
United States Patent (19
Albaugh et al.

||||IIII
US005463739A

11 Patent Number: 5,463,739
(45) Date of Patent: Oct. 31, 1995

(54)

(75)

(73)

(21)

22
(51)
(52)

58

56)

APPARATUS FOR VETONG
REALLOCATION REQUESTS DURING A
DATA TRANSFER BASED ON DATABUS
LATENCY AND THE NUMBER OF
RECEIVED REALLOCATION REQUESTS
BELOW A THRESHOLD

Inventors: Virgil A. Albaugh, Round Rock; John
S. Muhich, Austin; Edward J. Silha,
Austin; Michael T. Vanover, Austin, all
of Tex.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 994,864

Filed: Dec. 22, 1992

Int. Cl. G06F 12/02; G06F 13/14
U.S. Cl. 395/826; 395/775; 395/849;

395/878; 395/494; 395/497.01; 395/296;
364/228.1; 364/230.2; 364/242.91; 364/256.3;

364/DIG. 1
Field of Search 395/325, 425,

395/275, 650, 775, 725

References Cited

U.S. PATENT DOCUMENTS

3,333,252 7/1967 Shimabukuro 340/1725
4,277,826 7/1981 Collins et al. 364/200
4,388,621 6/1983 Komatsu et al. 340/802
4,495,571 1/1985 Staplin, Jr. et al. 395/325
4,574,350 3/1986 Starr .. 364/200
4,787,026 11/1988 Barnes et al. 364/200
4,792,895 12/1988 Tallman 364/200
4,811,206 3/1989 Johnson . 364/200
4,831,541 5/1989 Eshel 364/200
4,847,757 6/1989 Smith 364/200
4,849,875 7/1989 Fairman et al. 364/200

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

1-99163 4/1989 Japan.

GRAPHCS
OUTPUT
DEVICES)

OTHER PUBLICATIONS

IBM TDB, "Channel DAT and Page Pinning for Block Unit
Transfers", vol. 23, No. 2, Jul. 1980, pp. 704–705.
IBM TDB, "Distinguishing Between Short Term and Long
Term Pins of Pages in Virtual Memory During I/O'', vol. 29,
No. 6, Nov. 1986, pp. 2689-2690.
IBM TDB, "System Memory Configuration and Manage
ment in a Virtual Terminal Environment', vol. 31, No. 1,
Jun. 1988, p. 411.
IBM TDB, "Linear-To-Physical Memory Mapping by Bus
Masters in Virtual Memory Systems', vol. 34, No. 4A, Sep.
1991, pp. 355-357.

(List continued on next page.)

Primary Examiner-Thomas C. Lee
Assistant Examiner-Marc K. Weinstein
Attorney, Agent, or Firm-Mark E. McBurney; Andrew J.
Dillon

(57) ABSTRACT

A method for managing a data transfer between a first device
and an allocated portion of common memory including the
steps of receiving a reallocation request of the allocated
portion of common memory from a second device, receiving
a veto of the requested reallocation from the first device, and
delaying the reallocation request. In addition, a method for
transferring data between a peripheral device and a common
memory in a virtual memory system including the steps of
instructing the peripheral device to transfer data with an
allocated portion of the common memory, requesting a
reallocation of the allocated portion of the common memory,
and receiving a veto of the requested reallocation from the
peripheral device in response to the instructed data transfer.
Furthermore, an apparatus for transferring data between a
peripheral device and a common memory in a virtual
memory system including an apparatus for instructing the
peripheral device to transfer data with an allocated portion
of the common memory, an apparatus for requesting a
reallocation of the allocated portion of the common memory,
and an apparatus for receiving a veto of the requested
reallocation from the peripheral device in response to the
instructed data transfer.

15 Claims, 7 Drawing Sheets

NETWORK.
INTERFACE

28

BUS
INTERFACE

219

HARD DISK
SORAGE

5,463,739
Page 2

U.S. PATENT DOCUMENTS 5,265,212 11/1993 Bruce, II 395/325
5,313,603 5/1994 Takishima 395/425

4,912,632 3/1990 Gach et al. 364/200
4,914,619 4/1990 Harris et al. 364/900
4,916,301 4/1990 Mansfield et al. 340/747 OTHER PUBLICATIONS
4,928,253 5/1990 Yamauchi et al. 364/521
5,016,167 5/1991 Nguyen et al. 364/200 IBM TDB, "Software Recovery of Page Faults on Micro
5,047.92 9/1991 Kinter et al. 395/650 processors with Integrated Memory Management Units',
5,067,071 11/1991 Schanin et al. 395/275 vol. 34, No. 10B, Mar. 1992, pp. 426-429.

