[0051] FIG.251s a drawing illustrating an example where a

partitioning group is formed using a dynamic relationship
between properties of an input event sequence;

[0052] FIG. 26 is a flowchart illustrating an exemplary
process of normalizing a query (or a partitioning key set);
[0053] FIG. 27 is a flowchart illustrating an exemplary
process of adding a query to a partitioning group; and
[0054] FIG.28is ablock diagram illustrating an exemplary
hardware configuration of a computer implementing a paral-
lel data stream processing system.

DESCRIPTION OF EMBODIMENTS

[0055] The above-described consumption of network
resources caused by communications among nodes increases
as the number of nodes for parallel distributed processing
increases, and is one of the problems that need to be solved to
properly achieve parallel distributed processing.

[0056] To process a data stream including a large amount of
data, it is necessary to find out an appropriate plan for the data
stream to be processed. However, with the related-art tech-
nologies where a plan is derived from, for example, charac-
teristics of queries, plans (for application of a partitioning
group) that can be derived are limited.

[0057] An aspect of this disclosure provides a parallel data
stream processing method, a parallel data stream processing
system, and a storage medium that can reduce data commu-
nications among nodes for parallel distributed processing of
data streams.

[0058] Embodiments ofthe present invention are described
below with reference to the accompanying drawings. The
embodiments described below are to facilitate understanding
of the present invention, and are not intended to limit the

Mar. 10, 2016

scope of the present invention. Also, the embodiments
described below are not mutually exclusive. Therefore, ele-
ments in different embodiments may be combined unless they
contradict with each other. Also, steps described in claims
may be executed in any appropriate order and multiple steps
may be executed concurrently where appropriate. The
embodiments described below are included in the scope of the
claimed invention. The same reference number may be
assigned to the same or similar components in multiple draw-
ings.

[0059] FIGS. 3A and 3B are drawings illustrating an
example where queries are grouped into a partitioning group
using a partitioning key. FIG. 3A illustrates a query graph of
a data stream program that includes a query Q1 and a query
Q2 and is similar to the data stream program of FIG. 2A. In
FIG. 3A, different from FIG. 2A, the query Q1 and the query
Q2 are grouped into a partitioning group 310. The partition-
ing group 310 has a partitioning key set {B} that is common
to the query Q1 and the query Q2. Queries having a common
partitioning key set belong to the same partitioning group,
and the partitioning group has the common partitioning key
set.

[0060] Inthe example of FIGS. 2A and 2B, only one query
is assigned to each node. With the configuration of FIGS. 2A
and 2B, when partitioning key sets of queries (Q1 and Q2) do
not completely match, “cross” communications occur among
nodes to which the queries are assigned.

[0061] FIG. 3B illustrates an exemplary configuration for
reducing the cross communications among nodes (queries)
illustrated in F1G. 2B. In FIG. 3B, the query Q1 and the query
Q2 belonging to the partitioning group 310 are assigned to
each of four nodes 312, 314, 316, and 318. Here, a partition-
ing group indicates a subset of one or more queries that can be
assigned to the same node.

[0062] An input stream 210 is partitioned at a point 320 by
applying the partitioning key set {B} to an appropriate hash
function. That is, events 212¢, 214¢, 216¢, and 218¢ are input
via streams 321, 322, 323, and 324 to nodes 312, 314, 316,
and 318, respectively.

[0063] In this case, the input stream 210 is partitioned by
applying the partitioning key set {B} common to the query
Q1 and the query Q2 to a hash function, and is processed in a
parallel distributed manner. With this configuration, in each
of'the nodes 312,314, 316, and 318, an output of the query Q1
is simply input to the query Q2. Accordingly, in this case,
cross communications (streams 242, 244, 246, and 248)
among nodes as in FIG. 2B do not occur. Outputs from the
nodes 312, 314, 316, and 318 are combined to obtain an
output stream 270.

[0064] When a common partitioning key set exists for con-
secutive queries as in FIG. 3 A, those queries are grouped into
one partitioning group in a query graph. Then, one or more
queries included in a partitioning group are assigned to each
node. This configuration makes it possible to prevent cross
communications among (parallel) nodes for parallel distrib-
uted processing.

[0065] The number of nodes to which a partitioning group
or queries are assigned for parallel distributed processing may
be determined based on, for example, the load of query pro-
cessing, the number of physical machines available for the
nodes, and/or the size of a data stream. An appropriate hash
function to which a partitioning key set of a partitioning group
is to be applied may be defined based on the determined
number of nodes for parallel distributed processing. Also, a

US 2016/0070761 Al

hash function may be determined so that events in a data
stream can be divided as evenly as possible.

[0066] In the example of FIGS. 3A and 3B, it is assumed
that partitioning keys A, B and partitioning keys B, C are
explicitly written in the respective programs of the query Q1
and query Q2.

[0067] FIGS. 4A through 4C are drawings illustrating
examples where a function is used as a partitioning key. In
FIGS. 4A through 4C, it is assumed that a query Q1 and a
query Q2 are defined as indicated below.

[0068] Q1:

[0069] insert into E2

[0070] select A, COUNT(*)as B
[0071] from E1

[0072] group by A/2;

[0073] Q2:

[0074] insert into E3

[0075] select A, B, COUNT(¥*) as C
[0076] from E2

[0077] group by A/3;

[0078] Here, A/2 indicates a function that divides A by 2

and truncates digits after the decimal point of the quotient.
A/3 indicates a function that divides A by 3 and truncates
digits after the decimal point of the quotient.

[0079] In FIG. 4A, the query Q1 is assigned to each of a
node 401 and a node 402, and input events are hashed by
(A/2)%2 at a point 410. Then, events are also hashed by
(A/3)%2 at each of the node 401 and the node 402. Here, K %
N indicates applying a partitioning key set K to a hash func-
tion that outputs N hash values. In the above example, a
function F(A)=A/2 and a function G(A)=A/3 are used as
partitioning key sets.

[0080] The function F(A)=A/2 is a type of mathematical
function called a step function. The value of F(A) increases by
1 each time the value of A increases by 2, but is fixed until the
value of A increases by 2. The function G(A)=A/3 is also a
step function. The value of G(A) increases by 1 each time the
value of A increases by 3. It is assumed that a step function,
which increases at regular intervals based on the value of A,
has periodicity, and the interval of A at which the value of the
function increases is referred to as a “period length”. In this
example, the period length of the function F(A) is 2, and the
period length of the function G(A) is 3.

[0081] FIG. 4C is a graph illustrating a relationship
between the function F(A) and the value of A. This graph
indicates that a period length p of F(A) is 2.

[0082] When two different functions are used as partition-
ing key sets of two consecutive queries and there is a one-to-
one relationship between the two functions, either one of the
two functions can be used to group the two queries into a
partitioning group. For example, this applies to a case where
the two functions are consecutive linear functions. However,
when the two functions are step functions having periodicity
as described above, it is not possible to simply group two
queries into a partitioning group.

[0083] In the case of FIG. 4A, an input event sequence E1
is partitioned at the point 410 by using a hash function (A/2)
%2, and the query Q1 is executed at the node 401 and the node
402 in a parallel distributed manner. At this point, input events
can be efficiently processed by the two nodes 401 and 402 that
independently execute the query Q1 in parallel. However,
because the hash function (A/3)%2 is also applied to the
events at each of the node 401 and the node 402, cross com-
munications 421 and 422 occur.

Mar. 10, 2016

[0084] InFIG. 4B, to eliminate the cross communications,
the query Q1 and the query Q2 are assigned to each of a node
431 and a node 432, and a data stream E1 is hashed by
(A/6)%2 at a point 430. This configuration makes it possible
to eliminate cross communications between the node 431 and
the node 432.

[0085] Inthe above example, the function A/2 and the func-
tion A/3 related to properties of input and output events are
used for the two consecutive queries Q1 and Q2, respectively,
the period length of the function A/2 is 2, and the period
length of the function A/3 is 3. In this case, the function A/6
with a period length 6, which is the least common multiple of
the period length 2 and the period length 3, is used as a
common partitioning key of the queries Q1 and Q2 to assign
the queries Q1 and Q2 to one partitioning group.

[0086] The partitioning group is assigned to the node 431
and the node 432. The input event sequence E1 is properly
hashed by the hash function (A/6)%?2 so that cross commu-
nications do not occur between the node 431 and the node 432
to which the queries Q1 and Q2 are assigned.

[0087] The above descriptions indicate that a common par-
titioning key can be newly generated even when step func-
tions having periodicity are used as partitioning keys.
[0088] In the above description, a function is defined as
representing a relationship between a property of an input
event and a property of an output event of a query. However,
depending on the manner in which a query is defined, a
function may be intrinsically present in the query. This is
described later with reference to FIG. 26.

