US 20220086193A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0086193 A1

Nguyen et al.

43) Pub. Date: Mar. 17, 2022

(54)

(71)

(72)

(73)

@
(22)

(63)

AUTOMATION OF CLOUD NETWORK
SECURITY POLICY ANALYSIS AND
DEPLOYMENT

Applicant: salesforce.com, inc., San Francisco, CA
(US)
Inventors: Toan Van Nguyen, Singapore (SG);
Qiyuan Zheng, Sammamish, WA (US);
Santhosh Ram Vetrinadar Manohar,
San Jose, CA (US); Varun Kulkarni
Somashekhar, Fremont, CA (US);
Prabhat Singh, Sunnyvale, CA (US)

salesforce.com, inc., San Francisco, CA
us)

Appl. No.: 17/248,529
Filed: Jan. 28, 2021
Related U.S. Application Data

Assignee:

Continuation-in-part of application No. 16/948,399,
filed on Sep. 16, 2020.

100 ..

1042 .47

104b 4"

.
User system
42 O
Policy | .
input
104 '
GOPR policy
: tuilder
Common poficy | - |
| puder “Gtter cloud
input parser and | > policy builder

converter

Cloud-specific
policy buiider

Publication Classification

(51) Int. CL

HO4L 29/06 (2006.01)
(52) US.CL

() SR HO4L 63/205 (2013.01)
(57) ABSTRACT

Disclosed are examples of systems, apparatus, methods and
computer program products for automation of network secu-
rity policy analysis and deployment. A server system can
obtain a system input comprising two versions of a policy
output. The system can generate a severity characteristic that
indicates a severity of deploying the second version of the
policy output. The system can then determine whether to
deploy the second version of the policy output based on the
severity characteristic. The system can then, in response to
determining that the second version of the policy output is
to be deployed, deploy the second version of the policy
output to one of a plurality of clouds.

128
112 P
i sl AWS
cloud
" Policy
™ deployer |7TTLT
“acp

1.108¢

. cloud ' 13D

P

__iverification

1407 omtToter

{ cloud 136

US 2022/0086193 A1l

Mar. 17,2022 Sheet 1 of 28

Patent Application Publication

L ainbid

9¢L={" pnop |
~ A e
L Byo = Ok Japing Aoyjod
b uoneoyuen ouseds-pno|D IDHBAUDD
ey agoL . 4epiing Aoyod pug Jasied induj
nop 18
P PIOR 1240 BPING gyl
261 pnop L v JOHLIOW Aoyjod uousuoT)
: 5 K ooy 8piing
PO i ia: S foyod do© \
S |
P sefoidep Jare 0zl sesied jndyy 7 V0L
o [A aod /" fonod Sy
" prop) 144 | |
[smy =~ N vol
LR zhl /g0l
ozl]
......................... BUUODy oo woysAs Jesn
_,./ 4///
| 001
avi

Patent Application Publication = Mar. 17, 2022 Sheet 2 of 28 US 2022/0086193 A1

200 -
REN

204 224 228

Define s X

s Verif
network Deploy policy | ety

. . » deployed

architecture {0 each cloud | .

. ; paolicy
and policies :
; S
Y \ , : !
Deliver
generated Monitor and
208 - Parse inputs po!icy to ~_50p revert policy
policy changes
deployer

| ’ \ ‘-‘v\:

, | ,, ;. 232
Build common el ?Uﬁd 6
2149 policy = cloud-specific - o544
policy

Figure 2

Patent Application Publication Mar. 17, 2022 Sheet 3 of 28 US 2022/0086193 A1

. 300A
{ &
{

“datacenter™: "datacentert™- _ 304
"functional_domains™: {

[

"name": "fd1",
"sfde_security_groups™ |

"k8s cluster names”: |
"iOgging",
"monitoring”
}’ N 3 *
"name”: "Logging_Monitoring”, -
- "policies™ {
-{ »
324 . d%stmgtion", {”)
services": ["proxy”]
"groups”™: ["Processing”]
__~"source™ {
"sarvices™ ["all"]

}

308
320

328

b
{
330 . destination™ {
"services": ["service1", "service2", "service3"}
w }’
326 y/,,wsc»urcei’: {
"services" |
"serviced”,
"serviced”,
"serviceb”,
"service7",
"service8”

}
}

340 _~"public": false,

349 "security _group_cidr™: "10.0.0.0/12",

244" "security _group_functionality”; "Logging_Monitoring”,
"security_group_name"™: "DC.Test.Logging_Monitoring”,

348" "service name”: [

Figure 3A

Patent Application Publication Mar. 17, 2022 Sheet 4 of 28

"serviced",
"sarvices",
"serviceg”,
“service7",
"service8",
"serviced”,
"sarvice10”

]

11

service_instances™ |

{

name: "serviced”,
port: 8080,
protocol: "tcp”

}

"name": Processing, 312
"security _group cidr™: "10.16.0.0/12",

"security_group_functionality”: "Processing”,

US 2022/0086193 A1l

"security_group _name”: "DC.Test.Processing”,

"service_name”: |
"service1”,
"service2",
"serviced"

]

"

service instances™ |
{
"name": "service 1",
"nort": 443,
"protocol”: "tep”

"name”. "service2",
"oort™: 587,
"protocol™ "udp

n

name": "service3",
"part”; 80,
“protacol”; "tep”
¥
\]

{
Figure 3A (Cont.)

Patent Application Publication Mar. 17, 2022 Sheet 5 of 28 US 2022/0086193 A1

"name”; Gateway, — 316
"service_name”: |

"proxy”
5
"service instances™: |
{
"name”: "proxy",
"port”: 8443,
"protocol™: "tcp”
}
]
ki
]
2
{
"name": "fd2",
1
]
}

Figure 3A (Cont.)

Patent Application Publication = Mar. 17, 2022 Sheet 6 of 28 US 2022/0086193 A1

. 300B
e
security_group: DC.Test.Logging_Monitoring 350
- subnet: 10.0.0.0/12 ~_3572
- service_name: - 34
- "sarviced”,
- "services",
- "serviceg”,
- "service?”,
- "serviced”,
- "serviced”,
- "service1(”
publicfalse - g4
policies:
- description: Policy allowing DC.Test.Logging_Monitoring to
DC.Test.Processing - 359
communication
a5y - SOUTCe!
securityGroup: DC.Test.Logging_Monitoring
84 destination:
securityGroup: DC. Test.Processing
366 services:
- description: tcpd43/servicel - 358
protocol: tep —. 372
370 destPorts: 443
- description: service2
protocol: udp
destPorts: 587
- description: service3
protocol: tcp
destPorts: ‘80

- description: Policy allowing DC.Test.Logging_Monitoring to
DC.Test.Gateway .. 544
communication
source:
securityGroup: DC.Test.Logging Monitoring
destination:
securityGroup: DC. Test. Gateway
services:
- description: proxy
protocol: tep
destPorts: ‘8443

Figure 3B

Patent Application Publication = Mar. 17, 2022 Sheet 7 of 28 US 2022/0086193 A1

- raot .-~ 424 - 400

- DC Instance 420 404
- name: datacenter? /
- Functional Domain (an independent chunk of netwark)
- name: fd1
- Security Group: Processing 412
- Subnet: 10.16.0.0/12
- Services . 450
- servicet
- serviced
- serviced
- Ingress rules . 4728
-tep_443 (rule name) .
-port: 443 -_a40 436
- protocol: fep, udp 444
- source: [10.0.0.0/12, 10.32.0.0/12] ..~ 448
- udp_587
- port: 587
- protocol: udp
- source: [10.0.0.0/12]
- Egress rules . 432
- allow_all-<_ 458
~ port: 1-65355
- protocol: tep, udp
- destination: {10.0.0.0/12, 8.8.8.8/32]

- Security Group: Logging_Monitoring. 416
~ Subnet: 10.0.0.0/12
- Services
~ serviced
- serviceh

~ Ingress rules
- Egress rules
- Security Group: Gateway
- Subnet: 10.0.0.0/12
- Setvices
- proxy
- ingress rules
~-tcp 8443
- port: 8443
- protocol: tcp, udp
- source: [10.0.0.0/12]
- Egress rules

Figure 4A

Patent Application Publication = Mar. 17, 2022 Sheet 8 of 28 US 2022/0086193 A1

- Functional Domain .— 408
- name: fd2
- Security Group: Processing

- DO Instance
- name: datacenter?2

Figure 4A (Cont.)

Patent Application Publication Mar. 17, 2022 Sheet 9 of 28 US 2022/0086193 A1

474

472

Root

Figure 4B

Security Group

Lad) had

470

US 2022/0086193 A1l

Mar. 17,2022 Sheet 10 of 28

Patent Application Publication

[¢ dnoun Alunaa
:5dnoud

68y

51517

Dt 2inbi

FERITSEYS
‘(BOINIBS]
1SOIINIDS

SERISER
"ZR0INIBS ‘TBIIMIRS]
:S93IAIDS

{l

Adnoid

88Y

98Y
L8%

P8Y E

uoIBeUISag

€V 5104 0808 5104
d31 102031044 dD4 1je20104d
730INIBS 192IAIDS
3217
(4317
§9ouelsy]
 30IAIBS
8y 08y

X, dnodny Ajunsag

6Ly 0Ly

Patent Application Publication = Mar. 17,2022 Sheet 11 of 28 US 2022/0086193 A1l

504 -

512

508 . 500A
/; ~
- resource "aws_security _group” "dc_test_processing fd1" {
count = "§{varfd name == "datacentert fd1"?1.0}"
description = "Security Group for Processing”
name = "dc_test_processing fd1”
vpe id = "§{var.vpc_id}"

516 tags = "${merge{var.platform_mandatory_tags,map(

oW

"Processing”, "true”,

"
lifecycle {
ignore_changes = ["description”]
ki
ki
590 ”{,.--i;esource "aws_security group rule” "d¢ test processing fd1 tep 443"
count = "${var.fd_name == "datacenter! fd1"?1:.0}"
description = "Policy from Logging Monitoring to Processing on
top_443"
[type = "ingress”
. from_port =443
524 to_port = 443
- protocol = "top”
. cidr_blocks = {"10.0.0.0/12"
598 . security _group_id =

"${aws_security _group.dc_test processing fd1.id}"

}

resource "aws_security_group_rule”
"de_test processing fd1_udp 587" {

count = "§{var.fd_name == "datacentert fd1" 2?2 1:0}"

description = "Policy from Logging_Monitoring to Processing on
udp_587"

type = "ingress”

from_port = 587

to_port = 587

protocol = "udp"

cidr_blocks = {"10.0.0.0/12"]
security group id =
"${aws_security group.dc_test processing fd1.id}”

b
Figure 5A

Patent Application Publication

Mar. 17,2022 Sheet 12 of 28

US 2022/0086193 A1l

. 500B
-
534 resource "google _compute firewall”
"Policy_from_dc-test-logging_monitoring_fo_dc-test-processing” §
count = "${varfd == "dc_test processing fd1"?1:0}
53g .-~ hame = “rule-1"

network = "${var.vpc}"
project = “${var.project}"

priority = 10000

547 .. direction = "INGRESS"

n443u’}

H;! 61 n}

- allow {
546 - protocol = "top”
550 ports = ["80",
}
554 . allow {
protocol = "udp”
ports = ["587"]
}
558 . deny {
protocol = "udp”
ports =["53",
}

target_tags = ["dc-test-processing”]
source fags = ["de-test-logging-monitoring”]
source_ranges = ["10.0.0.0/12"]

}

vpe {
name: processing

tag: de-test-processing
subnet: 10.16.0.0/12

}

Figure 5B

Patent Application Publication Mar. 17,2022 Sheet 13 of 28 US 2022/0086193 A1l

574

o~
™~
g
o
o]
Q
o
$oooo
el
&)}
Q.
=
o
ot
Q
>
=
o
pos
L
Q)
s
o
Q.
=
e}
ol
!C\D O
0 2
o
=
[®]
Q)
(%
o
Q.
=2
o
pud
(&)
-
ey
=
oo}
&
<3}
v

as ainbi4

US 2022/0086193 A1l

1/002E0
ZL/0°0°0°01)

T/0°0°CE0T
‘21/0°0°001]

0/0°0°00 0/0°000 8/0°0°0°0T
000%9
<0000%

Mar. 17,2022 Sheet 14 of 28

985 585

8%

L8S €8¢
53jnJ §5348 kil
: : _ssa43u]
85 08S

X dnoun Aunoag

(074

648

Patent Application Publication

US 2022/0086193 A1l

Mar. 17,2022 Sheet 15 of 28

Patent Application Publication

1odas uoIIBIBIICD Jip

ndino-indut Adijod

0Z8

niejuasasdal
ndino jeuseluy

g ainbiyg

nejuasasdal
ndino jeusdiuy

; ndu jeusaiug

piussaidal

1odai pue Joieiauss
uone Lol "Hid Hp H#d
1ndino Adijod
Jauodal ioyeiaudd Yip
uoIRRLIO2 JIQ 819 1ndino Adyod “
Jazhieue i i03e4uag
IEHE wp wndug Aoog | |
Hip
€809 ndug Adjod .
809 309
919
191IBAUOD Jasied
Adtjod nduy

19149AUOD H

vig

fleiuasasda]

wndus jeusaiuy

indino Aoljod |

a0y

AR

A9349AUQD H

A

ndu Adgjod

~ Jassed
_ 1ndino Adjod

4208

A A

dino

Nrethdul)

Aotjod

\,

Aaijod %

i9sied

ndui Aayjod

NpAfdinG

Aanog

Npefhdun]

Aanod

208

0L9

WaisAg

009

J ainbi4

US 2022/0086193 A1l

1474
uoday |« __uw_mmmww_ﬂ“ﬂ __1 _t:o Em;mcmw_n __ Mwﬁ“mmw _A_A sindut asied

2Ll 0bL 80. 902 -

gL

Mar. 17,2022 Sheet 16 of 28

!

/

004

Patent Application Publication

US 2022/0086193 A1l

Mar. 17,2022 Sheet 17 of 28

Patent Application Publication

3941 Jip
Cm :ﬁwﬁnm:
SB U 3poU BN

828 978

| apoutpeale

NELEEE

g ainbi

ydnoayy doo
28

J243 Hip

u pRyipow,,
SE U 3pou Yie

218

EEYFTY
U panousd,
Se U 3pou e

¥i8

SaA

FEEN R -
é|9ne] 2341 H4ip
.1 {9As) yoes
228

FIETEY
3o ON

028
ON

_ 224y Jip ~

7aaJ41 ‘1984

‘
} |3Aa] UD g
U 3pOU YIED |«

ﬁ: i %mwwwumb\

y8nouys doo
808 908 08

ajeniul

159343 peay

208

008

US 2022/0086193 A1l

Mar. 17,2022 Sheet 18 of 28

Patent Application Publication

N

6 9inbi4

Hodas ayy 03 Yynsad Eoc
Y
oia
1odas syl 03 wejqosd v
2ige1 dmjoo] AjLIdAaS uoneiaudd Axgjod e ppy
U1 Ui J4ip Yy
33 O AJISARS AjlIuap| Zi6
\ A
¥i6
86 ¢
£934Y JipTndino SHIP DI0N

Ut 1SIX3 youeiq sjy3 sa0g

2341 Yip Indino J
40 1BULIO} BY3 Ul YOURIg |«

oN
SaA

9943 B 01U J41P YoIB N

806

ﬁ 934y pip ndut aypy J\

4
[N

1i0das winiay

743

ﬂ 2igel dnyjoo; AlJanss

@ 4ip yoes ySnosyi deotf

906

vﬁ

‘2841 Jip 1ndino
2343 yip Indut :peay

$06

006

(243

06

Patent Application Publication

Mar. 17,2022 Sheet 19 of 28

"name"; Security_Group 2,
"security _group_cidr”: "10.16.0.0/127,

"service_name" {

]

"

1002

[Tservice i

"service2",

"serviced"

——

!
L.