U.S. Patent Oct. 31, 1995 Sheet 1 of 7 5,463,739

130

INPUT OUTPUT
DEVICE(S) DEVICES)

MAN PROCESSOR
COMPLEX

200 2

COMMON MAIN
MEMORY

21

40

F.G. 1 "2,
60

O 220

NEWORK
INTERFACE

GRAPHICS
ADAPTER

GRAPHICS
OUTPUT
DEVICES)

BUS
INTERFACE

9

HARD DISK
STORAGE

209

28

4 16 12
SR PAGE BYTE

32-BTEA

SELECT

SEGMENT
REGISTERS

24 16 12
52-B TWA VIRTUAL SEGMENT ID PAGE BYTE

LOOKUP

PAGE TABLE

REAL PAGENUMBER 32-B RA

FIG. 4

U.S. Patent Oct. 31, 1995 Sheet 3 of 7 5,463,739

25 26 31 O 1

v vsID H API
RPN Ric wiM PP

O 19 23 24 25 27 30 31

FIG. 3

400 READ SEGMENT REGISTER

CONCATENATE VIRTUAL
SEGMENT DAND PAGE

REFERENCE

HASH CONCATENATED NUMBER

410

420

LOOKUPREALPAGE
NUMBER IN
MEMORY

LOOKUPREAL PAGE
450 NUMBER INTLB 440

CONCATENATE REAL PAGE
NUMBER AND BYTE

REFERENCE

460

FIG. 5

U.S. Patent Oct. 31, 1995 Sheet 4 of 7 5,463,739

31 RT RARB 310
O 6 11 16

FIG. 6A

31 Rs RARB 438
O 6 11 16 31

F.G. 6B

O 6 26 31

FIG. 7A

TCR CMP COMMAND EACP LENGTH
O 7 8 9 10 11 12 15 16 31

FIG. 7B

U.S. Patent

525

510

Oct.

PROGRAM
INTERRUPT

31, 1995 Sheet 5 of 7

INTIALIZEDAATRANSFER

RECEIVE AND DECODE DATA
TRANSFER INSTRUCTION

ENABLE
BIT ON

FIG. 8A

TRANSLATE
EFFECTIVE
ADDRESS TO

WIRTUAL ADDRESS

CHECK PAGE
PROTECTION

SET REFERENCE
AND CHANGE BITS

PLACE REAL
ADDRESS, RIDAND
TRANSFERTYPE

ONTO BUS

5,463,739

530

540

550

560

U.S. Patent Oct. 31, 1995 Sheet 6 of 7 5,463,739

600 MONTOR BUS

LATCH CONTROL
610 INFORMATION FROM BUS,

SETTCRACCEPT BIT

630

TRANSFER YES
COMPLETE

NO SET COMPLETE BIT 635
NTCR

640

TRANSFER
CROSS PAGE
BOUNDARY

NO SET EXCEPTION BIT 645
NTCR

ARBTRATE FOR
BUS AND 650

YES

TRANSFER UNIT
OF DATA

FIG. 8B

U.S. Patent Oct. 31, 1995 Sheet 7 of 7 5,463,739

ALTER TLB ENTRIES 700
GENERATE TLBE ON BUS

ATEMPTTLB SYNCON 70
SYSTEM BUS

720
FIG. 8C

NO

PROCEED WITH
VIRTUALPAGNG 730 800

DATA
TRANSFER
PENDING

?

NO

DO NOT
MONITOR

805

FIG. 8D

CONTINUE N
O TRANSFER

?

VETOTLB SYNC
UNTILDATA
TRANSFER
COMPLETE

SET
EXCEPTION
BTAND STOP 840

5,463,739
1.

APPARATUS FOR WETONG
REALLOCATION REQUESTS DURING A
DATA TRANSFER BASED ON DATABUS

. LATENCY AND THE NUMBER OF
RECEIVED REALLOCATION REQUESTS

BELOW A THRESHOLD

TECHNICAL FIELD

The present invention relates generally to virtual memory
and more specifically to data transfers in a virtual memory
system.

BACKGROUND ART

In a virtual memory system one or more processors may
share a common memory in combination with one or more
controllers or devices. A processor may request a controller
to directly access the common memory without the continu
ous intervention of the processor by sending the controller a
command to transfer the data and sending the controller the
address of the storage location of the data. This remote
access of the common memory by the device is called direct
memory access (DMA). In the prior art it is common for the
processor to request the virtual memory manager to pin or
prevent alteration of the memory being accessed by the
device to prevent any reallocation of that data by the
processor or other processors prior to the completion of the
DMA process by the device. This is accomplished by
providing a description of the memory being accessed in the
common memory in a process called pinning. If the data is
pinned, then the data will not be reallocated by the virtual
memory manager until the data is unpinned by another call
to the virtual memory manager. However, such calls to the
virtual memory manager are very time consuming because
they require multiple context switches and the execution of
hundreds of instructions and may slow down the processing
of data throughout the data processing system. In addition,
the pinning of memory does not allow for any sort of
prioritization between the DMA being performed by the
device and the need of the virtual memory manager to
reallocate data in the common memory.

