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A method and system for monitoring sensors of a lighting
control system. The method comprises performing a training
of'a plurality of sensors of the lighting control system (210) to
determine a joint probability distribution function (PDF) of
the illuminance at a given time t; collecting parameters from
the training and storing the parameters in a prior data storage
(S212); observing illuminance of the plurality of sensors
(S222); determining if there is at least a faulty sensor from
among the plurality of sensors based in part on the parameters
stored prior data storage (S224); and locating a faulty sensor
based on the determination of the existence of the at least a
faulty sensor and the prior data (S232, S234).
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FAULT DETECTION, LOCALIZATION AND
PERFORMANCE MONITORING OF
PHOTOSENSORS FOR LIGHTING
CONTROLS

[0001] The invention generally relates to lighting control,
and more particularly to monitoring the performance of sen-
sors in lighting control systems.

[0002] The proliferation of advanced lighting controls in
general, and the use of networked systems for such controls in
particular, is expected to increase. Such demand is fuelled by
an increase in awareness of issues relating to energy savings,
reducing the ecological impact footprint, utilizing govern-
ment incentives, and the desire to meet certain building per-
formance goals and industry certificates, such as a certificate
for Leadership in Energy and Environment Design (LEED).

[0003] As a result of the demand for such advances, the
complexity of lighting control systems is migrating from
simple light switches to more advanced complex systems that
incorporate multiple subsystems. Maintaining optimum per-
formance of these advanced lighting control systems
requires, in part, the use of advanced strategies that have not
been commonly applied to lighting control systems in the
past.

[0004] One critical performance aspect ofa lighting control
system is the performance of its sensors, for example, light
sensors. The performance of such sensors needs to be moni-
tored to ensure that they properly operate. Abnormal or defec-
tive sensors clearly affect the performance of the advanced
lighting control system, leading to lost opportunities and
hampering savings. Light sensor abnormalities could be due
to multiple sources including, for example, user tampering,
dust on the surface of the sensor, electronic degradation,
change of the reflective environment, communication prob-
lems, and so on. A light sensor that fails to operate according
to its calibrated performance compromises the overall light-
ing control system performance. Typically, such problems are
not noticed, or are attributed to the performance of the light-
ing control system. Currently there is no available solution to
determine if problems in a lighting system are attributable to
a light sensor that is faulty and needs replacement, repair, and
even self- or manual calibration. This is a major disadvantage
since users of such lighting systems tend to disable such
systems when the overall performance is compromised, thus
increasing the power consumption.

[0005] Therefore, it would be advantageous to provide a
lighting control system having a solution for detection of
faults of at least light sensors. It would be further advanta-
geous if the solution would allow corrective actions that can
be taken either automatically or by, for example, a building
operator, as soon as a problem is detected.

[0006] Certain embodiments disclosed herein include a
system for monitoring sensors of a lighting control system.
The system comprises a plurality of sensors connected to a
network; and a computing device connected to the network
comprising a training subsystem, a detecting subsystem and a
locating subsystem, wherein the training subsystem is con-
figured to determine an optimum operation of the system,
wherein the detecting subsystem is configured to collect mea-
surements from the plurality of sensors and determine, based
in part on data provided from at least the training subsystem,
a faulty sensor from among the plurality of sensors, and
wherein the locating subsystem is configured to determine a
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location of the faulty sensor from among the plurality of
sensors based on a fault indicator determined for each of the
plurality of sensors.

[0007] Certain embodiments disclosed herein also include
an apparatus in a lighting control system for monitoring sen-
sors therein. The apparatus comprises an interface to a net-
work for at least collecting data from a plurality of sensors
connected to the network; a fault detection unit that includes
a training subsystem, a detecting subsystem and a locating
subsystem, wherein the training subsystem is configured to
determine an optimum operation of the lighting control sys-
tem, wherein the detecting subsystem is configured to collect
measurements from the plurality of sensors and to determine,
based in part on data provided from at least the training
subsystem, if there is a faulty sensor from among the plurality
of'sensors, and wherein the locating subsystem is configured
to determine the location of the faulty sensor from among the
plurality of sensors based on a fault indicator determined for
each of the plurality of sensors; and a storage component for
storing data respective of at least one of the training sub-
system, the detecting subsystem and the locating subsystem.

