
USOO6556995B1

(12) United States Patent (10) Patent No.: US 6,556,995 B1
Child et al. (45) Date of Patent: Apr. 29, 2003

(54) METHOD TO PROVIDE GLOBAL SIGN-ON 6,085.223 A * 7/2000 Carino, Jr. et al. 709/203
FOR ODBC-BASED DATABASE 6,092,196 A 7/2000 Reiche 705/52
APPLICATIONS 6,115,744. A 9/2000 Robins et al. 709/203

6,237,023 B1 * 5/2001 Yoshimoto 709/201
(75) Inventors: Garry Lee Child, Austin, TX (US); 6,275,941 B1 * 8/2001 Saito et al. - - - - - - - - - - - - - - - - - 713/175

Janani Janakiraman, Austin, TX (US) OTHER PUBLICATIONS

(73) Assignee: International Business Machines Welcome to the ODBC Section of the Microsoft Universal
Corporation, Armonk, NY (US) Data Access Web Site; www.microsoft.com; pp. 1.

Data AcceSS Roadmap, A Technology report from Ken
(*) Notice: Subject to any disclaimer, the term of this North; http://cbr.nc.us.mensa.org pp. 1-2.

patent is extended or adjusted under 35 ODBC Reality and Developer Experiences; DBMS Online;
U.S.C. 154(b) by 0 days. Mar. 1994; pp. 1–3.

ODBC (Open Database Connectivity); www.whatis.com; pp
(21) Appl. No.: 09/442,695 1.

1-1. Understanding Multidatbase APIs and ODBC; DBMS
(22) Filed: Nov. 18, 1999 Online; Mar. 1994; pp. 1-8.
(51) Int. Cl." G06F 17/30; G06F 7/00 * cited bw examiner
(52) U.S. Cl. 707/9; 707/7, 707/2; 707/10 y
(58) Field of Search 707/1-10, 100-104.1 Primary Examiner-Greta Robinson

ASSistant Examiner-Linh Black
(56) References Cited (74) Attorney, Agent, or Firm-Duke W. Yee; Leslie A. Van

U.S. PATENT DOCUMENTS

4,714,992 A * 12/1987 Gladney et al. 707/206
5,349,642 A * 9/1994 Kingdon 380/28
5,455.945. A * 10/1995 VanderDrift 707/2
5,572,709 A 11/1996 Fowler et al. 395/500
5,577.241 A * 11/1996 Spencer 707/5
5,689,.698 A * 11/1997 Jones et al. ... 395/604
5,706.427 A * 1/1998 Tabuki 713/201
5,710,918 A * 1/1998 Lagarde et al. 707/10
5,721.908 A * 2/1998 Lagarde et al. 707/10
5,818.936 A * 10/1998 Mashayekhi................ 713/152
5,873,083 A 2/1999 Jones et al. 707/4
5,913,025 A * 6/1999 Higley et al. 395/187.01
5,987,454. A 11/1999 Hobbs 707/4
6,023,698 A * 2/2000 Lavey, Jr. et al. 707/10

502

508

GSO
DATABASE

510

512
514

516

DATABASE
APPLICATION

2
GSO DATABASE
INTERFACE DLL

Z
ODBC DRIVER
MANAGER DLL

2

LOADABLE LOADABLE
DRIVER DRIVER

DATABASE PROPRETARY PROTOCOLS

Leeuwen; Stephen J. Walder, Jr.
(57) ABSTRACT

A method in a data processing System for managing multiple
identities for a single user. In a preferred embodiment, a
request for content from a database is received at a Server.
Responsive to a determination that retrieval of the content
from the database requires providing the database with user
information, the user's database identity is retrieved from a
library of database identities. The retrieved user identity
information is then inserted into the request and the request
is forwarded to the database.