1006

‘protocol’-"tep” *

|8
PR NS IS VS J

"name": "service?”,

"port": 587,
"protocol”; "udp”

"name": "service3”,

"port": 80,
*protocol™; "tep”

W, n

s " '
"name"; "service14",

“oort*; 8000, L 1008
"protocol™ "tep”

icies™ |
“destination™ {
“services™: [“service8”]

{

{

H

i

b |
“source” { I
“services” [“service14”] :

|

i

{

Figure 10A

US 2022/0086193 A1l

Patent Application Publication Mar. 17,2022 Sheet 20 of 28 US 2022/0086193 A1

{

"datacenter”: "datacenterl” 1050

"business_units™: {

[/

{ o, 1051
"name": "bu

! "changes™ {),/

S 052

{ o e

I Type™: "Service Removed’ s
"Path": "dcl.bul.Security_Group_2.servicell”
"RemovedRe‘;om ce’; "servicel”
- ?Eo;l%gpzﬁcﬁﬁgmoagput changes™
- resource “aws_security_group_rule”

“dci_bul securxty group_2_ingress_tcp 4437 {

n, o

- description = "Policy from Security_Group_1 to Security_Group_2 on
tcp 443
- type = "ingress”
- to_port =443
- protocol = "tep”

i
i
i
i
i
i
i
- from_port = 443 :
!
f
i
- cidr blocks =["10.0.0.0/12","10.32.0.0/12"] :
- security_group_id = "${aws_security_group.dcl_bul_security_group_2.id}" :

f

"Path™ "d(,l bul. Se(_unLy_Group_Z.service14"
- _"Acid_ed&escwzcg”_: “service14”
"Severity" "Medium” 4 1060 1062
+resource aws_securxtygroup_mie
"del_bul_security_group_2_ingress_tcp 8000" {

i !
! !
! !
: + description = "Policy from Security_Group_1 to Security_Group_2 on }
1 tcp_8000" !
: + type = "ingress” :
; + from_port = 8000 ;
i + to_port = 8000]
; + protocol ="tcp” :
1 + cidr blocks ={"10.0.0.0/12", "10.32.0.0/12"} :
: + security_group_id = "${aws_security_group.dcl_bul_security group_2.id}"
- i
}1

Figure 10B

Patent Application Publication Mar. 17,2022 Sheet 21 of 28 US 2022/0086193 A1l

1050

o AR e e s e e o —— o o i e e

"Path™ "dcl bul. Securlty_Group 3" 1066

- "AddedResource”; "policy” _ _ _ |
] "Severity": "Medium")/

" 13

"Corresponding output changes™:
resource "aws_security_group_rule”
"dc1_bul_security_group_3_ingress_tcp8443" {

description ="Policy from Security_Group_1 to Security_Group_3 on
tcp_8443"

type = "ingress"”

from_port = 8443

to_port = 8443 1068

_-protocol . =Ttepl =

| +cidrblocks =["10.0.0.0/12","10.16.0.0/12"] |

security_group_id = "${aws_security_group.dcl_bul securlty_group 3.id}"

resource "aws_security_group_rule"
"dc1_bul_security_group_3_ingress_tcp9443" {

description = "Policy from Security_Group_1 to Security_Group_3 on
tcp_9443"
type = "ingress”
from_port =9443
to_port =9443 1070
__protocol _ ="tep” __ __________________
' +cidr blocks =["10.0.0.0/12","10.16.0.0/12"] /
~ T Security_grotip_id =" ${aws_security_group.dcT baT_security_group_3.id}"
-}
}
]
}
}
]
}

Figure 10B (cont)

US 2022/0086193 A1l

9111 —

Mar. 17,2022 Sheet 22 of 28

0011

JOUUON
13 JsAojdag

39011

iayioday

A

L1 enbi

405533044

Oy
qvo1t
Jojeisusd asen

49017
JOHUO

83011
Jahoidap Adtjog

Patent Application Publication

9011

EY0T1
1azAjeue Adijod
| U

01T

A A

J19yma4 1ndyj

2071

15anbay
wuswiAodag

e

A

suonendyuo)

s [4% %

Aloysodal
Aatjod sanese|da

As0ds003i
Asyjod sjgehojdag

21 8inbi4

US 2022/0086193 A1l

0
'
S
S .
er; | i
«~ [!
D A4 _
D
=
2 » Aojdag » JOHUON » sni1e1s uodsy
N
o
2
= y1Ct 91¢t 81¢t 0¢ct
o
-
<
= 1901 /ased
:pansoadde ase) aguew a1ea1) < azAjeuy < sindul Y2394
7 7 7
8071 901 ¥0C1 0t