[0008] Certain embodiments disclosed herein also include
a method for monitoring sensors of a lighting control system.
The method comprises performing a training of a plurality of
sensors of the lighting control system to determine a joint
probability distribution function (PDF) of the illuminance at
a given time t; collecting parameters from the training and
storing the parameters in a prior data storage; observing illu-
minance of the plurality of sensors; determining if there is at
least a faulty sensor from among the plurality of sensors based
in part on the parameters stored prior data storage; and locat-
ing a faulty sensor based on the determination of the existence
of'the at least a faulty sensor and the prior data.

[0009] The subject matter that is regarded as the invention
is particularly pointed out and distinctly claimed in the claims
atthe conclusion of the specification. The foregoing and other
features and advantages of the invention will be apparent
from the following detailed description taken in conjunction
with the accompanying drawings.

[0010] FIG. 1 is a schematic diagram of a lighting control
system according to an embodiment of the invention;

[0011] FIG. 2 is a schematic flowchart of a sensor fault
detection and location system according to an embodiment of
the invention;

[0012] FIG. 3 is a graph showing the illuminance distribu-
tion of illuminance data gathered from a west-facing window
in a typical room;

[0013] FIG. 4 is a graph showing the optimum number of
clusters of the illuminance data based on a 60-min observa-
tion window;

[0014] FIG. 5 is a graph showing the comparison of the
estimated joint probability distribution functions (PDF) of the
daylight illuminance near for example, a window of a typical
room (based on Gaussian mixture model and signal Gaussian
model);

[0015] FIG. 6is a graph showing the estimated joint PDF of
the daylight illuminance near for example, a window and the
desk near the door of a typical room based on Gaussian
mixture model;

[0016] FIG. 7 is a timing diagram demonstrating the fault
detection system testing the illuminance from for example, a
typical dining room;
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[0017] FIG. 8 is a timing diagram demonstrating the fault
detection system testing the illuminance from for example, a
typical office room; and

[0018] FIG. 9 is a timing diagram demonstrating the fault
detection system testing the illuminance from for example, a
typical cafeteria room.

[0019] It is important to note that the embodiments dis-
closed are only examples of the many advantageous uses of
the innovative teachings herein. In general, statements made
in the specification of the present application do not neces-
sarily limit any of the various claimed inventions. Moreover,
some statements may apply to some inventive features but not
to others. In general, unless otherwise indicated, singular
elements may be in plural and vice versa with no loss of
generality. In the drawings, like numerals refer to like parts
through several views.

[0020] According to various embodiments discussed
herein, the inherent correlation of multiple sensors of a light-
ing control system, as well as the correlation of a single sensor
over a period of time, provide advantages over existing sys-
tems. To this end, historical data is collected from the sensors
of'a lighting control system. Such data may be collected over
a network to which the sensors are connected. Once data is
collected several steps are taken in order to determine the
operational status of each sensor and possible corrective
action thereto.

[0021] FIG. 1 depicts an exemplary and non-limiting sche-
matic diagram of a lighting control system 100 according to
an embodiment of the invention. A plurality of sensors 130-1
through 130-N (where N is an integer number greater than 1)
and collectively referred to as sensors 130, are coupled to a
network 120. The network 120 may comprise a serial bus,
parallel bus, a local area network (LAN), a wide area network
(WAN), and the like, whether wireless or wired, and any
combinations thereof. To the network 120 there is connected
a computer system 110, through a network interface, that
comprises, for example, computational circuits and proces-
sors typical of such systems, a data storage 112 for the storage
of'the historical data respective of the sensors 130, and a fault
detection unit 114. In an embodiment, the sensors 130 are
photosensors.

[0022] The fault detection unit 114 includes a series of
instructions embedded in a tangible computer readable
medium that when executed by the computer 110 performs
the steps for detection and location as discussed in greater
detail herein below. The fault detection unit 114 may also
include a display or other means for showing the results of the
processing performed by the computer system 110.