[0089] FIG. 5 is a drawing illustrating values that can be
taken by the function F(A)=A/2, the function G(A)=A/3, and
the function H(A)=A/6 having a period length that is the least
common multiple of the period lengths of the functions F(A)
=A/2 and G(A)=A/3, in association with values of A. A period
521 of H(A) includes periods 501, 502, and 503 of F(A) and
periods 511 and 512 of G(A).

[0090] Accordingly, a boundary of a period (i.e., a bound-
ary between consecutive periods) of F(A) and a boundary of
a period of G(A) coincide with a boundary of a period of
H(A). Cross communications among nodes can be avoided by
hashing the input event sequence E1 (by, for example, H(A)
%?2), placing the queries Q1 and Q2 in the same partitioning
group, and assigning the partitioning group to each of the
nodes for parallel distributed processing.

[0091] FIGS. 6A through 6D are drawings illustrating
examples where inter-node communications occur when a
function is used as a common partitioning key. FIG. 6A
illustrates an example where a function F(A)=A/2 is used as
a partitioning key of the query Q1, a function G(A)=(A+1)/3
is used as a partitioning key of the query Q2, and a function
H(A)=A/6 is used as a common partitioning key of a parti-
tioning group including the queries Q1 and Q2.

[0092] Asillustrated by FIG. 6 A, when A=5, misalignment
occurs between the period of F(A) and the period of G(A)
(i.e., the boundary of the period of F(A) does not coincide
with the boundary of the period of G(A)). For this reason, a
communication 610 occurs between a node 601 and a node
602 as illustrated by FIG. 6B. At a point 630, an input event
sequence (data stream) E1 is hashed using H(A)=A/6.
[0093] Inthis case, when random events are included in the
data stream, an inter-node communication occurs at an aver-
age frequency of . This occurrence frequency of inter-node
communications is less than the occurrence frequency (%) of
inter-node communications in a case where the function F(A)

US 2016/0070761 Al

=A/2 and the function G(A)=A/3 are simply used as parti-
tioning keys of the query Q1 and the query Q2, respectively.
[0094] FIG. 6C illustrates an example where a function
F(A)=A/2 is used as a partitioning key of the query Q1, a
function G(A)=(A+1)/4 is used as a partitioning key of the
query Q2, and a function H(A)=A/4 is used as a common
partitioning key of a partitioning group including the queries
Q1 and Q2. As illustrated in FIG. 6D, an input event sequence
E1 is hashed using H(A)=A/4 at a point 640.

[0095] Inthe case of FIG. 6C, as illustrated by FIG. 6D, an
inter-node communication 620 occurs from a node 603 to a
node 604 when, for example, A=3. In this case, the average
occurrence frequency of inter-node communications is V4.
This occurrence frequency of inter-node communications is
less than the occurrence frequency (%4) of inter-node commu-
nications in a case where the function F(A)=A/2 and the
function G(A)=A/4 are simply used as partitioning keys of the
query Q1 and the query Q2, respectively.

[0096] In the case of FIG. 6A, inter-node communications
can be eliminated by using, as a common partitioning key,
another function having a period length that is the least com-
mon multiple. This is described later with reference to FIG.
20.

[0097] The above examples indicate that the frequency of
inter-node communications can be reduced by using, as a
common partitioning key of the partitioning group including
the queries Q1 and Q2, a function having a period length that
is the least common multiple of period lengths of functions
used as partitioning keys of the queries Q1 and Q2.

[0098] Thus, the above examples make it possible to reduce
a communication cost even when inter-node communications
occur. Accordingly, when the communication cost is less than
a predetermined cost, the partitioning group is preferably
used. The predetermined cost is an example of a second
threshold.

[0099] Inthe case of FIGS. 6C and 6D, because the periods
of the functions F(A) and G(A) are always misaligned with
each other, it is not possible to eliminate inter-node commu-
nications of the partitioning group including the queries Q1
and Q2 even if any other function is used as a common
partitioning key.

[0100] In the above examples, a function usable as a parti-
tioning key is present in each of two queries. In the examples
described below, a function having a period length that is the
least common multiple of period lengths of two functions
cannot be easily found out.

[0101] FIG. 7 is a drawing illustrating an example where a
partitioning key common to two queries cannot be easily
found out.

[0102] Asindicated by a program 701 defining a query Q1,
the query Q1 does not have an internal state that is provided
by, for example, a window or an aggregate function, and
therefore can be freely distributed. This indicates that any
property of input events can be used as a partitioning key.
Because an input event sequence E1 of the query Q1 has a
property A, a partitioning key set {A} is used for the query
Q1.

[0103] A program 702 defining a query Q2 includes an
aggregate function AVG(A), and therefore the query Q2 has
an internal state. Also, the program 702 includes a clause
“GROUP BY B”. Therefore, a partitioning key set {B} is used
for the query Q2.

[0104] As described above, it appears that a common par-
titioning key cannot be found out for the queries Q1 and Q2.

Mar. 10, 2016

Without a common partitioning key, the queries Q1 and Q2
cannot be grouped into the same partitioning group and
assigned to multiple nodes for parallel distributed processing.
[0105] However, the program 701 of the query Q1 includes
“A/2 as B”. Therefore, the query Q1 includes a relationship
B=A/2.

[0106] In FIG. 8, the query Q1 and the query Q2 are the
same as those illustrated in FIG. 7. A method of grouping two
queries into the same partitioning group using a relationship
between properties written in a query program is described
with reference to FIG. 8.

[0107] In FIG. 8 (A), according to the definition of the
query Q1, there is a relationship B=F(A)=A/2 between the
property A of an input event sequence E1 (801) and the
property B of an output event sequence E2 (802).

[0108] As illustrated by FIG. 8 (B), an event sequence E1
(811) and an event sequence E2 (812) are the same as the
event sequence E1 (801) and the event sequence E2 (802). In
this case, the query Q1 and the query Q2 have the same
partitioning key B. In other words, because the relationship
B=A/2 exists, the query Q1 and the query Q2 have a function
A/2 as the same partitioning key.

[0109] FIG. 8 (C) illustrates an example where the query
Q1 and the query Q2 are grouped into a partitioning group and
assigned to each of a node 831 and a node 832 for parallel
distributed processing. In this case, B (i.e., F(A)=A/2) is used
as a common partitioning key. Accordingly, an event
sequence E1 (821) is hashed by (A/2)%2 (i.e., B %2) to
partition the event sequence E1 into two streams 822 and 823.
[0110] Thus, even when it appears that a common partition-
ing key cannot be found out for the queries Q1 and Q2, a
common partitioning key can be found out by analyzing a
relationship of properties of input and output events of the
queries Q1 and Q2.

[0111] FIG. 9 is a drawing illustrating an example where a
dynamic relationship is found out between properties (prop-
erties A and B) of an input event sequence E1 of a query.
[0112] There is a case where a relationship between prop-
erties in an event sequence cannot be found out by analyzing
a query program. However, even in such a case, a certain,
although not complete, degree of relationship may be intrin-
sically present between properties in an input event sequence.
Also, there is a case where a certain degree of relationship
exists between properties within a range of a window of a
query even though no special relationship exists between the
properties in the long term. In such a case, because a steady
relationship does not exist between properties outside of a
window of a query, it is difficult, with the related-art tech-
nologies, to find out a plan for grouping queries into a parti-
tioning group.

[0113] InFIG. 9, a query Q1 is defined by a program 911,
and a query Q2 is defined by a program 912. The program 911
of'the query Q1 has an internal state as indicated by a syntax
“FROM El.win:time(1 min)” called a time window. This
syntax indicates that an input event sequence E1 is accumu-
lated for one minute, and a predetermined process is per-
formed on the accumulated event sequence. Descriptions of
other syntaxes are omitted here because they are substantially
the same as syntaxes of a query for processing a database. The
program 911 also includes “GROUP BY A”. Therefore, “A”
is extracted as a partitioning key of the query Q1.

[0114] The query Q1 has a time window 901, and the query
Q2 has a time window 902.

US 2016/0070761 Al

[0115] Here, attention is given to multiple events in the time
window 901 that are accumulated from the input event
sequence E1 by the query Q1. Properties (in this example, A
and B) included in input events of the query Q1 are data
passively received by the query Q1, and the query Q1 cannot
define the relationship between the properties A and B. How-
ever, at a certain probability, the properties A and B in mul-
tiple events accumulated in the time window 901 may have a
relationship. Also, even when no special relationship exists
between properties in the long term, a relationship may exist,
at a certain probability, between the properties within a range
of each time window of a query.