A

00zt

Patent Application Publication

Patent Application Publication Mar. 17, 2022 Sheet 24 of 28

US 2022/0086193 A1l

|
{
I .
| Policy 1: /1306 1310 /l/
| ~~~~~~~~~~~~~ [
| | Changes: : DEPLOY :
: :A) Removed service 1 ! :
: | B) Removed service 10 | |
|
! STTITIZIIIITIICCTI308 1312 |
' |) T }
: t Severity: HIGH | REQUEST MORE r
| | ! INFORMATION !
l | | t
e l
L ;
|_' """ 1
1310
| Policy 2L __ yf,la){/
|
I Changes: | }
| g . | DEPLOY n
| 1 A) Removed service 4 | :
| ________________ '
~~~~~~~~~~~~~~~ !
| ] _ ‘. 1312 |
| | Severity: HIGH ! |
| | { REQUEST MORE ;
! "”"""’”"”’”"\\‘” INFORMATION |
: 1316 i
| |
L ;
|1
Approve All

1302

1304

1318

Figure 13A



Patent Application Publication = Mar. 17,2022 Sheet 25 of 28  US 2022/0086193 A1l

. . 1350
Security policy deployment dashboard
( > [ Search )

1352 1354 1356 1358 /1360

Pipeline Change case Deployment Start time End time

status

2020/12/31 2020/12/31

datac%nterl Deploy20201231axa Successful 11-00 AM 11:15 AM

2020/12/31 2020/12/31

Ao bul Deploy20201231axa Successful 11:00 AM 1115 AM

dbg2 Deploy20201231axa Unsuccessful zgi%/ol Zj‘l 22501/51 iﬁl

2020/12/30 2020/12/30

datacenter n Depioy20201230b9n Successful 200 PM 2-10PM

Figure 138



Patent Application Publication = Mar. 17,2022 Sheet 26 of 28  US 2022/0086193 A1l
22 24 26
\ \\ \
,\:" \\
Tenant System
data data Program
storage storage code
17 b
Processor
system Process space -
. Applicaton 28
18 1 platform
Network Database system
interface
j 16
20 Environment
.10
14 Network /}
12 L 12
User User
system system

Figure 14A



Patent Application Publication = Mar. 17, 2022 Sheet 27 of 28

US 2022/0086193 A1l

24 23 Tenant space —
i o3 : o
64" 1 Tenant data 66
” Application metadata |
25 1
60 TenantDB 28 52
18— Application | :
38 . Situ‘? Tenant management System
mechanis process process "--\;)_16
Save !
36 routines : el :
Tenant1 | Tenant2 Tenant N
. pLSOQL process | process Tt process |
34 7 /‘ i
AP S ul \
54
32 e e 30
Appl. Appl.
50,7 server server | 90y
S o e
N
Environment \
o h » N
10 o N
12 Network 14
C12A 2B . ST
Processor Memory e
system system b ey o
nput Qutput 12 12
system system
12C 12D

Figure 14B



Patent Application Publication Mar. 17,2022 Sheet 28 of 28  US 2022/0086193 A1l

1520 1500
1508

151 6 Core j /o
/" switch 1 «g, A

1 556

’ }/ Edgék\x
3 router 1 ‘?.‘,‘,

v Active
 firewall ¢

} Load\ Switch 4 At =
" balancer “* “y firewall DB switch

router 2 switch £ 1536

Figure 15A

Switch4 /",

1544Pod

servers 4" P
; Content!

}, i search 14‘_
.'Z)Database servers "Query

- / ; servers
| instance/ / servers . gg{i .
¥ / File
N servers: 1594

1590 -

1590

Database

1592 ~ bl /Y
i | instance

1628

{ oad balancer NFé File storage

Figure 15B



US 2022/0086193 Al

AUTOMATION OF CLOUD NETWORK
SECURITY POLICY ANALYSIS AND
DEPLOYMENT

INCORPORATION BY REFERENCE

[0001] An Application Data Sheet is filed concurrently
with this specification as part of the present application.
Each application that the present application claims benefit
of or priority to as identified in the concurrently filed
Application Data Sheet is incorporated by reference herein
in its entirety and for all purposes

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material, which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the United States Patent and
Trademark Office patent file or records but otherwise
reserves all copyright rights whatsoever.

TECHNICAL FIELD

[0003] This patent document generally relates to network
security. More specifically, this patent document discloses
techniques for network security orchestration and manage-
ment across different clouds.

BACKGROUND

[0004] Enterprises are moving their infrastructures to pub-
lic clouds for reasons including: fast bootstrapping pro-
cesses, reliability, geographical availability, scalability and
cost factor. Some estimate that over 90% of enterprises use
clouds, and over 80% of enterprises have a multi-cloud
strategy, in which an enterprise builds infrastructures on
multiple cloud platforms. Reasons for a multi-cloud strategy
include mitigating single cloud provider locking risks, pri-
vacy and governance compliance in different regions (e.g.,
an enterprise having to use a Chinese cloud provider if it
wants to operate in China). Additional benefits of a multi-
cloud strategy include greater agility and flexibility, and
fulfillment of customer requests (e.g., customers might not
want to host their data on a competitor’s platform).

[0005] In the past number of years, we have witnessed
many severe data breaches related to public cloud infra-
structures. This problem is compounded in a multi-cloud
strategy because the attack surface is bigger, and the chance
for misconfiguration errors in multiple clouds is greater.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The included drawings are for illustrative purposes
and serve only to provide examples of possible structures
and operations for the disclosed systems, apparatus, methods
and computer program products. These drawings in no way
limit any changes in form and detail that may be made by
one skilled in the art without departing from the spirit and
scope of the disclosed implementations.

[0007] FIG. 1 shows a block diagram of an example of a
network security system 100 providing a framework for
network security orchestration and management, in accor-
dance with some implementations.

Mar. 17, 2022

[0008] FIG. 2 shows a flowchart of an example of a
method 200 for network security orchestration and manage-
ment, in accordance with some implementations.

[0009] FIG. 3A shows an example of a policy input 300A
in JSON format, in accordance with some implementations.
[0010] FIG. 3B shows an example of a policy input 300B
in YAML format, in accordance with some implementations.
[0011] FIG. 4A shows an example of an internal repre-
sentation 400, in accordance with some implementations.
[0012] FIGS. 4B and 4C show examples of an internal
representation arranged in a tree format, in accordance with
some implementations.

[0013] FIG. 5A shows an example of a cloud-specific
policy set 500A for an AWS cloud, in accordance with some
implementations.

[0014] FIG. 5B shows an example of a cloud-specific
policy set 500B for a GCP cloud, in accordance with some
implementations.

[0015] FIGS. 5C and 5D show examples of a cloud-
specific policy arranged in a tree format, in accordance with
some implementations.

[0016] FIG. 6 shows a block diagram of an example of a
network security system providing a framework for corre-
lating security policy input changes and output changes, in
accordance with some implementations.

[0017] FIG. 7 shows a flowchart of an example of a
method 700 for correlating security policy input changes and
output changes, in accordance with some implementations.
[0018] FIG. 8 shows a flowchart of an example of a
method 800 for identifying differences between a pair of
policy inputs or a pair of policy outputs, in accordance with
some implementations.

[0019] FIG. 9 shows a flowchart of an example of a
method 900 for generating a report of correlation of security
policy input and output changes, in accordance with some
implementations.

[0020] FIG. 10A shows an example of changes to a policy
input in JSON format, in accordance with some implemen-
tations.

[0021] FIG. 10B shows an example of a system report that
identifies changes to a security policy in JSON format, in
accordance with some implementations.

[0022] FIG. 11 shows a block diagram of an example of a
system 1100 for automation of cloud network security policy
analysis and deployment in accordance with some imple-
mentations.

[0023] FIG. 12 shows a flowchart of an example of a
method 1200 for automation of cloud network security
policy analysis and deployment in accordance with some
implementations.

[0024] FIG. 13A shows an example of a user interface
1300 that can indicate various security policy output
changes to be deployed in accordance with some implemen-
tations.

[0025] FIG. 13B shows an example of a user interface
1350 that can indicate a deployment status of different
security policies in accordance with some implementations.
[0026] FIG. 14A shows a block diagram of an example of
an environment 10 in which an on-demand database service
can be used in accordance with some implementations.
[0027] FIG. 14B shows a block diagram of an example of
some implementations of elements of FIG. 14A and various
possible interconnections between these elements.



US 2022/0086193 Al

[0028] FIG. 15A shows a system diagram of an example
of architectural components of an on-demand database ser-
vice environment 1500, in accordance with some implemen-
tations.

[0029] FIG. 15B shows a system diagram further illustrat-
ing an example of architectural components of an on-
demand database service environment, in accordance with
some implementations.

DETAILED DESCRIPTION

[0030] Examples of systems, apparatus, methods and
computer program products according to the disclosed
implementations are described in this section. These
examples are being provided solely to add context and aid in
the understanding of the disclosed implementations. It will
thus be apparent to one skilled in the art that implementa-
tions may be practiced without some or all of these specific
details. In other instances, certain operations have not been
described in detail to avoid unnecessarily obscuring imple-
mentations. Other applications are possible, such that the
following examples should not be taken as definitive or
limiting either in scope or setting.

[0031] Inthe following detailed description, references are
made to the accompanying drawings, which form a part of
the description and in which are shown, by way of illustra-
tion, specific implementations. Although these implementa-
tions are described in sufficient detail to enable one skilled
in the art to practice the disclosed implementations, it is
understood that these examples are not limiting, such that
other implementations may be used, and changes may be
made without departing from their spirit and scope. For
example, the operations of methods shown and described
herein are not necessarily performed in the order indicated.
It should also be understood that the methods may include
more or fewer operations than are indicated. In some imple-
mentations, operations described herein as separate opera-
tions may be combined. Conversely, what may be described
herein as a single operation may be implemented in multiple
operations.

[0032] Some implementations of the disclosed systems,
apparatus, methods and computer-readable media provide
network security orchestration and management across dif-
ferent cloud providers to facilitate transitioning of enterprise
infrastructure to public clouds. For instance, a multi-cloud
infrastructure can be implemented on popular public cloud
platforms including Amazon Web Services (AWS), Google
Cloud Platform (GCP), Microsoft Azure and Alibaba Cloud.
Customer data can be protected in the various public clouds
of the multi-cloud infrastructure. Some implementations of
disclosed network security techniques and frameworks pro-
vide fundamental security measures to protect customer data
from unauthorized access. For instance, some security mea-
sures require that only entities (internal or external with
respect to a network) with proper permissions and authori-
zations can access certain resources in the network.

[0033] In some implementations, a network security solu-
tion is provided in a multi-cloud infrastructure, even though
each cloud provider provides different types of security
primitives and protections. Some of the disclosed examples
of network security solutions are cloud-independent; that is,
the same version of a network security solution can be
deployed on multiple clouds multiple times, even though the
particular deployed solution on a given cloud uses that
cloud’s particular tools and supports. So, the same security

Mar. 17, 2022

posture is realized across the various clouds using cloud-
specific security controls tailored to each cloud. Networks,
infrastructures and data centers can be quickly scaled and
expanded while maintaining the same security posture.
[0034] Some implementations of the disclosed network
security solutions are transparent to users including appli-
cation developers, service developers and engineers who
write and deploy applications and services on a network.
Such users do not need to know cloud-specific security
controls to implement network security for their services.
Some implementations of the disclosed frameworks and
techniques offer a general, cloud-independent tool to users
for that purpose.

[0035] Some implementations provide centralized orches-
tration, management, security policy versioning and security
monitoring. For instance, a network security overview of
data centers of interest can be generated even when those
data centers are deployed on different clouds and regions.
Using the disclosed techniques, network security policies
can be added, removed and modified. These policies can be
deployed to all or selective instances of data centers.
[0036] Once implemented, some of the disclosed network
security frameworks and techniques can improve engineer-
ing productivity and reduce time delay when an enterprise is
expanding to a new data center or region or adding a new
cloud platform to a multi-cloud infrastructure. Engineers
may not need to worry about learning a new cloud’s security
controls or have to deal with security orchestration for their
services. Hence, engineers can focus on improving their
services or building new products to boost productivity.
Also, the time to bootstrap and deploy a new data center can
be shorter than with conventional data center builds (e.g., a
matter of days versus years).

[0037] Some of the disclosed network security frame-
works and techniques can be implemented to realize a
number of use cases including: bootstrapping a new data
center on a cloud; adding, deleting, and modifying existing
data center information such as a network layout or a policy;
adding, deleting, and modifying a security group in a
functional domain; adding, deleting, and modifying a ser-
vice in a security group in a functional domain; and adding,
deleting, and modifying a policy in a security group in a
functional domain.

[0038] Additionally, systems and methods for correlating
security policy input and output changes are disclosed. In
some implementations, differences between two versions of
a security policy input can be identified. For example, a first
version can be an original user-submitted version, and a
second version can be a modified version of the first version
with one or more changes to the security policy input.
Continuing with this example, in some implementations
corresponding versions of cloud-specific security policy
outputs can be retrieved, and differences between the ver-
sions can be identified. In some implementations, differ-
ences between the versions of the security policy inputs can
be correlated to differences between the versions of the
security policy outputs. For example, a difference in a
security policy input to remove a particular service can be
matched to a corresponding difference in the security policy
output.

[0039] In some implementations, after differences in ver-
sions of security policy inputs have been matched to differ-
ences in versions of security policy outputs, a record or
report can be generated that indicates the matched differ-



US 2022/0086193 Al

ences. In some implementations, the report or record can be
formatted in a manner that is easily readable, thereby
allowing a network or security administrator to quickly
identify differences in cloud-specific security policy outputs
that are a consequence of submitted changes in security
policy inputs.

[0040] Moreover, in some implementations, severity char-
acteristics of each identified difference can be identified or
retrieved from a table and included in the record or report.
For example, removal of a service can be indicated as having
a high severity or a high impact, whereas addition of a
service can be indicated as having a low or medium severity.
By presenting identified differences in connection with an
associated severity of the difference, the systems and meth-
ods described herein can allow a network or security admin-
istrator to quickly identify high severity changes for addi-
tional manual analysis.

[0041] By allowing cloud-specific security policy output
changes to be identified in an easy to read format, manual
time spent reviewing policy changes can be reduced. More-
over, by redirecting manual time spent reviewing policy
changes to those deemed to be of high severity, manual time
can be used more efficiently. More efficient use of manual
time may improve overall network security and cloud secu-
rity by reducing human errors while also allowing a larger
number of policy changes to be implemented quickly.
[0042] Additionally, systems, apparatus, methods and
computer-readable media for automation of network secu-
rity policy changes analysis and deployment are provided. In
some implementations, differences between two versions of
a cloud-specific security policy output (i.e., a version that
was previously deployed and a new version that is to be
deployed) can be identified. In some implementations, dif-
ferences can be assigned severity levels or characteristics
that indicate a severity impact of the difference. For
example, a new version of a security policy output that
removes a service, allows new or additional Internet traffic,
etc. can be assigned a high severity level or characteristic. As
another example, a new version of a security policy output
that adds a service can be assigned a low or medium severity
level or characteristic. In some implementations, a determi-
nation of whether to automatically deploy the new version of
the security policy output can be made based on the assigned
severity level(s) or characteristic(s). For example, in some
implementations, a new version of a security policy output
that contains only low severity or medium severity differ-
ences relative to a previously deployed version can be
automatically deployed without manual review. Conversely,
in some implementations, a new version of a security policy
output that contains high severity differences relative to a
previously deployed version can be flagged or routed for
manual review.

[0043] In some implementations, assignment of severity
levels or characteristics to a new version of a security policy
output can allow the new version of the security policy
output to be analyzed using semantic intelligence that can
provide a more accurate or meaningful analysis of differ-
ences. For example, in some implementations, severity
levels or characteristics can be assigned based on types of
changes identified between two versions of policy output,
thereby allowing differences between the two versions to be
meaningfully categorized in a context of impact.

[0044] In some implementations, one or more reports can
be generated and/or presented, where each report indicates

Mar. 17, 2022

information about security policy outputs to be deployed.
For example, in some implementations, a report may indi-
cate one or more versions of security policy outputs that
have been flagged for manual review. In some such imple-
mentations, such a report can indicate identified differences
between the new version of the security policy output and a
previously deployed version, severity level(s) or character-
istic(s) of the identified difference(s), etc. As another
example, in some implementations, a report may indicate a
deployment status of security policy outputs that have been
approved for deployment.

[0045] By selecting security policy outputs for automated
deployment (i.e., deployment without manual review) based
on a determined severity level of the changes in the security
policy, manual resources can be conserved and optimized.
For example, by prioritizing manual review for high severity
security policy changes, manual workload can be reduced,
thereby conserving resources, as well as reducing a chance
of error introduced during manual review. Moreover, by
automating deployment of security policies determined to be
of relatively low severity, security policies that include
relatively minor changes relative to previously deployed
versions can be quickly deployed, without waiting for
manual review. This can provide improved cloud and net-
work security by allowing security policies to be more
quickly updated.

[0046] In some implementations, the techniques, opera-
tions, and systems described herein for automation of cloud
network security policy analysis and deployment may be
used for canary deployment or test development. For
example, in some instances, system inputs can indicate that
a new version of a cloud-specific security policy is to be
deployed to a limited number of cloud services. Continuing
with this example, the system inputs can further indicate that
the new version is to be more extensively deployed in
response to determining that no errors have been triggered
during the initial deployment to the limited number of cloud
services. In some implementations, a list of canary services
can be stored in a configuration file. In some such imple-
mentations, the configuration file can be retrieved and read
by a system for automated analysis and deployment of
network policies at runtime. In some implementations, a list
of canary services can be varied, for example, depending on
a type of deployment environment (e.g., test, staging, pro-
duction, etc.).

[0047] FIG. 1 shows a block diagram of an example of a
network security system 100 providing a framework for
network security orchestration and management, in accor-
dance with some implementations. In the example of FIG. 1,
system 100 has components including an input parser and
converter 104, a cloud-specific policy builder 108 and a
policy deployer 112. Input parser and converter 104 is
configured to obtain a policy input 116. In this example, a
user system 12 sends policy input 116 to input parser and
converter 104. Policy input 116 can also or alternatively be
retrieved by input parser and converter 104 from other
computing resources such as servers, computing devices,
memory devices, databases, other data repositories, etc.
[0048] In FIG. 1, policy input 116 is network security
information including any number of security policies,
which can form a set indicating permitted communications
between or among computing resources. Policy input 116
can be in the form of a network design or layout and can be
in various formats such as JSON or YAML, which can be



US 2022/0086193 Al

used to declare network design attributes as further
described and illustrated herein. Policy input 116 can
include one or more of: subnet data, Internet Protocol (IP)
address allocation data, service data, workload data, security
group data, security zone data or access policy data, by way
of example. For instance, policy input 116 can include data
of a network design such as how many subnets, how many
services, how many security groups, how many security
zones, a characterization of the access policy within a zone
and between/among services, etc.

[0049] In some implementations, the terms “security
group” and “security zone” as used herein are interchange-
able, for instance, when a security group refers to a zone
where multiple online services or other computing resources
like a server can be grouped together, and the grouped
resources have the same security exposure to the outside,
i.e., external to the zone. As further explained herein, for
instance, it can be specified that a security group has specific
ports which are open, like a listening port, and other ports
which are blocked.

[0050] In FIG. 1, a policy set defined by policy input 116
can dictate allowed communications within a network or
within a security zone and between or among computing
resources within the network/security zone and outside
entities. Outside entities refers to entities external to the
network/security zone such as computing devices or systems
of Internet users, customers of an enterprise, entities of a
data center at a particular location, etc.

[0051] In some implementations, as shown in FIG. 1,
input parser and converter 104 can be configured to include
two sub-components: input parser 104a and common policy
builder 1045. In this example, input parser 104a receives
and reads policy input 116 in any of a number of available
formats. After reading policy input 116, input parser 104a
passes policy input 116 to common policy builder 1045,
which is configured to convert policy input 116 to an internal
representation 120 of policy input 116. In this example,
internal representation 120 is a cloud-independent represen-
tation of policy input 116, that is, independent of any of the
various available public cloud platforms such as AWS, GCP,
Microsoft Azure, and Alibaba Cloud. Internal representation
120 is how a policy input is represented in system 100.
Common policy builder 1045 generates internal representa-
tion 120 as an output for further processing. As further
explained herein, examples of internal representation 120
can specify one or more functional domains for an instance
of a data center. Each functional domain can include one or
more of: security groups of computing services, one or more
subnets, one or more ingress rules, one or more egress rules,
etc.

[0052] In FIG. 1, cloud-specific policy builder 108 is in