[0023] The fault detection unit 114 performs a training
operation, a fault detection operation, and a fault localization
operation. In the training operation, some statistics are com-
puted for a group of sensors 130 over a portion of the histori-
cal data contained in the storage 112. Such statistics include a
classification of historical data into groups, and estimation of
the statistical variables of each group, i.e., the parameters of
the joint distribution function, for example but not by way of
limitation, mean, variance, and/or covariance.

[0024] In the fault detection operation, a process takes
place where for each time event or each duration of time (e.g.,
a 30 minute span) and for a particular reading from a set of
sensors 130, the computer system 110 computes the probabil-
ity that the currently measured data is correct or otherwise
likely to occur given prior sensor measurement relationships,
i.e., a correlation is determined. If the probability is low, then
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the computer system 110 can identity this measurement event
as problematic or faulty. A fault is viewed as an event with
negligible probability, i.e., an event that is unlikely to happen,
expressed as:

Pr(x(t)=xIt=n)~0

where x(t) is the reading of a set of the sensors 130 being
checked. In the fault localization operation, an attempt is
made to locate the sensor or sensors which are faulty.

[0025] This operation is based on an evaluation of the like-
lihood of the measurement from a certain sensor. Once the
faulty sensor(s) from the sensors 130 are identified, the faulty
sensor(s) can be flagged as such for further investigation.
Such investigation may be manual, where a building operator
can investigate the cause of the performance deviation and
correct the problem of such faulty sensors. Alternatively, one
or more self-calibration operation can also be undertaken
when possible, for example, by initiating a self-calibration
process by the computer system 110 causing a faulty sensor of
the sensors 130 to perform self-calibration. Self-calibration
algorithms are not discussed herein. According to one
embodiment, faults or abnormalities are identified in mea-
surement data received from the sensors 130 with the follow-
ing properties: low probability of false alarm; and, low prob-
ability of misdetection.

[0026] A faulty sensor is a sensor providing abnormal mea-
surement data, which may be attributable to various reasons,
for example, user tampering, dust on the surface of the sensor,
electronic degradation, change of the reflective environment,
communication problems, and so on. A faulty sensor is not
limited to an actual failure of the sensor.

[0027] An effective estimation of the joint distribution of
illuminance/luminance measured by sensors (hereinafter,
without loss of generality, the term daylight illuminance may
be used) is key to design an effective fault detection system.
For the purpose of illustration, a Gaussian mixture model is
selected to describe the joint probability distribution function
(PDF) of the daylight illuminance. That is, the PDF of the
daylight illuminance is approximated by a superposition of
multiple Gaussian distributions. Therefore, the following
information of the Gaussian mixture model is required to be
determined: the optimum number of Gaussian distribution
components at a given time t; the mean vector and the cova-
riance matrix for each Gaussian distribution; and, the proper
weight for each Gaussian distribution when combined.
Hence, for a given time t, the optimum number of Gaussian
distribution components is denoted as L*(t), and denotes the
mean vector, the covariance matrix, and the weight for the k”
Gaussian distribution as L, (t),2.(t),m,.(t), respectively,
thereby providing a joint distribution of the daylight illumi-
nance at a given time t as:

L)

px@ |z, L'() = Z T ON XD | e (), 2y (D)

k=1

where x(1) is a column vector denoting the daylight illumi-
nance, and N(x(t)Ip,(t),2,(0) denotes a multivariate Gaussian
distribution with mean ,(t) and covariance Z(t). The param-
eter set { L¥(0),1,(1),Z,(t),7t,(t) } completely describes the PDF
of the daylight illuminance. How to find the parameter set
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{L#(),1(0),Z,(1),T,(1)} according to one embodiment of a
fault detection subsystem will be described herein below in
greater detail.

[0028] FIG. 2 depicts an exemplary and non-limiting flow-
chart 200 of a sensor fault detection and location system
according to an embodiment of the invention. The system 200
includes three subsystems, a training subsystem 210, a detec-
tion subsystem 220, and a fault location subsystem 230. The
task of the training subsystem 210 is to estimate the joint
probability density function of the daylight illuminance from
the stored training data. The training subsystem 210 is typi-
cally trained off-line and provides the detecting subsystem
220 and locating subsystem 230 with the estimated model
parameters used by these subsystems. The task of the detect-
ing subsystem 220 is to detect whether or not there is a fault
in the measurement from the sensors 130. Subsystem 220
runs online and tests real-time measurements based on the
estimated model parameters from the training subsystem 210.
Once there is a detected fault, the detecting subsystem 220
notifies the locating subsystem 230 to test the measurement
from each sensor 130 and to determine which of the sensors
130 is providing the faulty measurement. The details of the
subsystems 210, 220 and 230 are discussed in further detail
herein below.