DISCLOSURE OF THE INVENTION

The present invention includes a method for managing a
data transfer between a first device and an allocated portion
of common memory including the steps of receiving a
reallocation request of the allocated portion of common
memory from a second device, receiving a veto of the
requested reallocation from the first device, and delaying the
reallocation request. In addition, the present invention
includes a method for transferring data between a peripheral
device and a common memory in a virtual memory system
including the steps of instructing the peripheral device to
transfer data with an allocated portion of the common
memory, requesting a real location of the allocated portion
of the common memory, and receiving a veto of the
requested reallocation from the peripheral device in
response to the instructed data transfer. Furthermore, the
present invention includes an apparatus for transferring data
between a peripheral device and a common memory in a
virtual memory system including an apparatus for instruct
ing the peripheral device to transfer data with an allocated
portion of the common memory, an apparatus for requesting
a reallocation of the allocated portion of the common
memory, and an apparatus for receiving a veto of the

10

15

20

25

30

35

40

45

50

55

60

65

2
requested reallocation from the peripheral device in
response to the instructed data transfer.
A further understanding of the nature and advantages of

the present invention may be realized by reference to the
remaining portions of the specification and the drawings.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a block diagram of a typical digital computer
utilized by a preferred embodiment of the invention;

FIG. 2 is a more detailed block diagram of portions of the
digital computer described above with reference to FIG. 1;

FIG. 3 illustrates a page table entry according to the
preferred embodiment of the invention;

FIG. 4 illustrates, in the preferred embodiment of the
invention, how a 32-bit effective address is translated to a
52-bit virtual address and then to a 32-bit real address;

FIG. 5 is a flowchart illustrating how an effective address
is translated to a real address according to the preferred
embodiment of the invention;

FIG. 6A illustrates a transfer out or store command for use
in a processor to initiate a transfer of data from common
main memory to a peripheral device on the system bus;

FIG. 6B illustrates a transfer in or load command for use
in a processor to initiate a transfer of data from a peripheral
device on the system bus to the processor;

FIGS. 7A-7B illustrate the external access register (EAR)
and the transfer control/status register (TCR) utilized by the
preferred embodiment of the invention when performing a
virtual data transfer, and

FIG. 8A-3D are flowcharts describing a data transfer
using the preferred embodiment of the invention.

BEST MODE FOR CARRYING OUT THE
INVENTION

FIG. 1 is a block diagram of a typical digital computer 100
utilized by a preferred embodiment of the invention. The
computer includes a main processor complex 110 coupled to
a main memory 120, input device(s) 130 and output
device(s) 140. Main processor complex 110 may include a
single processor or multiple processors coupled together.
Input device(s) 130 may include a keyboard, mouse, tablet
or other types of input devices. Output device(s) 140 may
include a text monitor, plotter or other types of output
devices. The main processor complex 110 may also be
coupled to several controllers. adapters or other peripheral
devices such as graphics adapter 200, bus interface 210,
network interface 220 and other devices on a system bus or
busses 160. The controllers are devices or adapters typically
located on the system bus that can operate independently
from the processors (such as for a data transfer). The main
processor complex may also be coupled to other peripheral
devices through controllers located on the system bus. For
example, the main processor complex may be coupled to a
hard disk 219 or other peripheral devices across system bus
160, bus interface 210 and bus 218. The main processor
complex may also be coupled to graphics output device(s)
209 such as a graphics display through a graphics adapter
200. Graphics adapter 200 receives instructions regarding
graphics from main processor 110 on system bus 160. The
graphics adapter then executes those instructions and dis
plays its output on graphics output device 205.

FIG. 2 is a more detailed block diagram of portions of the
digital computer described above with reference to FIG. 1,
illustrating a multiprocessor data processing system 100 that

5,463,739
3

utilizes a common main memory according to a preferred
embodiment of the invention. The data processing system
100 includes processors 300, 310 and 320 in main processor
complex 110. In the preferred embodiment, the main pro
cessor complex includes at least one processor sharing a
common operating system. Additional processors may be
included in this framework. The processors are coupled to
common main memory 120, graphics adapter 200, network
interface 220 and bus interface 210 across system bus 160.
Each of time processors includes a dedicated memory man
agement unit (MMU)301,311, and 321 for handling various
memory management functions. In the preferred embodi
ment, each MMU includes a translation lookaside buffer
(TLB) 302, 312 and 322 and a dedicated set of segment
registers 304, 314 and 324 for handling virtual memory
translations. Alternative embodiments may include other
mechanisms for performing virtual memory translations or
other memory management functions. The segment registers
include system entries in the preferred embodiment for
translation of an effective address to a virtual address. In the
preferred embodiment, there are 16 segment registers that
are referenced by four bits of an effective address. The
translation lookaside buffers provide a cache of recently
used page table entries for efficient translation of virtual
addresses to real addresses. In the preferred embodiment,
there are about 128 to 256 TLB entries for each processor.
Each of the processors also includes a dedicated external
access register (EAR) 306, 316 and 326, a dedicated set of
general purpose registers (GPR) 308, 318 and 328 for
handling virtual memory transfers, and at least one execu
tion unit 309, 319, and 329 for executing instructions. The
GPRs may also be used for other functions by the proces
sors. The use of all these registers will be described in
greater detail below.
The common main memory 120 includes a page table 350