21 Claims, 3 Drawing Sheets

506

U.S. Patent Apr. 29, 2003 Sheet 1 of 3 US 6,556,995 B1

202-N PROCESSOR PROCESSOR 1204
SYSTEM BUS SERVER

as 20
MEMORY

208N CONTROLLER/ skie 210
CACHE 214

216
209 LOCAL PCI BUS PCI BUS

MEMORY BRIDGE R2

212 I/O 218 N MODEM 220
GRAPHICS BUS 222 ADAPTER

250-1 ADAPTER

PCI BUS
HARD BRIDGE

252 DISK 226
PCI BUS PCI BUS
BRIDGE C

FIC. 2 228
224

US 6,556,995 B1 U.S. Patent

U.S. Patent Apr. 29, 2003 Sheet 3 of 3 US 6,556,995 B1

DATABASE
APPLICATION

2
ODBC DRIVER
MANAGER DLL

402

404

406

Z
408 RECEIVE REQUEST FOR - 602

DATABASE CONTENT

410 604
DOES

THE REQUEST
REQUIRE AUSER

IDENTITY?

YES

RETRIEVE USER DENTITY
FROM GSO DATABASE

INSERT USER DENTITY
INTO REQUEST

FORWARD REQUEST
TO ODBC DRIVER
MANAGER DLL

ACCESS DATABASE
AND RETRIEVE DATA

RETURN DATA
TO APPLICATION

FIG. 6

DATABASE PROPRIETARY PROTOCOLS

FIG. 4
(PRIOR ART)

414

606

608

GSO DATABASE
INTERFACE DLL

ODBC DRIVER
MANAGER DLL

GSO 506
DATABASE

610

612

614

LOADABLE LOADABLE
DRIVER DRIVER

US 6,556,995 B1
1

METHOD TO PROVIDE GLOBAL SIGN-ON
FOR ODBC-BASED DATABASE

APPLICATIONS

CROSS REFERENCE TO RELATED
APPLICATION

The present application is related to copending U.S.
patent application Ser. No. 09/442,694 (entitled “Flexible
Encryption Scheme for GSO Target Passwords”) filed even
date herewith. The above mentioned patent applications are
assigned to the assignee of the present invention. The
content of the croSS referenced copending application is
hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates to the field of computer
Software and, more particularly, to methods and apparatus to
manage multiple user identities Such that the user need only
maintain a single user identity.

2. Description of Related Art
AS computers have infiltrated Society over the past Several

decades and become more important in all aspects of mod
ern life, more and more confidential information has been
Stored on computer databases. However, computers and
networkS Such as the Internet allow multitudes of users to
access databases. Many times multiple databases may be
accessed via the same network, but not all users on the
network need or should have access to every database.
Therefore, Security devices have been implemented to pre
vent unauthorized access to a database.

One method of preventing unauthorized acceSS is to
require the user to provide user identification information to
verify that that user is entitled to the information contained
in the database. Thus, many database applications require a
user to provide identification information, Such as a user ID
and password, in order to access a protected database. These
applications may have this information fixed within the
application (i.e., "hard coded”), the application may be
configured with the information, or, in Some cases, the
application may prompt the user for this information at run
time.

However, databases are not the only computer resources
requiring a user to provide identifying information. Other
resources Such as Servers and networks may also require
users to provide identifying information. Because different
resources have different Security requirements and because
Some resources assign identities rather than allowing a user
to choose, many users may have multiple identities depend
ing on the particular resource that they are accessing. The
database identity is yet another one that the user must
maintain.

Global Sign-on (GSO) technology attempts to manage
this set of multiple identities on behalf of a user so that the
user only needs to maintain a Single user identity. The user
then allows the GSO to manage the other identities auto
matically whenever the user attempts to access a particular
protected resource.

Current versions of GSO use a product technology
referred to as Open Horizon to provide a single Sign-on
capability for databases. Open Horizon forwards all requests
through a DCE client RPC mechanism to an Open Horizon
Server. The actual database request is then issued by the
Open Horizon server. This technique requires a DCE client
to be installed and configured on the client machine as well

15

25

35

40

45

50

55

60

65

2
as the Open Horizon Server to be installed and configured on
the database server machine. However, it is desirable to have
a global Sign-on System that does not require any additional
Special client Software to be installed and configured on the
client machine. It is also desirable to have a global Sign-on
System that does not require an additional Server.