[0029] The training subsystem 210 shown in FIG. 2
includes three operations: S212 grouping of the training data,
S214 estimation of the optimum number of Gaussian distri-
butions L*(t) 214, and S216 estimation of [, (t),2,(t),7T,(t).
[0030] In S212, the training subsystem 210 groups the
training data according to the observation time of the data and
the desired observation window length. The training data is
defined as the pre-stored normal daylight illuminance mea-
sured from functional sensors of the sensors 130. The obser-
vation time is the time instance when the daylight illuminance
is measured. The observation window length is the time dura-
tion to discretize the originally continuous time information.
For instance, if the observation window length is 30 minutes,
all the daylight illuminance measurements with the 30 minute
time interval are grouped together and viewed as following
the same PDF. In S214, the training subsystem 210 deter-
mines the optimum number of Gaussian distribution compo-
nents. To find L*(t) is equivalent to finding the optimum
number of clusters to describe the daylight illuminance, the
clusters being described in greater detail herein below.
[0031] FIG. 3 is an exemplary and non-limiting graph
showing the illuminance distribution of illuminance data
gathered during 16:00-16:01 from, for example, a west-fac-
ing window in a typical room, from a single sensor of the
sensors 130. By simply observing FIG. 3, it is readily under-
stood that the data can be roughly grouped into several clus-
ters based on the illuminance levels. The optimum number of
clusters is defined herein as the number of clusters that prop-
erly describes that data without inducing excessive model
complexity. For instance, three clusters is a better choice to
describe the illuminance data in FIG. 3 compared to a parti-
tion into ten different clusters. For example, an X-means
algorithm is utilized in this step to find L*(t).

[0032] FIG. 4 is an exemplary and non-limiting diagram of
the result of the L*(t) for the west-facing room. From FIG. 4,
it is understood that the optimum number of clusters of the
illuminance varies over time based on the daylight availabil-
ity. For example, during night time, when there is no daylight,
the optimum number of clusters is only 2; while between
15:00 and 18:00 hours, when there is direct sunlight for the
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west-facing room, the optimum number of clusters is between
8 and 11. It should be further noted that the optimum number
of clusters of the illuminance also depends on the observation
window length and the environment of the building.

[0033] Returning to FIG. 2, in S216 it is necessary to find
the parameter set p,(1),2,(t),m.(t) based on L*(t) found in
S214, where 1=<k=L *(t) and m,(t) satisfies:

O=mn=1

L)

Z =1
k=1

The optimal parameter set is defined herein as the maximum
likelihood solution, i.e.,

N[
{0, (0. B 0) = g s ) 1n{2 T ON G0 e 0. B <z))}

T

Although there is no closed form to find the optimal p,(t),2,
(1), (1), an efficient expectation-maximization (EM) algo-
rithm can be directly applied to find the solution.

[0034] FIG. 5 shows an exemplary and non-limiting graph
comparing the estimated PDFs of the daylight illuminance
near the west-facing window of a typical room (shown as a
red solid curve 510) during 16:00-16:01 (1-min observation
window) based on a Gaussian mixture model and the tradi-
tional single Gaussian model (curve 520). Compared with the
traditional single Gaussian distribution assumption 520, the
Gaussian mixture model 510 describes the daylight illumi-
nance much more accurately and clearly embodies the mul-
timodal nature of the daylight illuminance distribution.
Another example of the Gaussian mixture model for two
daylight measurements is shown in FIG. 6. Specifically, FIG.
6 provides a graph showing the estimated joint PDF of the
daylight illuminance near the west-facing window and at a
desk near the door of a typical room during 16:00-16:01
(1-min observation window) based on a Gaussian mixture
model with two measurements.