with entries 355A through 355N for translating virtual
addresses to real addresses. These entries are eight bytes or
two words wide in the preferred embodiment of the inven
tion. The TLBs in the MMUs described above are caches of
the page table. Examples of pages stored in common main
memory are Page X and Page Y. The page table entries map
virtual page addresses to real page addresses for pages that
are being used by the processors and/or the controllers. The
entries for real pages that are not being used are marked
invalid so that no program using a virtual address can access
the page.
Some of the controllers located on the system bus

includes a transfer control/status register (TCR) 202, 212,
and 222 and optionally a counter (CTR) 204, 214, and 224
for handling virtual memory transfers. The use of these
registers will be described in greater detail below.

FIG. 3 illustrates a page table entry according to the
preferred embodiment of the invention. Each page table
entry maps one virtual address page number to one real
address page number. In column 0 of the first word is a
validity bit for indicating whether the entry is valid. An entry
may be invalidated by changing this bit from a 1 (entry
valid) to a 0 (entry invalid). In columns 1-24 of the first
word is the virtual segment identifier which is the 24-bit
identifier found in the segment register and used to generate
the virtual address from the effective address. In column 25
of the first word is a hash function identifier. In columns
26-31 of the first word is an abbreviated page index. The
hash function identifier and the abbreviated page index are
used in a hashing function to select the page table entry
group. In columns 0-19 of the second word are the real
address page number to be used to generate a real address.

10

15

20

25

30

35

40

45

50

55

60

65

4
Columns 20-22 and 28–29 of the second word are reserved
for future use or other features. In column 23 of the second
word is a reference bit used to indicate that a processor or
device is referencing this page. In column 24 of the second
word is a change bit used to indicate that some processor or
device has changed some information in the page. In col
umns 25–27 of the second word are cache controls used to
indicate whether the page is write through, cache-inhibited,
globally accessible or other desirable cache control
schemes. In columns 30-31 are page protection and data
coherency bits used to indicate if the page is readable,
writable, changed, or referenced by a program being
executed by a processor. In alternative embodiments, other
page protection or data coherency schemes may be utilized.

FIG. 4 illustrates, in a preferred embodiment of the
invention, how a 32-bit effective address is translated to a
52-bit virtual address and then to a 32-bit real address. The
translation from an effective address to a real address is
preferably performed by the MMU. The effective address of
data is normally utilized by software within a processor. The
real address of data is normally utilized in communications
between processors and devices. The real address of data is
also utilized to access data from real memory, whether in
common main memory or storage devices. The effective
address includes a high order 4-bit reference to the segment
registers, a 16-bit page reference and a 12-bit byte reference.
The 4-bit segment register reference is used to address the 16
entry segment register to obtain a 24-bit virtual segment ID
from the addressed segment register. The 24-bit virtual
segment ID from the segment register is then concatenated
with the 16-bit page reference and the 12-bit byte reference
to obtain a 52-bit virtual address. The 52-bit virtual address
can then be translated to a 32-bit real address by concat
enating the 24-bit virtual segment ID and the 16-bit page
reference to generate a 40-bit page table lookup value. This
page table lookup value is then used to obtain a real page
number from either the translation lookaside buffer (TLB) or
the page table in common main memory. The result of this
is a 20-bit real page number which is then concatenated with
the 12-bit byte reference to generate the desired 32-bit real
address.