[0116] In the example of the time window 901, there is a
relationship B=A/2 between the properties A and B. This
relationship B=A/2 cannot be extracted from the program 911
of'the query Q1. Here, A/2 indicates a function that divides A
by 2 and truncates the remainder. With the relationship B=A/
2, multiple values of A correspond to one value of B. This
relationship is also referred to as a 1-to-N [N is an integer]
relationship.

[0117] Events accumulated in the time window 901 all
(100%) satisty the 1-to-N relationship. In practice, however,
there are cases where not all events satisfy the 1-to-N rela-
tionship. These cases are mentioned later with reference to
FIGS. 13A through 14. From the program 911 of the query
Q1, “A” is extracted as a partitioning key of the query Q1.
[0118] Ingeneral, when a property X and a property Y have
the 1-to-N relationship, the property corresponding to “1” (in
this example, X) can function as a partitioning key.

[0119] In FIG. 9, the program 912 of the query Q2 also
includes a definition of a time window 902 and has an internal
state. Also, the program 912 includes a syntax “GROUP BY
B”. Therefore, “B” is extracted as a partitioning key of the
query Q2.

[0120] Thus, at this stage, partitioning keys of the queries
Q1 and Q2 are different from each other, and no common
partitioning key exists. Accordingly, the queries Q1 and Q2
cannot be grouped into the same partitioning group.

[0121] FIGS. 10A and 10B are drawings illustrating an
example where a partitioning group including multiple que-
ries is formed taking into account a dynamic relationship
between properties included in an event sequence. In FIGS.
10A and 10B, the relationship B=A/2 obtained from the time
window 901 is used. FIG. 10A illustrates the partitioning key
“A” of the query Q1 and the partitioning key “B” of the query
Q2 that obtained from the query programs illustrated in FIG.
9. Inthe state of FIG. 10A, the query Q1 and the query Q2 are
not grouped into a partitioning group.

[0122] FIG. 10B illustrates an example where the query Q1
and the query Q2 are grouped into a partitioning group using
a common partitioning key “B” (i.e., A/2) based on the rela-
tionship B=A/2, and the partitioning group is assigned to each
of'a node 1010 and a node 1020 for parallel distributed pro-
cessing.

[0123] An input event sequence is hashed by a hash func-
tion B %2 at apoint 1001 and distributed to the node 1010 and
the node 1020. A hashed event sequence 1002 is input to the
node 1010, and a hashed event sequence 1003 is input to the
node 1020.

[0124] In this example, the query Q1 and the query Q2 are
grouped into a partitioning group by using a common parti-
tioning key obtained based on a dynamic relationship
between properties included in events. Here, there may be a
case where not all events satisty the relationship. In such a

Mar. 10, 2016

case, communications may occur between the node 1010 and
the node 1020. However, when the relationship is satisfied at
a probability greater than a predetermined level, the inter-
node communications can be kept within an acceptable level.
The predetermined level is an example of a first threshold.

[0125] In the example of FIGS. 9 through 10B, a specific
relationship B=A/2 is found between two properties. How-
ever, in practice, there may be a case where a 1-to-N relation-
ship can be found out between properties of input events, but
no function for defining the relationship can be found out.
Even in such a case, as long as a 1-to-N (or 1-to-1) relation-
ship can be found between, for example, properties B and A
for the query Q1, it indicates that the property B can be used
to aggregate events in the query Q1. Accordingly, when the
query Q2 following the query Q1 has the same partitioning
key B, the query Q1 and the query Q2 can form a partitioning
group having a common partitioning key B. Thus, as long as
a 1-to-N relationship can be found between properties A and
B at a certain probability, there is no problem even if the
relationship cannot be specifically defined.

[0126] Also in the example of FIGS. 9 through 10B, each
query includes a syntax of a time window that causes events
within a predetermined time period to be stored in the query.

[0127] A syntax such as a time window for storing and
processing multiple events is generally referred to as a “slid-
ing window”. When a syntax of a sliding window exists in a
query, it is possible to obtain a relationship between multiple
properties included in multiple events accumulated by the
sliding window.

[0128] In the case of a query including no sliding window,
events in a data stream input to the query may be sampled at
appropriate intervals and stored. The sampling interval is
described later with reference to FIG. 13B. Also, the relation-
ship between multiple properties may be successively calcu-
lated and stored. In this case, each time a new event is input,
the stored calculation result is incrementally corrected.

[0129] FIG. 11isablock diagram illustrating an exemplary
functional configuration of a parallel data stream processing
system 1100. The parallel data stream processing system
1100 may include a property relationship extractor 1110, a
common partitioning key identifier 1150, a table storage
1160, and a query assigner 1170. The parallel data stream
processing system 1100 has a function to receive a program
including multiple query definitions and assign queries to
multiple nodes. The parallel data stream processing system
1100 can use a relationship between properties included in
events in a data stream.

[0130] The property relationship extractor 1110 may
include a dynamic property relationship extractor 1120 and a
static property relationship extractor 1130.

[0131] The dynamic property relationship extractor 1120
can dynamically extract a relationship between multiple
properties by using multiple events in a data stream. Here,
“dynamically” indicates using multiple events in a data
stream that is dynamic data. A relationship between proper-
ties obtained from a data stream is referred to as a “dynamic
relationship”. The dynamic relationship may change depend-
ing on the data stream.

[0132] The static property relationship extractor 1130 can
statically extract a relationship between multiple properties
from a program including multiple query definitions. Here,
“statically” indicates using static data, i.e., a program includ-
ing multiple query definitions. A relationship between prop-

US 2016/0070761 Al

erties obtained from a program is referred to as a “static
relationship”. The static relationship does not change unless
the program is changed.

[0133] The dynamic property relationship extractor 1120
may include an input event storing unit 1122, a relationship
probability calculator 1124, and a relationship identifier
1126.

[0134] When a query includes a sliding window, the input
event storing unit 1122 stores a number of input events
defined by the syntax of the sliding window in the query. On
the other hand, when a query includes no sliding window, the
input event storing unit 1122 may trap an input event
sequence of the query and store the trapped event sequence in
amemory. Here, because a huge number of events are input to
a query, it is impractical to store all input events of the query
in a memory. Therefore, the input event storing unit 1122 may
be configured to sample a predetermined number of input
events of a query and store the sampled input events in a
memory in a first-in-first-out method.

[0135] Further, the input event storing unit 1122 may be
configured to calculate and store a relationship between input
events of a query, and to incrementally update and overwrite
the stored calculation result when a new event is input.
[0136] The relationship probability calculator 1124 obtains
a relationship between properties in events related to each
query, and obtains a probability of the relationship.

[0137] Here, obtaining a relationship between properties
included in all input events of each query may be impractical
because there are a huge number of combinations of proper-
ties. For this reason, the relationship probability calculator
1124 may be configured to obtain a relationship between
properties in events in a sliding window instead of all past
events. Also, the relationship probability calculator 1124 may
be configured to obtain only an N-to-1 relationship between
properties in an input stream and each partitioning key of a
query directly connected to the input stream.

[0138] Also, when sampling an input stream of a first query,
the relationship probability calculator 1124 may be config-
ured to only extract a relationship between a property used as
a partitioning key of a second query connected to the output
side of the first query and other properties.

[0139] Also, when a combination of properties with a prob-
ability greater than a predetermined level (e.g., 50%) is found
by sampling, the relationship probability calculator 1124 may
be configured to obtain events at a shorter sampling interval
for the found combination. Then, when a combination of
properties with a probability greater than a threshold (e.g.,
80%) is found out, the relationship probability calculator
1124 may be configured to determine that there is a relation-
ship between properties. Thus, sampling may be efficiently
performed in multiple (two or more) steps.

[0140] Therelationship identifier 1126 identifies properties
that are found out by the relationship probability calculator
1124 as having a highly-probable relationship. The combina-
tion of identified properties may be stored in a table in the
table storage 1160. Examples of finding out a relationship and
calculating the probability of the relationship are described
later with reference to FI1G. 14. The threshold is an example of
a first threshold.

[0141] The static property relationship extractor 1130 may
include a function identifier 1134. The function identifier
1134 extracts a function representing a relationship between
properties from a program including multiple query defini-
tions.

Mar. 10, 2016

[0142] The common partitioning key identifier 1150 may
include a partitioning key extractor 1152 and a common par-
titioning key generator 1154.

[0143] The partitioning key extractor 1152 statically
extracts partitioning keys from a program including multiple
query definitions.

[0144] The common partitioning key generator 1154 may
include a third function generator 1155 and a function accu-
racy calculator 1156.