[0035] Returning to FIG. 2, once the system has been
trained by the training subsystem 210, the detecting sub-
system 220 receives in S222 a new incoming observation x(t)
for which a respective probability density is determined in
S224 based on the previously found parameter sets:

TO=p (D)6, L* (@) 7 (1), (0,25 (1)

Thereafter, in S226 the probability density is compared with
a predefined threshold 6 value based on the following simple
detection rule:

{1([) > ¢ x(r)is a normal observation

IH)=d x(1) is a faulty observation

That is, if I(t)>0 then the observation is displayed in S228 as
normal. However, if I(t)=<0 then the observation is faulty and
processing continues by the locating subsystem 230 to deter-
mine which of the sensors 130 is a faulty sensor.
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[0036] Lastly, the locating subsystem 230 evaluates the
measurement and locates the faulty sensor(s) of the sensors
130. As shown in FIG. 2, the faulty sensors are located by
examining their fault indicator (t) 230, where j represents the
number of sensor 130-;. The fault indicator according to the
invention is defined as an evaluation of the likelihood of the
measurement from a certain sensor. The fault indicators can
be different functions as long as they can reflect the likelihood
ofthe measurement. For instance, the fault indicator of sensor
j can be the following conditional probability density:

L(O=p (5 (D)%, 4L* (0,0 110,24 (0)), Vi, 1si=D

where D is the total number of sensors. As another example,
the fault indicator can be determined as the marginal prob-
ability density of the sensor j:

1;(0) = plx;0) | 1, L' (@), 7 (1), p (1), Zg (1)
L'

= > mONCO |0, Z7 @)

k=1

where . *(t) represents the i element of the vector y, *(t),
and X ; *(t) represents the element on the i row and the j*
column ofthe matrix 2, *(t). Thus in this case each component
of the Gaussian mixture model becomes a single variate
Gaussian. Once the fault indicator for each individual sensor
is calculated, as shown above or otherwise, the rule of deter-
mining whether or not sensor j has an error is determined
simply by comparing I(t) with a predetermined threshold o,
as follows:

{Ij(t) >0 sensor fis normal

1;(t) =d sensor jhas fault

that is, the sensor j is determined to be operating normally if
L(t) is larger than 8, 236, and is determined to be faulty 238
otherwise. In an embodiment, the status of each sensor 130
may be displayed by the computer 110. It should be under-
stood that the thresholds for fault detecting and locating need
not to be the same. The appropriate values of the thresholds
can be obtained from the training data. For example, if the
fault indicator is the marginal probability density, the thresh-
old can be found as:

d=n f(n)in p@ |1, L@, 7 (), 41 (0), 2 (D)

L¥(n)
§;=n min ) MONCO | 10, 5 ;1)
k=1

Y x(7) in training data set

where 1 is a scalar, e.g. 1072, to provide a margin for the fault
detection by the subsystems 220 and 230.

[0037] The following discussions relating to FIGS. 7-9
illustrate by non-limiting examples, the operation of a light-
ing system according to various embodiments of the inven-
tion. For this illustrative purpose, three different environ-
ments are discussed: a dining room (FIG. 7), an office room
(FIG. 8), and a building hallway (FIG. 9). The sample rate for
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all the sensors in the experiments is 1 sample/minute. The
observation window length is 1 minute. There are five sensors
deployed in the dining room, thirteen sensors deployed in the
office room, and four sensors deployed in the building hall-
way. These sensors are placed at various locations. In the case
of'the office room and dining room, the sensors are located at
the ceiling, table/desks and window. In the case of the hall-
way, sensors are located on the windows at difterent locations
along the hallway.

[0038] FIG. 7 provides an exemplary and non-limiting tim-
ing diagram demonstrating the fault detection and locating
system testing the illuminance from a typical dining room
mentioned above. In this example, training data was collected
over a period of 28 days and the measurements from all 5
sensors are used to train the fault detection and locating
system. In this example nine artificial faulty periods of
30-minutes are randomly inserted into the illuminance data.
During each faulty period, the sensor measuring the illumi-
nance through the window (denoted by “sensor #1: window”
in FIG. 7) is assumed to have fault.