SUMMARY OF THE INVENTION

The present invention provides a method in a data pro
cessing System for managing multiple identities for a single
user. In a preferred embodiment, a request for content from
a database, a Service, or an application and a first user
identity entered by a user is received at a database Server.
Responsive to a determination that retrieval of the content
from the database requires providing the database with user
information, the user's database identity or other informa
tion associated with the database is retrieved from a library
of database identities on the GSO server. The retrieved user
identity information is then inserted into the request and the
request is forwarded to the database.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec
tives and advantages thereof, will best be understood by
reference to the following detailed description of an illus
trative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 depicts a pictorial representation of a distributed
data processing System in which the present invention may
be implemented;

FIG. 2 depicts a block diagram of a data processing
System which may be implemented as a Server in accordance
with the present invention;

FIG. 3 depicts a block diagram of a data processing
System in which the present invention may be implemented;

FIG. 4 depicts a block diagram illustrating a prior art
ODBC architecture;

FIG. 5 depicts a block diagram illustrating a software
architecture in which the present invention may be imple
mented; and

FIG. 6 depicts a flowchart illustrating the processes of the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

With reference now to the figures, and in particular with
reference to FIG. 1, a pictorial representation of a distributed
data processing System is depicted in which the present
invention may be implemented.

Distributed data processing system 100 is a network of
computers in which the present invention may be imple
mented. Distributed data processing system 100 contains
network 102, which is the medium used to provide commu
nications links between various devices and computers
connected within distributed data processing system 100.
Network 102 may include permanent connections, Such as
wire or fiber optic cables, or temporary connections made
through telephone connections.

In the depicted example, server 104 is connected to
network 102, along with storage unit 106. In addition, clients
108, 110 and 112 are also connected to network 102. These
clients, 108, 110 and 112, may be, for example, personal

US 6,556,995 B1
3

computers or network computers. For purposes of this
application, a network computer is any computer coupled to
a network which receives a program or other application
from another computer coupled to the network. In the
depicted example, Server 104 provides data, Such as boot
files, operating System images and applications, to clients
108-112. Clients 108, 110 and 112 are clients to server 104.
Distributed data processing system 100 may include addi
tional Servers, clients, and other devices not shown. Distrib
uted data processing system 100 also includes printers 114,
116 and 118. A client, such as client 110, may print directly
to printer 114. Clients such as client 108 and client 112 do
not have directly attached printers. These clients may print
to printer 116, which is attached to server 104, or to printer
118, which is a network printer that does not require
connection to a computer for printing documents. Client
110, alternatively, may print to printer 116 or printer 118,
depending on the printer type and the document require
mentS.

In the depicted example, distributed data processing SyS
tem 100 is the Internet, with network 102 representing a
Worldwide collection of networks and gateways that use the
TCP/IP suite of protocols to communicate with one another.
At the heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput
erS consisting of thousands of commercial, government,
education, and other computer Systems that route data and
messages. Of course, distributed data processing System 100
also may be implemented as a number of different types of
networkS Such as, for example, an intranet or a local area
network.

FIG. 1 is intended as an example and not as an architec
tural limitation for the processes of the present invention.

Referring to FIG. 2, a block diagram of a data processing
System which may be implemented as a Server, Such as
server 104 in FIG. 1, is depicted in accordance with the
present invention. Data processing System 200 may be a
Symmetric multiprocessor (SMP) system including a plural
ity of processors 202 and 204 connected to system bus 206.
Alternatively, a single processor System may be employed.
Also connected to system bus 206 is memory controller/
cache 208, which provides an interface to local memory 209.
I/O bus bridge 210 is connected to system bus 206 and
provides an interface to I/O bus 212. Memory controller/
cache 208 and I/O bus bridge 210 may be integrated as
depicted.

Peripheral component interconnect (PCI) bus bridge 214
connected to I/O bus 212 provides an interface to PCI local
bus 216. A number of modems 218-220 may be connected
to PCI bus 216. Typical PCI bus implementations will
Support four PCI expansion slots or add-in connectors.
Communications links to network computers 108-112 in
FIG. 1 may be provided through modem 218 and network
adapter 220 connected to PCI local bus 216 through add-in
boards.