[0145] When multiple functions H(A) described above
exist, the third function generator 1155 generates (or selects)
a function H(A) with which a predicted value of average
communication traffic between queries becomes smallest.
The third function generator 1155 may instead be provided in
the static property relationship extractor 1130.

[0146] The function accuracy calculator 1156 determines a
characteristic of a function extracted from a program defining
queries. When, as described with reference to FIGS. 6A
through 6D, the query Q1 and the query Q2 are grouped into
a partitioning group and assigned to each of multiple nodes
for parallel distributed processing by using the function H(A)
having a period length that is the least common multiple of the
period lengths of the function F(A) and the function G(A)
used as partitioning keys of the queries Q1 and Q2, the func-
tion accuracy calculator 1156 predicts an average value of a
ratio of inter-node communication traffic to intra-node com-
munication traffic (or a ratio of communication traffic (the
number of events transferred) between nodes to communica-
tion traffic (the number of events) input to the nodes). The
function accuracy calculator 1156 may instead be provided in
the static property relationship extractor 1130.

[0147] The common partitioning key generator 1154 gen-
erates (or selects) a common partitioning key for multiple
queries belonging to a partitioning group based on partition-
ing keys extracted by the partitioning key extractor 1152 and
a relationship and a function extracted by the property rela-
tionship extractor 1110. The common partitioning key gen-
erator 1154 also identifies queries to be grouped into a parti-
tioning group.

[0148] The query assigner 1170 assigns queries belonging
to a partitioning group to each of multiple (parallel) nodes for
parallel distributed processing based on a plan of a common
partitioning key generated by the common partitioning key
identifier 1150.

[0149] With the above configuration, the parallel data
stream processing system 1100 can assign appropriate que-
ries to multiple nodes for processing a data stream.

[0150] When a change in a dynamic relationship between
properties is detected by the dynamic property relationship
extractor 1120, the combination of nodes and the plan for
assigning queries to each of multiple nodes may be changed.
This makes it possible to properly respond to a change in the
relationship between properties that may occur over time.
[0151] FIGS. 12A through 12D are exemplary tables stored
in the table storage 1160.

[0152] FIG. 12A illustrates a partitioning key table 1210
that stores partitioning key sets derived directly from a pro-
gram defining queries. In the present application, a set of
partitioning keys is referred to as a “partitioning key set”. For
brevity, a partitioning key set may be simply referred to as a
“partitioning key”.

[0153] Also in the present application, as described above,
in addition to a case where a property of an event itself (which
is hereafter referred to as an “event property™) is extracted as

US 2016/0070761 Al

a partitioning key of a query, a partitioning key may also be
obtained from a dynamic relationship found out between
properties of events or a function extracted from a query
program. Therefore, in addition to partitioning keys and par-
titioning key sets provided as examples in the tables described
below, other types of partitioning keys may also be obtained
based on, for example, functions (formulas), multiplicity, and
probabilities by the relationship identifier 1126, the function
identifier 1134, and the common partitioning key generator
1154.

[0154] The partitioning key table 1210 includes a query
1211, an input event 1212, and a partitioning key set 1213 as
fields (or information items).

[0155] FIG. 12B illustrates a property relationship table
1220 that stores a relationship between two properties. The
property relationship table 1220 includes an event 2 (1221),
an event 2 property 1222, an event 1 (1223), an event 1
property set 1224, a function (formula) 1225, a multiplicity
1226, and a probability 1227 as fields (or information items).
In the event 2 (1221), an output event sequence of a query is
basically entered. In an exceptional case, an input event
sequence of a query may be entered in the event 2 (1221). This
exceptional case is described later with reference to F1G. 13C
and FIG. 16.

[0156] In the event 2 property 1222, a property of an event
sequence entered in the event 2 (1221) is entered.

[0157] Inthe event 1 (1223), an input event sequence of a
query is entered.

[0158] Inthe event 1 property set 1224, a property set of an
event sequence entered in the event 1 (1223) is entered. In the
event 1 property set 1224, multiple properties may be entered.
For example, when a query is defined as follows, {A, B} is
entered in the event 1 property set 1224.

[0159] insert into E2

[0160] select A+B as C

[0161] from E1

[0162] In the function (formula) 1225, a relationship

between the event 2 property 1222 and the event 1 property
set 1224 is entered. When the relationship can be expressed
by a function or a formula, the function or the formula is
entered in the function (formula) 1225.

[0163] In the multiplicity 1226, a multiplicity of the rela-
tionship between the event 2 property 1222 and the event 1
property set 1224 is entered. For example, “1-to-N” (1:N) or
“1-to-1” (1:1) is entered in the multiplicity 1226.

[0164] In the probability 1227, a probability of the multi-
plicity is entered. This probability is calculated by the rela-
tionship probability calculator 1124 or the function accuracy
calculator 1156.

[0165] FIG. 12C illustrates a partitioning group list 1230
that includes a partitioning group 1231 and a belonging query
1232 as fields (or information items). In the partitioning
group 1231, a group 1D for identifying a partitioning group is
entered. In the belonging query 1232, queries belonging to
the partitioning group are entered.

[0166] FIG. 12D illustrates a partitioning group-partition-
ing key list 1240 that includes a partitioning group 1241, an
input event 1242, a partitioning key 1243, and a function 1244
as fields (or information items). In the partitioning group
1241, a group ID for identifying a partitioning group is
entered.

[0167] In the input event 1242, an input event sequence of
the partitioning group is entered. In the partitioning key 1243,
a partitioning key applied to the partitioning group is entered.

Mar. 10, 2016

In the partitioning key 1243, multiple partitioning keys (par-
titioning key set) may be entered.

[0168] In the function 1244, a function that is the same as
the function entered in the function (formula) 1225 of the
property relationship table 1220 is entered.

[0169] When a function is entered in the function 1244, the
function may be used as a partitioning key.

[0170] FIG. 13A is a flowchart illustrating an exemplary
process performed by the parallel data stream processing
system 1100.

[0171] At step 1302, the property relationship extractor
1110 extracts relationships between properties included in an
event sequence. The relationships between properties may
include a dynamic relationship and a static relationship.

[0172] Atstep 1304, the common partitioning key identifier
1150 extracts partitioning keys based on the relationships
between properties, and also identifies a common partitioning
key to be applied to one or more queries belonging to a
partitioning group.

[0173] At step 1306, the query assigner 1170 assigns the
one or more queries belonging to the partitioning group to
each of nodes for parallel distributed processing.

[0174] FIG. 13B is a flowchart illustrating an exemplary
process of extracting relationships between properties
included in an event sequence. For example, this process may
be started when an input event for the query Q1 arrives and an
interrupt is generated.

[0175] At step 1322, the input event storing unit 1122
obtains, for example, properties A and B of an input event
sequence of the query Q1. When a query has a sliding win-
dow, this step may be performed on multiple events accumu-
lated by the sliding window in the query. When a query does
not have a sliding window, input events may be sampled at a
predetermined sampling rate, and a predetermined number of
sampled input events may be stored in an appropriate memory
(not shown).

[0176] Inanormal mode, the sampling rate may be setat a
low value. When an N-to-1 relationship between properties A
and B is found out at a probability greater than a threshold a1
at step 1326 described below, the sampling rate may be
changed from the low value to a high value, and the process of
FIG. 13B may be performed again using a threshold a2
greater than the threshold al.

[0177] Atstep 1324, the relationship probability calculator
1124 updates a comparison table for comparing the properties
A and B. The comparison table is described later with refer-
ence to FIG. 14. In this step, the relationship probability
calculator 1124 determines whether the relationship between
the properties A and B is N-to-1 or 1-to-1, and calculates the
probability of the relationship.

[0178] At step 1326, the relationship identifier 1126 deter-
mines whether the probability of the N-to-1 (or 1-to-1) rela-
tionship between the properties A and B is greater than the
predetermined threshold al. When the probability of the
relationship is greater than the threshold a1l (YES at step
1326), the process proceeds to step 1328. When the probabil-
ity of the relationship is less than or equal to the threshold a1
(NO atstep 1326), the process ends. Here, as described above,
when the N-to-1 relationship between the properties A and B
is found out at a probability greater than the threshold a1, the
sampling rate may be changed from a lower value to a higher
value, and the process of FIG. 13B may be performed again

US 2016/0070761 Al

using the threshold o2 greater than the threshold a1. Each of
the thresholds a1 and o2 is an example of a predetermined
first threshold.

[0179] At step 1328, the properties A and B, the multiplic-
ity, the probability, and so on are stored in a property rela-
tionship table.