communication with common policy builder 1045 and takes
internal representation 120. Policy builder 108 generates
cloud-specific policy sets 124 from internal representation
120, and each cloud-specific policy set can be applied to a
specific cloud platform such as AWS, GCP or Microsoft
Azure. In this example, policy builder 108 includes sub-
components in the form of AWS policy builder 108a, GCP
policy builder 1085, and other cloud policy builder 108c.
Each policy builder 108a, 1085 or 108¢ uses cloud-specific
tools, techniques, and native controls to convert internal
representation 120 to a cloud-specific policy set as an output.
For example, AWS policy builder 108« is configured to use
security groups and security group rules to restrict access to

Mar. 17, 2022

computing resources. But GCP policy builder 1085 is con-
figured to use a firewall to restrict access to computing
resources. The way each cloud provider (AWS, GCP, etc.)
enforces policies is different from cloud-to-cloud. As further
explained herein, a cloud-specific policy set can specify one
or more of: an instance of a data center, computing
resources, security groups of computing services, one or
more subnets, one or more ingress rules, or one or more
egress rules.

[0053] InFIG. 1, policy deployer 112 is in communication
with policy builder 108 to receive cloud-specific policy sets.
Policy deployer 112 is responsible for sending a cloud-
specific policy set to the relevant cloud, such as deployment
of an AWS-specific policy set to AWS cloud 128, a GCP-
specific policy set to GCP cloud 132, and other cloud-
specific policy set to other cloud 136. Policy deployer 112
can be implemented to have a cloud-specific configuration
tool and a deployment pipeline to each cloud 128, 132 or
136.

[0054] Insome implementations, policy deployer 112 uses
Terraform by HashiCorp to deploy a cloud-specific policy
set in the Terraform format to the relevant cloud. Terraform
is one of a number of available tools or services that could
be used by policy deployer 112 to deploy cloud-specific
policy sets in a public cloud such as cloud 128, 132 or 136,
so it should be appreciated that in some other implementa-
tions a different tool for state management and/or policy
deployment is used by policy deployer 112 as an alternative
or in addition to Terraform. For instance, a cloud-specific
policy set could indicate a desired network structure includ-
ing how many computing resources and/or how many con-
tainers are desired to be opened. Terraform can use the
appropriate cloud application programming interface (API),
like the AWS API, to create resources, containers, etc. Policy
deployer 112 can take a generated cloud-specific policy set,
call Terraform to run on a specific cloud, and then get a result
back from the cloud directly or via Terraform.

[0055] In some implementations, a configuration (config)
file can be sent to or retrieved by one or more components
of system 100 to configure system 100. In some other
implementations, the config file is omitted. In the example of
FIG. 1, a config file 148 can be read by policy builder 108
and policy deployer 112 at runtime for system 100. Config
file 148 has configuration properties including identifica-
tions of the particular clouds (128, 132 and 136 in this
example) as the clouds for which policies will be built and
the clouds to which policies will be deployed. In some
instances, config file 148 can specify details such as network
addresses and credentials for communicating with a cloud
128, 132 or 136.

[0056] In some implementations, a rules verification com-
ponent 140 in FIG. 1 is implemented as a tool to verify that
deployed policies on a particular cloud 128, 132 or 136
match with policies of a cloud-specific policy set. For
instance, rules verification component 140 can determine,
directly or via Terraform, that policies ultimately deployed
on AWS cloud 128 match the AWS-specific policy set.
[0057] In FIG. 1, another component in the form of a
policy monitor 144 in communication with clouds 128, 132
and 136 is configured to monitor deployment of a cloud-
specific policy set to the relevant cloud. For instance,
monitoring can include one or more of: obtaining deploy-
ment status information including success or an error in the
deployment, obtaining resource status information indicat-



US 2022/0086193 Al

ing status of one or more computing resources in a cloud,
detecting any drift or other change between the cloud-
specific policy set and the actual policy set deployed on a
cloud, generating a notification message indicating the
change, or sending to the cloud a request message that any
change be reverted. For instance, policy monitor 144 can
make sure that the policies of a cloud-specific policy set
were deployed to the specific cloud. If deployment is in
progress or has completed, policy monitor 144 can deter-
mine such status and verify that specified resources are
created and are up and running. By the same token, policy
monitor 144 can determine if there was a failure in deploy-
ment and what went wrong. If some entity modified, added
to, or deleted a deployed policy, policy monitor 144 can
reverse or request reversal of such changes.

[0058] In some implementations, an account is registered
with each cloud 128, 132 or 136, and particular cloud-
specific APIs are used by policy monitor 144 to retrieve the
desired information for monitoring. Policy monitor 144 can
request status of every resource that was created for the
account, and Terraform can be used to read the status
information using the appropriate APIs registered for the
account. Status of accounts on the different public clouds
can be read by policy monitor 144, and any modifications
can be detected by policy monitor 144.

[0059] FIG. 2 shows a flowchart of an example of a
method 200 for network security orchestration and manage-
ment, in accordance with some implementations. At 204 of
FIG. 2, a network architecture and associated security poli-
cies are defined. These policies can form a set indicating
permitted communications between or among computing
resources, as described herein. In some instances, the defi-
nition of policies at 204 can be initiated by a user system 12.
For instance, user system 12 can be operated by a user, who
is a service owner writing an online service for a data center.
In another example, user system 12 can be a data center
instance owner who desires to instantiate a new data center
on a public cloud. Portions of the network architecture and
security policies of 204 can also or alternatively be defined
automatically by a server. In some implementations, the
network architecture and policies of 204 are retrieved from
a database or other memory device.

[0060] In FIG. 2, at 208, input parser 104a of FIG. 1
receives the information defined at 204 as a policy input 116
and parses policy input 116, as further explained herein. The
parsed policy input 116 can then be relayed to common
policy builder 1045, which is configured to build a common
policy in the form of internal representation 120 at 212 of
FIG. 2. At 216 of FIG. 2, cloud-specific policy builder 108
is configured to build cloud-specific policy sets 124 from
internal representation 120 delivered by common policy
builder 1045, as further explained herein. At 220, cloud-
specific policy builder 108 delivers the generated cloud-
specific policy sets 124 to policy deployer 112 of FIG. 1.
Thus, at 224 of FIG. 2, policy deployer 112 can deploy each
cloud-specific policy set to the applicable cloud, as further
explained herein. At 228 of FIG. 2, rules verification com-
ponent 140 of FIG. 1 can verify that the policies actually
deployed on a particular cloud match the policies of the
corresponding cloud-specific policy set delivered to policy
deployer 112. At 232 of FIG. 2, policy monitor 144 com-
municates with clouds 128, 132 and 136 to monitor deploy-
ment of the cloud-specific policy sets.

Mar. 17, 2022

[0061] FIG. 3A shows an example of a policy input 300A
in JSON format, in accordance with some implementations,
and FIG. 3B shows an example of a policy input 300B in
YAML format, in accordance with some implementations.
Policy inputs 300A and 300B provide two examples of many
different policy inputs capable of being processed by input
parser and converter 104 of FIG. 1. In the examples of FIGS.
3A and 3B, an infrastructure is declared for a particular
instance of a data center. In FIG. 3A, at 304, security groups
for the instance of the “datacenter]” data center are declared.
In this example, security groups 304 include a first group
308 named “Logging Monitoring,” a second group 312
named “Processing,” and a third group 316 named “Gate-
way.” In other examples of policy inputs, additional security
groups with other names can be included in the declared
security groups.

[0062] At 320 of FIG. 3A, security policies are declared
for the “Logging_Monitoring™ group 308. There can be zero
policies, one policy, or any number of policies declared for
a particular security group. In the example of FIG. 3A, each
policy has at least two fields: a destination, and a source. The
destination as well as the source of a policy can specify
services as well as security groups. Thus, specific services
and/or security groups can be identified and user-custom-
ized. There can be one or many services and/or groups set
for the particular policy. In this example, a first policy is
characterized by destination 324 and source 328. A second
policy is characterized by destination 332 and source 336. A
service and a group are named for destination 324, while
“all” services are identified for source 328. Thus, in this
example, there are no restrictions on which services can
transmit data as a source for the first policy. In this example,
a different set of services is specified for destination 332, as
is the case with the services listed for source 336.

[0063] Inthe example of FIG. 3A, a “public” field 340 has
a value of false, indicating that security group 308 is a
private group as opposed to a public group. In other words,
services in the security group are not exposed on the Internet
or another data network. Thus, a port can be opened for
services in this security group to accept incoming traffic
from other internal services, that is, services within the
instance of the data center in this example. At 342, an IP
subnet range is defined for security group 308. This IP
subnet range specifies that all services in the particular
security group will get an IP address from the designated
range of 10.0.0.0/12. At 344, a functionality of security
group 308 is described, indicating in this example that the
security group’s function is logging and monitoring other
services. A list of names of services in the security group is
set forth at 348. Thus, when a policy is looked up during
processing, the list of service names at 348 can be refer-
enced. In this example, each service name in the list is
unique, so a service can only belong to one security group.
[0064] Inthe example of FIG. 3B, a security group named
“DC.Test.Logging Monitoring” is identified at 350. Ser-
vices in the group can draw an IP address from an IP subnet
range identified at 352. For instance, when a service in
security group 350 is deployed on a server, that server has
to have an IP address in the designated subnet range at 352.
A list of service names belonging to security group 350 is
identified at 354, and a public or private designation as
explained above is declared at 356.

[0065] Inthe example of FIG. 3B, at least two policies are
declared for the security group: a first policy described at



US 2022/0086193 Al

358, and a second policy described at 360. Each policy has
a source and a destination specified, as well as services
specified. For instance, a source 362, a destination 364 and
a list of services 366 are specified for the policy described
at 358. In this example, a different security group, “DC.
Test.Logging Monitoring,” is named for source 362, and
“DC.Test.Processing” is named for destination 364. A list of
services is named at 366 for policy 358. Each service named
in list 366 is able to listen at a specific port or range of ports
and accepts a specified protocol. For instance, the service
named tcp443/servicel 368 listens at a port 443, indicated at
370, and accepts only TCP traffic, as indicated at 372. Thus,
each service in list 366 is characterized in terms of open
ports and open protocols. The policy declared at 360 follows
a similar format as the policy declared at 358.

[0066] In the example of FIG. 4A, input parser and
converter 104 of FIG. 1 is configured to set up one or more
functional domains of one or more data center instances: in
this example, functional domain “fd1” at 404 of FIG. 4A and
functional domain “fd2” at 408 of data center instance
“datacenterl.” In this example, a functional domain refers to
a unique infrastructure of services and security groups that
are categorized under an identifiable function. The function
can be independent of other functions and related to any of
a variety of enterprise purposes. For instance, a functional
domain can be for the purpose of sales, marketing or human
resources (HR). For each functional domain, a set of security
groups is identified. In this example, the “Processing” secu-
rity group 412 and the “Logging Monitoring” security
group 416 are identified in functional domain A. There may
be one or many functional domains declared within a data
center instance, referred to in this example as a DC Instance
420.

[0067] In FIG. 4A, internal representation 400 is in a
tree-based data structure. There is a root 424, and each data
center instance (DC Instance) 420 is structured as a branch
of root 424. Under each data center instance 420, each
functional domain 404, 408, etc. is a branch of 420. Within
each functional domain branch, there are sub-branches
including: name, security group, subnet, services, ingress
rules and egress rules. In the example of the “Processing”
security group 412, ingress rules 428 and egress rules 432
have been built by input parser and converter 104 of FIG. 1.
Ingress rules 428 are defined to filter the source of traffic,
while egress rules 432 are configured to filter the destination
of traffic. In this example, under the ingress rules 428 branch
are sub-branches of rule names such as rule name 436 and
leaves within the rule name of a port 440, protocol 444 and
source 448. In this example, port 440 specifies that port 443
will be open to listen for incoming traffic, protocol 444
specifies that only TCP and UDP types of traffic will be
accepted, while source 448 specifies that only traffic from
the identified IP subnet ranges can talk to services identified
at 452. The identified services 452 listen on the specified
port 440. In this way, incoming traffic is filtered in this
example.

[0068] In some implementations, egress rules 432 are
generally configured in similar fashion as ingress rules 428.
In this example, a special rule, “allow_all” 436 specifies that
all services in security group 412 can talk with any entity
outside or inside of a network on any port (1-65355) with the
two protocols of TCP and UDP using the specified IP subnet
address ranges for a destination, in this example, 10.0.0.0/12
and 8.8.8.8/32.

Mar. 17, 2022

[0069] In FIG. 4A, egress rules 432 provide for destina-
tions associated with outgoing traffic rather than sources
associated with incoming traffic. Thus, in this example,
communication with security group “Logging Monitoring”
is permitted because that security group is in the subnet
range of 10.0.0.0/12. In some other examples, particular IP
addresses are specified in addition to or as an alternative to
the ranges in FIG. 4A.

[0070] FIGS. 4B and 4C show example schematic dia-
grams of a tree-based data structure 470 of an internal
representation in accordance with some implementations of
the disclosed subject matter. Note that the hierarchy and
example nodes and branches shown in FIGS. 4B and 4C are
merely exemplary. In some implementations, a tree-based
data structure may have different nodes and branches than
what is shown in FIGS. 4B and 4C.

[0071] As illustrated, tree-based data structure 470
includes a root node 472. Root node 474 includes various
branches, each corresponding to a different data center
instance, such as data center instances 473 and 474 as shown
in FIG. 4B. Under each data center instance are various
functional domain branches. For example, data center
instance 473 includes branches corresponding to a func-
tional domain branch 476, corresponding to “bu_1.” Con-
tinuing, each functional domain branch includes various
security groups. For example, functional domain 476
includes a security group branch 478, indicated as “Security
Group 1.7

[0072] FIG. 4C shows branches of tree-based data struc-
ture 470 off of a security group branch. As illustrated, a
security group branch 479 has branches 480 and 481,
corresponding to “Service Instances” and “Policies,” respec-
tively.

[0073] Each service instance branch, such as branch 480,
can have various branches, each corresponding to a different
service instance. For example, branch 480 has a branch 482,
corresponding to “Service 1.” Each service instance branch
can indicate a protocol type and/or one or more port num-
bers, as illustrated in FIG. 4CAs illustrated, there can be
various branches from branch 481, which corresponds to
“Policies.” Each branch from branch 481, such as branch
483, can correspond to a different policy instance. A branch
corresponding to a policy instance, such as branch 483, can
have two branches (e.g., branches 484 and 485), which
correspond to a source and a destination, respectively.
Source branch 484 can have two branches (e.g., source
services branch 486 and source groups 487). Source services
branch 486 can indicate a list of allowed services associated
with source branch 484. Source groups branch 487 can
indicate a list of allowed groups associated with source
branch 484. Similarly, destination branch 484 can have two
branches (e.g., destination services branch 488 and destina-
tion groups 489). Destination services branch 488 can indi-
cate a list of allowed services associated with destination
branch 485. Destination groups branch 489 can indicate a
list of allowed groups associated with destination branch
48sS.

[0074] FIG. 5A shows an example of a cloud-specific
policy set 500A for an AWS cloud, in accordance with some
implementations. In the example of FIG. 5A, policy set
500A provides one example of a policy output in Terraform
format for an AWS cloud infrastructure. As further explained
herein, Terraform is one tool providing a format for infra-
structure programming of specific public clouds, as desired



US 2022/0086193 Al

for some implementations. In policy set 500A, it is specified
at 504 that a resource on AWS of the security group type is
being created. At 508, the particular functional domain of a
particular data center instance is identified. A name 512
matches the internal representation, in this example. At 516,
tags are used to specify that any service belonging to the
Processing security group will be attached. A first policy to
be enforced is declared at 520. An ingress rule for the policy
520 is declared at 524. In this example, the ingress rule
specifies that incoming traffic is allowed on port 443 if the
protocol is TCP and traffic is from the IP subnet range
10.0.0.0/12. Rule names can be attached at 528, for instance,
so Terraform will return a security group 1D with the rule
name when Terraform runs a program on the AWS cloud.
[0075] FIG. 5B shows an example of a cloud-specific
policy set 500B for a GCP cloud, in Terraform format, in
accordance with some implementations. In the example of
FIG. 5B, a resource of the firewall type is declared at 534
using an appropriate GCP definition. The name of a policy
to be enforced is identified at 538. In this example, ingress
rules for the policy are declared at 542. In this example, a
first ingress rule specifies that certain incoming communi-
cations are allowed at 546 when the communications satisfy
the requirement of the TCP protocol as well as the require-
ment of coming in from designated ports and ranges at 550.
Additional ingress rules 554 and 558 are declared with
appropriate protocol and port requirements.

[0076] FIGS. 5C and 5D illustrate an example of a tree-
based data structure 570 for an internal representation of a
cloud-specific policy in accordance with some implementa-
tions of the disclosed subject matter. It should be noted that
the nodes and branches, and the arrangement of the nodes
and branches, shown in FIGS. 5C and 5D are merely
exemplary. In some implementations, some nodes and/or
branches of a tree-based data structure may be omitted.
Additionally or alternatively, in some implementations,
nodes and/or branches not shown in FIGS. 5C and 5D may
be included.

[0077] As illustrated, tree-based data structure 570
includes a root node 572. Root node 574 includes various
branches, each corresponding to a different data center
instance, such as data center instances 573 and 574 as shown
in FIG. 5B. Under each data center instance are various
functional domain branches. For example, data center
instance 573 includes branches corresponding to a function
domain branch 576, corresponding to “bu_1.” Continuing,
each functional domain branch includes various security
groups. For example, functional domain 576 includes a
security group branch 578, indicated as “Security Group 1.”
[0078] Turning to FIG. 5D, branches continuing from a
security group are illustrated in accordance with some
implementations. As illustrated, a security group branch 579
(indicated as “Security Group X”) can have an ingress rule
branch 580 and an egress rule branch 582. Each of ingress
rule branch 580 and/or egress rule branch 582 can have one
or more branches, each indicating a protocol or type of traffic
for which a rule is specified. For example, ingress rule
branch 580 can have branches 583, 584, and 585, corre-
sponding to TCP, UDP, and ICMP, respectively. Similarly,
egress rule branch 582 can have branches 586 and 587,
corresponding to TCP and UDP, respectively. Each protocol
or type of traffic branch can then have branches correspond-
ing to ports. For example, branch 583, corresponding to
inbound TCP traffic, can have a branch 589 that specifies

Mar. 17, 2022

port 80 as allowed. Each port can have a branch that
indicates allowed subnets and/or allowed subnet ranges. For
example, branch 589 has a branch 590 that indicates that
subnets in the range of [10.0.0.0/12, 10.32.0.0/12] are
allowed as inbound traffic.

[0079] FIG. 6 shows a schematic diagram of an example
system 600 for correlation of security policy inputs and
outputs. As illustrated, system 600 can include components
such as an input parser 602, a policy converter 604, a
difference generator 606, and a difference correlation and
report generator 608.

[0080] Input parser 602 can take, as inputs, system input
610 that includes two versions of a policy input (labeled
“Policy input v1” and “Policy input v2” in FIG. 6), and two
versions of a policy output (labeled “Policy output v1” and
“Policy output v2” in FIG. 6). As described above in
connection with FIGS. 1, 4A, 4B, and 4C, the two versions
of the policy input can be in any human-readable format,
such as JSON, YAML, etc. As described above in connection
with FIGS. 1, 5A, 5B, 5C, and 5D, the two versions of the
policy output can be in a cloud-specific format, such as
Terraform, and for a specific cloud type or architecture. Note
that, although FIG. 6 shows two policy input versions and
two policy output versions, in some implementations the
system input can include more than two versions of a policy
input and/or a policy output.

[0081] In some implementations, the two versions of the
policy input can differ in various ways, for example, by
adding or removing one or more services, adding or remov-
ing one or more policies, modifying one or more policies,
etc. In some implementations, each version of the policy
output can be generated based on a corresponding version of
the policy input, using, for example, the techniques and
components described above in connection with FIGS. 1 and
2.

[0082] Note that system input 610 can be in a format that
associates a particular version of a security policy input with
a corresponding version of a security policy output. For
example, system input 610 can be in a format of:
{(policy_input_1_versionl, policy_output_1_versionl);
(policy_input_1_version2, policy_output_1_version2)}.
[0083] In some implementations, input parser 602 can
have sub-components, such as policy input parser 602a and
policy output parser 6025. In some such implementations,
policy input parser 602a can parse one or more versions of
the policy input, and policy output parser 6025 can parse one
or more versions of the policy output.

[0084] Policy converter 604 can take the parsed versions
of the policy input and the parsed versions of the policy
output and can generate internal input representations 612
and internal output representations 614. In some implemen-
tations, policy converter 604 can have sub-components, such
as policy input converter 604a and policy output converter
6045. In some such implementations, policy input converter
604a can generate internal input representations 612. Simi-
larly, policy output converter 6045 can generate internal
output representations 614.