Additional PCI bus bridges 222 and 224 provide inter
faces for additional PCI buses 226 and 228, from which
additional modems or network adapters may be Supported.
In this manner, server 200 allows connections to multiple
network computers. A memory mapped graphics adapter
230 and hard disk 232 may also be connected to I/O bus 212
as depicted, either directly or indirectly.

Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 2 may vary. For example, other
peripheral devices, Such as optical disk drives and the like,
also may be used in addition to or in place of the hardware

15

25

35

40

45

50

55

60

65

4
depicted. The depicted example is not meant to imply
architectural limitations with respect to the present inven
tion.

The data processing System depicted in FIG.2 may be, for
example, an Intel System running a Windows NT operating
System.
With reference now to FIG. 3, a block diagram of a data

processing System in which the present invention may be
implemented is illustrated. Data processing system 300 is an
example of a client computer. Data processing System 300
employs a peripheral component interconnect (PCI) local
buS architecture. Although the depicted example employs a
PCI bus, other bus architectures, Such as Micro Channel and
ISA, may be used. Processor 302 and main memory 304 are
connected to PCI local bus 306 through PCI bridge 308. PCI
bridge 308 may also include an integrated memory control
ler and cache memory for processor 302. Additional con
nections to PCI local bus 306 may be made through direct
component interconnection or through add-in boards. In the
depicted example, local area network (LAN) adapter 310,
SCSI hostbus adapter 312, and expansion bus interface 314
are connected to PCI local bus 306 by direct component
connection. In contrast, audio adapter 316, graphics adapter
318, and audio/video adapter (A/V) 319 are connected to
PCI local bus 306 by add-in boards inserted into expansion
Slots. Expansion bus interface 314 provides a connection for
a keyboard and mouse adapter 320, modem 322, and addi
tional memory 324. In the depicted example, SCSI hostbus
adapter 312 provides a connection for hard disk drive 326,
tape drive 328, CD-ROM drive 330, and digital video disc
read only memory drive (DVD-ROM) 332. Typical PCI
local bus implementations will support three or four PCI
expansion slots or add-in connectors.
An operating System runs on processor 302 and is used to

coordinate and provide control of various components
within data processing system 300 in FIG. 3. The operating
System may be a commercially available operating System,
Such as OS/2, which is available from International Business
Machines Corporation. “OS/2 is a trademark of Interna
tional BusineSS Machines Corporation. An object oriented
programming System, Such as Java, may run in conjunction
with the operating System, providing calls to the operating
System from Java programs or applications executing on
data processing System 300. Instructions for the operating
System, the object-oriented operating System, and applica
tions or programs are located on a storage device, Such as
hard disk drive 326, and may be loaded into main memory
304 for execution by processor 302.

Those of ordinary skill in the art will appreciate that the
hardware in FIG.3 may vary depending on the implemen
tation. For example, other peripheral devices, Such as optical
disk drives and the like, may be used in addition to or in
place of the hardware depicted in FIG. 3. The depicted
example is not meant to imply architectural limitations with
respect to the present invention. For example, the processes
of the present invention may be applied to multiprocessor
data processing Systems.

Turning now to FIG. 4, a block diagram illustrating a prior
art Open Database Connectivity (ODBC) architecture is
depicted. ODBC architecture provides an abstraction called
a data Source that encapsulates a Server, database name,
Schema, network library, and other information for linking a
client application with data. ODBC Supports transaction
commit and rollback, asynchronous processing, an option to
cancel a query, Stored procedures, primary and foreign keys,
and five levels of transaction isolation.