[0039] The graph atthe top of FIG. 7 shows the illuminance
data with inserted faulty measurements. The graph at the
bottom of FIG. 7 shows the output of the detection performed
by subsystems 220 and 230, when there is a detected fault the
output is 1, otherwise, the output is 0. The threshold is set
based on a fault indicator that is the marginal probability
density.

[0040] By effectively exploiting the correlation between
different illuminance measurements, the fault detection sub-
system 220 is able to detect the faulty measurements even if
they are close to a normal measurement. For example, the
faulty measurements highlighted in circles 710, 720 and 730
are similar to the normal measurements; however, the sub-
systems 220 and 230 detect the slight abnormality as indi-
cated by the respective circles 715, 725 and 735.

[0041] FIG. 8 provides an exemplary and non-limiting tim-
ing diagram demonstrating the operation of system 100 test-
ing the illuminance from, for example, a typical office room
having 13 sensors. In this example training data collected
over a period of 30 days and the measurements from all 13
sensors are used to train the fault detection and locating
system. Again nine artificial faulty periods of 30-minutes are
randomly inserted into the illuminance data. During each
faulty period, the sensor measuring the illuminance through
the window (denoted by “sensor #1: east-facing window” in
FIG. 8) is assumed to have fault. The graph at the top of FIG.
8 shows the illuminance data with inserted faulty measure-
ments.

[0042] The graph at the bottom of FIG. 8 shows the output
of'the subsystems 220 and 230; when there is a detected fault
the output is 1, otherwise the output is 0. The threshold is set
based on a fault indicator that is the marginal probability
density. By effectively exploiting the correlation between
different illuminance measurements, the fault detection sys-
tem is able to detect the faulty measurements even if they are
close to the normal measurement. For example, the faulty
measurements highlighted in circles 810 and 820 are similar
to normal measurements; however, the detector detects the
slight abnormality as indicated by the respective circles 815
and 825.

[0043] FIG. 9 provides an exemplary and non-limiting tim-
ing diagram demonstrating a fault detection system testing
the illuminance from, for example, a building hallway having
four sensors. In this example training data collected over a
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period of 30 days and the measurements from all four sensors
are used to train the fault detection and locating system.
Again, nine artificial faulty periods of 30-minutes are ran-
domly inserted into the illuminance data. During each faulty
period, the sensor measuring the illuminance through a win-
dow (denoted by “sensor #1: west-facing cafeteria” in FIG. 9)
is assumed to have a fault. The graph at the top of FIG. 9
shows the illuminance data with inserted faulty measure-
ments.

[0044] The graph at the bottom of FIG. 9 shows the output
of'the subsystems 220 and 230; when there is a detected fault
the output is 1, otherwise the output is 0. The threshold is set
based on a fault indicator that is the marginal probability
density. By effectively exploiting the correlation between
different illuminance measurements, the fault detection sys-
tem is able to detect the faulty measurements even if they are
close to the normal measurement. For example, the faulty
measurements highlighted in circles 910, 920 and 930 are
similar to normal measurements; however, the detector is still
able to detect the slight abnormality as indicated by the
respective circles 915, 925 and 935.

[0045] The various embodiments disclosed herein can be
implemented as hardware, firmware, software or any combi-
nation thereof. Moreover, the software is preferably imple-
mented as an application program tangibly embodied on a
program storage unit, a non-transitory computer readable
medium, or a non-transitory machine-readable storage
medium that can be in a form of a digital circuit, an analogy
circuit, a magnetic medium, or combination thereof. The
application program may be uploaded to, and executed by, a
machine comprising any suitable architecture. Preferably, the
machine is implemented on a computer platform having hard-
ware such as one or more central processing units (“CPUs”),
a memory, and input/output interfaces. The computer plat-
form may also include an operating system and microinstruc-
tion code. The various processes and functions described
herein may be either part of the microinstruction code or part
of the application program, or any combination thereof,
which may be executed by a CPU, whether or not such com-
puter or processor is explicitly shown. In addition, various
other peripheral units may be connected to the computer
platform such as an additional data storage unit and a printing
unit.