[0085] In some implementations internal input represen-
tations 612 can be in a tree-based data structure, as shown
in and described above in connection with FIGS. 4A, 4B,
and 4C. Similarly, in some implementations, internal output
representations 614 can be in a tree-based data structure, as
shown in and described above in connection with FIGS. 5A,
5B, 5C, and 5D.



US 2022/0086193 Al

[0086] Difference generator 606 can take, as inputs, inter-
nal input representations 612 and internal output represen-
tations 614, and can generate a policy input difference 616
and a policy output difference 618 that represent differences
in the policy inputs and differences in the policy outputs,
respectively. In some implementations, difference generator
606 can have sub-components, such as a policy input
difference generator 606a and a policy output difference
generator 6065. In some such implementations, policy input
difference generator 606a can generate policy input differ-
ence 616 from internal input representations 612. Similarly,
policy output difference generator 6065 can generate policy
output difference 618 from internal input representations
614. Note that more detailed techniques for generating
policy input difference 616 and policy output difference 618
are shown in and described below in connection with FIG.
8

[0087] Difference correlation and report generator 608 can
take, as inputs, policy input difference 616 and policy output
difference 618. Difference correlation and report generator
608 can then analyze and correlate differences indicated in
policy input difference 616 with differences indicated in
policy output difference 618 using difference analyzer 608a.
The correlated differences can then be used by difference
correlation reporter 6086 to generate a policy input-output
difference correlation report 620. As will be discussed in
more detail in connection with FIGS. 9, 10A, and 10B,
policy input-output difference correlation report 620 can
indicate differences in the two versions of the policy output,
and/or an expected impact or severity of implementing the
changes in the policy input.

[0088] It should be noted that the output of the system for
correlating security policy inputs and outputs (e.g., policy
input-output difference correlation report 620) can be stored
as a record in a database. For example, a report that indicates
policy differences and/or impacts of each policy difference
can be stored as a record in the database. In some imple-
mentations, a stored database record can include other
relevant information, such as timestamp information indi-
cating dates and/or times each version of a policy was
submitted or generated, a username of a user that submitted
or generated each policy, etc.

[0089] It should be further noted that the output of the
system for correlating security policy inputs and outputs
(e.g., policy input-output difference correlation report 620)
can be used for many suitable purposes. For example, a
generated report can be used by a network or security
administrator to be able to quickly identify policy output
differences that correspond to policy input differences asso-
ciated with an updated version of a policy input submitted by
a user. Continuing with this example, the generated report
can be used by the administrator to determine whether the
updated version is to be allowed or blocked by presenting
the differences in an easily readable manner in connection
with an impact or severity of each difference.

[0090] As another example, in some implementations, the
output of the system can be used as an input to different
systems. As a more particular example, a generated report
can be used as an input to a system that presents the report
in a manner formatted for a web portal or web dashboard. As
another more particular example, a generated report can be
used as an input to a system that uses machine learning to
determine severity of network policy changes. In some
implementations, such a machine learning system may be

Mar. 17, 2022

used to iteratively adjust assessed severity characteristics
over time and may interact with the system for correlating
security policy inputs and outputs.

[0091] FIG. 7 shows an example flowchart of a process
700 for correlation of security policy inputs and outputs in
accordance with some implementations. In some implemen-
tations, blocks of process 700 can be executed on one or
more servers that include one or more of the components
shown in and described above in connection with FIG. 6.
[0092] Process 700 can begin at 702.

[0093] At 704, inputs can be parsed, for example, by input
parser 602 of FIG. 6. For example, security policy inputs
that correspond to versions of security policy inputs in a
human-readable format can be parsed. As another example,
security policy outputs that correspond to versions of secu-
rity policy outputs in a cloud-specific format can be parsed.
[0094] At 706, the inputs can be converted, for example,
by input converter 604 of FIG. 6. For example, one or more
versions of security policy inputs can be converted to an
internal input representation. As a more particular example,
the one on more versions of security policy inputs can each
be converted to a tree-based data structure format. As
another example, one or more versions of security policy
outputs can be converted to an internal output representa-
tion. As a more particular example, the one or more versions
of security policy outputs can each be converted to a
tree-based data structure format.

[0095] At 708, input differences and output differences
can be generated, for example, by difference generator 606
of FIG. 6. For example, in some implementations, an input
difference can be generated that indicates differences
between two versions of a policy input. As another example,
in some implementations, an output difference can be gen-
erated that indicates differences between two versions of a
policy output. Note that more detailed techniques for gen-
erating input differences and output differences are shown in
and described below in connection with FIG. 8.

[0096] At 710, the input differences and the output differ-
ences can be correlated, for example, by difference correla-
tion and report generator 608 of FIG. 6. For example, in
some implementations, an input difference can be matched
with an output difference. As another example, for a given
input difference and matched output difference, a severity of
the difference can be identified. Note that more detailed
techniques for correlating input differences and output dif-
ferences are shown in and described below in connection
with FIG. 9.

[0097] At 712, a report that indicates correlated input and
output differences can be generated. Additionally, in some
implementations, the report can include an anticipated
severity of each correlated difference. Note that more
detailed techniques for generating a report are shown in and
described below in connection with FIG. 9. Additionally, an
example of a report in JSON format is shown in and
described below in connection with FIG. 10B.

[0098] The process can then end at 714.

[0099] FIG. 8 shows an example flowchart of a process
800 that can be used for identifying differences between two
versions of a security policy. Note that process 800 can be
applied to find differences between two versions of a secu-
rity policy input and/or between two versions of a security
policy output.

[0100] Process 800 can begin at 802.

[0101] At 804, two trees (referred to herein as “treel” and
“tree2”) corresponding to two versions of a security policy



US 2022/0086193 Al

represented in a tree-based data structure can be read. Note
that an example of a tree-based data structure for a security
policy input is shown in and described above in connection
with FIGS. 4B and 4C, and an example of a tree-based data
structure for a security policy output is shown in and
described above in connection with FIGS. 5C and 5D.
[0102] At 806, a difference tree (referred to herein as
“diff_tree”) can be initiated. The difference tree can be a
tree-based data structure that can, at an end of process 800,
include nodes and branches that correspond to differences
between the two versions of the security policy read at 804.
[0103] At 808, a loop through each level 1 in treel can be
initiated. As shown in FIG. 8, the loop can include blocks
810-816.

[0104] At 810, a loop through each node n in level 1 of
treel can be initiated. As shown in FIG. 8, the loop can
include blocks 812-816.

[0105] Note that, by looping through each node n in level
1, and each level | in treel, each node and branch of treel can
be analyzed.

[0106] At 812, a determination of whether node n is
missing in tree2 can be made.

[0107] If, at 812, it is determined that node n is missing in
tree2 (“yes” at 812), node n can be marked as “removed” in
diff_tree at 814.

[0108] Conversely, if, at 812, it is determined that node n
is not missing in tree2 (“no” at 812), a determination of
whether node n in treel is the same as node n in tree2 can
be made at 816.

[0109] If, at 816, it is determined that node n in treel is the
same as node n in tree2 (“yes” at 816), the process can loop
back to 810 and analyze the next node in level 1 of treel.
[0110] Conversely, if, at 816, it is determined that node n
in treel is not the same as node n in tree2 (“no” at 816), node
n can be marked as modified in diff tree at 818.

[0111] The process can then loop back to 810 and can
analyze the next node in level 1 of treel.

[0112] After all nodes in level 1 of treel have been
analyzed, process 800 can determine if there are no more
levels in treel at 820.

[0113] If there are more levels in treel at 820 (“no” at
820), process 800 can go back to 808 and can loop through
the nodes of the next level of treel.

[0114] Conversely, if there are no more levels in treel at
820 (“yes” at 820), a loop through all levels 1' of tree2 can
be initiated at 822.

[0115] At 824, a loop through all nodes n' of each level I'
of'tree2 can be initiated. At 826, for a given node n' in tree2,
it can be determined if n' is missing in treel.

[0116] If] at 826, it is determined that node n' is missing in
treel (“yes” at 826), node n' can be marked as added in
diff_tree at 828.

[0117] Conversely, if, at 826, it is determined that node n'
is not missing in treel (“no” at 826), the process can return
to 824 and can analyze the next node in level I'.

[0118] In response to determining that all nodes n' in a
given level I' of tree2 have been analyzed, the process can
proceed to 830 and can determine if there are no more levels
in tree2.

[0119] If, at 830, it is determined that there are more levels
(“no” at 830), the process can return to 822 and can analyze
the next level in tree2.

Mar. 17, 2022

[0120] Conversely, if, at 830, it is determined that there are
no more levels (“yes” at 830), the difference tree (i.e.,
diff_tree) can be returned at 832. Note that, at 832, nodes of
diff_tree indicate differences between treel and tree2.
Accordingly, diff_tree represents differences between a sec-
ond version of a security policy represented by tree2 and a
first version of the security policy represented by tree 1.
[0121] Process 800 can end at 834.

[0122] Turning to FIG. 9, an example flowchart of a
process 900 for correlating security policy input differences
with security policy output differences is shown in accor-
dance with some implementations of the disclosed subject
matter. Note that, in some implementations, blocks of pro-
cess 900 can be executed by components of one or more
servers, such as a difference correlation and report generator,
as shown in and described above in connection with FIG. 6.
[0123] Process 900 can begin at 902.

[0124] At 904, an input difference tree (referred to herein
as “input_diff_tree”), an output difference tree (referred to
herein as “output_diff_tree”), and a severity lookup table
(referred to herein as “severity_lookup_table™) can be read.
The input difference tree can be a tree-format data structure
that represents differences between two versions of a secu-
rity policy input. The output difference tree can be a tree-
format data structure that represents differences between two
versions of a security policy output. Note that the input
difference tree and the output difference tree can each be
created using the techniques shown in and described above
in connection with FIG. 8.

[0125] The severity lookup table can be a table that
associates a severity characteristic with a type of difference
in a policy output. For example, the severity lookup table
can indicate that adding a service is a type of policy output
difference that is of a low severity. As another example, the
severity lookup table can indicate that removing a service is
a type of policy output difference that is of a high severity.
As yet another example, the severity lookup table can
indicate that a policy change that modifies allowed ports to
all ports and/or to a larger number of ports is a type of policy
output difference that is of a high severity.

[0126] It should be noted that a severity lookup table can
be generated in various ways. For example, in some imple-
mentations, a severity lookup table can be manually curated.
As another example, in some implementations, a severity
lookup table can be generated using various heuristics that
associated severity characteristics to different types of policy
differences. As yet another example, in some implementa-
tions, a severity lookup table can be generated using one or
more machine learning algorithms trained to assign severity
characteristics to different types of policy differences.
[0127] At 906, a loop through each difference node in
input_diff_tree can be initiated.

[0128] At 908, for a given difference node in input_diff_
tree, the difference node can be matched to a corresponding
branch or node in output_diff_tree.

[0129] At 910, it can be determined whether the corre-
sponding branch or node exists in output_diff_tree.

[0130] If, at 910, it is determined that the corresponding
branch or node does not exist in output_diff_tree (“no” at
910), a policy generation problem can be added to a report
at 912. For example, the policy generation problem can
indicate that a policy output difference that corresponds to
the policy input difference associated with the difference
node being analyzed was found. The process can then



US 2022/0086193 Al

proceed to 918 to determine if there are additional differ-
ences to analyze in input_diff_tree.

[0131] Conversely, if, at 910, it is determined that the
corresponding branch or node does exist in output_diff_tree
(“yes” at 910), a severity of the policy difference can be
identified using the severity lookup table at 914. For
example, the identified corresponding branch or node in
output_diff_tree can be mapped to a type of policy output
difference (e.g., addition of service, removal of service,
addition of allowed ports, removal of allowed ports, etc.).
Continuing with this example, the severity of the type of
policy output difference can be identified by using the type
of policy output difference as a key with respect to the
severity lookup table.

[0132] Process 900 can then add the identified severity to
a record or report at 916. In some implementations, the
identified severity can be added in connection with an
indication of the policy output difference and/or the type of
policy output difference.

[0133] Process 900 can then proceed to 918 and can
determine if there are additional differences in input_diff_
tree to analyze.

[0134] If, at 918, it is determined that there are additional
differences in input_diff_tree (“yes” at 918), process 900 can
loop back to 906 and can analyze the next difference in
input_diff_tree. In some implementations, process 900 can
loop through blocks 906-918 until the entirety of input_diff_
tree has been traversed.

[0135] Conversely, if, at 918, it is determined that there are
no additional differences in input_diff tree (“no” at 918),
process 900 can return the record or report at 920. Note that,
at 920, the record or report can indicate all policy output
differences that have been matched to a policy input differ-
ence. Additionally, as described above in connection with
block 914, the record or report can indicate a corresponding
severity of each policy output difference. Furthermore, in
instances in which a policy output difference could not be
identified for a given policy input difference, the record or
report can include an indication of such.

[0136] Note that, an example of a report is shown in and
described below in connection with FIG. 10B.

[0137] Process 900 can end at 922.

[0138] FIG. 10A illustrates an example of changes to a
policy input in JSON format in accordance with some
implementations of the disclosed subject matter. It should be
noted that the strikethrough and dashed lines shown in FIG.
10A are merely included to highlight changes. In particular,
portions of the JSON code that are shown in strikethrough
in FIG. 10A show portions that are to be removed, and
portions of the JSON code that are shown in dashed boxes
show portions that are to be added. In effect, what is shown
in FIG. 10A after removing the strikethrough portions and
adding what is shown in dashed boxes can be considered a
second version of a policy input. Correspondingly, the first
version of the policy input would be what is shown in FIG.
10A with the strikethrough portions remaining, and the
portions in the dashed boxes removed.

[0139] At 1002 and 1004, “servicell” has been removed
from the “Security_Group_2” security group. In particular,
at 1002, “servicell” is removed from the list of service
names, and, at 1004, port and protocol information associ-
ated with the “servicell” instance is removed.

[0140] At 1006 and 1008, a new service, named “ser-
vicel4” is added to the “Security_Group_2” security group.

Mar. 17, 2022

In particular, at 1006, “servicel4” is added to the list of
service names, and, at 1008, port and protocol information
associated with “servicel4” is added.

[0141] At 1010, a new policy is added to the “Security_
Group_2” security group. As illustrated in FIG. 10A, the
new policy includes destination and source information,
each of which specifies allowed service instances.

[0142] FIG. 10B shows an example of a system output
report 1050 in JSON format that can be generated based on
the policy input changes shown in FIG. 10A in accordance
with some implementations of the disclosed subject matter.
Note that system output report 1050 is an example of a
report that can be generated by difference correlation and
report generator 608 as shown in FIG. 6 using the techniques
shown in and described above in connection with FIGS. 7,
8, and 9.

[0143] Referring to system output report 1050, beginning
at 1051, identified changes are shown. For example, begin-
ning at 1052, the removal of “servicell” from “Security_
Group_2” is indicated. In particular, an assessed severity is
shown at 1054. Additionally, details of the removed service
(e.g., a description, a type of traffic associated with the
removed service, a type of protocol associated with the
removed service, port information, etc.) is shown at 1056.
[0144] As another example, beginning at 1058, the addi-
tion of “servicel4” from “Security_Group_2” is indicated.
In particular, an assessed severity is shown at 1060. Addi-
tionally, details of the added service (e.g., a description, a
type of traffic associated with the added service, a type of
protocol associated with the added service, port information,
etc.) is shown at 1062.

[0145] Continuing further, system output report 1050
shows changes associated with the policy added to “Secu-
rity_Group_2” beginning at 1064. An assessed severity is
shown at 1066. At 1068 and 1070, changes to the designated
subnet ranges are indicated as a result of the added policy.
[0146] It should be noted that a system output report, such
as that shown in FIG. 10B can be presented in any suitable
format to a user to highlight various items in the system
output report. For example, various portions of a system
output report can be highlighted (e.g., in particular colors, in
particular fonts, etc.) to emphasize changes indicated in the
system output report based on assessed severity. For
example, changes assigned a “high” severity can be format-
ted to appear in red, whereas changes assigned a “medium”
or “low” severity can be formatted to appear in black or
another color. As another example, changes assigned a
“high” severity can be formatted to appear at a higher
position or an earlier position within the system output
report relative to changes assigned a “medium” or “low”
severity.

[0147] Turning to FIG. 11, an example of system 1100 that
can be used for automation of network security policy
analysis and deployment is shown in accordance with some
implementations of the disclosed subject matter. As illus-
trated, system 1100 includes various components, such as an
input fetcher 102, a processor 1104, and a deployer and
monitor 1106.

[0148] Input fetcher 1102 can be configured to fetch
various inputs. For example, as illustrated in FIG. 11, input
fetcher 1102 can retrieve one or more versions of a cloud-
specific policy output (generally referred to herein as a
“policy output” or a “security policy output™) from deploy-
able policy repository 1108. In some implementations, a first



US 2022/0086193 Al

version of a policy output can correspond to a version that
was previously deployed to a cloud, and a second version of
a policy output can correspond to a new version that is to be
analyzed and potentially deployed.

[0149] Note that the one or more versions of the policy
output retrieved from deployable policy repository can cor-
respond to security policy outputs that have been translated
to a cloud-specific format. The cloud-specific format can be
in Terraform, and/or any other suitable format. Additionally,
note that techniques for generating each version of the
cloud-specific policy outputs are shown in and described
above in connection with FIGS. 1 and 2.

[0150] As another example, in some implementations,
input fetcher 1102 can retrieve one or more versions of a
policy input in a human-readable format from declarative
policy repository 1110. Note that the one or more versions
of the policy input can be in a human-readable format, such
as JSON or YAML. Examples of policy inputs that can be
retrieved from declarative policy repository 1110 are shown
in and described above in connection with FIGS. 3A and 3B.
[0151] Note that, as shown in FIG. 11, policies (either
policy inputs or policy outputs) that are stored in a reposi-
tory, such as deployable policy repository 1108 and/or
declarative policy repository 1110, can be stored in any
suitable repository or storage system, such as a Github
repository, cloud storage (e.g., an AWS S3 bucket, etc.), etc.
[0152] As yet another example, in some implementations,
input fetcher 1102 can retrieve a deployment request 1112.
In some implementations, deployment request 1112 can be
a request by a user (e.g., a developer, an engineer, etc.) to
deploy a particular security policy. Deployment request 1112
can include various information, such as a data center
instance related to the policy to be deployed, subdomain/
subnetwork information that is to be changed, a service
associated with the policy change, etc. In some implemen-
tations, deployment request 1112 can be received via a user
interface, such as a form of a web dashboard or website.
[0153] As still another example, in some implementations,
input fetcher 1102 can retrieve a configurations file 1114.
Configurations file 1114 can indicate information that such
as times/days for policy deployment on different data cen-
ters, rules for automated deployment of policies, etc. Con-
figurations file 1114 may be created, modified, and/or
updated by a system administrator who manages security
policy deployment on particular cloud services.

[0154] In some implementations, configurations file 1114
can be in a human-readable format, such as JSON, YAML,
etc.

[0155] Note that in some implementations, some inputs
shown in FIG. 11 and described above can be omitted and/or
not retrieved by input fetcher 1102. For example, in some
implementations, any of the policy inputs from declarative
policy repository 1110, deployment request 1112 and/or
configurations file 1114 can be omitted.

[0156] Processor 1104 can be configured to receive inputs
from input fetcher 1102, and can be configured to: analyze
differences in two versions of a security policy output; and
generate a case corresponding to the change in the security
policy output. In some implementations, processor 1104 can
include various sub-components, such as a policy analyzer
1104¢ and a case generator 11045 that can be configured to
analyze differences in two versions of a security policy
output and to generate a case corresponding to the change in
the security policy output, respectively.

Mar. 17, 2022

[0157] In some implementations, policy analyzer 1104a
can analyze two versions of a security policy output
retrieved by input fetcher 1102 (e.g., a previously deployed
version and a new version that is to be analyzed and
potentially deployed). In particular, policy analyzer 1104a
can determine changes between a previously deployed ver-
sion and a new version. Policy analyzer 11044 can determine
changes between the two version of the security policy
output by, for example, identifying differences between