FIG. 5 is a flowchart illustrating how an effective address
is translated to a real address according to the preferred
embodiment of the invention. In a first step 400, a processor
such as processor 300 of FIG. 2 uses the high order four bits
of the 32-bit effective address to read the dedicated 16 entry
segment register 304 to obtain a 24-bit virtual segment ID.
In step 410, the processor concatenates the 24-bit virtual
segment ID with the 16-bit page reference to obtain a 40-bit
page table reference. In step 420, the resulting 40-bit page
table reference is then hashed to obtain a 32-bit real address
of a page table entry. In step 430, the processor determines
whether or not the page table entry is located within the
translation lookaside buffer (TLB) 302 dedicated to the
processor. If yes, then in step 440 the processor looks up the
entry in the TLB 302 dedicated to that processor to obtain a
20-bit real page number and in step 460, the real page
number is concatenated with the 12-bit byte reference to
obtain the 32-bit real address. If, in step 430, the page table
reference was not in the dedicated translation lookaside
buffer, then in step 450 the processor reads the page table in
common main memory to obtain the desired real page
number and processing continues to step 460.
To transfer data between processors and devices on the

system bus, a transfer data instruction is utilized in a
processor to initiate the data transfer in a preferred embodi
ment of the invention. FIG. 6A illustrates a transfer in

5,463,739
5

(LOAD) command for use in a processor to initiate a transfer
of data from common main memory to a device on the
system bus. FIG. 6B illustrates a transfer out (STORE)
command for use in a processor to initiate a transfer of data
from a device on the system bus to the common memory.

With reference to FIG. 6A, a transfer in (LOAD) com
mand includes a primary op (operation) code in columns 0–5
and an extended op code in columns 21-30. This is the op
code mechanism used by the preferred embodiment of the
invention, although other op codes may be utilized in
alternative embodiments. In columns 11-15 and 16-20 of
the instruction are references to registers RA and RB in the
general purpose registers of the processor. The contents of
registers RA and RB are used to compute the effective
address of a location in memory from which the controller
will transfer a specified amount of data. According to the
preferred embodiment of the invention, the effective address
of the memory location is equal to the value located in
register RA plus the value located in register RB unless RA
equals zero. If RA equals zero (i.e., not equal to 1-31) then
the effective address of the memory location is equal to the
value located in register RB. Of course, alternative embodi
ments may utilize other schemes for generating an effective
address. Once the effective address is determined, then the
corresponding real address may be determined by the pro
cessor using the procedure described above. The processor
sends the real address, computed as previously described, to
the controller on the system bus and, in turn, receives a
32-bit operand from the controller. This operand is placed in
the GPR specified by the target (RT) field in columns 6-10
of the instruction. Bit location 31 is reserved for future use.

With reference to FIG. 6B, a transfer out (STORE)
command includes a primary op code in columns 0–5 and an
extended op code in columns 21-30. This is the op code
mechanism used by the preferred embodiment of the inven
tion, although other op codes may be utilized in alternative
embodiments. In columns 11-15 and 16–20 of the instruc
tion are references to registers RA and RB in the general
purpose registers of the processor. The contents of registers
RA and RB are used to compute the effective address of a
location in memory to which the controller will transfer a
specified amount of data. According to the preferred
embodiment of the invention, the effective address of the
memory location is equal to the value located in register RA
plus the value located in register RB unless RA equals zero.
If RA equals zero (i.e., not equal to 1-31) then the effective
address of the memory location is equal to the value located
in register RB. Once the effective address is determined,
then the corresponding real address may be determined by
the processor using the procedure described above. The
processor sends the real address, computed as previously
described, to the controller along with the content of the
source (RS) register specified by the RS field in columns
6-10 of the instruction. Bit location 31 is reserved for future
SC.

FIGS. 7A-7B illustrate the external access register (EAR)
and the transfer control/status register (TCR) utilized by the
preferred embodiment of the invention when performing a
virtual data transfer. The EAR is associated with a particular
processor and the TCR is associated with a particular
controller.

With reference to FIG. 7A, each processor implements an
EAR which is set by software to indicate which controller is
to accept the transfer commands executed by that particular
processor. In column 26-31 is stored a resource identifier
(RID) for identifying which device on the system bus is to
accept the command for the data transfer. Each controller

10

15

20

25

30

35

40

45

50

55

60

65

6
has a unique RID and accepts commands when that RID is
presented on the system bus. It is possible to implement a
controller that supports multiple processors concurrently by
having the device recognize multiple RIDs. Each processor
using the controller would then communicate with the
controller using a unique RID creating the effect that the
controller has multiple channels with each used by a differ
ent processor. Each RID recognized by a controller should
have a separate TCR associated with each RID. However, it
is common that a given processor may not need access to a
particular device and the number of RIDs may be less. In
addition, a given processor may utilize over time multiple
RIDs for a given device for a variety of uses. In column 1
is an enable bit which indicates whether the currently
executing process is allowed to execute a data transfer
instruction. This enablement mechanism is useful to serial
ize access to the devices by the processes being executed.