US 6,556,995 B1
S

A database application 402, which may reside on a client
Such as client 300, is connected through a network, Such as
network 100, to ODBC Driver Manager Dynamic Link
Library (DLL) 406 via ODBC Application Programming
Interface (API) 404. ODBC Driver Manager DLL 406 sits at
a layer above Loadable Drivers 410 and 412. ODBC Driver
Manager DLL 406 loads and unloads drivers 410 and 412,
performs Status checking, and manages multiple connections
between applications and data Sources. Loadable Drivers
410 and 412 may be single- or multiple-tier drivers. Single
tier driverS sit directly above a data Source and proceSS
ODBC calls and Structure Query Language (SQL) state
ments. Multiple-tier drivers process the function calls and
pass the SQL request to a server for processing. ODBC
Driver Manager DLL 406 processes some ODBC calls
without calling a driver.
ODBC Driver Manager DLL 406 processes the function

calls from database application 402 and directs them to the
appropriate one of loadable drivers 410 and 412 via ODBC
Driver API 408. Loadable drivers 410 and 412 map the
ODBC functions into calls to a library of proprietary func
tions contained in database proprietary protocols database
414.

In implementing a call to a database under this System, a
user must enter user identification information for each
database, application, or Service that requires this informa
tion in order to process a request. Often, the user identifi
cation information is different for each entity, thus, a user
must remember and enter multiple Sets of user identification
information during a computing Session.

Referring now to FIG. 5, a block diagram illustrating a
Software architecture in which the present invention may be
implemented is depicted. By using this Software
architecture, a user may retrieve documents, applications,
and other Services by using a single main user identity or
"logon'. The user is not require to remember or enter any
other user identities that may be required to access any of the
multiple applications or databases that utilize different user
identities than the main user identity. Such other identities
are Stored, retrieved and Sent to the appropriate objects at
appropriate times automatically using the method and SyS
tem of the present invention.

In a preferred embodiment of the present invention, a
Global Sign-on (GSO) database interface DLL 506 is placed
between the Open Database Connectivity (ODBC) Applica
tion Program Interface (API) dynamic link library (DLL)
512 and database application 502. GSO database interface
DLL 512 is a shared library that database application 502
uses to process ODBC requests. An ODBC API is an
application programming interface that can operate with
heterogeneous databases without requiring Source code
changes. Typically, database application 502 will be located
on a client machine Such as data processing System 300
which will be connected to GSO database interface DLL 506
via ODBC API 504 by way of a network such as network
100. GSO database interface DLL 506 is typically located on
the same client machine as database application 502.
Alternatively, GSO database interface DLL 506 could be
located on a separate Server using network Sharing
capability, but this is leSS typical.
When GSO database interface DLL 506 receives an API

request from database application 502 via ODBC API 504,
which requires a user identity, GSO database interface DLL
506 accesses GSO database 508 to retrieve the users
database identity and inserts it into the database request.
GSO database interface DLL 506 forwards the database
request to ODBC Driver Manager DLL 512 through ODBC
API 51O.

15

25

35

40

45

50

55

60

65

6
For normal API requests which do not require a user's

identity, GSO database interface DLL 506 forwards these
requests to ODBC Driver Manager DLL 512 unchanged.
Results from ODBC Driver Manager DLL 512 are returned
to database application 502 normally. In this manner, GSO
database interface DLL is transparent to database applica
tion 502 and yet the user's identity is automatically filled in
on behalf of the user whenever the user executes a database
application.
ODBC Driver Manager DLL 512 fields the database

request (or call) from database application 502. ODBC
Driver Manager DLL 512 sits at a layer above loadable
drivers 516, 518 and loads and unloads drivers 516, 518
through ODBC Driver API 514, performs status checking,
and manages multiple connections between applications and
data sources. Loadable drivers 516, 518 may be single-or
multiple-tier drivers. Single tier drivers sit directly above a
data source and process ODBC calls and the structured
query language (SQL) statements. Multiple-tier drivers pro
ceSS the function calls and pass the SQL request to a server
for processing. Driver Manager 512 fields and processes
Some ODBC calls without calling a driver.