[0180] FIG. 13C illustrates an exemplary entry of a prop-
erty relationship table 1360 generated at step 1328. The prop-
erty relationship table 1360 includes an event (1361), an event
2 property 1362, an event 1 (1363), an event 1 property set
1364, a function 1365, a multiplicity 1366, and a probability
1367 as fields (or information items). In the event 2 (1361), an
input event sequence E1 is entered. In the event 2 property
1362, the property B is entered. Also in the event 1 (1363), the
input event sequence E1 is entered. In the event 1 property set
1364, { A} is entered. In the function 1365, no information is
entered. In the multiplicity 1362, “1-to-N” indicating the
multiplicity of the relationship between the event 2 property
1362 and the event 1 property set 1364 is entered. In the
probability 1367, 95% is entered.

[0181] FIG. 13C is based on the example described with
reference to FIGS. 9 through 10B. Here, no function is
entered in the function 1365. This indicates that because the
1-to-N relationship between the properties B and A is found
out ata probability of 95%, it is not necessary to use a function
to form a partitioning group. Even in this case, when a specific
function has been obtained, the function may be entered in the
function 1365. The multiplicity may be either “1-to-N” or
“l-to-1".

[0182] Also in the example of FIG. 13C, the input event
sequence E1 is entered in both of the event 2 (1361) and the
event 1 (1363). This is because the property relationship table
1360 stores information related to a relationship between
properties of an event sequence input to a query. Properties of
an event sequence input to a query are information passively
received by the query. Accordingly, properties of an event
sequence inputto a query are beyond control of the query. The
property relationship table 1360 of FIG. 13C stores informa-
tion related to a relationship between such properties of an
input event sequence.

[0183] FIG. 14 is a drawing used to describe an exemplary
process of calculating a probability of a relationship between
properties. An event sequence 1410 in FIG. 14 is, for
example, accumulated in a query by a sliding window. An
exemplary process of calculating the probability ofthe 1-to-N
relationship between properties B and A of the event
sequence 1410 is described below.

[0184] First, foreach value of B, the number of occurrences
of'the same combination of values of B and A (the number of
occurrences of each value of A) is calculated. A flag is turned
on (1) for each entry where the number of occurrences of a
value of A is greater than or equal to a predetermined thresh-
old. The flag is turned off (0) for the other entries. In the
example of a table 1420 of FIG. 14, the threshold is set at 2.
Then, “X” is calculated by a formula “(total of occurrences of
values of A in entries where flag is turned on)/(grand total of
occurrences of values of A)”. X indicates an approximate
value representing the probability of the 1-to-N relationship
between the properties B and A. In the example of FIG. 14, X
is 85%. When multiple values of A exist for each value of B,
the median number of values of A may be used as the thresh-
old in the above calculation. When one value of A corre-
sponds to each value of B, the flag may be turned on (1).

Mar. 10, 2016

[0185] Also, the number of values of A corresponding to
each value of B may be counted. In this case, the flag is turned
on (1) for each entry where the number of values of A is large,
and the flag is turned off (0) for other entries. Then, “X” may
be calculated by a formula “(total number of values of A in
entries where flag is turned on)/(grand total of values of A)”.
[0186] FIGS. 15A and 15B illustrate an example where a
relationship between properties is (statically) extracted from
programs defining queries. FIG. 15A is a drawing illustrating
exemplary programs defining queries. FIG. 15B is an exem-
plary property relationship table. A function is extracted from
definitions of queries defined in programs. A program 1510
defines a query Q1, and a program 1520 defines a query Q2.
[0187] The program 1510 includes a clause “A/2 AS B”.
From this clause, for example, the following relationship is
extracted:

E2 B=F(E1.4)=E1.4/2

[0188] The above formula indicates that a property B of an
event sequence E2 is represented by a function of a property
A of an event sequence E1, and the function is A/2 that is
related to the event sequence E1. The formula also indicates
that the multiplicity is 1-to-N. The extracted relationship
between the properties A and B is registered in a property
relationship table 1530 of FIG. 15B.

[0189] FIG. 16 is a flowchart illustrating an exemplary
process of (statically) extracting a partitioning key set from a
query. Although a query Q1 is used in the exemplary process
of FIG. 16, the process may also be applied to other queries.
[0190] Steps 1632 and 1648 form a pair, and indicate that a
process between these two steps is performed for each query.
In this process, the query Q1 is used as an example, and it is
assumed that a partitioning key is represented by a function
(formula). A typical method of extracting a partitioning key
from a program defining a query is similar to, for example, a
method of extracting a partitioning key to be applied to a hash
function used for a parallel hash join process in a database. In
another typical method, a partitioning key is extracted from a
grouping operator (group by) of an aggregation result. Below,
an example unique to the present embodiment is described.
[0191] Atstep 1634, the static property relationship extrac-
tor 1130 extracts all (one or more) partitioning keys of the
query Q1. FIG. 16 includes an exemplary program defining
the query Q1. According to the program, the query 1 receives
anevent sequence E1 and outputs an event sequence E2. From
a syntax “GROUP BY A/2”, a function A/2 is extracted as a
partitioning key.

[0192] Steps 1638 and 1646 form a pair and indicate that a
process between these steps is performed for each partition-
ing key. At step 1638, the static property relationship extrac-
tor 1130 determines whether the extracted partitioning key is
an event property itself. A property that can be extracted from
the program of the query Q1 is a property A of the event
sequence E1. On the other hand, the extracted partitioning
key is the function A/2. Therefore, in this case, the extracted
partitioning key is different from an event property. Accord-
ingly, in this example, the process proceeds to step 1642 (NO
at step 1638). When it is determined that the extracted parti-
tioning key is an event property (YES at step 1638), the
process proceeds to step 1640.

[0193] Atstep 1642, the function accuracy calculator 1156
registers a virtual property (e.g., K) indicating the partitioning
key, a function (formula), a multiplicity, and a probability in
a property relationship table 1610.

US 2016/0070761 Al

[0194] At step 1644, the function accuracy calculator 1156
registers the virtual property K in a partitioning key table
1620.

[0195] Here, the virtual property K is registered in the event
2 property field of the property relationship table 1610
because the extracted function indicates a relationship
between multiple properties. That is, it is preferable to regis-
ter the virtual property K in the property relationship table
1610 to form a relationship K=A/2. The reason for using the
virtual property K is described below with reference to FIG.
26.

[0196] FIG. 26 is a flowchart illustrating an exemplary
process of normalizing a query (or a partitioning key set). A
query 2612 in FIG. 26 corresponds to the program of the
query Q1 in FIG. 16.

[0197] Atstep 2602, the function accuracy calculator 1156
obtains a partitioning key represented by a function (formula)
from partitioning keys available in the query Q1. In this
example, a function (formula) A/2 is obtained.

[0198] At step 2604, the function accuracy calculator 1156
rewrites the program 2612 of the query Q1 into two query
programs 2614 and 2616 by adding the virtual property K to
the SELECT clause so that the obtained partitioning key is
present as a property.

[0199] The query program 2616 includes a clause
“SELECT *, A/2 as K”. Accordingly, the property K is
present in a virtual stream TempStr. Then, a function (for-
mula) K=A/2 is extracted from the query program 2616. The
query program 2614 is executed after the query program 2616
is executed. The query program 2614 receives TempStr as an
input event sequence, and outputs OutStr as an output event
sequence. Thus, the validity of using the virtual property K
can be proved by rewriting a query. Also, using a virtual
property makes it possible to ensure consistency between a
property relationship table and a partitioning key table, and
makes it possible to handle the property relationship table and
the partitioning key table in a uniform manner.

[0200] Referring back to FIG. 16, at step 1640, the static
property relationship extractor 1130 registers the property
extracted as the partitioning key in a partitioning key table.
[0201] Through the above process, partitioning keys and
functions usable to generate partitioning keys are extracted
from query programs and stored in the table storage 1160.
[0202] FIG. 17 is a flowchart illustrating an exemplary
process performed by the common partitioning key identifier
1150 to extract a common partitioning key that is common to
multiple queries belonging to a partitioning group. InFIG. 17,
it is assumed that a partitioning group G1 has already been
generated and there is a query Q2 that follows the partitioning
group G1. That is, FIG. 17 illustrates a process of adding the
query Q2 to the partitioning group G1. Also in FIG. 17, it is
assumed that R indicates a common partitioning key set used
when the query Q2 is added to the partitioning group G1.
When the partitioning group G1 has not been generated, it is
assumed that one query Q1 belongs to the partitioning group
Gl1.

[0203] At step 1702, the common partitioning key genera-
tor 1154 initializes R for storing a partitioning key (common
partitioning key) used when the query Q2 is added to the
partitioning group G1. Accordingly, R becomes an empty set.
[0204] Steps 1704 and 1712 indicate a loop. More specifi-
cally, the common partitioning key generator 1154 performs
aprocess for each of all relationships between properties in an

Mar. 10, 2016

input event sequence E1 of the partitioning group G1 and an
input event sequence E2 of the query Q2.