With reference to FIG. 7B, the TCR contains control and
status information of the device involved with a data trans
fer. The contents of the TCR are transferred to the GPR in
the processor specified by RT when the processor executes
a transfer in (LOAD) command. Columns 0-7 include bits
12-19 of the effective address of the data being transferred.
This data is to be used to prevent processors from altering
that data in the common main memory as will be explained
in greater detail herein with reference to FIGS. 8A-8D.
Columns 8-11 include a command to indicate what action is
to be taken on the data (e.g. compress, draw an object on a
graphics display, etc.). Column 12 includes an exception bit
which indicates whether an exception to a previous transfer
has occurred. Examples of such exceptions include a TLB
sync, a process switch, or a page crossing, which will be
described in greater detail below. A value of 0 indicates no
exception whereas a value of l indicates an exception.
Column 13 includes a command word accepted or rejected
bit indicating whether the current transfer data command has
been accepted or rejected by the device. A value of 0
indicates the command has been accepted whereas a value of
1 indicates a command has been rejected. Column 14
includes a command completed bit indicating whether or not
a previously initiated transfer was completed. A value of 0
indicates a command was not completed and a value of 1
indicates the command was completed. Column 15 includes
a memory pinned bit to indicate whether memory has been
pinned for use this data transfer. Although the present
invention is directed to the capability of transferring data
without pinning memory, it may be preferably to pin
memory for some data transfers such as high data volume
real-time applications (e.g. multimedia) or very large data
transfers. Columns 16-31 provide the length of the data to
be transferred or remaining to be transferred by the data
transfer command.

FIG. 8A is a flowchart describing a data transfer using the
preferred embodiment of the invention. In step 500, a
program executing on a processor initializes the data trans
fer. This process will load directly or construct a transfer
load command for the desired device in a general purpose
register. This command includes the operation to be per
formed on the data to be transferred and the length of this
data. This process will then load the base and offset of the
effective address of the data to be transferred into the general
purpose registers. During or prior to initialization, the pro
cess will make a call to the operating system to get the
resource identifier (RID) for the desired device loaded into
the EAR. The operating system should then set the enable bit
in the EAR upon loading the controller's RID into the EAR.
The operating system will then load the TCR in the con

5,463,739
7

troller with the appropriate information for a data transfer.
In a second step 510, the processor will receive and

decode an instruction of the process to determine whether
the instruction is a data transfer instruction. If so, then the
data transfer instruction is executed as described herein. In
step 520, the processor will check the EAR to determine
whether the enabled bit is on for the intended device. If not,
then in step 525, a program interrupt is generated. In step
530, the processor will perform an effective address to
virtual address translation. This yields the page table entry
index whereby the processor accesses all the relevant control
information about the page in question from the page table.
In step 540, the processor will check page protection for the
page using the page protection bits from the page table entry
(typically, this page table entry will be present in the TLB
cache). In step 550, the appropriate reference and/or change
bits are set to maintain data coherency between the common
main memory and any disk storage. If this is a data transfer
in (LOAD) command, then the processor will set the refer
ence bit in the page table entry if the bit is not already set.
If this is a data transfer data out (STORE) command, then
both the reference bit and the change bit are set if they are
not already set in the page table entry. In step 560, the
processor will place the real address of the data to be
transferred onto the bus along with the RID (which identifies
the transfer device or controller) from the EAR and the
transfer type (which indicates whether the transfer is a
transfer in (LOAD) or transfer out (STORE) command). At
this point, the device has the necessary information to
conduct the requested data transfer and the indicated opera
tion on the data. Optionally, the process may query the
device to determine whether the requested transfer has been
accepted, completed without exception, or other status. In
the event that a process is trying to page out virtual memory,
a methodology must be adhered to between the processors
and devices to ensure data integrity. A preferred methodol
ogy will be described herein with reference to FIGS. 8C and
8E).

FIG. 8B is a flowchart illustrating how a device executes
the data transfer command received from a processor on the
system bus as described above with reference to FIG. 8A. In
step 600, the device continuously monitors the bus for a
transfer data transaction type on the system bus concurrent
with a RID which is mapped to the device. Once received,
in step 610, the device latches the real address from the bus
and sets the command accepted bit in column 13 of the TCR.
If the transfer data command is a transfer data out (STORE),
then the TCR latches the data from the data bus (which
originated from the source GPR (RS) of the initiating
processor). If the transfer data command is a transfer data in
(LOAD) command, then the contents of the TCR are placed
onto the bus (this is to be latched into the target GPR (RT)
of the initiating processor). In step 630, the device deter
mines whether the data transfer is complete. If yes, then the
device sets the complete bit in the TCR and discontinues
operation. If not, then in step 640, the device determines
whether the unit of data to be transferred crosses a page
boundary. If yes, then in step 645, the device will set
exception bit in the TCR and then discontinue operation.
The data transfer operation will have to be restarted later by
the processor initially requesting the data transfer. If the
transfer does not cross a page boundary, then in step 650 the
device arbitrates for the bus and then transfers a unit of data
across the bus between the device and common main
memory (from the common main memory to the device for
a data transfer in (LOAD) command or from the device to
the common main memory for a data transfer out (STORE)

10

5

20

25

30

35

40

45

50

55

60

65

8
command). Processing then returns to step 630.