internal representations of each of the two versions. As a
more particular example, policy analyzer 1104a can identify
differences in individual nodes and/or branches of a tree-
based data structure representing the first version of the
security policy output relative to a tree-based data structure
representing the second version of the security policy out-
put. Note that more detailed techniques for identifying
differences between two internal representations of security
policies are shown in and described above in connection
with FIG. 8.

[0158] In some implementations, after determining
changes between the two versions of the security policy
output, policy analyzer 11044 can assign a severity level to
the changes. The severity level can be assigned using
various techniques. For example, in some implementations,
as shown in and described above in connection with block
914 of FIG. 9, a severity characteristic can be identified from
a look-up table that associates a type of security policy
change with a particular severity characteristic. As another
example, in some implementations, the severity level can be
assigned using a trained machine learning algorithm (e.g., a
trained classifier, a trained neural network, etc.) that has
been trained to classify particular types of security policy
changes as belonging to a particular severity level. In some
implementations, such an algorithm can be trained using
manually annotated data that indicates, for example, a
severity level of different types of security policy changes.
[0159] Examples of severity characteristics can include:
“high severity,” “medium severity,” and/or “low severity.”
In some implementations, a severity characteristic can be or
can include a severity score, such as a numeric score (e.g.,
a number within the range of 0 to 10, a number within the
range of 0 to 100, etc.) that indicates a degree of severity of
the change.

[0160] Examples of security policy changes that can be
assigned a high severity level (e.g., a “high severity” clas-
sification, a numeric score that indicates a high severity, etc.)
can include: removal of a service, allowing new or addi-
tional internet traffic, etc. Examples of security policy
changes that can be assigned a medium or low severity level
(e.g., a “medium severity” classification, a “low severity”
classification, a numeric score that indicates a medium or
low severity, etc.) can include: addition of a service, addition
of a data center, blocking particular ports of traffic, blocking
particular communication protocols, etc. It should be noted,
however, that a classification of a severity level of a security
policy change may be dependent on various other factors,
such as an anticipated impact to external parties, etc. For
example, blocking a particular port of traffic may be
assigned a relatively higher severity level in response to
determining that blocking the port of traffic may cause
disruption to one or more external parties (e.g., a customer,
etc.) that use the port.

[0161] In some implementations, policy analyzer 1104a
can assign a severity level or a severity characteristic to each



US 2022/0086193 Al

change in a new version of a security policy output relative
to a previously deployed version. For example, in an
instance in which the current version has three changes (e.g.,
a removal of a first service, an addition of a second service,
and a change in allowed ports of a third service), policy
analyzer 1104a can assign a severity level to each change. In
some implementations, policy analyzer 11044 can assign an
aggregate severity level to the new version of the security
policy output that is based on the individual severity levels
of each identified difference. For example, in some imple-
mentations, an aggregate severity level can be the highest or
most severe of each of the individual severity levels. As
another example, in some implementations, in an instance in
which severity levels include numeric severity scores, an
aggregate severity level can be an average (e.g., a mean, a
median, a mode, a weighted average, etc.) of the individual
severity levels.

[0162] Note that, in some implementations, policy ana-
lyzer 1104a can analyze changes in two versions of a
security policy output in the context of changes in corre-
sponding versions of security policy inputs (i.e., the human-
readable security policy inputs that were used to generate the
two versions of the security policy output), if retrieved by
input fetcher 1102. In some such implementations, policy
analyzer 1104a can identify differences between the two
versions of the security policy inputs, identify differences
between the two versions of the security policy outputs, and
can then correlate the differences in the security policy
inputs to differences in the security policy outputs, as shown
in and described above in connection with FIGS. 7-9.
However, in instances in which input fetcher 1102 did not
retrieve corresponding versions of the security policy input,
policy analyzer 1104a can be configured to analyze the
versions of the security policy outputs without consideration
of the corresponding versions of the security policy inputs.
Note that, in some implementations, analyzing changes in
two versions of a security policy output in the context of
changes in corresponding versions of security policy inputs
may provide benefits, such as identifying one or more
entities who specified the change, a reason the change was
made, a time the change was made, etc., which may provide
additional context for analyzing the two versions of the
security policy output.

[0163] Referring back to FIG. 11, case generator 11045
can generate a case corresponding to a new version of a
security policy output. In some implementations, the case
can be a report or a ticket that indicates information about
the new version of the security policy output, such as an
indication of changes between the new version and the
previously deployed version, an indication of a severity
level for each change, an indication of an aggregate severity
level for the new version of the security policy output, etc.

[0164] In some implementations, case generator 11045
can cause the report or ticket to be presented in various
manners or formats. For example, in some implementations,
case generator 11045 can be configured to cause an email
that includes the generated report or ticket to be transmitted
to a user charged with approval of various security policy
deployments. As another example, in some implementa-
tions, case generator 11045 can be configured to cause the
report or ticket to be presented as part of a web dashboard
or web interface that indicates various security policy out-

Mar. 17, 2022

puts to be deployed. Note that an example of such as user
interface is shown in and described below in connection
with FIG. 13A.

[0165] Deployer and monitor 1106 can receive a report or
ticket generated by case generator 110456. In some imple-
mentations, deployer and monitor 1106 can include various
sub-components, such as policy deployer 1106a, monitor
11065, and/or reporter 1106¢.

[0166] Policy deployer 11064 can deploy a new version of
the security policy output to various cloud resources 1116
(e.g., AWS 11164, GCP 111654, etc.). In some implementa-
tions, policy deployer 1106a can take a new version of a
security policy output that is in a cloud-specific format (e.g.,
in a Terraform format, etc.), and can run any suitable agents
or software that call cloud-specific APIs to deploy the new
version of the security policy output to the specific cloud
resource. Note that, in some implementations, aspects of
policy deployer 11064 can include third-party products, such
as Spinnaker, or other suitable deployment products.
[0167] Note that, in some implementations, policy
deployer 1106a can be configured to automatically deploy
(i.e. without manual approval) a new version of a security
policy output in response to determining that the severity
level or severity characteristic assigned by processor 1104 is
below a predetermined level. For example, policy deployer
1106a can be configured to automatically deploy a new
version of a security policy output that is assigned a “low
severity” characteristic and/or a “medium severity” charac-
teristic. Conversely, in some implementations, policy
deployer 1106a can block automated deployment of a new
version of a security policy output in response to determin-
ing that the new version of the security policy output has
been assigned a severity level or severity characteristic that
exceeds a predetermined threshold. For example, policy
deployer 1106a can block automated deployment of a new
version of a security policy output that has been assigned a
“high severity” characteristic. In some such implementa-
tions, the report or ticket generated by case generator 11045
can include an option (e.g., a selectable user interface
button) that can allow for manual deployment of the new
version of the security policy output after manual review, as
shown in and described below in connection with FIG. 13A.
[0168] Monitor 11065 can be configured to monitor a
status of a deployed version of a security policy output. For
example, in response to determining that deployment of a
particular version of a security policy output has generated
an error, monitor 11065 can be configured to attempt to retry
deployment a predetermined number of times (e.g., two
more times, three more times, etc.). Additionally or alter-
natively, in some implementations, monitor 11065 can be
configured to transmit an error message to a particular user,
such as an administrator of system 1100.

[0169] Reporter 1106¢ can be configured to generate a
report that indicates deployments of various security policy
outputs. For example, in some implementations, such a
report can include information related to a particular
deployed security policy output, such as a timestamp of the
deployment, a severity level assigned to the security policy
output, whether the deployment was in response to an
automated approval or a manual approval, etc. As another
example, in some implementations, the report can indicate
whether a deployment of a particular security policy output
was successful or if an error occurred. In some implemen-
tations, reporter 1106¢ can generate a report that includes an



US 2022/0086193 Al

aggregation of deployed security policy outputs (or
attempted deployments) over any suitable time period (e.g.,
over the past day, over the past week, etc.). In some
implementations, a report generated by reporter 1106¢ can
be presented in various formats, such as an emailed report,
within a user interface of a web dashboard or website, etc.
[0170] FIG. 12 shows an example of process 1200 for
automation of analysis and deployment of security policies
in accordance with some implementations. Note that blocks
of process 1200 can be implemented by various components
shown in and described above in connection with FIG. 11.
[0171] Process 1200 can begin at 1202.

[0172] At 1204, inputs can be fetched, using, for example,
input fetcher 1102 of FIG. 11. As described above in
connection with FIG. 11, the inputs can include two versions
of a security policy output, corresponding to a previously
deployed version, and a new version that that has been
requested for deployment. Additionally, in some embodi-
ments, the inputs can include corresponding versions of a
security policy input (e.g., a security policy in human-
readable format), a configuration file, and/or a deployment
request submitted by a user that indicates the new version of
the security policy output and/or any other suitable infor-
mation.

[0173] At 1206, the inputs can be analyzed, using, for
example, policy analyzer 11044 of FIG. 11. For example,
differences between the two versions of the security policy
output can be identified. Note that more detailed techniques
for identifying differences between the two versions of the
security policy output are shown in and described above in
connection with FIG. 8. For example, in some implemen-
tations, differences can be identified by traversing tree-based
data structures corresponding to each version to identify
nodes and/or branches that differ between the two versions.
[0174] In some implementations, identified differences
between the two versions of the security policy output can
be assigned severity levels or severity characteristics. For
example, in some implementations, each identified differ-
ence can be assigned a severity level or severity character-
istic such as “low severity,” “medium severity,” “high sever-
ity,” etc.

[0175] In some implementations, the severity level can be
assigned based on a look-up table that associates a type of
change in the security policy output with a security level.
Additionally or alternatively, in some implementations, the
severity level can be assigned based on a trained machine
learning algorithm.

[0176] Note that, in some implementations, an aggregate
severity level or severity characteristic can be assigned to
the new version of the security policy output based on the
individual severity levels of each identified difference.
[0177] At 1208, areport or change ticket can be generated,
for example, by case generator 11045. In some implemen-
tations, the report or the change ticket can include informa-
tion such as information associated with the new version of
the security policy output (e.g., a timestamp associated with
a deployment request, a username of a user who submitted
a deployment request, information indicating a cloud-ser-
vices type to which the security policy output is to be
applied, etc.).

[0178] Additionally or alternatively, in some implementa-
tions, the report or the change ticket can indicate assigned
severity levels for each identified difference between the
new version of the security policy output and the previously

Mar. 17, 2022

deployed version of the security policy output and/or an
aggregate severity level for the new version of the security
policy output. In some implementations, the report or the
change ticket can be presented in any suitable format, such
as within an email transmitted to a system administrator or
other user, within a web dashboard or website, etc.

[0179] At 1210, a determination of whether the case is
approved can be made. In some implementations, the
approval can be automated. For example, in some imple-
mentations, a determination that the case is approved can be
made based on an automated approval in response to deter-
mining that an assigned severity level of the new version of
the security policy output is below a severity threshold (e.g.,
that the new version has been assigned a “low severity,” a
“medium severity,” etc.). Note that, in some implementa-
tions, rules for automated approval of a case can be indicated
in a configurations file retrieved at block 1202. For example,
the configurations file can indicate that a new version of a
policy output is to be automatically approved and/or
deployed if the new version of the policy output is assigned
a particular severity level or characteristic (e.g., “low sever-
ity,” “medium severity,” etc.).

[0180] Additionally or alternatively, in some implementa-
tions, approval can be manual. For example, in some imple-
mentations, a determination that the case has been approved
can be made based on a receipt of a manual approval of the
case (e.g., via a web form or web dashboard that presented
the report described above in connection with block 1208).

[0181] Note that, in some implementations, process 1200
can determine that a case has not been approved based on an
explicit determination that the new version of the security
policy output is not to be deployed. For example, in some
implementations, such a determination may be in response
to receiving an indication from a user in connection with a
manual review of the new version of the security policy
output (e.g., an indication received via a web form or a web
dashboard, as shown in and described below in connection
with FIG. 13A). In some implementations, process 1200 can
wait at block 1210 until a manual review of the new version
of the security policy output has indicated whether the case
is approved or not approved.

[0182] If, at 1210, it is determined that the case has not
been approved (“no” at 1210), the process can end at 1212.

[0183] Conversely, if, at 1210, it is determined that the
case has been approved (“yes” at 1210), the new version of
the security policy output can be deployed at 1214. For
example, the new version of the security policy output, in a
cloud-specific format, can be deployed to specific cloud
instances using APIs associated with each cloud instance.

[0184] At 1216, deployment of the new version of the
security policy output can be monitored. For example, any
errors in deployment of the new version of the security
policy output can be identified. Note that, in instances in
which the deployment was not successful (e.g., due to an
error being identified at 1216), process 1200 can loop back
to 1214 and can attempt another deployment of the new
version of the security policy output. In some such imple-
mentations, deployment can be retried a predetermined
number of times (e.g., three times, five times, etc.). In some
implementations, in response to determining that deploy-
ment has been tried more than the predetermined number of
times without success, process 1200 can end with, for
example, a timeout error.



US 2022/0086193 Al

[0185] At 1218, a status of the deployment of the new
version of the security policy output can be reported. For
example, in an instance in which the new version of the
security policy output was successfully deployed, the status
can be reported as successful. Conversely in an instance in
which the new version of the security policy output was not
successfully deployed, the status can be reported as unsuc-
cessful.

[0186] Process 1200 can then end at 1220.

[0187] In some implementations, the status can be indi-
cated in a report. For example, the report can aggregate the
status of security policy output deployments over any suit-
able parameters. As a more particular example, the report
can aggregate deployments for particular cloud services,
particular data centers, particular functional domains, etc. As
another example, the report can aggregate deployments over
a particular time period (e.g., over the past day, over the past
week, etc.). In some implementations, the report can be
presented in various formats, such as in an email, within a
user interface of a web dashboard or website, etc.

[0188] It should be noted that the techniques, operations,
and components shown in and described above in connec-
tion with FIGS. 11 and 12 may be applied to automated
analysis and deployment of other items, such as product
updates, firmware updates, etc. For example, in an instance
in which a product update is to be deployed, policy analyzer
11044 as shown in and described above in connection with
FIG. 11 may be replaced with a product analyzer. Continu-
ing with this example, in some implementations, such a
product analyzer may identify differences between a new
product version to be deployed and a previously deployed
version. Continuing still further with this example, in some
implementations, the differences can be assigned severity
levels or severity characteristics. Continuing still further
with this example, a system may determine, based on the
severity level(s), whether approval of deployment of the
product update is to be granted automatically (i.e., without
manual review and approval), or whether approval is to be
given after manual review. In some implementations, in
response to determining that the product update has been
approved, the product update can be deployed to any suit-
able devices.

[0189] FIG. 13A shows an example of a user interface
1300 for presenting statuses of various security policy
outputs in accordance with some implementations.

[0190] At illustrated, user interface 1300 includes a first
panel 1302 that indicates information associated with a first
policy (referred to as “Policy 1” in FIG. 13A), and a second
panel 1304 that indicates information associated with a
second policy (referred to as “Policy 2” in FIG. 13A). Note
that, although two panels are shown in user interface 1300
for readability, in some implementations, any suitable num-
ber (e.g., one, five, ten, etc.) of panels can be included.

[0191] Referring to panel 1302, information related to
Policy 1 can be indicated. For example, changes 1306 can
indicate identified differences between a new version of
Policy 1 and a previously deployed version of Policy 1.
Additionally, a severity characteristic 1308 indicates an
assigned severity level of the new version of Policy 1. Note
that although severity characteristic 1308 indicates a sever-
ity level of the new version of Policy 1 in aggregate, in some
implementations, a severity for each identified difference in
changes 1306 can be indicated.

Mar. 17, 2022

[0192] As shown in panel 1302, selectable inputs 1310
and 1312 can be included to allow manual approval to
deploy the new version of Policy 1, or request additional
information associated with the new version of Policy 1,
respectively. In some implementations, selectable inputs
1310 and 1312 can be presented in response to determining
that automated approval of the new version of Policy 1 was
not granted.

[0193] Referring to panel 1304, information related to
Policy 2 can be indicated. For example, changes 1314 can
indicate an identified difference between a new version of
Policy 2 and a previously deployed version of Policy 2.
Additionally, a severity characteristic 1316 indicates an
assigned severity level of the new version of Policy 2. Note
that although severity characteristic 1316 indicates a sever-
ity level of the new version of Policy 2 in aggregate, in some
implementations, a severity for each identified difference in
changes 1314 can be indicated. Panel 1304 also includes
selectable inputs 1310 and 1312 for allowing manual
approval to deploy the new version of Policy 2, or to request
additional information associated with the new version of
Policy 2.

[0194] User interface 1300 additionally includes a select-
able input 1318 to approve all policies indicated in user
interface 1300 (e.g., Policy 1 and Policy 2 of user interface
1300). In some implementations, in response to determining
that selectable input 1318 has been selected, both Policy 1
and Policy 2 can be deployed.

[0195] FIG. 13B shows an example of user interface 1350
that can be used to indicate deployment status of various
security policy outputs in accordance with some implemen-
tations. In some implementations, user interface 1350 can be
presented as a web dashboard that indicates a deployment
status of various security policy outputs.

[0196] As illustrated, in some implementations, user inter-
face 1350 can include pipeline information 1352 that indi-
cates data center associated with a particular security policy
output. In some implementations, pipeline information 1352
can additionally or alternatively include more granular pipe-
line information, such as relevant functional domains, as
illustrated in FIG. 13B.

[0197] As illustrated, in some implementations, user inter-
face 1350 can include change case information 1354. In
some implementations, change case information 1354 can
indicate a change ticket generated during automated analysis
of a corresponding security policy output. In some imple-
mentations, change case information 1354 may be a hyper-
link that, when selected, causes additional details of the
corresponding security policy output to be presented.

[0198] As illustrated, in some implementations, user inter-
face 1350 can include deployment status information 1356.
In some implementations, deployment status information
1356 can indicate whether a corresponding network security
policy output was successfully deployed, or whether deploy-
ment was unsuccessful.

[0199] As illustrated, in some implementations, user inter-
face 1350 can include timing information 1358 and 1360.
Timing information 1358 and 1360 can indicate a deploy-
ment start time and a deployment end time, respectively.
[0200] In some implementations, user interface 1350 can
include any other information not shown in FIG. 13B, such
as an assigned severity level associated with a particular
security policy output, etc.



US 2022/0086193 Al

[0201] Note that, in some implementations, user interface
1300 can be presented in various formats. For example, in
some implementations, user interface 1300 can be presented
within an email transmitted to a user charged with review of
security policies. As another example, in some implemen-
tations, user interface 1300 can be presented within a web
dashboard or a website.

[0202] FIG. 14A shows a block diagram of an example of
an environment 10 in which an on-demand database service
exists and can be used in accordance with some implemen-
tations. Environment 10 may include user systems 12,
network 14, database system 16, processor system 17,
application platform 18, network interface 20, tenant data
storage 22, system data storage 24, program code 26, and
process space 28. In other implementations, environment 10
may not have all of these components and/or may have other
components instead of, or in addition to, those listed above.
[0203] A user system 12 may be implemented as any
computing device(s) or other data processing apparatus such
as a machine or system used by a user to access a database