In either scenario (single- or multiple-tier), ODBC Driver
Manager DLL 512 processes the function calls of database
application 502 and directs them to the appropriate one of
loadable drivers 516, 518. Loadable drivers 516, 518 map
the ODBC functions into calls to a library of proprietary
functions or database proprietary protocols 520. Database
522 receives the request, retrieves the appropriate content
and sends it back to database application 502.
GSO database interface DLL 506 provides an identical set

of APIs as ODBC Driver Manager DLL 512 so that database
application 502 works normally. The APIs provided by GSO
database interface DLL 506 have the same signature and
ordinals. GSO database interface DLL 506 dynamically
loads the “real ODBC API DLL 512 So that its use is
completely transparent to database application 502. GSO
database interface DLL 506 has the same name as ODBC
DLL 512. Database application 502 can continue to use
either run time linking or load time linking to access GSO
database interface DLL 506. When GSO database interface
DLL 506 is installed and configured, it ensures that the
operating system will resolve links to the ODBC DLL 512
to it first. It does this by updating PATH to point to GSO
database interface DLL 506 first, before the real ODBC DLL
512 routine or by moving the ODBC DLL 512 to another
location. GSO database interface DLL 506 is also configured
to know where the “real ODBC DLL 512 is located So that
it can load it at run time.

Turning now to FIG. 6, a flowchart illustrating the pro
ceSSes of the present invention is depicted. To Start, an
application requests content from a database (Step 602). The
GSO database interface DLL intercepts the request and
determines whether the request requires a user identity to
access the information in the database (step 604). If the user
identity is required to access the information in the database,
then the GSO database interface DLL retrieves the identity
information from the GSO database of user identities (step
606) and inserts this user identity into the request (step 608).
Next, the GSO database interface DLL forwards the request
to the ODBC Driver Manager DLL (step 610). The database
containing the requested information is accessed and the
data retrieved (step 612). The requested data is then returned
to the requesting application (step 614).

If the request does not require a user identity to access
information in the database, then the request is forwarded

US 6,556,995 B1
7

unmodified to the ODBC Driver Manager DLL (step 610),
which then accesses the database and retrieves the requested
data (Step 612). The requested data is then returned to the
requesting application (step 614).

Although the present invention has been described pri
marily with reference to database applications that utilize the
Open Database Connectivity (ODBC) database API to
access the database, the same technique could be used for
any API that an application uses to access a database, Such
as, for example, the Java JDBC interface.

It is important to note that while the present invention has
been described in the context of a fully functioning data
processing System, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of Signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media Such a floppy disc, a hard
disk drive, a RAM, and CD-ROMs and transmission-type
media Such as digital and analog communications linkS.

The description of the present invention has been pre
Sented for purposes of illustration and description, but is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi
ment was chosen and described in order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica
tions as are Suited to the particular use contemplated.
What is claimed is:
1. A method in a data processing System for managing

multiple identities for a user, the Steps comprising:
receiving a request for content from a database;
responsive to a determination that retrieval of Said content

from Said database requires providing Said database
with user identification information, retrieving a data
base identity from a plurality of database identities,
wherein the retrieved database identity corresponds to
the user;

inserting the retrieved database identity into Said request;
retrieving Said requested content from Said database; and
Sending Said requested content to a requesting client.
2. The method as recited in claim 1, wherein the retrieved

database identity comprises a user ID.
3. The method as recited in claim 1, wherein the retrieved

database identity comprises a password.
4. The method as recited in claim 1, wherein said retriev

ing Step and Said inserting Step is performed by a global
Sign-on database interface dynamic link library.

5. The method as recited in claim 1, further comprising:
responsive to a determination that user identification

information is not necessary to retrieve Said content,
forwarding Said request to Said database unmodified.

6. A method in a data processing System for managing
multiple identities for a user, the Steps comprising:

receiving a request for content from a database;
responsive to a determination that retrieval of Said content

from Said database requires providing Said database
with user identification information, retrieving a data
base identity from a plurality of database identities,
wherein the retrieved database identity corresponds to
the user; and

5

15

25

35

40

45

50

55

60

65

8
inserting the retrieved database identity into Said request;
wherein Said request is received from a requesting appli

cation and Said requesting application is an open data
base connectivity based application.

7. A method in a data processing System for managing
multiple identities for a user, the Steps comprising:

receiving a request for content from a database;
responsive to a determination that retrieval of Said content

from Said database requires providing Said database
with user identification information, retrieving a data
base identity from a plurality of database identities,
wherein the retrieved database identity corresponds to
the user; and

inserting the retrieved database identity into Said request;
wherein Said request is received from a requesting appli

cation and Said requesting application is a JAVA data
base connectivity based application.