FIG. 8C is a flowchart illustrating a processor attempting
to synchronize all the TLBs prior to virtual paging by the
processor of the data pointed to by the TLBs. In step 700,
when a virtual page is to be removed and the underlying real
page reassigned to another virtual address or program, the
page table entry containing the translation for the page to be
reassigned is altered, making the translation invalid. Any
copy of the altered entry in the processor's TLB is then
invalidated. The processor then puts a TLB entry invalidate
(TLBEI) on the system bus, including bits 12-19 of the
effective address of the data being remapped by the virtual
paging. The effective address bits are used by the device to
determine whether the processor may alter or remap the data
being transferred by the device. In step 710, the processor
then attempts to synchronize all the TLBs to maintain
coherency by putting a TLB sync command on the system
bus. In step 720, the processor waits for a period of time to
determine whether it receives a retry signal from any device
regarding synchronizing the TLBs. As described below with
reference to FIG. 8D, the device may cause the TLB sync
from the process to be retried if it could possibly alter or
remap the data being transferred by the device. If the
processor receives a retry signal on the system bus, then the
processor will wait a period of time and will repeat step 710
to again attempt to synchronize the TLBs. If the processor
does not receive a retry signal, then in step 730, the
processor proceeds with virtual paging.

FIG. 8D is a flowchart illustrating a device determining
whether to retry a TLB sync operation requested by a
processor. In step 800, the device determines whether a data
transfer is in progress for the device. If no, then in step 805,
the processor does not monitor the system bus for modifi
cations to the common main memory. In step 810, the device
observes a TLB entry invalidation (TLBEI) on the system
bus which includes a portion of the effective address of the
data to be reallocated by paging out by the processor. If the
portion of the effective address does not match the portion
of the effective address stored in the TCR, then processing
returns to step 800. If yes, then in step 20, the device waits
to receive a TLB sync. If not received, then processing
continues to step 800. If the TLB sync command is received,
then in step 830, the device determines whether to cause the
TLB sync to be retried with a retry signal sent to the
processor sending the TLB sync. In the preferred embodi
ment, the device determines whether to cause the TLB sync
to be retried by determining whether the data transfer can be
completed within an acceptable period of time with regards
to system bus interrupt latency. The device does this by
determining whether the remaining portion of the data to be
transferred can be stored in the open device physical data
buffers. If the data transfer can be completed without an
overflow of the buffers, then in step 840 the device will
prevent any attempt by the processors to synchronize the
TLBs with a retry signal on the system bus. The retry signal
is needed because TLB synchronization could allow a pro
cess to alter the memory location previously specified to the
device in the transfer data command, because the operating
system is free to perform virtual paging once the TLBs are
synchronized. The device will persist in causing the proces
sor's TLB sync commands be retried until the initiated
transfer of data and associated operation is completed. If the
data transfer cannot be completed without an overflow of the
device buffers, then in step 840 the device will set an
exception bit in the TCR and discontinue operation. At some
later time, the program which initiated the data transfer will
reinitiate the data transfer.

5,463,739
9

In alternative embodiments, the device may predetermine
whether the data transfer can be completed without over
flowing the device buffers and then automatically provide a
retry signal or not for any relevant TLB sync commands. In
addition, the device may provide a retry signal for any TLB
sync command without checking to see whether the TLB
sync may affect the data being transferred by the device.
Furthermore, the device may use a counter to automatically
cause a TLB sync to be retried a specific number of time
before posting an exception. The counter indicates the
number of retries remaining that may be used by the device
to prevent a processor from modifying the page table in
common main memory prior to the completion of a data
transfer. In addition, the device may also veto a requested
TLB sync until some later time as a delay. The present
invention may also be utilized with processors that do not
utilize a TLB sync or TLBEI commands. In that case, the
TLB invalidation and synchronization functions are per
formed using software and interprocessor communication.
However, the controllers would need to be polled by reading
their status to ensure that any pending data transfers have
been completed or are terminated.

In conclusion, the present invention avoids the overhead
and degraded performance that results from the requirement
that a page must be pinned for a data transfer operation. In
addition, the present invention helps minimize the number
of pages that are pinned which is desirable in virtual memory
systems.