system 16. For example, any of user systems 12 can be a
handheld and/or portable computing device such as a mobile
phone, a smartphone, a laptop computer, or a tablet. Other
examples of a user system include computing devices such
as a workstation and/or a network of computing devices. As
illustrated in FIG. 14A (and in more detail in FIG. 14B) user
systems 12 might interact via a network 14 with an on-
demand database service, which is implemented in the
example of FIG. 14A as database system 16.

[0204] An on-demand database service, implemented
using system 16 by way of example, is a service that is made
available to users who do not need to necessarily be con-
cerned with building and/or maintaining the database sys-
tem. Instead, the database system may be available for their
use when the users need the database system, i.e., on the
demand of the users. Some on-demand database services
may store information from one or more tenants into tables
of'a common database image to form a multi-tenant database
system (MTS). A database image may include one or more
database objects. A relational database management system
(RDBMS) or the equivalent may execute storage and
retrieval of information against the database object(s).
Application platform 18 may be a framework that allows the
applications of system 16 to run, such as the hardware and/or
software, e.g., the operating system. In some implementa-
tions, application platform 18 enables creation, managing
and executing one or more applications developed by the
provider of the on-demand database service, users accessing
the on-demand database service via user systems 12, or third
party application developers accessing the on-demand data-
base service via user systems 12.

[0205] The users of user systems 12 may differ in their
respective capacities, and the capacity of a particular user
system 12 might be entirely determined by permissions
(permission levels) for the current user. For example, when
a salesperson is using a particular user system 12 to interact
with system 16, the user system has the capacities allotted to
that salesperson. However, while an administrator is using
that user system to interact with system 16, that user system
has the capacities allotted to that administrator. In systems
with a hierarchical role model, users at one permission level
may have access to applications, data, and database infor-
mation accessible by a lower permission level user, but may
not have access to certain applications, database informa-

Mar. 17, 2022

tion, and data accessible by a user at a higher permission
level. Thus, different users will have different capabilities
with regard to accessing and modifying application and
database information, depending on a user’s security or
permission level, also called authorization.

[0206] Network 14 is any network or combination of
networks of devices that communicate with one another. For
example, network 14 can be any one or any combination of
a LAN (local area network), WAN (wide area network),
telephone network, wireless network, point-to-point net-
work, star network, token ring network, hub network, or
other appropriate configuration. Network 14 can include a
TCP/IP (Transfer Control Protocol and Internet Protocol)
network, such as the global internetwork of networks often
referred to as the Internet. The Internet will be used in many
of the examples herein. However, it should be understood
that the networks that the present implementations might use
are not so limited.

[0207] User systems 12 might communicate with system
16 using TCP/IP and, at a higher network level, use other
common Internet protocols to communicate, such as HTTP,
FTP, AFS, WAP, etc. In an example where HTTP is used,
user system 12 might include an HTTP client commonly
referred to as a “browser” for sending and receiving HTTP
signals to and from an HTTP server at system 16. Such an
HTTP server might be implemented as the sole network
interface 20 between system 16 and network 14, but other
techniques might be used as well or instead. In some
implementations, the network interface 20 between system
16 and network 14 includes load sharing functionality, such
as round-robin HTTP request distributors to balance loads
and distribute incoming HTTP requests evenly over a plu-
rality of servers. At least for users accessing system 16, each
of the plurality of servers has access to the MTS’ data;
however, other alternative configurations may be used
instead.

[0208] In one implementation, system 16, shown in FIG.
14A, implements a web-based CRM system. For example,
in one implementation, system 16 includes application serv-
ers configured to implement and execute CRM software
applications as well as provide related data, code, forms,
web pages and other information to and from user systems
12 and to store to, and retrieve from, a database system
related data, objects, and Webpage content. With a multi-
tenant system, data for multiple tenants may be stored in the
same physical database object in tenant data storage 22,
however, tenant data typically is arranged in the storage
medium(s) of tenant data storage 22 so that data of one
tenant is kept logically separate from that of other tenants so
that one tenant does not have access to another tenant’s data,
unless such data is expressly shared. In certain implemen-
tations, system 16 implements applications other than, or in
addition to, a CRM application. For example, system 16 may
provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
18, which manages creation, storage of the applications into
one or more database objects and executing of the applica-
tions in a virtual machine in the process space of the system
16.

[0209] One arrangement for elements of system 16 is
shown in FIGS. 14A and 14B, including a network interface
20, application platform 18, tenant data storage 22 for tenant



US 2022/0086193 Al

data 23, system data storage 24 for system data 25 accessible
to system 16 and possibly multiple tenants, program code 26
for implementing various functions of system 16, and a
process space 28 for executing MTS system processes and
tenant-specific processes, such as running applications as
part of an application hosting service. Additional processes
that may execute on system 16 include database indexing
processes.

[0210] Several elements in the system shown in FIG. 14A
include conventional, well-known elements that are
explained only briefly here. For example, each user system
12 could include a desktop personal computer, workstation,
laptop, PDA, cell phone, or any wireless access protocol
(WAP) enabled device or any other computing device
capable of interfacing directly or indirectly to the Internet or
other network connection. The term “computing device” is
also referred to herein simply as a “computer”. User system
12 typically runs an HTTP client, e.g., a browsing program,
such as Microsoft’s Internet Explorer browser, Netscape’s
Navigator browser, Opera’s browser, or a WAP-enabled
browser in the case of a cell phone, PDA or other wireless
device, or the like, allowing a user (e.g., subscriber of the
multi-tenant database system) of user system 12 to access,
process and view information, pages and applications avail-
able to it from system 16 over network 14. Each user system
12 also typically includes one or more user input devices,
such as a keyboard, a mouse, trackball, touch pad, touch
screen, pen or the like, for interacting with a GUI provided
by the browser on a display (e.g., a monitor screen, LCD
display, OLED display, etc.) of the computing device in
conjunction with pages, forms, applications and other infor-
mation provided by system 16 or other systems or servers.
Thus, “display device” as used herein can refer to a display
of a computer system such as a monitor or touch-screen
display, and can refer to any computing device having
display capabilities such as a desktop computer, laptop,
tablet, smartphone, a television set-top box, or wearable
device such Google Glass® or other human body-mounted
display apparatus. For example, the display device can be
used to access data and applications hosted by system 16,
and to perform searches on stored data, and otherwise allow
a user to interact with various GUI pages that may be
presented to a user. As discussed above, implementations are
suitable for use with the Internet, although other networks
can be used instead of or in addition to the Internet, such as
an intranet, an extranet, a virtual private network (VPN), a
non-TCP/IP based network, any LAN or WAN or the like.

[0211] According to one implementation, each user sys-
tem 12 and all of its components are operator configurable
using applications, such as a browser, including computer
code run using a central processing unit such as an Intel
Pentium® processor or the like. Similarly, system 16 (and
additional instances of an MTS, where more than one is
present) and all of its components might be operator con-
figurable using application(s) including computer code to
run using processor system 17, which may be implemented
to include a central processing unit, which may include an
Intel Pentium® processor or the like, and/or multiple pro-
cessor units. Non-transitory computer-readable media can
have instructions stored thereon/in, that can be executed by
or used to program a computing device to perform any of the
methods of the implementations described herein. Computer
program code 26 implementing instructions for operating
and configuring system 16 to intercommunicate and to

Mar. 17, 2022

process web pages, applications and other data and media
content as described herein is preferably downloadable and
stored on a hard disk, but the entire program code, or
portions thereof, may also be stored in any other volatile or
non-volatile memory medium or device as is well known,
such as a ROM or RAM, or provided on any media capable
of storing program code, such as any type of rotating media
including floppy disks, optical discs, digital versatile disk
(DVD), compact disk (CD), microdrive, and magneto-opti-
cal disks, and magnetic or optical cards, nanosystems (in-
cluding molecular memory ICs), or any other type of com-
puter-readable medium or device suitable for storing
instructions and/or data. Additionally, the entire program
code, or portions thereof, may be transmitted and down-
loaded from a software source over a transmission medium,
e.g., over the Internet, or from another server, as is well
known, or transmitted over any other conventional network
connection as is well known (e.g., extranet, VPN, LAN; etc.)
using any communication medium and protocols (e.g., TCP/
1P, HTTP, HTTPS, Ethernet, etc.) as are well known. It will
also be appreciated that computer code for the disclosed
implementations can be realized in any programming lan-
guage that can be executed on a client system and/or server
or server system such as, for example, C, C++, HTML, any
other markup language, Java™, JavaScript, ActiveX, any
other scripting language, such as VBScript, and many other
programming languages as are well known may be used.
(Java™ is a trademark of Sun Microsystems, Inc.).

[0212] According to some implementations, each system
16 is configured to provide web pages, forms, applications,
data and media content to user (client) systems 12 to support
the access by user systems 12 as tenants of system 16. As
such, system 16 provides security mechanisms to keep each
tenant’s data separate unless the data is shared. If more than
one MTS is used, they may be located in close proximity to
one another (e.g., in a server farm located in a single
building or campus), or they may be distributed at locations
remote from one another (e.g., one or more servers located
in city A and one or more servers located in city B). As used
herein, each M TS could include one or more logically and/or
physically connected servers distributed locally or across
one or more geographic locations. Additionally, the term
“server” is meant to refer to one type of computing device
such as a system including processing hardware and process
space(s), an associated storage medium such as a memory
device or database, and, in some instances, a database
application (e.g., OODBMS or RDBMS) as is well known
in the art. It should also be understood that “server system”
and “server” are often used interchangeably herein. Simi-
larly, the database objects described herein can be imple-
mented as single databases, a distributed database, a collec-
tion of distributed databases, a database with redundant
online or offline backups or other redundancies, etc., and
might include a distributed database or storage network and
associated processing intelligence.

[0213] FIG. 14B shows a block diagram of an example of
some implementations of elements of FIG. 14A and various
possible interconnections between these elements. That is,
FIG. 14B also illustrates environment 10. However, in FIG.
14B elements of system 16 and various interconnections in
some implementations are further illustrated. FIG. 14B
shows that user system 12 may include processor system
12A, memory system 12B, input system 12C, and output
system 12D. FIG. 14B shows network 14 and system 16.



US 2022/0086193 Al

FIG. 14B also shows that system 16 may include tenant data
storage 22, tenant data 23, system data storage 24, system
data 25, User Interface (UI) 30, Application Program Inter-
face (API) 32, PL/SOQL 34, save routines 36, application
setup mechanism 38, application servers 50,-50,, system
process space 52, tenant process spaces 54, tenant manage-
ment process space 60, tenant storage space 62, user storage
64, and application metadata 66. In other implementations,
environment 10 may not have the same elements as those
listed above and/or may have other elements instead of, or
in addition to, those listed above.

[0214] User system 12, network 14, system 16, tenant data
storage 22, and system data storage 24 were discussed above
in FIG. 14A. Regarding user system 12, processor system
12A may be any combination of one or more processors.
Memory system 12B may be any combination of one or
more memory devices, short term, and/or long term memory.
Input system 12C may be any combination of input devices,
such as one or more keyboards, mice, trackballs, scanners,
cameras, and/or interfaces to networks. Output system 12D
may be any combination of output devices, such as one or
more monitors, printers, and/or interfaces to networks. As
shown by FIG. 14B, system 16 may include a network
interface 20 (of FIG. 14A) implemented as a set of appli-
cation servers 50, an application platform 18, tenant data
storage 22, and system data storage 24. Also shown is
system process space 52, including individual tenant process
spaces 54 and a tenant management process space 60. Each
application server 50 may be configured to communicate
with tenant data storage 22 and the tenant data 23 therein,
and system data storage 24 and the system data 25 therein to
serve requests of user systems 12. The tenant data 23 might
be divided into individual tenant storage spaces 62, which
can be either a physical arrangement and/or a logical
arrangement of data. Within each tenant storage space 62,
user storage 64 and application metadata 66 might be
similarly allocated for each user. For example, a copy of a
user’s most recently used (MRU) items might be stored to
user storage 64. Similarly, a copy of MRU items for an entire
organization that is a tenant might be stored to tenant storage
space 62. A UI 30 provides a user interface and an API 32
provides an application programmer interface to system 16
resident processes to users and/or developers at user systems
12. The tenant data and the system data may be stored in
various databases, such as one or more Oracle® databases.

[0215] Application platform 18 includes an application
setup mechanism 38 that supports application developers’
creation and management of applications, which may be
saved as metadata into tenant data storage 22 by save
routines 36 for execution by subscribers as one or more
tenant process spaces 54 managed by tenant management
process 60 for example. Invocations to such applications
may be coded using PL/SOQL 34 that provides a program-
ming language style interface extension to API 32. A
detailed description of some PL/SOQL language implemen-
tations is discussed in commonly assigned U.S. Pat. No.
7,730,478, titted METHOD AND SYSTEM FOR ALLOW-
ING ACCESS TO DEVELOPED APPLICATIONS VIA A
MULTI-TENANT ON-DEMAND DATABASE SERVICE,
by Craig Weissman, issued on Jun. 1, 2010, and hereby
incorporated by reference in its entirety and for all purposes.
Invocations to applications may be detected by one or more
system processes, which manage retrieving application

Mar. 17, 2022

metadata 66 for the subscriber making the invocation and
executing the metadata as an application in a virtual
machine.

[0216] Each application server 50 may be communicably
coupled to database systems, e.g., having access to system
data 25 and tenant data 23, via a different network connec-
tion. For example, one application server 50, might be
coupled via the network 14 (e.g., the Internet), another
application server 50,,, might be coupled via a direct
network link, and another application server 50, might be
coupled by yet a different network connection. Transfer
Control Protocol and Internet Protocol (TCP/IP) are typical
protocols for communicating between application servers 50
and the database system. However, it will be apparent to one
skilled in the art that other transport protocols may be used
to optimize the system depending on the network intercon-
nect used.

[0217] In certain implementations, each application server
50 is configured to handle requests for any user associated
with any organization that is a tenant. Because it is desirable
to be able to add and remove application servers from the
server pool at any time for any reason, there is preferably no
server affinity for a user and/or organization to a specific
application server 50. In one implementation, therefore, an
interface system implementing a load balancing function
(e.g., an F5 Big-IP load balancer) is communicably coupled
between the application servers 50 and the user systems 12
to distribute requests to the application servers 50. In one
implementation, the load balancer uses a least connections
algorithm to route user requests to the application servers 50.
Other examples of load balancing algorithms, such as round
robin and observed response time, also can be used. For
example, in certain implementations, three consecutive
requests from the same user could hit three different appli-
cation servers 50, and three requests from different users
could hit the same application server 50. In this manner, by
way of example, system 16 is multi-tenant, wherein system
16 handles storage of, and access to, different objects, data
and applications across disparate users and organizations.
[0218] As an example of storage, one tenant might be a
company that employs a sales force where each salesperson
uses system 16 to manage their sales process. Thus, a user
might maintain contact data, leads data, customer follow-up
data, performance data, goals and progress data, etc., all
applicable to that user’s personal sales process (e.g., in
tenant data storage 22). In an example of an MTS arrange-
ment, since all of the data and the applications to access,
view, modify, report, transmit, calculate, etc., can be main-
tained and accessed by a user system having nothing more
than network access, the user can manage his or her sales
efforts and cycles from any of many different user systems.
For example, if a salesperson is visiting a customer and the
customer has Internet access in their lobby, the salesperson
can obtain critical updates as to that customer while waiting
for the customer to arrive in the lobby.

[0219] While each user’s data might be separate from
other users’ data regardless of the employers of each user,
some data might be organization-wide data shared or acces-
sible by a plurality of users or all of the users for a given
organization that is a tenant. Thus, there might be some data
structures managed by system 16 that are allocated at the
tenant level while other data structures might be managed at
the user level. Because an MTS might support multiple
tenants including possible competitors, the MTS should



US 2022/0086193 Al

have security protocols that keep data, applications, and
application use separate. Also, because many tenants may
opt for access to an MTS rather than maintain their own
system, redundancy, up-time, and backup are additional
functions that may be implemented in the MTS. In addition
to user-specific data and tenant-specific data, system 16
might also maintain system level data usable by multiple
tenants or other data. Such system level data might include
industry reports, news, postings, and the like that are shar-
able among tenants.

[0220] Incertain implementations, user systems 12 (which
may be client systems) communicate with application serv-
ers 50 to request and update system-level and tenant-level
data from system 16 that may involve sending one or more
queries to tenant data storage 22 and/or system data storage
24. System 16 (e.g., an application server 50 in system 16)
automatically generates one or more SQL statements (e.g.,
one or more SQL queries) that are designed to access the
desired information. System data storage 24 may generate
query plans to access the requested data from the database.
[0221] Each database can generally be viewed as a col-
lection of objects, such as a set of logical tables, containing
data fitted into predefined categories. A “table” is one
representation of a data object, and may be used herein to
simplify the conceptual description of objects and custom
objects according to some implementations. It should be
understood that “table” and “object” may be used inter-
changeably herein. Each table generally contains one or
more data categories logically arranged as columns or fields
in a viewable schema. Each row or record of a table contains
an instance of data for each category defined by the fields.
For example, a CRM database may include a table that
describes a customer with fields for basic contact informa-
tion such as name, address, phone number, fax number, etc.
Another table might describe a purchase order, including
fields for information such as customer, product, sale price,
date, etc. In some multi-tenant database systems, standard
entity tables might be provided for use by all tenants. For
CRM database applications, such standard entities might
include tables for case, account, contact, lead, and opportu-
nity data objects, each containing pre-defined fields. It
should be understood that the word “entity” may also be
used interchangeably herein with “object” and “table”.
[0222] In some multi-tenant database systems, tenants
may be allowed to create and store custom objects, or they
may be allowed to customize standard entities or objects, for
example by creating custom fields for standard objects,
including custom index fields. Commonly assigned U.S. Pat.
No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS
IN A MULTI-TENANT DATABASE SYSTEM, by Weiss-
man et al., issued on Aug. 17,2010, and hereby incorporated
by reference in its entirety and for all purposes, teaches
systems and methods for creating custom objects as well as
customizing standard objects in a multi-tenant database
system. In certain implementations, for example, all custom
entity data rows are stored in a single multi-tenant physical
table, which may contain multiple logical tables per orga-
nization. It is transparent to customers that their multiple
“tables” are in fact stored in one large table or that their data
may be stored in the same table as the data of other
customers.

[0223] FIG. 15A shows a system diagram of an example
of architectural components of an on-demand database ser-
vice environment 1500, in accordance with some implemen-

Mar. 17, 2022

tations. A client machine located in the cloud 1504, gener-
ally referring to one or more networks in combination, as
described herein, may communicate with the on-demand
database service environment via one or more edge routers
1508 and 1512. A client machine can be any of the examples
of user systems 12 described above. The edge routers may
communicate with one or more core switches 1520 and 1524
via firewall 1516. The core switches may communicate with
a load balancer 1528, which may distribute server load over
different pods, such as the pods 1540 and 1544. The pods
1540 and 1544, which may each include one or more servers
and/or other computing resources, may perform data pro-
cessing and other operations used to provide on-demand
services. Communication with the pods may be conducted
via pod switches 1532 and 1536. Components of the on-
demand database service environment may communicate
with a database storage 1556 via a database firewall 1548
and a database switch 1552.

[0224] As shown in FIGS. 15A and 15B, accessing an
on-demand database service environment may involve com-
munications transmitted among a variety of different hard-
ware and/or software components. Further, the on-demand
database service environment 1500 is a simplified represen-
tation of an actual on-demand database service environment.
For example, while only one or two devices of each type are
shown in FIGS. 15A and 15B, some implementations of an