[0205] Steps 1704 and 1712 form a pair, and indicate that a
process between these two steps is repeated multiple times.
More specifically, the common partitioning key generator
1154 processes all relationships found out between properties
in the input event sequence E1 of the partitioning group G1
and the input event sequence E2 of the query Q2.

[0206] At step 1706, the common partitioning key genera-
tor 1154 determines whether a relationship E2.Z=F(E1.A,
E1.B, .. .) exists. Here, E2.Z indicates a property Z in the
input event sequence E2. Also, F(X) indicates a function that
performs a predetermined process on X. At this step, the
common partitioning key generator 1154 refers to a property
relationship table that has already been created by the static
property relationship extractor 1130. When it is determined
that there is a relationship between a property of the input
event sequence E2 and properties of the input event sequence
E1 (YES at step 1706), the process proceeds to step 1708.
When the result of step 1706 is NO, the process proceeds to
step 1712.

[0207] At step 1708, the common partitioning key genera-
tor 1154 determines whether the argument {E1.A, E1.B, . ..
} of the function F is a subset of partitioning keys of the
partitioning group G1 and E2.7Z is a partitioning key of the
query Q2. When the result of step 1708 is YES, the process
proceeds to step 1710. When the result of step 1708 is NO, the
process proceeds to step 1712. When the result of step 1708 is
YES, there is a possibility that the function F can be used as
a common partitioning key of the partitioning group G1 and
the query Q2.

[0208] At step 1710, the common partitioning key genera-
tor 1154 analyzes the found relationship and adds the analysis
result to the partitioning key set R. As an example, there is a
case where a relationship B=A/2 is found as a function, A is a
subset of partitioning keys of the partitioning group G1, and
B is a partitioning key of the query Q2. In this case, B is
qualified as a partitioning key common to the partitioning
group G1 and the query Q2. At step 1714, the resulting par-
titioning key set R is returned. A case where a function G
usable as a partitioning key is also found in the partitioning
group G1 is described below with reference to FIG. 18.
[0209] FIG. 18 is a flowchart illustrating an exemplary
process of analyzing an extracted function. More specifically,
FIG. 18 illustrates a process additionally performed at step
1710 of FIG. 17 when a function G used as a partitioning key
is also found in the partitioning group G1.

[0210] At step 1802, the common partitioning key genera-
tor 1154 determines whether the extracted function F is an
injection function (which represents a 1-to-1 relationship).
When the result of step 1802 is YES, the process proceeds to
step 1804. When the result of step 1802 is NO (i.e., when the
function represents a 1-to-N relationship), the process pro-
ceeds to step 1806.

[0211] At step 1804, the common partitioning key genera-
tor 1154 adds the argument {E1.A, E1.B, ... } of the function
F to the partitioning key set R. In this case, it is not necessary
to add the function F to the partitioning key set R. This is
because the function F is an injection function and the argu-
ment of the function F can be used as a common partitioning
key.

[0212] At step 1806, the common partitioning key genera-
tor 1154 determines whether a function G is used as a parti-
tioning key of the partitioning group G1. The function G is a

US 2016/0070761 Al

function that is already being used as a partitioning key in the
partitioning group G1 and takes the same argument as the
function F. When the result of step 1806 is YES, the process
proceeds to step 1810. When the result of step 1806 is NO, the
process proceeds to step 1808.

[0213] At step 1808, the common partitioning key genera-
tor 1154 adds the argument {E1.A, E1.B, . . . } and the
function F to the partitioning key set R. For example, when
the function is B=A/2, the argument A and the function A/2
are added to the partitioning key set R.

[0214] At step 1810, the third function generator 1155 cal-
culates a new function H having a period length that is the
least common multiple of a period length of the function F
and a period length of the function G. When functions H
having the least common multiple period length have already
been calculated by the function accuracy calculator 1156, one
of'the functions H with high accuracy may be selected. Here,
the function accuracy calculator 1156 may be provided in the
static property relationship extractor 1130. The period length
of the function H is not necessarily limited to the least com-
mon multiple of the period lengths of the functions F and G,
and may be any common multiple of these period lengths.
[0215] At step 1812, the common partitioning key genera-
tor 1154 determines whether the function H has been found
out. When the result of step 1812 is NO, the process ends.
When the result of step 1812 is YES, the process proceeds to
step 1814.

[0216] At step 1814, the common partitioning key genera-
tor 1154 adds the argument {E1.A, E1.B, . . . } and the
function H to the partitioning key set R.

[0217] FIG. 19 is a flowchart illustrating an exemplary
process of obtaining a function that is usable as a partitioning
key for reducing inter-node communications. In other words,
FIG. 19 illustrates an example of a detailed process of step
1810 of FIG. 18. The function F and the function G used in
FIG. 18 are also used in FIG. 19.

[0218] At step 1902, the third function generator 1155
determines whether both of the function F and the function G
have periodicity. For example, when a function is defined to
divide an argument and truncates digits after the decimal
point of the quotient (e.g., A/2), the function has periodicity.
When the result of step 1902 is YES, the process proceeds to
step 1904. When the result of step 1902 is NO, the process
proceeds to step 1920.

[0219] At step 1904, the third function generator 1155 cal-
culates a period length N of the function F and a period length
M of the function G.

[0220] At step 1906, the third function generator 1155
determines whether one of the period lengths N and M is
divisible by the other one of the period lengths N and M.
When the result of step 1906 is YES, the process proceeds to
step 1912. When the result of step 1906 is NO, the process
proceeds to step 1908.

[0221] At step 1908, the third function generator 1155 cal-
culates the least common multiple S=LCM(N, M) of the
period length N and the period length M. LCM indicates a
function for obtaining the least common multiple.

[0222] At step 1910, the third function generator 1155 sets
a function H that can constantly cover a period length=S in a
property relationship table. When none of the period lengths
N and M is divisible by another, there is a position (coinciding
position) where a boundary of the period N and a boundary of
the period M coincide. The function S is obtained such that

Mar. 10, 2016

the coinciding position matches the boundary of the period S.
An example of this case is described later with reference to
FIG. 20.

[0223] At step 1912, the third function generator 1155
determines whether there is misalignment between the peri-
ods N and M. When the result of step 1912 is YES, the process
proceeds to step 1916. When the result of step 1912 is NO, the
process proceeds to step 1914.

[0224] At step 1914, the third function generator 1155
selects one of the function F and the function G that has a
longer period length as a function H, and sets the function H
in the property relationship table.

[0225] At step 1916, the third function generator 1155
determines whether the misalignment between the period
lengths N and M is within an allowable range. This step is
described later in more detail with reference to FIG. 21B. To
determine whether the misalignment is within an allowable
range, the third function generator 1155 may be configured to
determine whether the ratio of the amount of misalignment to
the period length of the function H is less than or equal to a
predetermined threshold. The predetermined threshold is an
example of a second threshold. When the result of step 1916
is YES, the process proceeds to step 1918. When the result of
step 1916 is NO, the process proceeds to step 1920.

[0226] At step 1918, the third function generator 1155
selects one of the function F and the function G that has a
longer period length as a function H. Then, the third function
generator 1155 sets the function H and a probability indicated
by the ratio of the amount of misalignment to the period
length of the function H in the property relationship table.
[0227] At step 1920, the process is terminated because no
desired function H is found.

[0228] Through the above process, it is possible to obtain a
function H usable as a partitioning key for reducing inter-
node communications based on the function F and the func-
tion G.

[0229] FIG. 20 is a drawing illustrating an example where a
function H usable as a partitioning key for reducing inter-
node communications is obtained when a period length of
none of two functions is divisible by a period length of the
other one of the two functions.

[0230] InFIG.20,afield 2001 contains values of a property
A used as a common argument. A field 2002 contains values
taken by a function F(A)=A/2. A field 2003 contains values
taken by a function G(A)=(A+1)/3. The function F has a
period length 2014. The function G has a period length 2016.
Boundaries of the periods (boundaries between sets of values)
of the function F and the function G coincide at a position
between values 1 and 2 of the property A and at a position
between values 7 and 8 of the property A.

[0231] There exist multiple functions having a period
length that is the least common multiple of the period length
of'the function F and the period length of the function G. An
example of such a function is H(A)=(A+L)/6. Here, L is an
integer. For example, a desired function H(A) can be obtained
by incrementing [from 0 by 1 and finding a value of L. with
which the boundary of the period of the function H(A) coin-
cides with the boundaries of the function F and the function
G. Inthe example of FIG. 20, the boundary of the period of the
function H(A) coincides with the boundaries of the periods of
the function F and the function G when H(A)=(A+4)/6 and
H(A)=(A-2)/6. It is possible to appropriately group two que-
ries into one partitioning group by using the function H(A)
obtained as described above as a partitioning key.