8. A computer program product on a computer uSeable
medium, for use in a data processing System for managing
multiple identities for a Single user, the computer program
product comprising:

first instructions for receiving a request for content from
a database;

Second instructions, responsive to a determination that
retrieval of Said content from Said database requires
providing Said database with user identification
information, for retrieving a database identity from a
plurality of database identities, wherein the retrieved
database identity corresponds to the user;

third instructions for inserting the retrieved database
identity into Said request;

fourth instructions for retrieving Said requested content
from said database; and

fifth instructions for Sending Said requested content to a
requesting client.

9. The computer program product as recited in claim 8,
wherein the retrieved database identity comprises a user ID.

10. The computer program product as recited in claim 8,
wherein the retrieved database identity comprises a pass
word.

11. The computer program product as recited in claim 8,
wherein Said retrieving Step and Said inserting Step is per
formed by a global Sign-on database interface dynamic link
library.

12. The computer program product as recited in claim 8,
further comprising:

responsive to a determination that user identification
information is not necessary to retrieve Said content,
forwarding Said request to Said database unmodified.

13. A computer program product on a computer uSeable
medium, for use in a data processing System for managing
multiple identities for a Single user, the computer program
product comprising:

first instructions for receiving a request for content from
a database;

Second instructions, responsive to a determination that
retrieval of Said content from Said database requires
providing Said database with user identification
information, for retrieving a database identity from a
plurality of database identities, wherein the retrieved
database identity corresponds to the user; and

third instructions for inserting the retrieved database
identity into Said request;

wherein Said request is received from a requesting appli
cation and Said requesting application is an open data
base connectivity based application.

US 6,556,995 B1

14. A computer program product on a computer uSeable
medium, for use in a data processing System for managing
multiple identities for a Single user, the computer program
product comprising:

first instructions for receiving a request for content from
a database;

Second instructions, responsive to a determination that
retrieval of Said content from Said database requires
providing Said database with user identification
information, for retrieving a database identity from a
plurality of database identities, wherein the retrieved
database identity corresponds to the user; and

third instructions for inserting the retrieved database
identity into Said request;

wherein Said request is received from a requesting appli
cation and Said requesting application is a JAVA data
base connectivity based application.

15. An information handling System, comprising:
a library, containing a plurality of database identities,
a protected database, wherein user information must be

provided to acceSS Said protected database;
means for receiving a request from a user for content from

Said protected database;
means for retrieving a particular database identity from

Said library, wherein Said particular database identity
corresponds to the user;

means for inserting the particular database identity into
the request;

means for retrieving Said requested content from Said
database; and

means for Sending Said requested content to a requesting
client.

16. The information handling System as recited in claim
15, wherein the retrieved database identity comprises a user
ID.

17. The information handling system as recited in claim
15, wherein the retrieved database identity comprises a
password.

5

15

25

35

10
18. The information handling system as recited in claim

15, wherein Said retrieving Step and Said inserting Step is
performed by a global Sign-on database interface dynamic
link library.

19. The information handling system as recited in claim
15, further comprising:

responsive to a determination that user identification
information is not necessary to retrieve Said content,
forwarding Said request to Said database unmodified.

20. An information handling System, comprising:
a library, containing a plurality of database identities,
a protected database, wherein user information must be

provided to acceSS Said protected database;
means for receiving a request from a user for content from

Said protected database;
means for retrieving a particular database identity from

Said library, wherein Said particular database identity
corresponds to the user; and

means for inserting the particular database identity into
the request;

wherein Said request is received from a requesting appli
cation and Said requesting application is an open data
base connectivity based application.

21. An information handling System, comprising:
a library, containing a plurality of database identities,
a protected database, wherein user information must be

provided to acceSS Said protected database;
means for receiving a request from a user for content from

Said protected database;
means for retrieving a particular database identity from

Said library, wherein Said particular database identity
corresponds to the user, and

means for inserting the particular database identity into
the request;

wherein Said request is received from a requesting appli
cation and Said requesting application is a JAVA data
base connectivity based application.