on-demand database service environment may include any-
where from one to many devices of each type. Also, the
on-demand database service environment need not include
each device shown in FIGS. 15A and 15B, or may include
additional devices not shown in FIGS. 15A and 15B.

[0225] Moreover, one or more of the devices in the on-
demand database service environment 1500 may be imple-
mented on the same physical device or on different hard-
ware. Some devices may be implemented using hardware or
a combination of hardware and software. Thus, terms such
as “data processing apparatus,” “machine,” “server” and
“device” as used herein are not limited to a single hardware
device, but rather include any hardware and software con-
figured to provide the described functionality.

[0226] The cloud 1504 is intended to refer to a data
network or combination of data networks, often including
the Internet. Client machines located in the cloud 1504 may
communicate with the on-demand database service environ-
ment to access services provided by the on-demand database
service environment. For example, client machines may
access the on-demand database service environment to
retrieve, store, edit, and/or process information.

[0227] In some implementations, the edge routers 1508
and 1512 route packets between the cloud 1504 and other
components of the on-demand database service environment
1500. The edge routers 1508 and 1512 may employ the
Border Gateway Protocol (BGP). The BGP is the core
routing protocol of the Internet. The edge routers 1508 and
1512 may maintain a table of IP networks or ‘prefixes’,
which designate network reachability among autonomous
systems on the Internet.

[0228] In one or more implementations, the firewall 1516
may protect the inner components of the on-demand data-
base service environment 1500 from Internet traffic. The
firewall 1516 may block, permit, or deny access to the inner
components of the on-demand database service environment
1500 based upon a set of rules and other criteria. The firewall

2 <



US 2022/0086193 Al

1516 may act as one or more of a packet filter, an application
gateway, a stateful filter, a proxy server, or any other type of
firewall.

[0229] In some implementations, the core switches 1520
and 1524 are high-capacity switches that transfer packets
within the on-demand database service environment 1500.
The core switches 1520 and 1524 may be configured as
network bridges that quickly route data between different
components within the on-demand database service envi-
ronment. In some implementations, the use of two or more
core switches 1520 and 1524 may provide redundancy
and/or reduced latency.

[0230] In some implementations, the pods 1540 and 1544
may perform the core data processing and service functions
provided by the on-demand database service environment.
Each pod may include various types of hardware and/or
software computing resources. An example of the pod
architecture is discussed in greater detail with reference to
FIG. 15B.

[0231] Insome implementations, communication between
the pods 1540 and 1544 may be conducted via the pod
switches 1532 and 1536. The pod switches 1532 and 1536
may facilitate communication between the pods 1540 and
1544 and client machines located in the cloud 1504, for
example via core switches 1520 and 1524. Also, the pod
switches 1532 and 1536 may facilitate communication
between the pods 1540 and 1544 and the database storage
1556.

[0232] In some implementations, the load balancer 1528
may distribute workload between the pods 1540 and 1544.
Balancing the on-demand service requests between the pods
may assist in improving the use of resources, increasing
throughput, reducing response times, and/or reducing over-
head. The load balancer 1528 may include multilayer
switches to analyze and forward traffic.

[0233] In some implementations, access to the database
storage 1556 may be guarded by a database firewall 1548.
The database firewall 1548 may act as a computer applica-
tion firewall operating at the database application layer of a
protocol stack. The database firewall 1548 may protect the
database storage 1556 from application attacks such as
structure query language (SQL) injection, database rootkits,
and unauthorized information disclosure.

[0234] In some implementations, the database firewall
1548 may include a host using one or more forms of reverse
proxy services to proxy traffic before passing it to a gateway
router. The database firewall 1548 may inspect the contents
of database traffic and block certain content or database
requests. The database firewall 1548 may work on the SQL
application level atop the TCP/IP stack, managing applica-
tions’ connection to the database or SQL management
interfaces as well as intercepting and enforcing packets
traveling to or from a database network or application
interface.

[0235] In some implementations, communication with the
database storage 1556 may be conducted via the database
switch 1552. The multi-tenant database storage 1556 may
include more than one hardware and/or software compo-
nents for handling database queries. Accordingly, the data-
base switch 1552 may direct database queries transmitted by
other components of the on-demand database service envi-
ronment (e.g., the pods 1540 and 1544) to the correct
components within the database storage 1556.

Mar. 17, 2022

[0236] In some implementations, the database storage
1556 is an on-demand database system shared by many
different organizations. The on-demand database service
may employ a multi-tenant approach, a virtualized approach,
or any other type of database approach. On-demand database
services are discussed in greater detail with reference to
FIGS. 15A and 15B.

[0237] FIG. 15B shows a system diagram further illustrat-
ing an example of architectural components of an on-
demand database service environment, in accordance with
some implementations. The pod 1544 may be used to render
services to a user of the on-demand database service envi-
ronment 1500. In some implementations, each pod may
include a variety of servers and/or other systems. The pod
1544 includes one or more content batch servers 1564,
content search servers 1568, query servers 1582, file servers
1586, access control system (ACS) servers 1580, batch
servers 1584, and app servers 1588. Also, the pod 1544
includes database instances 1590, quick file systems (QFS)
1592, and indexers 1594. In one or more implementations,
some or all communication between the servers in the pod
1544 may be transmitted via the switch 1536.

[0238] The content batch servers 1564 may handle
requests internal to the pod. These requests may be long-
running and/or not tied to a particular customer. For
example, the content batch servers 1564 may handle
requests related to log mining, cleanup work, and mainte-
nance tasks.

[0239] The content search servers 1568 may provide query
and indexer functions. For example, the functions provided
by the content search servers 1568 may allow users to search
through content stored in the on-demand database service
environment.

[0240] The file servers 1586 may manage requests for
information stored in the file storage 1598. The file storage
1598 may store information such as documents, images, and
basic large objects (BLOBs). By managing requests for
information using the file servers 1586, the image footprint
on the database may be reduced.

[0241] The query servers 1582 may be used to retrieve
information from one or more file systems. For example, the
query system 1582 may receive requests for information
from the app servers 1588 and then transmit information
queries to the NFS 1596 located outside the pod.

[0242] The pod 1544 may share a database instance 1590
configured as a multi-tenant environment in which different
organizations share access to the same database. Addition-
ally, services rendered by the pod 1544 may call upon
various hardware and/or software resources. In some imple-
mentations, the ACS servers 1580 may control access to
data, hardware resources, or software resources.

[0243] In some implementations, the batch servers 1584
may process batch jobs, which are used to run tasks at
specified times. Thus, the batch servers 1584 may transmit
instructions to other servers, such as the app servers 1588, to
trigger the batch jobs.

[0244] In some implementations, the QFS 1592 may be an
open source file system available from Sun Microsystems®
of Santa Clara, Calif. The QFS may serve as a rapid-access
file system for storing and accessing information available
within the pod 1544. The QFS 1592 may support some
volume management capabilities, allowing many disks to be
grouped together into a file system. File system metadata can
be kept on a separate set of disks, which may be useful for



US 2022/0086193 Al

streaming applications where long disk seeks cannot be
tolerated. Thus, the QFS system may communicate with one
or more content search servers 1568 and/or indexers 1594 to
identify, retrieve, move, and/or update data stored in the
network file systems 1596 and/or other storage systems.
[0245] In some implementations, one or more query serv-
ers 1582 may communicate with the NFS 1596 to retrieve
and/or update information stored outside of the pod 1544.
The NFS 1596 may allow servers located in the pod 1544 to
access information to access files over a network in a manner
similar to how local storage is accessed.

[0246] In some implementations, queries from the query
servers 1522 may be transmitted to the NFS 1596 via the
load balancer 1528, which may distribute resource requests
over various resources available in the on-demand database
service environment. The NFS 1596 may also communicate
with the QFS 1592 to update the information stored on the
NFS 1596 and/or to provide information to the QFS 1592 for
use by servers located within the pod 1544.

[0247] In some implementations, the pod may include one
or more database instances 1590. The database instance
1590 may transmit information to the QFS 1592. When
information is transmitted to the QFS, it may be available for
use by servers within the pod 1544 without using an addi-
tional database call.

[0248] In some implementations, database information
may be transmitted to the indexer 1594. Indexer 1594 may
provide an index of information available in the database
1590 and/or QFS 1592. The index information may be
provided to file servers 1586 and/or the QFS 1592.

[0249] In some implementations, one or more application
servers or other servers described above with reference to
FIGS. 14A and 14B include a hardware and/or software
framework configurable to execute procedures using pro-
grams, routines, scripts, etc. Thus, in some implementations,
one or more of application servers 50,-50,, of FIG. 14B can
be configured to implement components and initiate perfor-
mance of one or more of the operations described above with
reference to FIGS. 1-13 by instructing another computing
device to perform an operation. In some implementations,
one or more application servers 50,-50,, carry out, either
partially or entirely, one or more of the disclosed operations
described with reference to FIGS. 1-13. In some implemen-
tations, app servers 1588 of FIG. 15B support the construc-
tion of applications provided by the on-demand database
service environment 1500 via the pod 1544. Thus, an app
server 1588 may include a hardware and/or software frame-
work configurable to execute procedures to partially or
entirely carry out or instruct another computing device to
carry out one or more operations disclosed herein, including
operations described above with reference to FIGS. 1-13. In
alternative implementations, two or more app servers 1588
may cooperate to perform or cause performance of such
operations. Any of the databases and other storage facilities
described above with reference to FIGS. 14A, 14B, 15A and
15B can be configured to store lists, articles, documents,
records, files, and other objects for implementing the opera-
tions described above with reference to FIGS. 1-13. For
instance, lists of available communication channels associ-
ated with share actions for sharing a type of data item can be
maintained in tenant data storage 22 and/or system data
storage 24 of FIGS. 14A and 14B. By the same token, lists
of default or designated channels for particular share actions
can be maintained in storage 22 and/or storage 24. In some

Mar. 17, 2022

other implementations, rather than storing one or more lists,
articles, documents, records, and/or files, the databases and
other storage facilities described above can store pointers to
the lists, articles, documents, records, and/or files, which
may instead be stored in other repositories external to the
systems and environments described above with reference to
FIGS. 14A, 14B, 15A and 15B.

[0250] While some of the disclosed implementations may
be described with reference to a system having an applica-
tion server providing a front end for an on-demand database
service capable of supporting multiple tenants, the disclosed
implementations are not limited to multi-tenant databases
nor deployment on application servers. Some implementa-
tions may be practiced using various database architectures
such as ORACLE®, DB2® by IBM and the like without
departing from the scope of the implementations claimed.

[0251] It should be understood that some of the disclosed
implementations can be embodied in the form of control
logic using hardware and/or computer software in a modular
or integrated manner. Other ways and/or methods are pos-
sible using hardware and a combination of hardware and
software.

[0252] Any of the disclosed implementations may be
embodied in various types of hardware, software, firmware,
and combinations thereof. For example, some techniques
disclosed herein may be implemented, at least in part, by
computer-readable media that include program instructions,
state information, etc., for performing various services and
operations described herein. Examples of program instruc-
tions include both machine code, such as produced by a
compiler, and files containing higher-level code that may be
executed by a computing device such as a server or other
data processing apparatus using an interpreter. Examples of
computer-readable media include, but are not limited to:
magnetic media such as hard disks, floppy disks, and mag-
netic tape; optical media such as flash memory, compact disk
(CD) or digital versatile disk (DVD); magneto-optical
media; and hardware devices specially configured to store
program instructions, such as read-only memory (ROM)
devices and random access memory (RAM) devices. A
computer-readable medium may be any combination of such
storage devices.

[0253] Any of the operations and techniques described in
this application may be implemented as software code to be
executed by a processor using any suitable computer lan-
guage such as, for example, Java, C++ or Perl using, for
example, object-oriented techniques. The software code may
be stored as a series of instructions or commands on a
computer-readable medium. Computer-readable media
encoded with the software/program code may be packaged
with a compatible device or provided separately from other
devices (e.g., via Internet download). Any such computer-
readable medium may reside on or within a single comput-
ing device or an entire computer system, and may be among
other computer-readable media within a system or network.
A computer system or computing device may include a
monitor, printer, or other suitable display for providing any
of the results mentioned herein to a user.

[0254] While various implementations have been
described herein, it should be understood that they have been
presented by way of example only, and not limitation. Thus,
the breadth and scope of the present application should not
be limited by any of the implementations described herein,



US 2022/0086193 Al

but should be defined only in accordance with the following
and later-submitted claims and their equivalents.

What is claimed is:

1. A system comprising:

a server system comprising one or more processors in
communication with one or more memory devices, the
server system configurable to cause:
obtaining a system input comprising:

a first version of a policy output, and
a second version of the policy output,
each version of the policy output comprising a
version of a cloud-specific policy set specific to
one of a plurality of clouds of different cloud
providers;
generating a severity characteristic that indicates a
severity of deploying the second version of the
policy output to one of the plurality of clouds based
on one or more differences between the first version
of the policy output and the second version of the
policy output;
determining whether to deploy the second version of
the policy output based on the severity characteristic;
and
in response to determining that the second version of
the policy output is to be deployed, deploying the
second version of the policy output to the one of the
plurality of clouds.

2. The system of claim 1, the server system further
configurable to cause:

generating a report that includes the severity characteris-
tic, wherein the report is generated based on the one or
more differences between the first version of the policy
output and the second version of the policy output; and

causing the report to be transmitted to a user device.

3. The system of claim 2, wherein causing the report to be
transmitted to the user device comprises causing the report
to be presented in a website that presents a dashboard related
to a set of security policies.

4. The system of claim 1, the server system further
configurable to cause:

designating each of the one or more differences between
the first version of the policy output and the second
version of the policy output as one of a plurality of
types of changes; and

determining, for each of the one or more differences, the
severity characteristic based on the type of change
associated with the difference.

5. The system of claim 4, wherein the severity character-
istic is retrieved from a table that associates a severity
characteristic with each of the plurality of types of changes.

6. The system of claim 1, wherein the server system is
further configurable to cause:

obtaining additional system input comprising a third
version of the policy output;

generating a second severity characteristic that indicates a
severity of deploying the third version of the policy
output to the one of the plurality of clouds based on one
or more differences between the second version of the
policy output and the third version of the policy output;

determining whether to deploy the third version of the
policy output based on the second severity character-
istic; and

Mar. 17, 2022

in response to determining that the third version of the
policy output is not to be deployed, causing a report
that indicates the one or more differences to be trans-
mitted to a user device.

7. The system of claim 6, wherein the server system is
further configurable to cause:

receiving, from the user device, an instruction to deploy

the third version of the policy output; and

deploying the third version of the policy output to the one

of the plurality of clouds in response to receiving the
instruction from the user device.

8. A computer program product comprising computer-
readable program code capable of being executed by one or
more processors when retrieved from a non-transitory com-
puter-readable medium, the program code comprising
instructions configurable to cause:

obtaining a system input comprising:

a first version of a policy output, and
a second version of the policy output,
each version of the policy output comprising a version
of a cloud-specific policy set specific to one of a
plurality of clouds of different cloud providers;
generating a severity characteristic that indicates a sever-
ity of deploying the second version of the policy output
to one of the plurality of clouds based on one or more
differences between the first version of the policy
output and the second version of the policy output;
determining whether to deploy the second version of the
policy output based on the severity characteristic; and
in response to determining that the second version of the
policy output is to be deployed, deploying the second
version of the policy output to the one of the plurality
of clouds.

9. The computer program product of claim 8, the instruc-
tions further configurable to cause:

generating a report that includes the severity characteris-

tic, wherein the report is generated based on the one or

more differences between the first version of the policy

output and the second version of the policy output; and
causing the report to be transmitted to a user device.

10. The computer program product of claim 9, wherein
causing the report to be transmitted to the user device
comprises causing the report to be presented in a website
that presents a dashboard related to a set of security policies.

11. The computer program product of claim 8, the instruc-
tions further configurable to cause:

designating each of the one or more differences between

the first version of the policy output and the second
version of the policy output as one of a plurality of
types of changes; and

determining, for each of the one or more differences, the

severity characteristic based on the type of change
associated with the difference.

12. The computer program product of claim 11, wherein
the severity characteristic is retrieved from a table that
associates a severity characteristic with each of the plurality
of types of changes.

13. The computer program product of claim 8, the instruc-
tions further configurable to cause:

obtaining additional system input comprising a third

version of the policy output;

generating a second severity characteristic that indicates a

severity of deploying the third version of the policy
output to the one of the plurality of clouds based on one



US 2022/0086193 Al
22

or more differences between the second version of the
policy output and the third version of the policy output;

determining whether to deploy the third version of the
policy output based on the second severity character-
istic; and

in response to determining that the third version of the
policy output is not to be deployed, causing a report
that indicates the one or more differences to be trans-
mitted to a user device.

14. The computer program product of claim 13, the

instructions further configurable to cause:

receiving, from the user device, an instruction to deploy
the third version of the policy output; and

deploying the third version of the policy output to the one
of the plurality of clouds in response to receiving the
instruction from the user device.

15. A method comprising:

obtaining a system input comprising:
a first version of a policy output, and
a second version of the policy output,
each version of the policy output comprising a version

of a cloud-specific policy set specific to one of a
plurality of clouds of different cloud providers;

generating a severity characteristic that indicates a sever-
ity of deploying the second version of the policy output
to one of the plurality of clouds based on one or more
differences between the first version of the policy
output and the second version of the policy output;

determining whether to deploy the second version of the
policy output based on the severity characteristic; and

in response to determining that the second version of the
policy output is to be deployed, deploying the second
version of the policy output to the one of the plurality
of clouds.

Mar. 17, 2022

16. The method of claim 15, further comprising:

generating a report that includes the severity characteris-

tic, wherein the report is generated based on the one or

more differences between the first version of the policy

output and the second version of the policy output; and
causing the report to be transmitted to a user device.

17. The method of claim 16, wherein causing the report to
be transmitted to the user device comprises causing the
report to be presented in a website that presents a dashboard
related to a set of security policies.

18. The method of claim 15, further comprising:

designating each of the one or more differences between

the first version of the policy output and the second
version of the policy output as one of a plurality of
types of changes; and

determining, for each of the one or more differences, the

severity characteristic based on the type of change
associated with the difference.

19. The method of claim 18, wherein the severity char-
acteristic is retrieved from a table that associates a severity
characteristic with each of the plurality of types of changes.

20. The method of claim 15, further comprising:

obtaining additional system input comprising a third

version of the policy output;
generating a second severity characteristic that indicates a
severity of deploying the third version of the policy
output to the one of the plurality of clouds based on one
or more differences between the second version of the
policy output and the third version of the policy output;

determining whether to deploy the third version of the
policy output based on the second severity character-
istic; and

in response to determining that the third version of the

policy output is not to be deployed, causing a report
that indicates the one or more differences to be trans-
mitted to a user device.

#* #* #* #* #*