US 2016/0070761 Al

[0232] FIGS. 21A and 21B are drawings illustrating
examples where a period length of one of two functions is
divisible by a period length of the other one of the two func-
tions. FIG. 21A illustrates an example where the boundary of
the period of a function F(A) coincides with the boundary of
the period of a function G(A). In FIG. 21A, a field 2101
contains values of a property A. Fields 2102, 2103, and 2104
contain values taken by the function F(A), the function G(A),
and a function H(A), respectively. In this case, because there
is no misalignment between the periods of the functions F(A)
and G(A), as described at step 1914, one of the functions F(A)
and G(A) that has a longer period length may be selected as
the function H(A).

[0233] FIG. 21B illustrates an example where there is mis-
alignment between the periods of functions F(A) and G(A). In
FIG. 21B, a field 2111 contains values of a property A. Fields
2112, 2113, and 2114 contain values taken by the function
F(A), the function G(A), and a function H(A), respectively.
Because the period length of the function G(A) is divisible by
the period length of the function F(A), misalignment occurs
periodically. In this case, one of the functions F(A) and G(A)
that has a longer period length may be selected as the function
H(A). In the case of FIG. 21B, assuming that two queries are
grouped into the same partitioning group and assigned to each
of multiple nodes, an inter-node transfer occurs when, for
example, the value of A is 2. Because the period length of
H(A) is 4, an average frequency of this inter-node transfer
becomes V4. Accordingly, the accuracy of the function H(A)
used as a partitioning key is ¥4, i.e., 75%. If the accuracy of
75% is allowable, the function H(A) can be used as a common
partitioning key. For example, this may be determined based
on whether the accuracy is greater than a predetermined
threshold. The predetermined threshold is an example of a
second threshold.

[0234] The above embodiments are described using func-
tions F, G, and H having periodicity. However, functions
having no periodicity may also be used. Exemplary cases
where functions having no periodicity are used are described
below.

[0235] Here, it is assumed that a query Q1 has a function F
as a partitioning key, a query Q2 has a function G as a parti-
tioning key, and the function F and the function G take the
same argument. The query Q1 and the query Q2 are grouped
into the same partitioning group and assigned to each of
multiple nodes for parallel distributed processing. In this
case, a function H may be selected such that when an input
event sequence is hashed by the function H, the frequency of
inter-node communications is kept within an allowable limit.

[0236] FIGS. 22A through 22C are drawings used to
describe an example where queries are grouped into a parti-
tioning group. As illustrated in FIG. 22A, properties of an
event sequence BE1, which is a data stream, are {A, C}. The
query Q1 receives the event sequence E1 as an input and
outputs an event sequence E2. The query Q2 receives the
event sequence E2 as an input and outputs an event sequence
E3. A query Q3 receives the event sequence E3 as an input and
outputs an event sequence E4. The query Q1 is defined by a
query program 2201. The query Q2 is defined by a query
program 2202. The query Q3 is defined by a query program
2203.

[0237] FIG. 22B illustrates a partitioning key table 2210 for
FIG. 22A. FIG. 22C illustrates a property relationship table
2220 for FI1G. 22A.

Mar. 10, 2016

[0238] FIGS. 23A through 23C are drawings used to
describe an example where a query is added to a partitioning
group. FIG. 23A illustrates a stage where the query Q1 is
already in a partitioning group G1 (2301), and whether the
query Q2 following the query Q1 can be added to the parti-
tioning group G1 (2301) is being examined.

[0239] Referring to FIG. 22B, the query Q1 has a partition-
ing key set {A, C}, and the query Q2 has a partitioning key set
{B}. Thus, there is no partitioning key set common to the
queries Q1 and Q2. Accordingly, it is not possible to add the
query Q2 to the partitioning group G1 to which the query Q1
belongs based only on the partitioning key table 2210.
[0240] For this reason, the following relationship is
extracted from the property relationship table 2220 of FIG.
22C.

E2 B=F(E1.4)=E1.4/2

[0241] Based on this relationship, it is found out the query
Q1 also has a function A/2 as a partitioning key. This corre-
sponds to a case where the result of step 1706 is YES. The
function A/2 equals B, and is therefore also a partitioning key
of'the query Q2. This corresponds to a case where the result of
step 1708 is YES, and the function A/2 (i.e., B) is also recog-
nized as a partitioning key at step 1710.

[0242] Accordingly, as illustrated by FIG. 23B, the query
Q1 and the query Q2 are entered as members of the partition-
ing group G1 in a partitioning group list.

[0243] FIG. 23C illustrates a partitioning group-partition-
ing key list. In this example, A is entered in a partitioning key
field, and A/2 is entered in a function field. In this case, A/2
entered in the function field can also be used as a partitioning
key.

[0244] FIGS. 24A and 24B are drawings used to describe
an example where still another query Q3 following the query
Q2 is added to the partitioning group G1. In this case, because
the event sequence E3 also includes properties, the following
relationship can be found out:

E3.B=E2.B=E1.472

[0245] This corresponds to a case where the result of step
1706 is YES, and the result of step 1708 is also YES. Accord-
ingly, information items illustrated by FIG. 24B are added to
the partitioning group-partitioning key list of FIG. 23C. Thus,
the queries Q1, Q2, and Q3 can be grouped into the same
partitioning group.

[0246] FIG. 25is a drawing illustrating an example where a
partitioning group is formed using a dynamic relationship
between properties of an input event sequence. In FIG. 25, the
queries Q2 and Q3 are already in a partitioning group 2530.
However, as indicated by an event sequence E1 (2510), the
partitioning key of the query Q1 is A. On the other hand, as
indicated by an event sequence E2 (2520), the partitioning
key of the partitioning group 2530 is B. In this case, because
partitioning keys of the query Q1 and the partitioning group
2530 are different from each other, the query Q1 cannot be
added to the partitioning group 2530.

[0247] However, there is a relationship between properties
A and B of the event sequence E1 (2540). In this example,
there is a relationship B=A/2. This indicates that in addition to
A, B can be used as a partitioning key of the query Q1.
Accordingly, the query Q1 and the partitioning group 2530
have a common partitioning key B, and the queries Q1, Q2,
and Q3 can be grouped into the partitioning group 2550.
[0248] Here, in the case of FIG. 25, because a dynamic
relationship between the properties A and B of the event

US 2016/0070761 Al

sequence E1 is used, the probability of the relationship may
not be 100%. Still, however, if the probability of the relation-
ship is greater than or equal to an allowable level, it is possible
to keep inter-node communications within an allowable range
by assigning the partitioning group 2550 to each of multiple
nodes for parallel distributed processing.

[0249] FIG. 26 is already described above in relation to
FIG. 16.
[0250] FIG. 27 is a flowchart illustrating an exemplary

process of adding a query to a partitioning group.

[0251] Steps 2702 and 2720 indicate a loop, and a process
between these steps is recursively performed. In this process,
unprocessed queries are stored in a “remaining query list
(R)”, and processed queries are removed from the remaining
query list (R). The process is repeated recursively until the
remaining query list (R) becomes empty.

[0252] Atstep 2704, the common partitioning key identifier
1150 calculates a partitioning key set S that can be used as a
common partitioning key set for both ofa group G and a query
Q connected to the group G. When the group G has not been
generated, the process may be performed on an assumption
that the initial query for a data stream is in the group G.
[0253] Atstep 2706, the common partitioning key identifier
1150 determines whether at least one partitioning key is in the
partitioning key set S (i.e., whether the partitioning key set S
is not empty). When the result of step 2706 is YES, the
process proceeds to step 2708. When the result of step 2706 is
NO, the process proceeds to step 2720 and the loop is
repeated.

[0254] Atstep 2708, the common partitioning key identifier
1150 determines whether the partitioning key set S is the
same as a partitioning key set of the group G. When the result
of'step 2708 is YES, the process proceeds to step 2710. When
the result of step 2708 is NO, the process proceeds to step
2716.

[0255] Atstep 2710, the common partitioning key identifier
1150 adds the query Qto the group G. In this case, because the
group G and the query Q have the same partitioning key, the
query Q can be added to the group G without changing the
partitioning key of the group G.

[0256] Atstep 2712, the common partitioning key identifier
1150 obtains the remaining query list (R) listing queries con-
nected via the query Q to the group G.