Although the present invention has been fully described
above with reference to specific embodiments, other alter
native embodiments will be apparent to those of ordinary
skill in the art. For example, the present invention may also
be utilized in a 64-bit environment. Therefore, the above
description should not be taken as limiting the scope of the
present invention which is defined by the appended claims.
What is claimed is:
1. A method for managing a data transfer between a first

device and an allocated portion of common memory,
wherein said first device and said common memory are
coupled by a data bus, said method comprising the steps of:

receiving a reallocation request of the allocated portion of
common memory from a second device;

in response to receipt of said reallocation request by said
first device, determining if said data transfer can be
completed without data bus latency exceeding a pre
determined amount of time;

in response to determining that said data transfer can be
completed without data bus latency exceeding said
predetermined amount of time,
transmitting a veto of the requested reallocation to the

second device; and
delaying the reallocation request;

in response to determining that said data transfer cannot
be completed without data bus latency exceeding a
predetermined amount of time, granting said realloca
tion request,

wherein the step of transmitting a veto includes transmit
ting a retry signal a predetermined number of times in
response to receiving a reallocation request a predeter
mined number of times; and

in response to receiving said reallocation request more
than said predetermined number of times, discontinu
ing the managed data transfer prior to completion.

2. The method of claim 1 further comprising a step of
determining whether the requested reallocation would affect
the managed data transfer.

5

10

15

20

25

30

35

40

45

50

55

60

65

10
3. The method of claim 2 further comprising the step of

storing information necessary for restarting the managed
data transfer prior to discontinuing the managed data trans
fer.

4. The method for managing a data transfer of claim 1,
wherein said step of determining if said data transfer can be
completed without data bus latency exceeding a predeter
mined amount of time comprises:

determining if a remaining portion of data to be trans
ferred can be stored within data buffers within said first
device.

5. The method for managing a data transfer of claim 1,
wherein said first device is a peripheral device and said
second device is a processor, said method further compris
ing:

obtaining permission from an operating system to com
municate with said peripheral device; and

thereafter, instructing said peripheral device to transfer
data with said allocated portion of said common
memory.

6. An apparatus for transferring data between a peripheral
device and a common memory in a virtual memory system,
wherein said peripheral device and said common memory
are coupled by a data bus, comprising:
means for instructing the peripheral device to transfer data

with an allocated portion of the common memory;
means for requesting a reallocation of the allocated por

tion of the common memory;
means for determining if said data transfer can be com

pleted without data bus latency exceeding a predeter
mined amount of time;

means for transmitting a veto of the requested reallocation
from the peripheral device in response to determining
that said data transfer can be completed without data
bus latency exceeding said predetermined amount of
time;

wherein the means for transmitting a veto includes means
for transmitting a retry signal a predetermined number
of times in response to receiving a reallocation request
a predetermined number of times; and

means for discontinuing the data transfer prior to comple
tion in response to receiving said reallocation request
more than said predetermined number of times.

7. The apparatus of claim 6 further comprising means for
determining whether the requested reallocation would affect
the instructed data transfer.

8. The apparatus of claim 7 further comprising means for
storing information necessary for restarting the requested
data transfer prior to discontinuing the requested data trans
fer.

9. The apparatus of claim 7 further comprising means for
obtaining permission from an operating system to commu
nicate with the peripheral device prior to instructing the
peripheral device to transfer data.

10. The apparatus for transferring data of claim 6, wherein
said means for determining if said data transfer can be
completed without data bus latency exceeding a predeter
mined amount of time comprises:

means for determining if a remaining portion of data to be
transferred can be stored within data buffers within said
peripheral device.

11. A data processing system for transferring data in a
virtual memory system comprising:

a) at least one processor,
b) a peripheral device coupled to the processor across a

5,463,739
11

system bus;
c) a common memory coupled to the at least one proces

sor and the peripheral device across a system bus;
d) means for instructing the peripheral device to transfer

data with an allocated portion of the common memory;
e) means for requesting a reallocation of the allocated

portion of the common memory;
f) means for determining if said data transfer can be

completed without system bus latency exceeding a
predetermined amount of time,

g) means for transmitting a veto of the requested reallo
cation from the peripheral device to said at least one
processor in response to determining that said data
transfer can be completed without system bus latency
exceeding a predetermined amount of time;

wherein the means for transmitting a veto includes trans
mitting a retry signal a predetermined number of times
in response to receiving a reallocation request said
predetermined number of times; and

means for discontinuing the data transfer prior to comple
tion in response to receiving said reallocation request

10

15

12
more than said predetermined number of times.

12. The data processing system of claim 11 further
comprising means for determining whether the requested
reallocation would affect the instructed data transfer.

13. The data processing system of claim 12 further
comprising means for storing information necessary for
restarting the requested data transfer prior to discontinuing
the requested data transfer.

14. The data processing system of claim 12 further
comprising means for obtaining permission from an oper
ating system to communicate with the peripheral device
prior to instructing the peripheral device to transfer data.

15. The data processing system for transferring data of
claim 11, wherein said means for determining if said data
transfer can be completed without system bus latency
exceeding a predetermined amount of time comprises:
means for determining if a remaining portion of data to be

transferred can be stored within data buffers within said
peripheral device.

ck k k k k