[0046] While the present invention has been described at
some length and with some particularity with respect to the
several described embodiments, it is not intended that it
should be limited to any such particulars or embodiments or
any particular embodiment, but it is to be construed with
references to the appended claims so as to provide the broad-
est possible interpretation of such claims in view of the prior
art and, therefore, to effectively encompass the intended
scope of the invention. Furthermore, the foregoing describes
the invention in terms of embodiments foreseen by the inven-
tor for which an enabling description was available, notwith-
standing that insubstantial modifications of the invention, not
presently foreseen, may nonetheless represent equivalents
thereto.

1. A system for monitoring sensors of a lighting control
system, comprising:
a plurality of sensors connected to a network; and
a computing device connected to the network comprising a
training subsystem, a detecting subsystem and a locating
subsystem, wherein the training subsystem is configured
to compute statistics for the plurality of sensors over at
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least a portion of historical data respective of the alit of
sensors stored over time, wherein the detecting sub-
system is configured to collect measurements from the
plurality of sensors and determine, based at least on the
computed statistics provided from the training sub-
system, a faulty sensor from among the plurality of
sensors, and wherein the locating subsystem is config-
ured to determine a location of the faulty sensor from
among the plurality of sensors based on a fault indicator
determined for each of the plurality of sensors.

2. The system of claim 1, wherein the sensors are photo-
Sensors.

3. The system of claim 1, wherein the training subsystem
determines a joint probability distribution function (PDF) of
the illuminance at a given time t.

4. The system of claim 1, wherein the detecting subsystem
determines a probability density.

5. The system of claim 4, wherein the detecting subsystem
compares the probability density to a predefined threshold
value to determine if there is a faulty sensor of the plurality of
Sensors.

6. The system of claim 1, wherein the locating subsystem
compares for each sensor its respective probability density to
a respective predefined threshold value to determine if each
sensor is faulty or not.

7. An apparatus in a lighting control system for monitoring
sensors therein, comprising:

an interface to a network for at least collecting data from a
plurality of sensors connected to the network;

a fault detection unit that includes a training subsystem, a
detecting subsystem and a locating subsystem, wherein
the training subsystem is configured to compute statis-
tics for the plurality of sensors over at least a portion of
historical data respective of the plurality of sensors
stored over time, wherein the detecting subsystem is
configured to collect measurements from the plurality of
sensors and to determine, based at least on the computed
statistics provided from the training subsystem, if there
is a faulty sensor from among the plurality of sensors,
and wherein the locating subsystem is configured to
determine the location of the faulty sensor from among
the plurality of sensors based on a fault indicator deter-
mined for each of the plurality of sensors; and

a storage component for storing data respective of at least
one of the training subsystem, the detecting subsystem
and the locating subsystem.

8. The apparatus of claim 7, wherein the sensors are pho-

tosensors.

9. The apparatus of claim 7, wherein the training subsystem
determines a joint probability distribution function (PDF) of
the illuminance at a given time t.

10. The apparatus of claim 7, wherein the detecting sub-
system is further configured to determine a probability den-
sity.

11. The apparatus of claim 10, wherein the detecting sub-
system is further configured to compare the probability den-
sity to a predefined threshold value to determine if there is a
faulty sensor among the plurality of sensors.

12. The apparatus of claim 11, wherein the locating sub-
system is further configured to compare for each sensor its
respective probability density to a respective predefined
threshold value to determine if each sensor is faulty or not.

13. A method for monitoring sensors of a lighting control
system, comprising:
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performing a training of a plurality of sensors of the light-
ing control system to determine a joint probability dis-
tribution function (PDF) of the illuminance at a given
time t;
collecting parameters from the training and storing the
parameters in a prior data storage;
observing illuminance of the plurality of sensors;
determining if there is at least a faulty sensor from among
the plurality of sensors based in part on the parameters
stored prior data storage; and
locating a faulty sensor based on the determination of the
existence of the at least a faulty sensor and the prior data.
14. The method of claim 13, wherein collecting parameters
from the training further comprises:
determining an optimum number of Gaussian distribution
components.
15. The method of claim 13, wherein determining if there is
a faulty sensor comprises:
determining a probability density.

#* #* #* #* #*
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