[0257] Atstep 2714, the common partitioning key identifier
1150 adds, to the group G, a query in the remaining query list
(R) that has a partitioning key common to the query and the
group G. Then, step 2702 (or the process between steps 2702
and 2720) is recursively executed.

[0258] Atstep 2716, the common partitioning key identifier
1150 generates a group G2 using the partitioning key set S
calculated at step 2704. Here, when a group (existing group)
having the partitioning key set S has already been generated,
the common partitioning key identifier 1150 does not newly
generate the group G2, and adds the query Q to the existing
group.

[0259] Atstep 2718, the common partitioning key identifier
1150 adds the query Q and all queries in the group G to the
group G2 having the partitioning key set S.

[0260] Through the above process, the common partition-
ing key identifier 1150 can group all queries into one or more
partitioning groups.

[0261] After one or more partitioning groups are generated,
the query assigner 1170 can assign queries belonging to the
generated partitioning groups to each of multiple nodes.

Mar. 10, 2016

[0262] FIG. 28is ablock diagram illustrating an exemplary
hardware configuration of a computer(s) implementing the
parallel data stream processing system 1100. The computer
may include a central processing unit (CPU) 2810, a memory
2815, an input device 2820, an output device 2825, an exter-
nal storage 2830, a portable storage medium drive 2835, and
a network interface 2845 that are connected to each other via
abus 2850. The portable storage medium drive 2835 can read
and write data from and to a portable storage medium 2840.
The network interface 2845 is connected to a network 2860.
[0263] Some or all of functional units (components) of the
parallel data stream processing system 1100 and processes
described above can be implemented by executing one or
more programs by the CPU 2810. The programs may be
stored in the portable storage medium 2840 that is a non-
transitory storage medium. The portable storage medium
2840 may be, for example, a magnetic recording medium, an
optical disk, a magneto-optical storage medium, or a non-
volatile memory. Examples of magnetic recording media
include a hard disk drive (HDD), a flexible disk (FD), and a
magnetic tape (MT). Examples of optical disks include a
digital versatile disk (DVD), a DVD-random access memory
(RAM), a compact disk-read only memory (CD-ROM), a
CD-recordable (CD-R), and a CD-rewritable (CD-RW).
Examples of magneto-optical storage media include a mag-
neto-optical disk (MO). For example, the CPU 2810 loads
programs stored in the portable storage medium 2840 into the
memory 2815 and executes the loaded programs to imple-
ment some or all of functional units (components) of the
parallel data stream processing system 1100 and the above
described processes.
[0264] All examples and conditional language provided
herein are intended for the pedagogical purposes of aiding the
reader in understanding the invention and the concepts con-
tributed by the inventors to further the art, and are not to be
construed as limitations to such specifically recited examples
and conditions, nor does the organization of such examples in
the specification relate to a showing of the superiority and
inferiority of the invention. Although one or more embodi-
ments of the present invention have been described in detail,
it should be understood that the various changes, substitu-
tions, and alterations could be made hereto without departing
from the spirit and scope of the invention.
What is claimed is:
1. A non-transitory computer-readable storage medium
having stored therein a data stream processing program that
causes a computer to execute a process comprising:
extracting a relationship between properties included in
events in a data stream from the data stream itself, defi-
nitions of queries for processing the data stream, or both
of the data stream and the definitions of the queries;

specifying a common partitioning key common to a subset
of the queries to be grouped into a partitioning group
based on partitioning keys in the definitions of the que-
ries, the relationship between the properties, and a prob-
ability of the relationship; and

assigning the subset of the queries belonging to the parti-

tioning group to each of parallel nodes provided for
parallel distributed processing based on the specified
common partitioning key.

2. The non-transitory computer-readable storage medium
as claimed in claim 1, wherein

the extracting the relationship between the properties

includes

US 2016/0070761 Al

storing multiple input events input to one of the queries,
and

identifying two properties from the properties in the
stored input events, the two properties having one of a
1-to-N relationship and a 1-to-1 relationship (N is an
integer) at a probability greater than a first threshold;
and

the common partitioning key is specified based on the

identified two properties and the probability of the rela-
tionship between the two properties.

3. The non-transitory computer-readable storage medium
as claimed in claim 1, wherein

the extracting the relationship between the properties

includes

when a partitioning key is defined as a function in one of
the queries, identifying the function and properties
related to the function; and

the common partitioning key is specified based on the

function and the properties related to the function.

4. The non-transitory computer-readable storage medium
as claimed in claim 1, wherein the specifying the common
partitioning key includes

when a first function defined in a first query of the queries

has a first period length and a second function defined in
a second query of the queries following the first query
has a second period length, obtaining a third function
having a third period length that is a least common
multiple of the first period length and the second period
length;

determining a ratio of a number of events transferred

between the parallel nodes to a number of all events in
the data stream input to the parallel nodes based on an
assumption that the first query and the second query are
grouped into the same partitioning group and assigned to
each of the parallel nodes using the third function as the
common partitioning key; and

when the ratio is less than or equal to a second threshold,

specifying the third function as the common partitioning
key.
5. A method executed by a computer, the method compris-
ing:
extracting a relationship between properties included in
events in a data stream from the data stream itself, defi-
nitions of queries for processing the data stream, or both
of the data stream and the definitions of the queries;

specifying a common partitioning key common to a subset
of the queries to be grouped into a partitioning group
based on partitioning keys in the definitions of the que-
ries, the relationship between the properties, and a prob-
ability of the relationship; and

assigning the subset of the queries belonging to the parti-

tioning group to each of parallel nodes provided for
parallel distributed processing based on the specified
common partitioning key.

6. The method as claimed in claim 5, wherein

the extracting the relationship between the properties

includes

storing multiple input events input to one of the queries,
and

identifying two properties from the properties in the
stored input events, the two properties having one of a
1-to-N relationship and a 1-to-1 relationship (N is an
integer) at a probability greater than a first threshold;
and

Mar. 10, 2016

the common partitioning key is specified based on the
identified two properties and the probability of the rela-
tionship between the two properties.
7. The method as claimed in claim 5, wherein
the extracting the relationship between the properties
includes
when a partitioning key is defined as a function in one of
the queries, identifying the function and properties
related to the function; and
the common partitioning key is specified based on the
function and the properties related to the function.
8. The method as claimed in claim 5, wherein the specify-
ing the common partitioning key includes
when a first function defined in a first query of the queries
has a first period length and a second function defined in
a second query of the queries following the first query
has a second period length, obtaining a third function
having a third period length that is a least common
multiple of the first period length and the second period
length;
determining a ratio of a number of events transferred
between the parallel nodes to a number of all events in
the data stream input to the parallel nodes based on an
assumption that the first query and the second query are
grouped into the same partitioning group and assigned to
each of the parallel nodes using the third function as the
common partitioning key; and
when the ratio is less than or equal to a second threshold,
specifying the third function as the common partitioning
key.
9. A system, comprising:
a processor that executes a process including
extracting a relationship between properties included in
events in a data stream from the data stream itself,
definitions of queries for processing the data stream,
or both of the data stream and the definitions of the
queries;
specifying a common partitioning key common to a
subset of the queries to be grouped into a partitioning
group based on partitioning keys in the definitions of
the queries, the relationship between the properties,
and a probability of the relationship; and
assigning the subset of the queries belonging to the
partitioning group to each of parallel nodes provided
for parallel distributed processing based on the speci-
fied common partitioning key.
10. The system as claimed in claim 9, wherein
the extracting the relationship between the properties
includes
storing multiple input events input to one of the queries,
and
identifying two properties from the properties in the
stored input events, the two properties having one of a
1-to-N relationship and a 1-to-1 relationship (N is an
integer) at a probability greater than a first threshold;
and
the common partitioning key is specified based on the
identified two properties and the probability of the rela-
tionship between the two properties.
11. The system as claimed in claim 9, wherein
the extracting the relationship between the properties
includes

US 2016/0070761 Al Mar. 10, 2016
15

when a partitioning key is defined as a function in one of
the queries, identifying the function and properties
related to the function; and

the common partitioning key is specified based on the
function and the properties related to the function.

12. The system as claimed in claim 9, wherein the speci-

fying the common partitioning key includes

when a first function defined in a first query of the queries
has a first period length and a second function defined in
a second query of the queries following the first function
has a second period length, obtaining a third function
having a third period length that is a least common
multiple of the first period length and the second period
length;

determining a ratio of a number of events transferred
between the parallel nodes to a number of all events in
the data stream input to the parallel nodes based on an
assumption that the first query and the second query are
grouped into the same partitioning group and assigned to
each of the parallel nodes using the third function as the
common partitioning key; and

when the ratio is less than or equal to a second threshold,
specifying the third function as the common partitioning
key.

